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Abstract: Maintaining a healthy gut environment is a prerequisite for sustainable animal production.
The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ
exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first
line of defense between the host and the luminal environment. It consists of a continuous monolayer
of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space
between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway
is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and
function of the epithelial barrier as they not only link cells but also form channels allowing permeation
between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular
composition, ultrastructure, and function are regulated differently with regard to physiological and
pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity
greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the
translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which
are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an
increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is
considerable evidence that the intestinal barrier dysfunction is an important factor contributing to
the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce
permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins.
Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important
for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction
proteins as receptors for attachment and subsequent internalization, while others modify or destroy
the tight junction proteins by different pathways and thereby provide a gateway to the underlying
tissue. This review aims to deliver an overview of the tight junction structures and function, and its
role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that
the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens
needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica
and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to
avoid damages of the intestinal barrier or to minimize consequences from infections.
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1. Introduction

Epithelial cells are tightly bound together by intercellular junctional complexes that regulate the
passage of ions and molecules through the paracellular pathway. Reduced tight junction integrity
greatly increases ion conductance across the paracellular route compared to the transcellular route,
resulting in a phenomenon described as leaky gut [1]. This condition basically enables pathogens and
endotoxins to access the whole body including vital organs.

Di Pierro [2] reported that the opening and closing of the paracellular junction is tightly regulated,
under normal conditions. However, dysregulation and loss of the cellular junction integrity contributes
to disease development. The degree of sealing of tight junctions varies according to external stimuli,
physiological and pathological conditions.

Tight junctions are multi-protein complexes that not only hold cells of a same tissue together
but also form channels which allow permeation between the cells, resulting in epithelial surfaces
of different tightness. The main component of tight junctions proteins are occludin, tricellulin,
and claudins. Tight junctions are regulated in their molecular composition, ultrastructure, and function
by intracellular proteins and the cytoskeleton. Consequently, TJs play a crucial role in the physiological
function of epithelial cells.

In general, changes in gut permeability can be induced via modulation of TJs (down or
up-regulation of the TJ proteins), or relocation of TJs or/and cytokine and hydrogen peroxide-induced
decrease in transepithelial tissue resistance [3]. Hecht [4] showed that enteric pathogens target the
intercellular tight junctions and can disrupt them either directly by affecting specific TJ proteins or
indirectly by altering the cellular cytoskeleton (through changes in the perijunctional actomyosin ring).
Disruption of specific TJ proteins can result from degradation by bacterial derived proteases or by
biochemical alterations such as phosphorylation or dephosphorylation.

The barrier function of TJs and intestinal permeability can be directly determined in vitro with
mounted tissue in the Ussing chamber technique based upon a decrease in transepithelial electrical
resistance (TEER) and an increase in the paracellular flux of macromolecules such as mannitol, reflecting
a quantifiable indicator for the intestinal barrier [5,6]. The barrier function in vivo may also be assessed
indirectly by characterizing TJ proteins or by serological detection of substances such as bacterial
lipopolysaccharides (LPS) in the blood [7] (Table 1).

Table 1. In vitro and in vivo methods for measuring intestinal permeability.

Procedure In Vivo In Vitro Reference

direct measurement of
intestinal permeability

Cr51-EDTA (0.34 kDa)
FITC dextran (4 kDa)

FITC dextrans (4–2000 kDa)
Fluorescein (0.38 kDa)

Horseraddish peroxidase (44 kDa)
Mannitol (0.18 kDa)

Trans-epithelial resistance

Bjarnason et al. [8]
Nighot et al. [9]
Awad et al. [10]

indirect measurement
of intestinal
permeability

TJ proteins
LPS (plasma or serum)

LPS binding protein
- Bjarnason et al. [8]

The assessment of tight-junction integrity is complex, which is reflected by the finding that not
only the quantity of mRNA but also phosphorylation and folding together with localization of TJ
proteins are of importance [11,12]. However, most of these features are poorly understood and deserve
more detailed investigations.

In general, pathogens can disrupt the tight junctions’ barrier function by different mechanisms
including direct reorganization or degradation of specific TJ proteins, reorganization of the cell
cytoskeleton, and activation of host cell signaling events [13]. Additionally, it was reported that some
enteric pathogens appear to influence tight junction functions by utilizing TJ proteins as receptors for
internalization and breakdown of the epithelial barrier [14]. Consequently, it can be summarized that
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enteric pathogens can develop a broad range of mechanisms to change the host tight junction barrier
function. Furthermore, it was reported that pathogen induced alterations of the actin cytoskeleton
through modification of host cell pathways, such as the activation of myosin light chain kinase (MLCK),
contraction of the perijunctional actomyosin via phosphorylation of MLC by MLCK, alters the activity
of the Rho family of GTPase binding proteins, which are involved in the assembly and/or organization
of the actin cytoskeleton [15–17].

