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Abstract: The review summarizes the available knowledge on toxins and their producers from rather
disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments
(hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern
in soil and plants. There is a growing body of evidence that algal toxins and their producers occur
in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of
them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis
showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins,
nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific
toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which
algae have to thrive and what is their functional role may be answered by future studies. Therefore,
we outline the gaps in knowledge and provide ideas for further research, considering, from one side,
the health risk from phycotoxins on the background of the global warming and eutrophication and,
from the other side, the current surge of interest which phycotoxins provoke due to their potential as
novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of
biotechnological implications in human life.

Keywords: algae; caves; cyanobacteria; cyanotoxins; cyanopeptides; deserts; human health risk;
hypersaline habitats; phycotoxins; thermal springs

Key Contribution: This is the first review, which encompasses all types of aeroterrestrial and other
extreme habitats in regard to toxin-producers and risk they pose to human and ecosystem health
through soil and plant contamination or direct exposure. It summarizes scanty and spread data on
the topic but enlisted phycotoxins of 55 toxigenic algal genera from these habitats and outlines the
gaps in the knowledge providing ideas for future research.

1. Introduction

The term “algae” has no taxonomic standing but is routinely used to unify the thallic
phototrophs with size range from 0.2 µm to more than 75 m, which channelize solar energy
through photosynthesis and produce oxygen [1]. Algae are a heterogenous group of
polyphyletic origin, which due to their prokaryotic and eukaryotic cell organization belong
to two domains of the Tree of life, Eubacteria and Eukarya [1–3]. Much of them inhabit the
classical ambient aquatic environments (e.g., lakes, ponds, bogs, dams, rivers, seas, oceans),
where they live on the bottom (benthos) and in the water column (plankton) [1,4]. However,
algae are hardy and occur also in many other diverse places on our Planet. They include
soils and subaerial solid substrates (e.g., tree barks, roots and leaves, rocks, walls of city
buildings, industrial constructions and historical monuments), and some other, like caves,
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snow, ice and thermal springs, which are beyond the normal limits for growth and have
been long considered inhospitable for living organisms [4–6]. These inimical environments
on the edge of temperature, pH, salinity, water supply, light, high metal content or radiation,
are hostile and even lethal for most life forms and are classified as extremophilic [5–10]. To
this group belong also some aquatic habitats, such as acidic lakes, alkaline lakes, humic
lakes, hypersaline waterbodies, etc., which also offer harsh conditions to survive [11]. After
the term extremophile was coined by Macelroy in 1974 [12] for organisms that are able
to reproduce at or near to the extreme ranges of individual environmental variables, it
became obvious that some of them have to withstand even more harsh life under multiple
stress factors [13]. These organisms were named polyextremophiles [10,13,14].

However, all these terms and classifications are not exclusive. For example, soil
and subaerial algae are often united as a common ecological group named aeroterrestrial
algae [15], but some authors consider them extremophiles because of their life on the
boundary between solid substrate and air [16,17]. To cite more examples, there are opinions
that waterbodies at the extremes of nutrient content could be referred among extreme
habitats [7] but generally other stresses and extremes that can be more easily measured
and evaluated, are considered extremophilic [13]. Additionally, there is a group of so-
called airborne algae (aeroplankton [18]), which includes diverse freshwater, marine, soil,
subaerial and other algae which can be lifted in the air and driven by the wind [19,20].
Clouds have traditionally been not accepted as a permanent environment since they have
been thought to be too hostile and too short lived. By contrast with this prior view,
nowadays, data are accumulated that they contain organisms (in both active and dormant
stages) from different groups (bacteria, algae, fungi, protists) and can also be regarded as
extreme habitats [13].

Because of the limited scope of the review, we shall use the terms related with ex-
tremophiles in their broadest sense, without commenting in detail the differences between
organisms, which are “true lovers” (-philes) of such conditions and organisms which can
only tolerate them. Due to the same reason, we do not discuss the unique extreme habitats,
from which algae have not been reported (e.g., the isolated Blood Falls of Antarctic [7], or
in which potentially toxic algae were not found (e.g., the columns in Ikka Fjord, Green-
land [13,21,22]). Readers are also kindly invited to check the references from the cited
publications, which we tried to reduce to a reasonable minimum.

