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Abstract: Background: Solanaceae plants produce glycoalkaloids (GAs) that affect various
physiological processes of herbivorous insects and they are being tested as potential alternatives
for synthetic pesticides. They cause lethal and sublethal effects. Nevertheless, their mode of action
remains unclear. Therefore, we examined the effects of Solanum nigrum fruit extracts and pure
glycoalkaloids on a model beetle, Tenebrio molitor. Methods: Plant extracts or pure alkaloids were
added to the food of the larvae for three days. The lipid, glycogen, and protein content in the fat body
and the midgut were determined, and the contractility of the heart, hindgut, and oviduct muscles
was tested using the video-microscopy technique. Finally, the ultrastructure of the fat body and the
midgut was observed using electron microscopy. Results: No lethal effects were noted. Sublethal
changes were observed in the content of biomolecules, malformations of organelles, chromatin
condensation, and heart and oviduct contractility. The observed effects differed between the tested
glycoalkaloids and the extract. Conclusions: Both the extract and pure GAs have a wide range of
effects that may result in impaired development, food intake, and reproduction. Some early effects
may be used as bioindicators of stress. The effects of the extract and pure alkaloids suggest that the
substances produced by the plant may act additively or synergistically.

Keywords: Solanum nigrum extract; Tenebrio molitor; ultrastructure; midgut; fat body; biochemistry;
contractility; heart; oviduct; glycogen; lipids

Key Contribution: Solanum nigrum extract and its pure glycoalkaloids given with food caused
sublethal changes in the larvae of Tenebrio molitor. The effects that were caused by the extract differed
from those that were caused by pure glycoalkaloids.

1. Introduction

In recent years, the knowledge about the potential alternatives for synthetic pesticides, such as
plant derivatives, has significantly increased [1–3]. Natural products are already in use on the markets
worldwide, for example, in organic agriculture [4]. Some of the active compounds from extracts have
been changed structurally to obtain more persistent substances, such as the neem tree (Azadirachta

Toxins 2018, 10, 504; doi:10.3390/toxins10120504 www.mdpi.com/journal/toxins

http://www.mdpi.com/journal/toxins
http://www.mdpi.com
https://orcid.org/0000-0003-3944-519X
https://orcid.org/0000-0002-5667-1781
https://orcid.org/0000-0002-8600-8075
https://orcid.org/0000-0002-6510-9395
https://orcid.org/0000-0002-0857-2367
https://orcid.org/0000-0002-8696-3785
http://www.mdpi.com/2072-6651/10/12/504?type=check_update&version=1
http://dx.doi.org/10.3390/toxins10120504
http://www.mdpi.com/journal/toxins


Toxins 2018, 10, 504 2 of 21

indica) extract, which has progressively become increasingly popular [5], or pyrethrins obtained from
Chrysanthemum cinerariifolium, which in the 1970s became a source for the third class of synthetic
pyrethroids [6]. One of the most difficult aspects of crop protection is the application of substances
to stored commodities. This step requires easily degradable compounds that are relatively nontoxic
to mammals. From an economic point of view, substances that are used in crop protection should be
inexpensive and their emission should not lead to their environmental accumulation or to toxic effects
on nontarget organisms. Natural substances that are produced by plants to deter herbivores meet the
criteria outlined above. They not only are effective in the control of pest insect populations, causing
up to 100% mortality at concentrations as low as 0.5 mg/cm3 after 24 h of fumigation [7], but also
exhibit selective action against various species [8,9]. The effectiveness of plant derivatives may strongly
depend on the dosage, method of extraction and solvent [10–12], as well as the application method [13].
Given that there are an enormous number of possible plant extracts containing active ingredients and
that there are many solvents that can be used, there is a great need to study the possible combinations
to obtain the most effective substances for specific species. The majority of research has focused on
direct toxic effects, which can be used to limit pest populations [1]. However, understanding the mode
of action of plant derived substances can be useful in planning strategies for pest control. The nature
of the effects on both the target and nontarget tissues can be tested by exposure of the target species to
low doses of the plant-derived substances. Although the effects may be subtle and even statistically
non-significant, some discrete malformations and malfunctions may be observed before the massive
toxic effects appear when low concentrations of these substances are used [14–16]. Furthermore, the
sublethal doses and concentrations can reveal the first effects and the mode of action at the level of
organs, tissues, or even cells.

In this study, we tested the extract that was obtained from the unripe fruits of Solanum nigrum,
a plant commonly distributed in Europe, which is known to produce glycoalkaloids (GAs). Previous
studies have demonstrated that the extract caused larvicidal effects in mosquitoes (Diptera), such as
Culex vishnui [17], Culex quinquefasciatus [18], Culex pipiens, Aedes caspius [19], Anopheles culicifacies, Aedes
aegypti [20], and Anopheles stephensi [21]. Toxic effects have also been found in the fruitfly (Drosophila
melanogaster: Diptera) [22] and the Colorado potato beetle (Leptinotarsa decemlineata: Coleoptera) [23].
S. nigrum extract, in addition to its toxic effects, was reported to have promising anticancer [24]
and antimicrobial properties [25]. The tested extract contains 10 GAs, but two, solasonine and
solamargine, are present in greatest amounts [22]. Studies have shown not only the toxic influence of
glycoalkaloids on animal health [26], but also the beneficial effects, such as anticancer properties [27,28].
Since alkaloids have been reported as promising tools for pest management (for review see: [1,2]),
we decided to examine the extract from S. nigrum fruits as well as pure solasonine and solamargine
and to compare their effects on a model organism in ecotoxicological studies and a pest of stored
products—the yellow mealworm beetle T. molitor.