Finally, TJ proteins have a dominant role in barrier formation, as resolved mainly from work
with mammals. Based upon nutrient uptake, permeability studies and the way chickens react to
microorganisms it appears that the constitution of the epithelial barrier in birds is somewhat different
to that in mammals [18–22], which might help to explain differences in the clinical outcome following
infection with the same kind of pathogen. Consequently, resolving the structure of TJs in the chicken
gut would help to elucidate how compartmental separation and transepithelial transport takes place
at different age of the animals, keeping in mind that the constitution of tight junctions can be used as a
marker for gut health and integrity. A better knowledge of the composition of TJ proteins in chickens
is also crucial to understand certain pathogenic pathways.

The following sections will not only outline the molecular structure and function of tight junctions,
disruptions of TJ proteins by enteric food borne pathogens will also be addressed due to their
importance for birds’ health. In addition, an overview will be provided about the strategies used for
restoration of the impaired barrier permeability.

2. Molecular Structure and Function of Tight Junctions

Generally, TJs are multi protein complexes consisting of transmembrane proteins, linked to the
actin cytoskeleton via cytoplasmic proteins [23]. Approximately 50 TJ proteins have been identified.
Transmembrane proteins, principally claudins, occludin, junctional adhesion molecules (JAMs),
the coxsackie virus and adenovirus receptor (CAR) and tricellulin (Figure 1), are contributing to
the semi-permeable barrier, whereas cytosolic proteins not only link membrane components to the
actin cytoskeleton they also participate in signaling between TJs and the cell nucleus.
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translocation across the intestinal epithelium with tight junction proteins. JAM = Junctional adhesion
molecule, CAR = Coxsackie virus and adenovirus receptor, ZO = Zonula occludens (adapted from
Ulluwishewa et al. [24]).



Toxins 2017, 9, 60 4 of 22

Proteins of the claudin family are a main component of tight junctions and form a seal that
modulates paracellular transport in the intestinal epithelium [25]. It was also suggested that claudins
have an important role in the regulation of cellular signaling [26,27]. Claudin-1, -3, and -5, and cldn-16,
ZO-1 and ZO-2 expressions were demonstrated in the chicken intestinal epithelium [26,28–30]. It is
known that claudin-1, -3, -4, -5, -7, and -19 are pore-sealing claudins. An increased expression of these
proteins leads to a very tight epithelia, coinciding with an increased transepithelial electrical resistance
(TER) and decreased solute permeability (mainly sodium ions) across the epithelial monolayer [31–33].
Conversely, claudin-2 and -15 are considered as the pore-forming claudins, because of their ability
to form paracellular anion/cation pores as well as water channels, enabling them to decrease
epithelial tightness and to increase solute permeability by allowing the passage of sodium ions [34–36].
Taken together, claudins enable strict control over the paracellular flux of cations and anions [37].

Occludin is a TJ protein consisting of four transmembrane domains with the capability to shift to
various paracellular locations and, therefore, altering epithelial permeability. Movement of occludin
from the tight junction into cytoplasmic vesicles occurs frequently during barrier function loss [38] and
has been shown to be triggered by multiple stimuli, such as oxidative stress and inflammation [39].
Cani et al. [11] showed that occludin expression is inversely correlated with the translocation of
Fluorescein isothiocyanate (FITC) dextran from the gastrointestinal tract to the blood, emphasizing its
importance in maintaining the barrier function.

Zona occludens-1 (ZO-1) was the first protein identified at tight junctions. It localizes at the
cytoplasmic surface of the cell membrane, close to the TJ strands [40,41]. There are three ZO types:
ZO-1, ZO-2 and ZO-3. ZO-1 plays a major role in the formation of TJs in epithelial cells compared with
ZO-2 and ZO-3 [35]. Furthermore, ZO-1 serves as an important linker between the TJ and the actin
cytoskeleton and is thought to be a functionally critical tight junction component. It was also found
that ZO-1 is directly associated with occludin [42].

A fourth transmembrane protein, tricellulin, has also been recently discovered, a tight-junction
protein forming a linkage between three adjacent cells [43]. Tricellulin is found concentrated at
tricellular contacts in epithelial cellular sheets identified in epithelial cells of the kidney, intestine
and stomach [43,44]. Tricellulin is a tetra-span protein with four transmembrane domains and
two extracellular loops. Currently the role of tricellulin at TJs is largely unknown.

Paracellular permeability across the intestinal epithelium is regulated by tight junctions [32,45].
Over the past few years, many studies focused on identifying the mechanisms that permit a selective
diffusion of ions and solutes along the paracellular pathway and much knowledge about the molecular
composition of TJs has been provided [23]. Each TJ protein has a specific function which has just
started to be elucidated [46]. For example, JAMs were shown to play a role in tight-junction formation,
but not in barrier maintenance [47].

Tight junctions promote two functions (fence and screening functions) which are crucial for
an appropriate epithelial function. The fence function is vital in maintaining apical and basolateral
character, whereas the screening function acts as a gatekeeper, regulating paracellular transport of
solutes between the luminal and basolateral space [48].

Finally, tight junctions are regulated by several intracellular pathways including myosin light
chain kinase (MLCK), mitogen-activated protein kinases (MAPK), protein kinase C (PKC) and the
Rho family of small GTPases [24]. The MLCK pathway is one of the most abundant in the gut, and is
a crucial step in the regulation of tight-junctional permeability by several external stimuli, such as
cytokines and pathogens [15] and the inhibition of MLCK prevents the deterioration of barrier function.
To understand how tight junction proteins change in the course of barrier dysfunction, it is important
to analyze such multiple proteins, in order to understand their interactions and to determine the
activation status of regulatory pathways.