Currently, the aeroterrestrial algae, extremophiles and polyextremophiles from all
unusual and inhospitable for humankind places attract the attention of scientists in a
raising way. Although all strategies to survive in harsh environments are not fully clarified,
it is widely accepted that their inhabitants have developed a variety of coping mechanisms,
many biomolecules and peculiar biochemical pathways, the interest to which is constantly
growing not only in respect to ecology and astrobiology but also for innovative needs of
biotechnology, medicine, pharmacy and cosmetics, and all related economical activities
including tourism [5,7–9,14,23,24].

Algae have played crucial role in development of the global ecosystem, starting with
changing the ancient Earth atmosphere, due to their combined ability for oxygen produc-
tion and for fixation of atmospheric nitrogen (N2) in energy expensive reduction to ammo-
nium (NH4

+) [25]. These two processes were accomplished in a unique way by the earli-
est prokaryotic blue-green algae (currently known as Cyanoprokaryota/Cyanobacteria),
“the largest, most diversified, and ecologically most successful prokaryotic organisms on
Earth” [25] (p. 141), which appeared in Early Proterozoic [26]. Cyanoprokaryotes were
not only the phototrophic pioneers on the planet, but also today they are the first algal
inhabitants of new environments, like newly erupted islands, post-volcano environments
and open surfaces, where they have no real competitors at least in the moment of their
appearance [4,5]. Furthermore, cyanoprokaryotes were significant players in the evolution
scene as plastid progenitors important in the Earth land conquest. At present, it is believed
that evolution of the land plants from a green algal ancestor was the key event in the
history of the terrestrial environments [27]. This happened after the eukaryotic host cell
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engulfed a photosynthetic cyanoprokaryote and used it as a plastid in the process of pri-
mary endosymbiosis [1,28]. The three major resulting evolutionary lineages are the green
algae (Chlorophyta and Streptophyta), red algae (Rhodophyta) and glaucocystophytes
(Glaucocystophyta) [1,28]. Multiple endosymbioses led to the appearance of the next evo-
lutionary lineages of divisions (phyla) Euglenophyta, Chlorarachniophyta, Cryptophyta,
Pyrrhophyta, Haptophyta and Ochrophyta [1,28]. In this way, for more than two billion
years, algae (with lichens on latter stages), before appearance of land plants, were the sole
contributors to terrestrial organic carbon pools [29,30].

At the same time, it has been reported extensively that cyanoprokaryotes are among
the most dangerous organisms of the Earth, which produce numerous toxic compounds
that can detrimentally affect human and ecosystem health with most accounts related
to bloom-forming species in freshwater and shallow coastal waters [31,32]. Toxigenic
algae have been identified also in aquatic habitats in some of their eukaryotic descendants
from the divisions Pyrrhophyta, Haptophyta, Ochrophyta (classes Bacillariophyceae and
Raphidophyceae), Euglenophyta, Rhodophyta and Chlorophyta [31,33]. General consensus
exists that the main exposure routes are through contaminated water, consumption of
poisoned food, respiration of infested aerosols, or direct skin contacts during swimming
or other recreational activities, and accidental exposure through dialysis water has been
evidenced [31,32,34]. Routinely the toxic effects are associated with mass developments
of algae (blooms), but some species can cause harm at low concentrations. For example,
Alexandrium tamarensis can affect shellfish in amounts of 103 cells L−1 [35].

Algal toxins (phycotoxins) have been reportedly implicated in health problems and are
well-known for being of great concern for humans and ecosystems, which can be of military
interest also [36–38]. However, nowadays, these natural compounds are increasingly seen
positively as potential new biotechnological tools like biocides in agriculture and as potent
compounds in medicine and pharmacy with strong antitumor, antibacterial, antiviral, anti-
helminth and other activities [16,31,39–45]. This dualistic nature of phycotoxins provokes
surge of interest to their structures, origin, real role(s) in producing cells, effects on other
organisms, as well as to driving forces of their production and future prospects related
with increased anthropogenic impact and global climate changes.