We addressed the following research questions:

• Do the extract and the pure GAs cause lethal toxic effects and disturb the development of
T. molitor larvae?

• Do the tested substances cause malformations of the cells in the exposed tissues?
• Do the tested substances affect the biochemical parameters of the exposed tissues?
• Do the tested substances affect the physiological parameters of T. molitor larvae?
• Do the effects of the extract differ from the effects of pure GAs, and (if yes) what aspects of the

toxicity may be caused by solasonine, solamargine or other compounds of the extract?

To answer these questions, we conducted some observational studies and tests of various levels
of biological organization. This study included an analysis of the general toxic activity of the S. nigrum
extract given in the food on the growth of T. molitor larvae. Since we had already observed some
ultrastructural changes in response to exposure to Solanaceae plant extracts [2,29], we decided to
test the ultrastructure of the midgut and fat body, which are important tissues for the ingestion and
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distribution of toxic agents within insect bodies. The midgut was directly exposed to the agents
present in the ingested feed. To complement the changes that were observed with electron microscopy,
biochemical assays of parameters, such as the content of lipids, glycogen, and proteins in the fat
body were conducted. Next, further studies included the analysis of the influence of the extract
and pure glycoalkaloids on the visceral muscles and myocardium contractile activity under in vitro
conditions, to check their utility as possible factors affecting muscle activity. The modulation of muscle
contractility of organs, such as the heart, hindgut, or oviduct may result in impaired development,
food intake, and reproduction. Hence, the above mentioned parameters may be crucial for better
understanding the toxic mode of action of the tested alkaloids, and they may also contribute to the
more efficient application of plant derived substances in plant protection. Consequently, this may lead
to the decreased use of both synthetic and natural substances in plant protection, with the benefits of
limiting treatment of crops and food products and reducing environmental pollution.

2. Results

2.1. Changes in Body Mass

The average percentage gain in body mass by the control larvae during the experiment was
15.7 ± 0.8% with n = 139 (Table 1). None of the larvae died during the experiment. The lowest
mean percentage weight gain (13.4 ± 1.61%) was obtained after solasonine application to the diet at
a concentration of 7.52 × 10−6 M (Table 2), and the highest (19.1 ± 1.28%) after the application of
solamargine in the concentration 7.23 × 10−6 M.

Table 1. The percentage gain in body mass by T. molitor larvae after application of the extract,
solamargine, solasonine and saline B (control) into to the diet. The data are shown as the mean
± SEM. ANOVA, Tukey’s test.

Gain inBody Mass (%)

Concentration
0.01% 0.1% 1% 10% Control

Extract 18.6 ± 1.28 18.7 ± 1.42 17.5 ± 1.33 15.2 ± 1.5
15.7 ± 0.75Solamargine 18.2 ± 1.31 19.1 ± 1.28 17.0 ± 1.05 16.8 ± 1.34

Solasonine 13.9 ± 1.38 13.4 ± 1.61 16.5 ± 1.63 16.7 ± 1.42

2.2. Effects on Visceral Muscle Contractility In Vitro

2.2.1. Heart Activity

The extract that was applied to the heart caused a negative chronotropic effect, the strength of
which increased with increasing concentration (Figure 1). The strongest effect was observed after
application of the 0.1% and 1% extracts. In these cases, an average percentage regarding the lowering
of the heart rate of −8.3 ± 1.61% and −40.4 ± 4.58%, respectively, was observed. 1% solution also
caused the reversible inhibition of heart activity (Figure 2). None of the tested GAs caused a significant
effect on heart activity.
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Figure 1. The contraction frequency of T. molitor heart after the application of the S. nigrum extract (A)
and pure glycoalkaloids (solamargine (B) and solasonine (C)). *** Statistical significance at p ≤ 0.001,
Kruskal-Wallis test with Dunn’s test.
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Figure 2. Sample myocardiogram of an adult T. molitor beetle. The arrow shows the moment the 1%
S. nigrum extract was applied.

2.2.2. Oviduct Contractility

In contrast to the heart, the 1% extract applied to the oviduct increased the contraction frequency
of this organ by an average of 152.7 ± 47.79%. The observed effect was dose dependent, and the
intensity of the response increased with an increasing extract concentration (Figure 3A). In the case of
solamargine, we also observed a slight increase in the oviduct contraction frequency after application
of the glycoalkaloid (Figure 3B). However, the relationship between the strength of the observed effect
and concentration was opposite to that caused by the extract.
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Figure 3. Effect of the S. nigrum extract (A) and pure glycoalkaloids (solamargine (B) and solasonine
(C)) on contractile activity of T. molitor oviduct. * Statistical significance at p ≤ 0.05, Kruskal-Wallis test
with Dunn’s test.

2.2.3. Hindgut Contractility

Similar to the oviduct, the S. nigrum extract increased the frequency of the hindgut contraction;
nevertheless, the observed effect was definitely slighter (Figure 4A). None of the pure alkaloids that
were applied on the isolated hindgut caused a significant effect (Figure 4B,C).
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Figure 4. Effect of the S. nigrum extract (A) and pure glycoalkaloids (solamargine (B) and solasonine (C))
on contractile activity of T. molitor hindgut. ANOVA with Tukey’s test or Kruskal-Wallis test with
Dunn’s test.