3. Infection and Inflammation Disrupt Barrier Function

The main entry site for pathogenic bacteria, feed contaminants such as mycotoxin and other
pathogens is the digestive tract. On the contrary, the intestine forms a major physical barrier preventing
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pathogens and toxic compounds to cross the mucosa and to enter the body, coinciding with the
activation of the immune system (innate and adaptive immune responses) against pathogens and
toxic compounds. Thus, intestinal integrity is critical for maintaining a physical barrier between
the intestinal lumen and the body and to protect against infection. The barrier function of TJ is of
critical importance in gut physiology. TJs also play important roles in signal transduction mechanisms
that regulate cell proliferation, differentiation and gene expression [49]. Under normal physiological
conditions, tight junction barrier integrity remains intact and transport of toxic luminal substances
together with molecules across the tight junctions is very well regulated [50].

Shen et al. [51] reported that different factors can affect the permeability of the intestinal
tight junction barrier. They demonstrated that small quantities of luminal endotoxin, commensal
microflora and pathogens may cross the epithelium and enter circulation through the tight junctions,
when animals are under stress or suffer from an intestinal inflammation. Pathogens can also stimulate
the localized secretion of pro-inflammatory cytokines from immune and intestinal epithelial cells.
Consequently, these inflammatory and stress responses may induce phosphorylation of myosin light
chain by myosin light chain kinase, resulting in contraction and opening of the intestinal epithelial
tight junctions and an increased intestinal permeability [52,53]. In this context, it needs to be mentioned
that heat stress is of high importance in poultry production and an influence on broilers physiology
was demonstrated, as stressed birds suffer from multiple physiological disturbances such as damages
to intestinal mucosa and higher intestinal paracellular permeability [54].

Some bacterial pathogens can impair intestinal barrier function by disruption of tight junctions
and initiation of inflammatory cascades [55]. In addition, most of them attack epithelial cells either
directly using effector proteins or through the elaboration of enterotoxins. Berkes et al. [56] reported
that many enteropathogenic bacteria have been implicated in the disruption of tight junctions including
enteropathogenic Escherichia coli (EPEC), Clostridium difficile, Clostridium perfringens, Helicobacter pylori,
Campylobacter jejuni, Campylobacter concisus, and Salmonella Typhimurium. Some of these bacteria
disrupt tight junctions through disorganization of specific tight junction proteins, including zonula
occludens, occludin, and claudin [57]. It was also demonstrated that some of them, such as pathogenic
E. coli, cause a withdrawal of ZO-1, occludin and claudins from the TJ. Furthermore, many of the
barrier-disruptive mechanisms were reported such as dephosphorylation of occludin [58], decreased
junctional protein expression [59] and stimulation of non-muscle myosin through myosin light chain
kinase (MLCK) [60] and Rho GTPases [61].

There is evidence demonstrating a role of pro-inflammatory cytokines, such as interferon-γ
(IFN-γ) and tumour necrosis factor-α (TNF-α), in endocytosis of tight junction proteins from the apical
junctional complex (AJC) through MLCK and Rho-associated kinase (ROCK)-mediated manipulation
of the host cell cytoskeleton [62–64]. In addition, pro-inflammatory stimuli trigger intestinal epithelia
to express more of the relatively permeable tight junction proteins (e.g., claudin-2) and less of the
relatively impermeable junction proteins (claudins-1, -3, -4, -5, and -8), resulting in a decreased barrier
function [65,66]. Epithelial barrier dysfunctions occur in inflammatory bowel diseases that contribute
to leaky-flux diarrhea, coinciding with a loss of solutes and water. Furthermore, down-regulation of
pore-sealing claudins (4, 5, and 8), but up-regulation of pore-forming claudin-2 is observed in Crohn’s
disease [66,67].

Moreover, it was shown that bacterial toxins, such as endotoxins of Gram-negative bacteria (LPS),
could induce disorders in intestinal epithelial barrier function [7]. Therefore, intestinal and systemic
diseases are associated with leaky epithelial barrier and consequently increased intestinal permeability
to endotoxin. Additionally, Albin et al. [68] showed that endotoxins can alter the intestinal integrity
and junctional organization. Finally, the disruption of gut barrier could induce a malabsorption
of nutrients and translocation of enteric bacteria to various internal organs, leading to disease and
reduced growth performance [5,69–72].

Generally, it can be concluded that an impaired gut barrier function is a common characteristic
of many local but also systemic infections and a leaking gut is thought to contribute to the severity
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of clinical symptoms. Finally, enteric pathogens utilize a diverse array of strategies to alter host
tight junction barrier function and such alterations can contribute to different infection outcomes.
Thus, mechanisms whereby certain enteric pathogens disrupt the tight junctional complexes will
be addressed below in more detail and how, in turn, these disruptions may be implicated in
gastrointestinal dysfunction.