Toxigenicity is not a ubiquitous feature at generic and species level: both toxic and
non-toxic strains have been isolated from natural populations of the same species and
coexist in different environments (mainly waterbodies) around the world [32,46]. Con-
sidering the great phototrophic role of algae, and of cyanoprokaryotes in particular, as
pioneers of almost all land habitats, a logical question is whether there is a strong difference
in the spread and role of toxic aquatic algae, on one hand, and their aeroterrestrial and
extremophilic counterparts, on the other. It was supposed also that the study of toxin
production in extreme environments may help in understanding their functional role [47],
which is yet not fully understood. Interest in soil and plant contamination by algal tox-
ins has grown significantly after numerous observations have shown that phycotoxins
may be accumulated by plants and transferred throughout food webs to other trophic
levels [48]. However, due to meager literature concerning toxins in aeroterrestrial and
extreme habitats [49,50], finding answers at the moment is very difficult.

In order to gain a complete picture on the current knowledge on versatile toxic
compounds and their producers in these environments, we analyzed the available literature
and provide an outlook on phycotoxins and toxigenic algae in aeroterrestrial and extreme
habitats related with their peculiar ecology and potential route exposures. We believe that
this review will help to clarify the current state-of-art on the topic and to identify gaps
in knowledge that should be addressed in future research. The understanding of toxins
spread can help better to understand the role of these compounds, to predict some perhaps
yet hidden effects, to maintain better ecosystem management and prevent health risks,
but also will draw attention to the possible application of the algae from these groups
in different spheres of human life like medicine, cosmetics, biotechnology, the surge of
interest to which is currently seen.
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2. Main Types of Toxic Algal Compounds

Different approaches were used in classification of toxic algal compounds and beyond
those, which are chemically and structurally well-determined and ultimately named toxins,
many extracts or exudates have displayed allelopathic or other detrimental effects in labo-
ratory tests and experiments [31,32,51]. In this review we consider only chemically defined
toxic compounds produced by algae, the toxicological profiles of which raised concerns
on human, animal and ecosystem health. In this way, we discuss not only the routinely
known “standard” phycotoxins, such as microcystins, saxitoxins, etc., but also some other
metabolites with pronounced cytotoxic and other inhibiting properties. However, we skip
data on the hazardous effects of crude or other extracts without chemically identified toxins
(e.g., [52,53]) and eliminate a large number of data related with antiviral, antibacterial and
antifungal activity, as well as on allelopathic effects on other algae and plants. We also do
not discuss pathogens for which no indication of released toxins is available (e.g., the green
parasitic algae Prototheca, which cause prototecosis in humans, dogs and cattle [54–56]).
Moreover, we eliminated data on some biologically active compounds, produced by algae
and known for their enormous biotechnological and medical importance, which could
be toxic to other organisms. For example, the polyunsaturated fatty eicosapentanoic acid
(EPA) released by benthic diatoms during grazing can be acutely toxic to the freshwater
anostracan grazer Thamnocephalus platyurus [57].

The toxins produced by Cyanoprokaryota (cyanotoxins) are commonly combined
in four groups according to the main target of their action: (1) neurotoxins (anatoxins—
ATXs/incl. anatoxin-a—ATX, homoanatoxin-a—HTX, etc./, guanitoxin—GTX, saxitoxins—
SXTs, β-Methylamino-l-alanine—BMAA and its two main isomers 2,4-diaminobutyric
acid (2,4-DAB) and N-(2-aminoethyl)glycine—AEG); (2) cytotoxins (cylindrospermopsins—
CYNs); (3) hepatotoxins (microcystins—MCs, nodularins—NODs); (4) dermatotoxins
(lyngbyatoxins—LAs, aplysiatoxins—ATs, debromaplysiatoxins—DATs, anatillatoxin)
[32,58]. Chemically they are classified as peptides (oligopeptides, cyclic peptides, or
non-ribosomal peptides—NRPs) (MCs and NODs), alkaloids (ATXs, SXTs, CYNs, LAs,
DATs, anatillatoxin), phosphorylated cyclic N-hydroxyguanine (GTX, formerly known as
ATX-a(S) [58]), diaminoacids (BMAA, DAB, AEG), and lipopolysaccharides (LPS), widely
recognized as endotoxins [32].