2.3. The Influence on the Fat Body and the Midgut Ultrastructure

2.3.1. Midgut

The columnar midgut cells of T. molitor (Figure 5) are characterized by nuclei surrounded by
cytoplasm containing rough endoplasmic reticulum (RER), Golgi bodies, and elongated shaped
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mitochondria. Each nucleus usually contains a single or double protein crystal (Figure 5, No. 1) [30].
The apical part of the cell includes long microvilli that take part in the absorption of digested food.
When considering the high metabolic rate and function of midgut cells, the apical zone contains many
mitochondria, smooth endoplasmic reticulum (SER), pinocytotic vesicles, and lysosomes. Special
attention was paid to the abovementioned zone of the cells because it is the first zone to have contact
with digested compounds (in this study, potentially the administered glycoalkaloids).
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Figure 5. Control cells of the T. molitor larvae midgut. The nuclei (N) with protein crystals (c) (1) are
surrounded by cytoplasm rich in endoplasmic reticulum (arrows) (2). The apical part of the cells (3)
contains many mitochondria (mt), pinocytic vesicles (asterisks) and microvilli (mv).

The lowest extract concentration did not cause any evident changes in the ultrastructure in
comparison to the control observations. First, mild effects, such as the disruption of the nuclear
membranes and swollen perinuclear space, were observed after application of the 0.1% extract (Figure 6
No. 5). After the application of 1% extract, the same effect was observed, with additional changes in
the density of the cytoplasm (Figure 7, No. 7). The strongest effects were observed after the application
of the 10% extract (Figure 7, No. 8, 9). The nuclear membranes were separated in the basal part of the
cells (Figure 7, No. 7, 9). Additionally, a decrease in the cytoplasm density was observed, especially
around the nuclei, with the presence of single-membranous structures, most likely glycogen vacuoles
(Figure 7, No. 8, Glv), which may be associated with glycogen redeployment [31]. When solasonine
or solamargine were added to the diet, no significant changes were observed in the ultrastructure of
midgut cells at any tested concentration.

The tested substances did not significantly alter the amount of electron dense chromatin within
the nuclei (Figure 8). The correlations between the substance concentration and heterochromatin
ratio for the extract, solamargine, and solasonine were 0.06, 0.60, and 0.43, respectively. Only the
relationship between the solamargine concentration and heterochromatin ratio could be regarded as a
moderate positive correlation.
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concentrations in the extract (Table 2). Kruskal-Wallis test with the Dunn’s test.
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2.3.2. Fat Body

The observed trophocytes (Figure 9, No. 1) possessed regularly shaped lipid droplets of various
sizes, stored proteins, and cytoplasm filled with glycogen granules. The control cells had regular
nuclei, with heterochromatin patches being located in the center and in the vicinity of the nuclear
envelope (Figure 9, No. 2). The glycogen granules in the cytoplasm of the control cells appeared to
be uniformly distributed. After the application of the extract at a concentration of 0.1%, some of the
lipid droplets lost their homogeneity and regularity in shape (Figure 10, No. 4). Increasing the extract
concentration to 1% caused a disruption of stored proteins and a decrease in the cytoplasm density
(Figure 10, No. 5, 6). As in the case of the midgut cells, the most visible effects were observed after the
application of the 10% extract, where the appearance of disrupted proteins and lipids were the most
prominent changes. In many cases, nuclei with very dense nucleoplasm were observed (Figure 11,
No. 7).

The application of solamargine at a concentration of 7.23 × 10−7 M caused an increase in the
cytoplasm density, but with areas of vacuolization and a change in the homogeneity of the stored
proteins (Figure 12, No. 10). An increase in the applied concentration to 7.23 × 10−5 M caused slight
changes in the lipid droplets homogeneity and an increase in the cytoplasm density. Some observed
nuclei showed the increase of the nucleoplasm density (Figure 12, No. 11). The strongest concentration
of solamargine, 7.23 × 10−4 M, also caused changes in the lipid droplet homogeneity (Figure 12,
No. 12).

Solasonine, at a concentration of 7.52 × 10−7 M, caused changes in the lipid droplet homogeneity
(Figure 13, No. 13). Similar observations were noted after application of the 7.52 × 10−4 M
concentration (Figure 13, No. 15). This concentration also caused the disintegration of the stored
proteins. The decrease in the cytoplasm density with areas of vacuolization was observed after the
application of solasonine at a concentration of 7.52 × 10−5 M (Figure 13, No. 14).Toxins 2018, 10, x FOR PEER REVIEW  8 of 22 
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Figure 9. Control cells of the T. molitor larval fat body. The cells contain a nucleus (N) (1,2), lipid
droplets (L), stored proteins (P), mitochondria (mt) (2), and cytoplasm (ct) with glycogen granules
(3, arrow).
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Figure 10. Fat body cells of the T. molitor larvae treated with 0.1% S. nigrum extract showed changes
in the lipid droplet homogeneity (4, arrow) with changes in shape regularity (4, asterisks). The 1%
extract caused disintegration of the stored proteins (5, arrow), and vacuolization of the cytoplasm
(5, 6, arrows).Toxins 2018, 10, x FOR PEER REVIEW  9 of 22 
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Figure 11. The nuclei (N) of the fat body cells after application of the 10% S. nigrum extract to the
T. molitor larvae showed increased density. In the lipid droplets (L), the homogeneity decreased
(7, arrow), with the appearance of other nonhomogeneous structures (8, arrow). The cytoplasm density
increased (9).