3.1. Enteropathogenic Escherichia coli (EPEC)

Enteropathogenic E. coli are a major cause of bacterial diarrhea and hemorrhagic colitis in
both humans and animals [73–75] with consequences on intestinal epithelial barrier function.
Ugalde-Silva et al. [76] reported that EPEC injects effector proteins directly from the bacterial cytoplasm
to the host cell cytoplasm and thereby alters the eukaryotic cell functions through modifying or blocking
cell signaling pathways. Philpott et al. [77] demonstrated in an in vitro study that EPEC induces a
time and dose dependent drop in tissue resistance across intestinal epithelial cell monolayers with an
increase in the paracellular permeability.

Furthermore, Muza-Moons et al. [78] showed that the tight junction proteins occludin, claudin
and ZO-1 are affected by an EPEC infection in T84 intestinal epithelial cells. Roxas et al. [79] reported
that E. coli induced changes in intestinal ion permeability in the colon of mice were due to alterations
in tight junction architecture. Applying immunofluorescence microscopy, a redistribution of the
tight junction proteins occludin and claudin-3 together with an increased expression of claudin-2
could be demonstrated. Furthermore, it was demonstrated that the acute exposure to E. coli (enteric
non-pathogenic and pathogenic) reduced the epithelial ion conductance [80]. It was also found that an
infection with EPEC reduced significantly the TJ proteins (occludin (phosphorylated form), ZO-1 and
claudin-1), which is supported by other findings reporting a rapid and progressive dephosphorylation
of occludin following EPEC infection [58].

Hofman [81] showed that bacterial toxins have the ability to dilate TJs and increase paracellular
permeability. These effects may result from direct modification of TJ proteins (occludin, claudins,
ZO-1, ZO-2, ZO-3) or by direct binding to a TJ component or by alteration of the peri-junctional actin
filaments, keeping in mind that overlapping effects may appear. It was reported that the EPEC secreted
effector protein F (EspF) is necessary for disrupting the tight junction barrier function in vitro [82]
(Table 2). A study using epithelial cell lines has demonstrated that an EPEC infection leads to a
decrease in TER as well as a disruption of tight junction barrier function through redistribution,
dephosphorylation and dissociation of tight junction proteins [82,83]. In an in vivo study, it was
mentioned that the EPEC-induced tight junction barrier disruption is EspF dependent at earlier time
points of infection, while altered barrier function at the later time point was shown to coincide with
increased production of the pro-inflammatory cytokine TNF-alpha [84,85]. Altogether, it can be
summarized that the intestinal epithelial response to infection can be multifactorial.

Table 2. Interaction of enteropathogenic Escherichia coli with tight junctions.

Pathogen/Mechanism In Vivo/In Vitro Effects Reference

EPEC dephosphorylates and
dissociates occludin in vitro

contraction of the perijunctional
actomyosin ring

increase in paracellular permeability and
perturbing tight junction barrier function

Simonovic et al. [58]

EPEC redistributes occludin in vivo disruption of ion transport
perturbation of intestinal barrier function Shifflet et al. [84]

EPEC induces redistribution
of ZO-1 and occludin in vivo increase in paracellular permeability

change of tight junction structure Zhang et al. [82]

EPEC alters the distribution
of the TJ protein ZO-1 in vitro alteration of barrier and

transport functions Philpott et al. [77]
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3.2. Campylobacter jejuni

Different studies demonstrated that C. jejuni can disrupt the structure of tight junction proteins,
in order to facilitate their paracellular passage into the underlying tissues [86–88]. The mechanisms
by which C. jejuni affects tight junction functions are summarized in Table 3. In one of these studies,
it was demonstrated that Campylobacter can affect the intestinal integrity by disrupting occludin,
an integral tight junction protein, enhancing the paracellular passage of Campylobacter in Caco-2 cell
monolayers [86]. Accordingly, the host will elevate levels of pro-inflammatory cytokines, such as
TNF-α and IFN-γ which have been shown to affect the structure of tight junctions, to disrupt the barrier
function and to facilitate the passage of luminal antigens into the underlying tissues [87]. In addition,
paracellular leakage contributes to a disturbance of selective intestinal transport (e.g., toxin absorption)
and diarrhea [89].

In another in vitro study with Caco-2 cells [90] it was demonstrated that C. jejuni is capable
to enter host eukaryotic cells via endocytosis. In the same study it was also revealed that C. jejuni
81116, in the presence of IFN-γ alone or with TNF-α, resulted in a focal redistribution of occludin
and increased cellular damage within 24 h. Furthermore, co-infection of C. jejuni and E. coli caused
a significant decrease in TEER within 6 g, with a focal redistribution of occludin, correlating with
an influx of C. jejuni into the basal side of enterocytes. Dodson [90] also hypothesized that once
Campylobacter colonized the gastrointestinal tract of a susceptible host, the infection causes an intestinal
inflammation which would result in a rapid loss of tight junction barrier function. Similarly, other
studies showed that C. jejuni-induced barrier dysfunction was associated with altered claudin-4
expression and distribution [91,92].