However, cyanoprokaryotes can produce also some different from “standard” cyan-
otoxins alkaloids (e.g., nostodione—Nd) and specific cyanopeptides (CNPs), including
NRPs, polyketides (PKs) and their hybrids (NRPs/PKs) [59,60]. Some of them are common
in different cyanoprokaryote genera (e.g., anabaenopeptins—Aps, cyanopeptolins—CPs),
while others are specific to a single genus (e.g., oscillatorin in Planktothrix (Oscillatoria) [61]
and cryptophycins—Crs in Nostoc) [59]. Cyanoprokaryotes are also associated with produc-
tion of geosmin (Geo) and 2-methylisoborneol (MIB), routinely classified among algal taste
and odour compounds (TOC), which are considered non-toxic, but are harmful to humans,
animals and ecosystems [32,62,63]. Due to the problems which they cause [32,63] and
specifically to the high economic impact of Geo [62], they were included in our analysis.

In marine environments eukaryotic algae of different taxonomic groups, but mainly
dinoflagellates from division Pyrrhophyta (Dinophyta), produce a series of toxins which
are divided according to the syndrome associated with the exposure to them: diarrhetic
(diarrheic) shellfish poisoning toxins—DSP toxins, or dinophysistoxins (okadaic acid—OA,
pectenotoxins—PTX and yessotoxins—YTX), paralytic shellfish poisoning toxins—PSP
toxins (SXTs), neurotoxic shellfish poisoning toxins—NSP toxins (brevetoxins—Pbtx),
ciguatera fish poisoning toxins—CFP toxins (ciguatoxins, maitotoxins) and pfiesteria toxin,
a causative agent of with the so-called Estuary-Associated Syndrome [31,64]. Other phyco-
toxins in marine environments, produced by dinoflagellates, macrophytic red and green
algae, diatoms and haptophytes are the amnesic shellfish poisoning toxins—ASP toxins (do-
moic acid—DA and its isomers), azaspiracids, spirolides, palitoxins (PLTXs), gymnodine,
cooliatoxin, zooxanthellatoxins, pinnatoxins, carcharotoxins, caulerpin and caulerpicine,
prymnesin, neurymenolide A, etc., classified also chemically by their structure or according
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to solubility in water and organic solvents [31]. Of note, despite the ever-growing knowl-
edge, at present, the proportion of known versus unknown phycotoxins is not clear [65].
Details of chemical structures, biosynthetic gene clusters, modes of action, associated medi-
cal syndromes, spread in aquatic algae and quantitative data on phycotoxins are accessible
in a bulk of publications (e.g., [31,32,46,58,59,63,64,66–79] among the many others). They
are the basic source of information on toxins of different genera for the provided table,
which presents a summary on toxin-producers from the ecological groups discussed in the
review. Genus was chosen as the basic taxonomic unit because in most of the publications
only strain numbers are used, or authors stress the lack of accurate identifications. When
possible, in the text of the review, the recently accepted taxonomic name is provided with
old name kept in brackets for easier checking by the reader.

3. Phycotoxins—Origin and Possible Biological Role

Given the fact that cyanoprokaryotes are the earliest photosynthetic organisms on the
globe and that most toxins are nitrogen-rich, it is possible that the energy and resource
demanding toxin production occurs over long evolutionary periods. Some phylogenetic
studies demonstrated that phycotoxins such as MCs and NODs, appeared more than
2100 million years ago [46,80–83], and later the ancient origin of Geo gene was also sug-
gested [62]. It was speculated that the biosynthesis of the remarkable SXTs which occur in
two domains of life, Eubacteria and Eukarya, evolved in ancestral cyanobacterium that
successfully acquired genes through horizontal gene transfer (HGT), followed by multiple
HGT to dinoflagellates, gene losses and rearrangements [46,84]. Within this “ancient origin”
belief, the recent sporadic distribution of toxic strains and their co-occurrence with non-
toxic ones is explained by inactivation, point mutation or by gene losses [46,62,80,81,85–88],
or alternatively, by frequent HGTs [46,89–94].