In the case of the extract and solamargine, we noted a statistically non-significant, but evident
increase in the heterochromatin ratio within the nuclei that is positively correlated with the increasing
concentration of the tested substance (Figure 14). In the case of solasonine, the tendency was
clear for the three lower concentrations but the low ratio that was calculated for the highest one
weakened the overall trend. Additionally, the values of the correlation coefficients indicated a strong
positive correlation between the extract and solamargine concentrations, and the heterochromatin ratio
(0.75 and 0.78, respectively). The correlation coefficient for solasonine showed a very strong correlation
ranging from 0.01% to 1%, but the highest concentration drastically decreased the coefficient to a
negative value (−0.77).
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Figure 12. The fat body cells of the T. molitor larvae showed changes in the stored protein homogeneity
(10, P) after application of solamargine at a concentration of 7.23 × 10−7 M and in the lipid droplet
homogeneity (11, arrow) after the application of the 7.23 × 10−5 M concentration. Similar changes in
the lipid droplets homogeneity were observed after the application of a concentration of 7.23 × 10−4 M.
Slight changes in the cytoplasm density were observed after the application of solamargine at
concentrations of 7.23 × 10−7 M and 7.23 × 10−5 M (11, 12, asterisks).Toxins 2018, 10, x FOR PEER REVIEW  10 of 22 
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Figure 13. Solasonine given in the diet of the T. molitor larvae caused changes in the lipid droplet
homogeneity after the application of concentrations of 7.52 × 10−7 M (13, arrow) and 7.52 × 10−4 M
(15, arrows). The concentration 7.52 × 10−5 M caused a decrease in the cytoplasmic density
(14, asterisk). After the application of a concentration of 7.52 × 10−4 M, initial disintegration of
the stored proteins was observed (15, P).
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Figure 14. Heterochromatin ratio in the nuclei of the fat body cells exposed to various concentrations
of tested substances. Solasonine and solamargine were used in concentrations equivalent to their
concentrations in the extract (Table 2). Kruskal-Wallis test with Dunn’s test.

2.4. Biochemical Assays of the Fat Body Cells

2.4.1. Glycogen

Both the extract and solamargine caused changes in the glycogen level of the fat body as compared
to the control (Figure 15). No significant changes were observed after solasonine application to the diet
of the larvae. The average amount of glycogen in the fat body that was isolated from the control insects
was 57.1 ± 6.73 µg/mg of dry mass of the tissue. The extract caused a significant decrease in the
glycogen content in the fat body to 22.3 ± 6.27 µg/mg after the application of the 0.1% concentration.
Solamargine significantly increased the amount of the glycogen in the fat body at concentrations
ranging from 7.23 × 10−7 M to 117.7 ± 16.47 µg/mg, and 7.23 × 10−5 M to 119.2 ± 19.41 µg/mg as
compared to the control. The application of solasonine increased the glycogen content in the fat body.
The strongest effect was observed at the lowest tested concentration, which caused an almost two-fold
increase in the glycogen content nevertheless, the change was statistically non-significant. Between the
effects that are caused by the extract and the testes pure GAs, in general, the glycogen level was higher
after the application of either of the GAs than that of the extract application. A significant difference
was achieved at a concentration of 0.1%, where the extract decreased and solamargine and solasonine
increased the level of glycogen in the fat body (Figure 15).
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Figure 15. The level of glycogen in the fat body of the T. molitor after the application of extract from
S. nigrum and solasonine and solamargine in their molar concentrations equal to their concentrations
in the applied extract concentrations. * Statistical significance at p ≤ 0.05; Kruskal-Wallis test with
Dunn’s test, n ≥ 12.
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2.4.2. Lipids

Lipids are the main ingredient of the fat body, representing more than 50% of the dry weight of
the tissue [32]. The measured mass of the lipids in this study included not only the components of the
lipid storing vacuoles, but also, for example, membrane lipids. However, the inclusion of the other
lipids in the obtained results was negligible. In the control, the average lipid content in the dry mass of
the fat body was 0.69 ± 0.02 mg/mg of dry tissue (Figure 16). At a concentration of 1%, the extract
lowered the lipid content in the fat body after application to 0.57 ± 0.02 mg/mg. Solasonine also
significantly decreased the lipid content in the fat body to 0.6 ± 0.02 mg/mg and 0.56 ± 0.02 mg/mg
in comparison to that of the control at concentrations ranging from 7.52 × 10−6 M to 7.52 × 10−4 M,
respectively. Differences between the extract and solamargine were observed for concentrations 0.1%
(p ≤ 0.05) and 1% (p ≤ 0.01), and the lipid amount in the fat body was lower after extract application
than after solamargine application. At all of the tested concentrations, significant differences were
observed between solasonine and solamargine, where a higher content of lipids was present after
solamargine application and lower after solasonine application.
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Figure 16. The content of lipids in the fat body of the T. molitor larvae after application of the extract from
S. nigrum and solasonine and solamargine in their molar concentrations equal to their concentrations in
the applied extract concentrations. ** Statistical significance at p ≤ 0.01, * p ≤ 0.05, one-way ANOVA,
Tukey’s test, n ≥ 9.

2.4.3. Proteins

The content of the soluble proteins in the fat body did not show significant changes after
application of the extract or GAs. In the control, the average protein content was 0.06 ± 0.008 mg per
mg of dry mass of the tissue (Figure 17).
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Figure 17. The content of the soluble proteins in the fat body of the T. molitor larvae after application of
the extract from S. nigrum and solasonine and solamargine in their molar concentrations equal to their
concentrations in the applied extract concentrations. Kruskal-Wallis test with Dunn’s test, n ≥ 13.
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3. Discussion

In the present study, an expanded description of the effects that are caused by the extract of
S. nigrum and pure GAs on T. molitor physiology was conducted. The tested substances do not appear
to have acute toxic effects on the T. molitor larvae. In addition, the results differed between the extracts
and pure GAs. The results showed that the exposure of the larvae to the tested substances caused
slight changes in the body mass, ultrastructure of the midgut and fat body, and biochemical parameters
of the fat body. However, it must be noted that these results were obtained over the relatively short
observation periods that were used for the experiments. Hence, the observed effects often showed a
trend, but the changes were not always statistically significant.