Recently, some studies showed that C. jejuni promotes the translocation of C. jejuni itself as well
as other commensal bacteria in mammals and chickens [70,93,94]. It is supposed that the intestinal
bacteria target various intracellular pathways, change the expression and distribution of TJ proteins
and thereby alter gut permeability. In addition, this pathogen can affect the gut barrier functions
by inducing fluid and electrolyte secretion and initiate inflammatory responses [56]. Hence, it was
shown that C. jejuni infections in some broiler lines (fast-growing lines) are characterized by diarrhea,
a prolonged inflammatory response and induction of lymphocyte activation in cecal tissue [95].
Moreover, C. jejuni colonization was associated with an alteration of the gut microbiota with changes
in bacterial metabolic activity (short-chain fatty acids, SCFAs) [70,71]. In a recent study, we showed
that Campylobacter infection strongly interferes with Ca2+ signaling [69]. It can be hypothesized that
such an interaction of C. jejuni with [Ca2+] can have profound effects on cellular functions and may
support cellular invasion of Campylobacter by microvillar cytoskeleton rearrangement which needs
further approval.

Chickens are recognized as an imperative source of thermophilic Campylobacter, carrying this
pathogen in their intestinal tract. Recently, it was revealed that C. jejuni colonization in the chicken
intestine was accompanied with mucosal damage and a higher intestinal permeability which indicates
that C. jejuni may translocate via the paracellular, in addition to the transcellular, pathway [5,69,95,96]
(Figure 2). Although both pathways can be involved in bacteria translocation, the paracellular pathway
appears to be of particular importance in dissemination towards inner organs. In chickens, it can be
hypothesized that the barrier function of the intestinal epithelium is markedly altered in colonized
birds and this alteration could be a part of the colonization strategy leading to persistent infection of
the gut [97]. However, the mechanisms involved in C. jejuni-induced barrier dysfunction in chickens
remain unclear and further studies are needed to determine how Campylobacter influences the gut
barrier during infection. Additionally, elucidating the mechanisms by which C. jejuni is able to cross
the gut should help in finding suitable options to decrease the level of bacteria in internal organs.
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Table 3. Interaction of Campylobacter with tight junctions.

Pathogen/Mechanism In Vivo/In Vitro Effects Reference

C. jejuni (NCTC 12744) disrupts
epithelial barrier function in vivo perturbation of TJ by increasing

intestinal permeability Awad et al. [5]

C. jejuni 81116 induces
redistribution of occludin in vitro decrease in transepithelial

electrical resistance Dodson [90]

C. jejuni 81–176 induces
translocation of commensal

bacteria via a lipid raft-mediated
transcellular process

in vivo
promotes the translocation of

non-invasive bacteria across the
intestinal epithelium

Kalischuk et al. [93]

C. jejuni RM1221 alters the
distribution of the tight junction

protein claudin-4
in vitro increase in transepithelial

permeability Lamb-Rosteski et al. [91]

C. jejuni (NCTC 12744) interferes
with intracellular Ca2+ signaling in vivo

alteration of barrier and
transport functions

facilitates the translocation of
E. coli

Awad et al. [69,70]
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Figure 2. Pathophysiology of Campylobacter in chickens: translocation via transcellular (a) and
paracellular pathways (b). Macrophages and dendritic cells (innate immune cells) recognize the
pathogenic bacteria through molecular pattern-recognition receptors (Toll-like receptor, TLR) (c), change
their functional status from tolerogenic to an activated phenotype. Activation of nuclear factor-κB
(NF-kB) pathway stimulates gene transcription, resulting in increased production of pro-inflammatory
cytokines (TNF-α, interleukins 1β, IL 6 and IL8) [95] (d). Campylobacter induces a disruption of tight
junctions and the mucus film (e) with a higher permeability of the intestinal epithelium (f), resulting in
an increased uptake of luminal antigens (e.g., microbes, and toxins). In addition, Campylobacter utilizes
SCFAs as a source of carbon and energy in the intestine, consequently alters gut colonization dynamics
and may also influence physiological processes due to altered microbial metabolite profiles [70] (g).
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3.3. Salmonella enterica

Salmonella is another important food-borne pathogen with limited clinical signs in chickens, although
intestinal inflammation and elevated cross-contamination are noticed [98–100]. Infection of epithelial
cell monolayers by S. Typhimurium resulted in a disrupted TJ structure and function [16,17,101–103]
(Table 4). Similarly, in an in vitro experiment it was demonstrated that the infection of T84 intestinal
epithelial cells with S. Typhimurium elicited a rapid drop in tissue resistance, accompanied by an
increase in the paracellular flux of fluorescence labeled markers across the infected cell monolayer [103].
Coinciding with the increased paracellular permeability, Salmonella caused a decrease in the expression
of both ZO-1 and phosphorylated occludin, redistribution of claudin-1 and ZO-2 proteins, facilitation
of bacterial translocation, and loss of barrier function [103].