Considering the reported timescales, it seems very likely that toxic compounds can
provide some ecological advantage and have important biological functions in their pro-
ducers [83,88,95,96]. Since algal toxins affect numerous aquatic and terrestrial organisms,
the idea of the primary protective role of phycotoxins was launched years ago [31,51,97]. It
uses the fact that algae are the basis of the food web and therefore they have developed
toxic compounds to increase their surveillance chance against grazing by herbivores and
strong competitive pressure. However, a lot of contradictory evidence against the sole
or predominant protective role of phycotoxins was accumulated. Serious doubts come
from considering the fact that cyanoprokaryotes are the most ancient phototrophs, which
predate the metazoan lineage [83,98–100], and therefore, it is more likely that production
of phycotoxins may be a response to specific environmental abiotic stressors [100,101]. For
example, experiments on the influence of trace metals showed that the presence of toxin
appears to give an advantage to MC-producers in the early stages of exposure to severe
iron stress and may protect the cell from reactive oxygen species-induced damage [102].
Doubtless, the processes of adaptation can be highly dynamic and strain-specific. Currently,
a transcriptomic study of filamentous cyanoprokaryote Nostoc punctiforme demonstrated
that it can keep low amounts of its metabolites, but its cells are specialized in production of
different compounds, which ensures the reduction of overall costs at community level [103].
Therefore, it was supposed that the multicellular algae are better adapted to react fast in
changing environmental conditions and that the secondary metabolites can be considered
as a type of phenotypic plasticity [103]. The evolutionary role of Geo in niche adaptation
was supposed because of its similarity in aquatic and terrestrial strains of cyanoprokary-
otes [62]. Some additional arguments, linked with aeroterrestrial and extreme modes of life,
used the Snowball Earth hypothesis, according to which, about 600 million years ago the
whole Planet was covered by thick ice layer and photosynthetic cyanoprokaryotes survived
in mats similar to those, which are recently spread in high alpine or polar regions [104].
In these mats, regarded as small-scale refuges (microrefugia), the grazing pressure is low,
which makes toxin production for resistance or allelopathy very unlikely [47,51,97,105,106].
Among the strongest arguments against toxins as grazing defending tool is also the fact
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that most organisms which produce them have other efficient and cost-effective protections
like mucilage sheaths of colloidal polysaccharides and formation of larger colonies [83].

These data and the supposed ancient origin imply that phycotoxins and cyanotoxins
in particular have other ecological role(s) is currently emerging. Then, a number of various
physiological roles have been speculated and put forward [31,83]. All these hypotheses,
unified as “physiological aide”, consider the contribution of phycotoxins in improving the
cell physiology in terms of homeostasis, growth rates, antioxidative stress (with which most
aeroterrestrial and extremophilic algae have to contend), cell signaling processes, nutrient
uptake, detoxication of metal storage (Zn and Cd), iron scavenging and photosynthetic effi-
ciency [31,83,88,107]. Relatively recent the specific AEG isomer of BMAA was discovered
in cyanoprokaryotes and was considered as an “echo from pre-RNA world”, a backbone for
peptide nucleic acid, which may have been the first genetic molecules for life on earth [108].
The presence of AEG in recent cyanoprokaryotes suggests that the ability for its production
is highly conserved, and it still can have some genetic functions [109]. Additionally, some
ideas on possible function of phycotoxins as sexual attractants (pheromones) or role in gene
regulation, chromosome organization, intraspecific regulation, cell differentiation in colony
formations and in shaping the community composition through inter- and intra-species
communication were suggested [31,97,100,107,110–114]. However, the strain-specific and
diverse laboratory and field results obtained on the physiological aide have made it difficult
to generalize [88]. For example, most research was carried on MCs, and it was proved that
MC production is strain specific, with up to twenty congeners potentially produced by a
single strain, but the exact role of different toxin variants for their producing cells is not
fully understood [97,115].

Both main views on the phycotoxin functions—protective role or physiological aide—
also lead to the logical but yet unanswered question why toxic and non-toxic strains live
together in the same habitats [97]. Some recent studies provide an interesting view on
the potential benefit of non-toxic strains from their co-occurring with the toxic ones based
on strong link between apoptosis and toxin production [116]. Furthermore, an important
discovery that cyanoprokaryotes can contain both hepatotoxins (MCs and NODs) and their
antitoxins (Ncps) was made [117]. It led to a new glimpse for interpretation of bioassays,
in which toxigenic extracts did not cause the expected detrimental effect even when they
contained the necessary toxin amounts but may provide additional help in elucidation the
action of the toxins [117].