At the subcellular level, one can observe the very early effects, which appeared only in some
cells. Therefore, the observed malfunctions and malformations can be used as bioindicators of stress
caused by toxic substances. Perhaps, extended exposure or increased dosage would have given more
significant effects. However, the aim of the study was to examine the direct, immediate effects and the
mechanisms of the toxicity of S. nigrum extract and pure GAs. Furthermore, sublethal effects are often
very important, they can limit crop or stored food loss [2] or affect the cost-to-benefit ratio similar to
that obtained with synthetic insecticides [33].

The weight of the larvae did not change significantly but some tendencies were observed.
It appears that the plant-derived substances may cause bimodal effects. For example, exposure
to the low concentrations of solasonine slightly decreased the larval gain in body mass, while higher
concentrations did not cause such an effect. On the other hand, only the highest concentration of the
extract decreased the body mass, and the lower concentrations increased the body mass. Alkaloids
in high concentrations may deter herbivores from feeding, as usually they are present in unripe fruit.
Glycoalkaloids, such as solamargine and solasonine, have been tested by Weissenberg et al. [8] on
Tribolium castaneum, belonging to the same family (Tenebrionidae) as T. molitor. The results showed that
these compounds acted as growth inhibitors in larvae, but the experiment lasted 15 days. This finding
also proves that GAs may be useful in plant protection in sublethal doses, thus limiting pest feeding.
The results indicate that the plant must produce other substances that are responsible for the limitation
of feeding and the growth of herbivores.

The effects on muscles differed between the tested substances. The application of the extract
altered the contraction of heart, oviduct, and hindgut musculature, whereas the effects of solasonine
and solamargine were much weaker, with solasonine decreasing the oviduct activity. These data
suggest that neither solasonine or solamargine was responsible for the observed effects after
application of the extract and indicate that plant extracts must contain other active substances in
addition to the main GAs, perhaps alkaloids present in a lower concentrations, which affect muscle
physiology. Both the glycoalkaloids may influence each other or interact with other ingredients of the
extract. A stronger reaction of the insects to extracts than to single compounds has been described
previously [12,34]. Moreover, the opposite effect was observed after the application of the extract to
the heart, where the contraction frequency decreased, as compared to that on the oviduct, where the
frequency increased. This finding suggests that the extract has a different mode of action on the two
muscle tissues, and its components may interact with different receptors. The obtained results are
similar to those that were obtained by Ventrella et al. [34], where black nightshade extract was used on
the heart of Zophobas atratus (Tenebrionidae), and at a concentration of 0.5 mM, it caused a reversible
negative chronotropic effect.

The microscopic observations revealed the differences between the effects caused in both of the
tissues. Perhaps the differences were caused by a longer time of exposure of the fat body than of
the midgut. Columnar cells transport ingested substances to other tissues, and trophocytes store
substances and play crucial roles in detoxification. Therefore, these cells can reveal more drastic
effects. A similar phenomenon was observed in the case of exposure to other toxic substances, such as
boric acid [35] and tomato or potato leaf extract [36]. Although the intensity of the ultrastructural
malformations differed between the tested organs, species, and substances, some of those effects were



Toxins 2018, 10, 504 13 of 21

similar: swollen nuclear envelopes and endoplasmic reticulum, cytoplasmic vacuolization, or swollen
mitochondria have been reported for many toxic substances, including synthetic pesticides [16,37]
or plant-derived substances [15,29,38,39]. These ultrastructural changes may be due to the increased
production of reactive oxygen species, which has been reported for various toxic substances [35,40–42].
It is noteworthy that the biochemical parameters of the fat body depend on the biochemical parameters
of the hemolymph, which transfers compounds to and from the fat body. Therefore, in the near
future, we plan to further observe of the hemolymph biochemical parameters, such as sugar and lipid
levels, and to correlate the obtained results with those of the fat body biochemistry and ultrastructure.
To compare the effects that are caused by the S. nigrum extract and its pure GAs, both of the substances
were given to the larvae and changes in the ultrastructure of the midgut and fat body cells were
observed. While the extract caused a disruption of the nuclear membranes and cytoplasm vacuolization
in the midgut, solasonine, and solamargine did not show any visible effects on these cells. This suggests
that other glycoalkaloids present in the extract may be responsible for the observed effect or that
solasonine and solamargine act synergistically in the extract or that the other compounds found in the
extract play crucial roles in the process of membrane lysis by GAs.

Ultrastructural studies showed changes in the chromatin condensation that could lead to the
altered expression of genes. The results suggest that solamargine is mostly responsible for chromatin
condensation. For both tested concentrations of solamargine, the correlations with the effects on
chromatin condensation were the strongest observed in this study. On the other hand, bimodal effects
were observed in the case of solasonine in the fat body cells. Therefore, the correlation coefficient
cannot be treated here for the whole range, as it measures linear relationships. The condensation of
chromatin was also reported for cancer cells that were exposed to solamargine [43]. Solasonine and
solamargine are both glycosides of solasodine (aglycone, the true alkaloid). They are characterized by
sugar moieties and aglycone moieties. The electrophilic behavior of these compounds is regulated
by the polarity of the sugar moieties and by the presence of oxygen and nitrogen ion pairs in the
aglycone moiety, which does not contain aromatic rings. These features are responsible for GA-induced
membrane disruption and interactions with nucleic acids, which result in DNA malformations [44,45].
Again, the weak effects that were observed in this study probably reflect the relatively low doses of
applied substances that affected the nuclei in both the tested tissues. However, the teratogenic activity
of GAs has been proven [46–48] and it may be due to the disruptive effect of GAs on membranes and
nucleic acids.