It has also been described that S. Typhimurium invasion of intestinal epithelia is accompanied
by a loss of epithelial integrity and, consequently, an impaired epithelial function in mice [57,104].
Moreover, an infection of intestinal epithelial cells (T84 or MDCK) with S. Typhimurium can cause a
progressive decrease in transepithelial electrical resistance, alteration of intestinal TJ proteins, a damage
of intestinal barrier function and facilitates the translocation of both pathogenic and non-pathogenic
bacteria across epithelial cell monolayers, indicating a disruption of the tight junction barrier [102,103].
It was further reported that the increased paracellular permeability following a S. Typhimurium
infection can be due to the contraction of the perijunctional actin ring and alteration in the Rho GTPase
activity via the type three secretion system (T3SS) effector proteins, thereby altering the function of
tight junctions [16,17,102].

Table 4. Interaction of Salmonella with tight junctions.

Pathogen/Mechanism In Vivo/In Vitro Effects Reference

Salmonella Enteritidis compromises the
intestinal epithelium barrier in vitro decrease in the trans-epithelial

ion conductance Awad et al. [20]

Salmonella Typhimurium decreases in
claudin-1, claudin-4, and occludin mRNA

proteins expression
in vivo disruption of the epithelial

barrier function Shao et al. [105]

Salmonella Typhimurium decreases
claudin-1 and occludin mRNA expression in vivo alteration of the intestinal mucosal

barrier function Zhang et al. [100]

Salmonella Typhimurium decreases the
mRNA expression of both ZO-1 and

occludin, causes a redistribution of both
epithelial TJ proteins claudin-1 and ZO-2

in vitro

damage of the intestinal
barrier function

facilitates the translocation of
pathogenic and

non-pathogenic bacteria

Koehler et al. [103]

In a similar way, Zhang et al. [100] found that a S. Typhimurium challenge decreased claudin-1
and occludin mRNA expression in the ileum of broiler chickens. Moreover, it was reported that the
intestinal tight junction proteins claudin-1, claudin-4 and occludin mRNA expression in the jejunum at
14 days post infection (dpi) were significantly decreased by a S. Typhimurium challenge in broilers [105].
This down-regulation of TJ proteins resulted in an enhancement of paracellular permeability and
disruption of the intestinal barrier, thereby allowing the diffusion of macromolecules, such as bacterial
toxins (endotoxin) and pathogens, from the intestinal lumen into the blood circulation [106,107].

Like S. Typhimurium, Salmonella Enteritidis could also alter the tight junction function.
Awad et al. [20] found that luminal S. Enteritidis affects the intestinal epithelium of chickens in
the same way as its endotoxin and it decreases intestinal ion permeability of chickens directly after
acute exposure. This is in contrast to findings in pigs where Salmonella endotoxin does not elicit an
acute decrease in permeability [108]. This finding could explain why chickens do not experience overt
secretory diarrhea when infected by this pathogen in contrast to pigs and other species, including
humans, which is seen as a result of a differently regulated gut function. Finally, intestinal TJ disruption
results not only in an increased permeability to luminal antigens and bacteria translocation, it also
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lowers the absorption of nutrients [24,56], consequently, can interfere with productivity and enhance
severity of clinical signs.

3.4. Clostridium perfringens

Necrotic enteritis in poultry is a frequently reported disease condition caused by the abundant
growth of Clostridium perfringens in the intestine. C. perfringens strains are characterized by the
production of major toxins (alpha, beta, epsilon and iota), many of these toxins have been demonstrated
to contribute to the virulence of bacteria and to play a key role in the pathogenesis of animal
infections [109]. Producing different toxins increases the flexibility of C. perfringens in causing disease
under varying host conditions [110]. Recently, it was found that the majority of C. perfringens isolates
from chickens with clinical signs of necrotic enteritis carry the necrotic enteritis B-like toxin (NetB).
Earlier, it was believed that proliferation of Clostridium perfringens and production of alpha-toxin is the
major factor for necrotic enteritis (NE) in poultry; however, NetB has recently been shown to be an
essential virulence factor in clinical necrotic enteritis in broiler chickens [110–113]. NetB is a cytotoxic,
haemolytic, pore-forming toxin for avian cells and it was revealed that the development of necrotic
enteritis in chickens was dependent on the ability to produce NetB [111]. Beside the clinical form of
C. perfringens necrotic enteritis in poultry, the subclinical form has also been described in the field,
characterized by a damaged intestinal mucosa, decrease in digestion and absorption and reduced
performance [114–116]. Subclinical infections are coinciding with a reduction in growth performance
and negatively impacting productivity, without being recognized and treated [110].