4. Phycotoxins and Factors That Affect Their Production

To date, most research has focused on the evaluation of environmental conditions
that trigger toxin production and its dynamics, which can be essential for understand-
ing of the toxicity and its predicting [31]. Although the role of environmental factors is
not sufficiently understood and the results were widely disputed, many physiological
studies demonstrated the influence of light, nutrient availability, temperature, pH and
dissolved inorganic carbon (DIC) on enhancing or suppressing the production of differ-
ent toxic compounds [88,96,97,111,118–121]. Evidence suggested that generally increased
temperatures and light favor the growth of toxin producers and can enhance the toxin
production [83,88,122], but at times, as for other factors, conflict results. Interestingly, it
was proved experimentally that non-toxic strains of Microcystis were better competitors
for light than its toxic strains [123]. Regarding the nutrient availability, most research
aimed at the role of key nutrients, such as nitrogen (N) and phosphorus (P), because of
the worldwide acceptance that eutrophication has a major role in the increase of harmful
algal blooms in freshwater, estuarine, and coastal marine ecosystems. A recent study based
on meta-analysis approach showed that overall, N-rich toxin content in cyanoprokaryotes
and dinoflagellate increased with P limitation, while it tended to decrease with N limita-
tion [124]. Although the paleolimnological data on phycotoxins are quite scarce, similar
results were obtained on correlation between N and P and MC content in sediments [99].
The role of trace metals, and especially the importance of zinc and iron-limited conditions
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for production of cyanotoxins (MCs), was also demonstrated [101,102,125]. It has been
hypothesized also that the humic acids in land runoff are responsible for chelating enough
iron to induce some blooms [33]. For the growth of brackish and marine algae and the
production of the toxins as well, salinity is the critical factor with possible important role of
biotin, vitamin B12 and thiamine [31,33].

Toxin production can be impacted by the physiological status of algae. For example,
BMAA production and storage were supposed to be a function of growth and life cycle
in experiments with Calothrix sp. and Nodularia spumigena, in which the toxin amounts
increased by age from initial zero [126]. Composition and dynamics of algal populations
and the presence of competitor or predator seem to be involved in the toxin production in
water bodies [83]. It has been also hypothesized that the planktic or benthic mode of life
can influence the production of toxic compounds. For example, comparative genomics of
the genus Planktothrix demonstrated that the microviridin (MV) gene cluster occurred in
all planktonic strains but, with a single exception, it was absent in the benthic strains [127].

The hypotheses of physiological aide of toxins in relation with cell signaling were
connected with experiments on cultivation conditions for studying the effects regulated
by quorum sensing [120]. Although some contrasting results were reported, the impact
of high cell density (HD) cultivation on the production of secondary metabolites in two
terrestrial Nostoc strains revealed the importance of cell density and cell-type specific
expression [103,107]. Cultivation under HD conditions optimized the synthesis of CNPs in
N. punctiforme PCC73102 [103]. In the same way, in conventional cultures of the same strain
and symbiotic strain KVJ2, isolated from Blasia pusilla, ANBs were in low amounts, while
in HD cultures, their peaks were detected [107]. The study allows to suppose that HD
conditions are similar to the natural growth of terrestrial cyanoprokaryotes in crusts [107].
This seems to be very different from the situation in aquatic environments where most
toxins are diluted and occur in low concentrations, and only during blooms, when the
cell density is high, the concentration of signaling molecules in the environment increased
significantly, creating a favorable environment for quorum sensing [128].

From the analysis of literature, it is possible to conclude that most data were obtained
on aquatic toxin-producers and that there is not a big change in the situation with experi-
mental studies on extremophilic algae, as it was seen by Cirés et al. [49], who supposed that
this could be explained with the scarcity of toxic cultures from more extreme habitats [49].
Moreover, according to the review of these authors, the production of cyanotoxins can drop
off suddenly or stop at conditions close to the environmental extremes, at the border of the
growth rate [49].

5. Phycotoxins of Aero-Terrestrial, Airborne and Extremophilic Algae
5.1. Aeroterrestrial Algae

The broad aeroterrestrial ecological group comprises algae on all types of solid sub-
aerial surfaces (natural or man-made), as well as algae from soil depths, soil fissures and
surface crusts in all climatic regions of the world, including polar regions, high alpine
areas and hot deserts [15,129]. They have to stand the strong insolation and UV-radiation,
desiccation, rapid temperature changes (seasonal and diurnal), low nutrient content and
are moistened by percolating water [4].