The results of the biochemical studies showed that the level of glycogen decreased significantly
after the application of the extract at only one concentration 0.1% (Figure 15). Glycogen is the first
source of glucose during periods of starvation or detoxification; hence, one can suppose that the extract
might have had a significant effect on the larvae. However, the weight gain of the larvae treated with
this extract concentration was the highest among the used concentrations, which did not confirm the
theory of starvation. Rather, glycogen, as an energy source, might have been used for detoxification
and the vitality of the insects was not decreased. A slight decrease in the glycogen content of the fat
body was also observed after application of the extract at a concentration of 10%, and the percentage
of the larval weight gained seemed to decline. Perhaps a longer exposure would demonstrate whether
this effect could be intensified. Such an effect suggests that S. nigrum produces substances that can
be used as deterrents. Satake et al. [49] observed a decrease in the fat body glycogen content after
starvation of the larvae of Bombyx mori, and that can be an early bioindicator of the inhibition of food
intake. Another place, where carbohydrates are stored by insects and are transported to or from
the fat body, is the hemolymph, which was not studied in our research. Previous studies claimed
that the hemolymph glucose level can be an indicator of fat body carbohydrate metabolism [50].
The correlation between these factors results from the inhibition of glycolysis in the fat body by the key
enzyme regulating this process present in the hemolymph—fructose-2,6-biphosphate. Solamargine
caused an increase in the glycogen content, as compared to that of the control. The difference was
significant after application of the concentrations of 7.23 × 10−7 M and 7.23 × 10−5 M. The increase
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in the glycogen amount may be connected with the increase in the food intake by the larvae, which
corresponds with the percentage body mass gain after solamargine application. The results showed the
highest body mass gain in the case of solamargine. However, in general, the content of glycogen in the
fat body was higher after the application of both GAs than after the extract application. A significant
difference was obtained between the extract 0.1% concentration and the equivalent concentration of
solamargine, which suggests different modes of action in the extract.

S. nigrum extract significantly decreased the lipid content in the fat body (Figure 16) after
application of the 1% concentration. This result does not correspond with the gain in body mass, which
increased when compared to that of the control. One supposes that the reason for this discrepancy
may be, again, not the observed level of lipids in the hemolymph. Lipids from the fat body could
have been moved to the hemolymph, which may have caused the decrease in the lipid levels of
the fat body, without changing the body mass of the insects. Lipid mobilization is activated during
starvation stress [50], which supports the theory that food intake is inhibited by alkaloids. Significant
differences were present not only between the level of lipids in the control and extract treatment
groups, but also between the extract and solamargine treatment groups. These data show, similar
to the case of glycogen, that in the extract, other substances can be present that modulate its mode
of action and play a crucial role in the toxic action of the major GAs. Significant differences in the
lipid content were obtained between both the GAs at all the tested concentrations. These results show
different influences of both the GAs on the lipid metabolism in the fat body.

No significant changes in the protein content were observed after the application of the tested
substances. Only slight changes in the amount of protein were present when compared to that of
the control. However, the quantity of protein was measured, but their profiles were not assessed.
We do not know if some proteins are specifically produced, which would not necessarily influence the
general protein content of the fat body, but might greatly alter its metabolism. This is a very interesting
question that we will address in future studies. Furthermore, the observed changes in the chromatin
density of the fat body, as well as its other ultrastructural alterations, suggest that the metabolism of
the fat body may change dramatically during exposure to the GAs and their detoxification.

The difference between the effects that were observed with the transmission electron microscope
and the biochemical analyses is also of interest. The altered homogeneity of the lipid droplets,
cytoplasm density, and therefore glycogen content, as well as the stored protein disintegration observed
by microscopy, did not strongly correspond with the results of the biochemical analyses. The main
reason for this difference is that the biochemical analyses were conducted on dry tissue. In addition,
it is very likely that the ultrastructural changes occurred before they could be analyzed biochemically
and before significant lethality appeared. These results suggest that the use of transmission electron
microscopy as a tool for early changes in detection, especially when employing short tests periods
is highly justifiable. Furthermore, this implies that ultrastructural malformations may be used as
environmental and functional bioindicators of exposure to the low concentrations of stressors, or they
may represent the early stage of exposure.

4. Conclusions

The results indicate that both the extract and pure GAs have a wide range of sublethal effects.
Although the effects do not cause mortality in the larvae, they may disturb the insects’ development
and metabolism at various levels. The observed modulation of muscle contractility of such organs as
the heart, hindgut, or oviduct may result in impaired development, food intake, and reproduction.
Hence, the above mentioned parameters may be crucial for better understanding the mode of toxicity
of the tested alkaloids. Furthermore, these studies may also contribute to the more efficient application
of plant-derived substances for plant protection. Consequently, this may lead to a decreased usage
of both synthetic and natural substances in plant protection, which may limit the pollution of the
environment, crops, and food products. It is noteworthy that some effects were observed very early,
after exposure. Therefore, they may be useful as bioindicators of stress. Moreover, they may be used
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to limit the pest population by decreasing the vitality of insects. Consequently, they may decrease
herbivory. Interestingly, the effects of the extract and pure alkaloids differ from each other. These data
suggest that substances produced by the plant may act additively or synergistically. Hence, the effect
of the extract may be more intense than that of pure glycoalkaloids. Furthermore, this suggests
that plant extracts not only are an interesting source of new insecticides, but also may be used as
relatively inexpensive tools in plant protection, especially when integrated pest management strategies
are applied.