Many pathogens impair junctional structures indirectly by activation of signaling cascades of
host cells. However, Clostridium perfringens enterotoxin (CPE) uses TJ proteins directly as cell surface
receptors to attach [117]. CPE, a cytotoxic, pore-forming toxin, uses the claudin family as cellular
receptors and it has been shown that it attaches to claudin-3 and claudin-4 of MDCK cell monolayers
(Figure 3) [118–121]. Similarly, Saitoh et al. [122] revealed that CPE can bind to specific claudins,
resulting in the disintegration of TJs and an increase in the paracellular permeability across epithelial
cell layers. Additionally, Singh et al. [123] showed that CPE can also interact with other TJs like
occludin, following binding of the enterotoxin to its receptors (claudins) in Caco-2 cell monolayers.
In another study, the application of CPE to basolateral membranes was found to affect the tight junction
structure by inducing a fragmentation of tight junctions within 1 h [124]. After binding, CPE damages
the membrane permeability and leads to calcium influx into the cell, resulting in cell damage [125].
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Nava and Vidal [126] demonstrated in human intestinal cells that an infection with a C. perfringens
type C strain induced a significant drop on TEER and this change was mediated by redistribution
of TJs protein occludin and Claudin-3. In rats, it was shown that the phospholipase C activity
of the alpha toxin impaired the intestinal mucosal barrier and increased the permeability of the
intestine through activation of phospholipase (Table 5) [127]. In chickens, it was reported that mucosal
addition of C. perfringens alpha toxin can impair the intestinal mucosal barrier [128,129]. Finally,
Collier et al. [130] observed that the paracellular permeability was higher in tissues from chickens
infected with C. perfringens.

Table 5. Interaction of Clostridium perfringens with tight junctions.

Pathogen/Mechanism In Vivo/In Vitro Effects Reference

C. perfringens type C causes a
redistribution of epithelial TJ

proteins occludin and claudin-3
in vitro decreases the trans-epithelial

electrical resistance Nava and Vidal [126]

C. perfringens alters epithelial TJs
barrier through activation

of phospholipase
in vivo perturbation of TJ by an increased

intestinal permeability Otamiri [127]

C. perfringens decreases claudin-1
and occludin mRNA expression in vivo

alteration of the intestinal barrier
function by increasing
intestinal permeability

Collier et al. [130]

C. perfringens enterotoxin targets
directly TJ protein claudins

as receptors
in vitro

impairment of TJ barrier function
increase in

paracellular permeability
Saitoh et al. [122]

4. Impaired Barrier Function and Growth Performance

In poultry, the effects of enteric pathogens are not always obvious, but even in those cases where
chickens do not show clinical symptoms, they may have negative effects on feed consumption, growth,
immune system and other health parameters. Since it was shown that the damage of the intestinal
barrier may increase the passage of pathogens to access the underlying lamina propia and activate
the host’s immune compartment, impaired nutrient absorption which results in the availability of the
necessary growth substrate for the proliferation of pathogens [69,70].

For instance, it was reported that the exposure to bacterial endotoxin (e.g., Escherichia coli
or Salmonella typhimurium) affects the birds’ performance by a reduction in body weight and a
worsening of feed conversion rate [7]. Furthermore, some studies showed that Campylobacter negatively
impacted poultry production by a reduction of body weight with consequences on the well-being of
chickens [5,95,96]. Additionally, subclinical necrotic enteritis was estimated to result in a 12% reduction
in body weight and a 10.9% increase in Feed conversion ratio (FCR) compared with healthy birds,
imposing a significant economic burden on the poultry industry worldwide [131]. It was estimated
that losses due to altered body weight and FCR associated with subclinical necrotic enteritis range
from US$878.19 to US$1480.52 per flock (20,000 birds) to reach the market weight [131].

The mechanisms by which enteric pathogens affect growth through the impaired gut barrier
may comprise: (1) interference with protein synthesis and degradation; (2) alteration of the intestinal
integrity (damage of intestinal villi) and disruption of the normal activity of nutrient transporters,
resulting in reduced nutrient absorption; (3) increase of nutrients available for luminal pathogen
proliferation, resulting in an amplification of the severity of infection; (4) increase of the maintenance
requirements of the gut (for immune function needs) and thus decrease nutrient availability for the host;
and (5) increase nutrient loss (decrease digestibility) by interfering with digestive enzyme synthesis
and/or activities [69,70,96,132].

Finally, enteric pathogens (subclinical infections) are an important concern to the poultry industry
because of production losses, reduced welfare of birds and increased risk of contamination of poultry
products for human consumption, leading to high economic losses.
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5. Restoration of the Impaired Barrier Function

Intestinal leakage, as a result of increased paracellular permeability, is a dominant feature within
the pathophysiology of many enteric pathogens and could ultimately lead to an increased translocation
of intestinal bacteria into the body. Therefore, impaired gut barrier function needs to be restored.
Many strategies have been used for restoration either via dietary management or immunotherapy
(stimulates or restores the ability of the immune defense system to counteract infection). In this
context, it could be demonstrated that dietary fiber exerts beneficial effects in the gut through its
bacterial metabolite, the short-chain fatty acid butyrate [133]. It has also been demonstrated that
a supplementation of the chicken diet by either prebiotic, probiotic or synbiotic has an impact on
barrier function [134–144]. It was shown that these feed additives act as quantitatively available
substrates for the gastrointestinal microflora within the gut of the host [145]. They also enhance
the growth of beneficial bacteria (Bifidobacterium and Lactobacillus), inhibit the growth of pathogenic
bacteria like Escherichia coli and Salmonella spp., and, in consequence, improve the microbial balance
in the gastrointestinal tract [146–148]. It was also reported that functional oligosaccharides could
ameliorate the adverse effects on barrier integrity caused by heat stress in chickens [54]. In addition,
the gut microbiota (commensal) itself is known to modulate barrier function which could be a potential
therapeutic target [149]. This is supported by the finding that certain strains of Lactobacilli could reduce
the permeability by increasing the relocation of occludin and ZO-1 tight junction in duodenal epithelial
cells [150].

Similarly, a particular focus has been elicited on prevention of necrotic enteritis in poultry caused
by Clostridium perfringens by the use of microbes (Bacillus and Lactobacillus) or microbe-derived products
(yeasts) [151]. Liu et al. [152] found that dietary supplementation of exogenous lysozyme decreased
the C. perfringens colonization and improved the intestinal barrier function of chickens. Furthermore,
it was demonstrated that a prebiotic product (arabinogalactan Fibregum) was effective in controlling
NE [153].

Linking protein synthesis with intestinal barrier permeability reflects an important feature [154–157].
Amino acids are not only important substrates for protein synthesis they are critical in supporting gut
barrier integrity and function. Thereby, amino acids supplementation can be useful for alleviating
intestine injuries. Thus far, attention was drawn towards glutamine offering a beneficial effect on the
intestinal mucosa and gut function, which can be explained by its capability to act as an important
energy source, similar to glucose [158]. It was evidenced that glutamine deprivation causes Caco-2 cell
injury [159], whereas glutamine supplementation protects Caco-2 cells from barrier dysfunction [160].
Additionally, dietary supplementations with host defense peptides (HDPs) were recently shown to
enhance mucosal barrier function directly by inducing the expression of TJ proteins and indirectly by
displaying an improvement in nutrient utilization and a reduction in Clostridium spp. and coliform
bacteria in the intestinal tract of broiler chickens [161].

Some immune-based therapies were designed to reduce intestinal inflammation and subsequent
systemic immune activation in mice. Such immune activations were associated with reduced microbial
translocation and enhanced expression of gut-junction genes. Recently, several studies have been
focused on anti-inflammatory therapy which could block pro-inflammatory pathways. Some studies
showed that a flavonoid (Nobiletin®) exerted significant anti-inflammatory effects via downregulation
of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expressions in vivo in rats
and cell cultures (BV-2 or Caco-2) [162,163]. Therefore, basic research has to continue to provide insight
into the ultimate strategies to be favored in order to restore the barrier function and to protect against
onset and progression of enteric infections, coinciding with inflammation.

6. Importance of the Chicken Intestinal Epithelial Barrier

Sustaining a healthy gut is a prerequisite for efficient performance of farm animals, especially
poultry with its high growth rate. The gut plays a key role in the digestion and absorption of nutrients
and it constitutes one of the main entrance gates exposed to external factors that can challenge the bird’s
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health. The intestinal epithelial barrier serves as the first boundary of defense between the organism
and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells which
are connected together by an intercellular junctional complex limiting the space between adjacent
cells. This minimizes the access of pathogens and toxins to spread into the host. Substantial evidence
indicates that intestinal barrier dysfunction is considered as etiological factor in the pathogenesis of
some enteric diseases [164]. Furthermore, paracellular ions and nutrient permeation is restricted by
the presence of tight junctions and consequently can affect the intestinal absorptive function.

Thus, tight junction proteins play a dominant role in barrier formation. However, it is still a matter
of debate how the paracellular barrier of the chicken intestine is organized, horizontally and vertically,
to support a strict compartmental separation on the one hand and the transepithelial transport rates
on the other hand. Thus, more knowledge on the composition of tight junction proteins in chickens
are fundamental for understanding pathogenic pathways, further supporting a primary role of the
epithelium tight junction in the pathogenesis of intestinal enteric pathogens and emphasizing the
importance to maintain a healthy and effective intestinal barrier. In addition, chickens are an important
source of zoonotic enteric pathogens. Therefore, elucidating the changes of mucosal barrier during
enteric pathogens is crucial and may help in providing new tools to restore the intestinal barrier
functions during infection.

7. Conclusions

Tight junctions are formed at the lateral sites of the cell and regulate the paracellular passage
of molecules. However, not all tight junctions, consisting of multiple proteins, are merely tight as
some tight junction proteins build their own transport pathways by forming channels selective for
small cations, anions, or water, resulting in epithelial surfaces of different tightness. Tight junctions
are regulated in their molecular composition, ultrastructure and function by intracellular scaffolding
proteins and cytoskeleton. Such a cascade of interaction is not only part of cellular physiology and
various adaptation processes, it can also be impaired by different microorganisms. Chronic infections
with certain enteric pathogens can compromise intestinal barrier function and activate a systemic
response which consequently could reduce growth efficiency.

Although the intestinal barrier and intestinal permeability are important for health and disease,
the mucosal barrier and its role in enteric disease are still poorly defined in chickens. Therefore, future
studies should aim to elucidate the molecular basis of the differential responses of the chicken gut to
infections with certain microorganisms, which is critical for bird’s health. The improvement of food
safety would be an additional surplus. Based on existing data, it can be concluded that modulation of
microbiota with probiotics for repairing the gut barrier reflects a promising approach that warrants
future investigations to minimize the effects of enteropathogenic microorganims in poultry.
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