5. Materials and Methods

5.1. Insects

Tenebrio molitor larvae and adult beetles were obtained from the breeding culture at the Department
of Animal Physiology and Development (AMU) under laboratory conditions; the experimental
specimen were maintained at 26 ◦C and a 60% relative humidity in a 12 h light to 12 h dark photoperiod.
For the experiments, four-week-old adults and larvae after molting with weights of 120–140 mg were
used. Determining insect weight allowed us to choose the larvae with the same metabolic rate and to
control for weight gain.

5.2. Extraction and Analyses

Extracts were obtained from S. nigrum unripe berries. The voucher specimens were deposited
at the Herbarium Lucanum (HLUC, Potenza, Italy), with the ID Code: 2320. The extraction method
was previously described by Cataldi et al. [51] and Adamski et al. [41]. The berry samples were
lyophilized and ground to a fine powder using a laboratory mill. The samples (1.5 g) were placed in
20 mL of 1% acetic acid aqueous solution. The suspension was stirred for 2 h and then centrifuged
at 6000 rpm for 30 min. The obtained pellet was suspended in 5 mL of 1% acetic acid, shaken,
and centrifuged. Two supernatants were subsequently mixed together. The extract was filtered
through a single-use 0.22 µm nylon filter (Whatman, Maidstone, UK) and then injected into the
LC/MS system. The chemical analysis was conducted at the Department of Sciences, University of
Basilicata by Prof. Sabino Bufo’s team.

The extracts at concentrations of 0.01, 0.1, 1, and 10% were diluted in physiological saline A
(274 mM NaCl, 19 mM KCl, 9 mM CaCl2, 5 mM glucose, and 5 mM HEPES, pH 7.0) for in vitro
experiments or in saline B (274 mM NaCl, 19 mM KCl, 9 mM CaCl2) for in vivo experiments.
Pure solasonine and solamargine were purchased from Glycomix (Glycomix Ltd, Compton, Berkshire,
UK). The standard glycoalkaloids were diluted in the physiological saline A or B for in vitro and
in vivo experiments, respectively. The concentrations of both glycoalkaloids were calculated as an
equivalent of their quantity in the tested extract (Table 2).

Table 2. Calculation of the glycoalkaloid concentrations in the extract.

S. nigrum Extract Concentration (%) Solamargine (M) Solasonine (M)

0.01% 7.23 × 10−7 7.52 × 10−7

0.1% 7.23 × 10−6 7.52 × 10−6

1% 7.23 × 10−5 7.52 × 10−5

10% 7.23 × 10−4 7.52 × 10−4

5.3. Exposure of the Larvae to the Tested Substances

5.3.1. In Vitro Heart Bioassay

The in vitro effects of the tested extract and GAs on T. molitor heart were measured with a
microdensitometric technique [52]. Anesthetized four-week-old adult insects were decapitated and
their legs and wings were cut off. The ventral cuticle was removed with narrow stripes left the



Toxins 2018, 10, 504 16 of 21

on sides. The visceral organs were carefully removed to expose the myocardium. In the next step,
the semi-isolated hearts were placed in a superfusion chamber with the open-perfusion system being
mounted in the microdensitometer MD-100 (Carl Zeiss, Jena, Germany) and were perfused with
saline A. The flow rate of saline A was 300 µL/min, wherein the solution was continuously removed
from the superfusion chamber by chromatographic paper (Whatman No. 3, Sigma-Aldrich, St. Louis,
MO, USA). Ten microliters of the tested substances were applied with a Hamilton syringe through
the application port placed 70 mm above the superfusion chamber. After recording the control heart
activity for 0.5 min, the tested compounds were applied, and an additional 2 min of heart activity was
recorded. The recording of new-isolated heart activity was preceded with 10 min of preincubation
with saline A to stabilize the heart rate. The calculation of changes in the heart rate was conducted
according to a previously described method [53], as the percentage change between the heart activity
recorded before and after application. The obtained data were analyzed with LARWA and ANALIZA
software (Both programs have been written in 2004 for our Department, Poznań, Poland). For each
concentration, 5–12 larvae were used.

5.3.2. In Vitro Oviduct and Hindgut Bioassay

To analyze the changes in the contractile activity of the oviduct and hindgut treated with the
tested compounds, a video microscopy technique was used [54,55]. Four-week-old insects of T. molitor
beetle were anesthetized for 8 min. Next, the insects were decapitated and the legs and wings were
removed. The isolation of the oviduct with ovaries was conducted after removing the dorsal cuticle.
Next, the preparation was carefully cleaned of undesirable tissues, such as the fat body and Malpighian
tubules with microsurgical forceps. The oviducts with ovaries were placed on the Sylgard elastomer
and attached with Minuten pins. A similar procedure was used for the isolation of the hindgut.
The organs were placed in the incubation chamber with a constant flow rate of 300 µL/min of saline A.
The chamber was placed on an Olympus SZX12 stereomicroscope that was equipped with a Pixeling
662 camera. Similar to the heart bioassay, the recording was preceded by 10 min of preincubation.
Each recording lasted 2 min; after 30 s of control recording, 10 µL of the tested substances was applied
through the port with the Hamilton syringe. The obtained data were analyzed with the AnTracker
(PreOptic, Warsaw, Poland) software. The changes in the oviduct and hindgut contraction frequency
were calculated as the percentage change between the frequencies recorded before and after application
of the tested compounds. For each used concentration, 6–13 larvae were used.

5.3.3. Determination of Changes in Larval Weight

The larvae were kept separately in the flasks. The day after collection, insects were fed for three
days with a recipe prepared according to David et al. [56] containing 10 µL of the tested substances.
The control larvae were fed with the same mixture containing 10 µL of saline B. On the fourth
day of the experiment, the larvae were weighed and the samples were collected according to the
further description.

The larvae fed for three days with the extract, solasonine, or solamargine, were weighed
before and after the experiment. The number of larvae used varied from 32 to 139 individuals
per concentration used. The difference between the weights before and after the experiment of larvae
that werefed with the tested substances was compared to that of the control larvae.

The change in body mass was calculated according to the following Equation:

∆ =

(
b × 100

a

)
− 100 (1)

where ‘a’ is the mass of larva before and ‘b’ is the mass after the experiment.
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5.3.4. Transmission Electron Microscopy

The larvae that were fed with the extract or pure alkaloids were chosen randomly (three per
concentration) and anesthetized with carbon dioxide. Then, they were dissected and the samples
of the fat body and midgut were isolated, washed in physiological saline B, and cleaned of other
structures, such as the Malpighian tubules and tracheoles. The preparation and fixation of the samples
were carried out according to the methods that were described by Adamski et al. [14], as follows: the
samples were placed in 2% glutaraldehyde in 0.175 M cacodylate buffer for 2 h, postfixed with 1%
osmium tetroxide for 2 h, and finally dehydrated and embedded in Spurr resin (Electron Microscopy
Sciences, Hatfield, PA, USA). Ultrathin sections were cut with a Leica ultramicrotome and stained
with uranyl acetate and lead citrate. Samples were observed under JEOL 1200EX II JEM (JEOL, Tokyo,
Japan) transmission electron microscope. We focused on midgut columnar epithelial cells and fat body
trophocytes, as the most frequent cells, which are also crucial for the ingestion, storage, detoxification,
and regulation of physiological processes.

The heterochromatin ratio (i.e., electron dense surface to whole nucleus surface area) were
calculated using the classic stereological method with the computer programme STEPanizer [57].
Digital grids (1024 squares per picture) were plotted on the images and the number of squares over the
electron dense and electron lucent chromatin were counted. Then the ratio was calculated. The mean
from a minimum of 8 nuclei per concentration for each test variant was calculated and compared. Next,
the correlation between the concentration of the tested substances and the heterochromatin ratio was
calculated. Values between −0.3 and 0.3 were regarded as having no linear relationship, values between
0.3 < x ≤ 0.5 and −0.3 > x ≥ −0.5 indicated a weak (positive/negative) relationship, values between
0.5 < x ≤ 0.7 and −0.5 > x ≥ −0.7 were regarded as having a moderate (positive/negative) relationship,
values between 0.7 < x ≤ 0.9 and −0.7 > x ≥ −0.9 indicated a strong (positive/negative) relationship,
and values between 0.9 < x ≤ 1 and −0.9 > x ≥ −1 indicated a full (positive/negative) relationship.

5.3.5. Biochemical Analysis of the Fat Body

The samples of the fat body (1–3 mg) after isolation were placed in Eppendorf tubes, then dried
under vacuum conditions (−0.9 atm) at 60 ◦C, and weighed. Next, the glycogen, lipid, and protein
content in the samples were determined. The amount of analyzed substances was expressed as
milligrams of substances per milligram of dry mass of the tissue. The number of individuals used for
each concentration for each test was at least nine.

• Determination of theglycogen content

Isolation and determination of glycogen, as described previously by Chowański et al. [58],
was carried out according to the procedure of van Handel [59] and Dubois et al. [60], respectively,
as follows. Next, 500 µL of 30% KOH was added to the samples and incubated for 15 min at 90 ◦C
to lyse the tissues. After lysis, 50 µL of saturated solution of Na2SO4 and 800 µL of 96% ethanol
were added to precipitate the glycogen. Next, the samples were centrifuged at 10,000 rpm for 10 min
and the obtained pellet was washed three times with 70% ethanol. After evaporation of residual
ethanol at 74 ◦C, 500 µL of purified water was added. The pellet was shaken for 5 min at 80 ◦C and
then centrifuged for 5 min at 10,000 rpm. The obtained solution was used to determine the glycogen
amount. As a standard oyster, glycogen (Sigma-Aldrich, St. Louis, MO, USA) was used.

• Determination of the lipid content

The isolation of the fat body lipids was conducted according to the Folch et al. [61] method
described previously by Chowański et al. [62]. The tissues were homogenized in 1000 µL of
chloroform-methanol mixture (2:1, v/v) and centrifuged at 10,000 rpm for 10 min. The supernatant
was transferred to new Eppendorf tubes and washed three times with 220 µL of 0.29% NaCl.
The remaining solution was evaporated at 30 ◦C under vacuum (−0.9 atm). The pellet was dissolved
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in 1000 µL of chloroform-methanol mixture and 500 µL of the solution was transferred to the new
Eppendorf tubes. After drying under vacuum (30 ◦C, −0.9 atm), the mass of the residual lipids was
measured gravimetrically.

• Determination of the soluble protein content

After drying, the samples were homogenized in saline B on ice. Next, they were centrifuged at
10,000 rpm for 5 min. Two microliters of the intranatant was placed on the PTFT membrane, dried,
and measured with a Direct Detect® Infrared Spectrometer (Merck Millipore, Burlington, MA, USA).

5.4. Statistical analysis

All the data are presented as the mean values ± SEM of n number of replicates. The statistical
significance of differences between the control and treatment values was determined using appropriate
statistical test: one-way ANOVA Tukey’s test, Student’s t-test, or, if there was not a normal distribution,
the nonparametric Kruskal-Wallis test and Dunn’s Multiple Comparison test. The statistical analyses
were conducted using GraphPad Prism 5 software (GraphPad Software Inc, Version 5.01, MacKiev,
La Jolla, CA, USA, 1992–2007). Differences were considered to be statistically significant if p ≤ 0.05 (*),
p ≤ 0.01 (**), or p ≤ 0.001 (***)
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