5.1.1. Phycotoxins of Aeroterrestrial Algae from Ambient Habitats and Contamination of
Soils and Plants
Phycotoxins of Aeroterrestrial Algae from Ambient Habitats

The biodiversity of aeroterrestrial algae is heterogenous in given localities and habitats,
but always two taxonomic groups are outstanding—Cyanoprokaryota and green algae
from division Chlorophyta [14,17,25,129]. Although cyanoprokaryotes are significant
constituents of subaerial communities, and the first evidence for production of ectocrines
by algae came from a culture of aeroterrestrial Nostoc punctiforme [130,131], yet there
are very few studies which demonstrate toxin production from aeroterrestrial algae in
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comparison with their aquatic counterparts. The generally low number of studies on
this ecological group is a well-known problem, explainable by the need for their proper
transportation, followed by time- and effort consuming but obligatory cultivation [132].
All reported data on toxic algae concerned cyanoprokaryotes, and therefore, below, only
the Latin names are given, without noting the taxonomic group.

In the last two decades of the 20th century, the first “standard” cyanotoxin, MC-LA,
was identified in Hapalosiphon hibernicus from Hawaiian soil [66] and different cytotoxic
compounds were reported from several common aeroterrestrial genera. The specific nucle-
oside tubercidin (Tb) was identified as the major metabolite of Tolypothrix byssoidea [133].
Previously, Tb was known only from the bacteria Streptomyces tubercidus [134], and al-
most twenty years later, it was found to be the also major metabolite in the marine
sponge Caulospongia biflabellata [135]. Tb is a potent antibiotic and a cytotoxin with an-
titumor properties, which inhibits DNA, RNA and protein synthesis [135]. In the same
period, other aeroterrestrial algae pointed as cytotoxin producers were Anabaena laxa [136],
Schizothrix sp. [137], Microchaete loktakensis [138], Westiellopsis prolifica [66] and Nostoc
31 [139] (Table 1). The research on the non-ribosomal cyclic hexapeptide nostocyclamide,
isolated from Nostoc 31 [139], continued ([140,141], etc.) and not long ago this cytotoxin
was found also in the halotolerant planktonic Aphanothece halophila from Dead Sea [142].

Series of works in the 90s of the 20th century led to isolation and identification from
the terrestrial Nostoc sp. ATCC53789 (lichen symbiont from Arron Island, Scotland) and
Nostoc GSV224 (ATCC55483, from India) of the novel depsipeptide, cryptophycin (Cr) in
a spectrum of more than 25 variants, similar for both strains [143–147]. Further studies
proved that Cr biosynthetic gene clusters in both Nostoc strains were identical [148] and
that arenastatin A, isolated from the marine sponge Dysidea arenaria [149], was identical
with Cr-1,-3,-4,-24 [147,150]. Almost twenty years later, Cr was found (together with Aps
and Nps) in another soil strain, Nostoc sp. ASN_M from Iran [151]. More recently, the role
of Cr, isolated from Nostoc sp. BN KY303912, in animal poisoning incident (duck death) in
Iran was supposed [152]. To date, more than 28 natural Crs are known [59,144,153] and Crs
are considered to be among of the most potent tumor-selective cytotoxins-suppressors of
microtubule assemblages and their dynamics, which prevent microtubules from forming
correct mitotic spindle, block the cell cycle at metaphase, cause cell-cycle arrest with
subsequent cell death and thus exert strong antiproliferative activity [41,138,139,153–157].

Another “mitotic poison”, nostodione A (Nd A), was isolated from a strain of the
aeroterrestrial Nostoc commune from Okayama City (Japan) [158]. Its unique carbon skeleton
was similar to the natural UV screening alkaloid scytonemin [158,159]. The biological
function of Nd A for its producing cells was not elucidated, but its first total synthesis was
achieved [160]. Here, we would like to stress that another microtubule spindle targeting
(“anti-mitotic”) toxin, neurymenolide A, similar to Cr and Nd A, was found in marine
eukaryotic red algae Neurymenia fraxinifolia and Phacelocarpus neuromenyoides [74,161].

A novel oxazole peptide alkaloid with antibacterial activity, the cytotoxic muscoride
A, was isolated from terrestrial and freshwater Nostoc muscorum [162].

Nostoc is also the sole producer of some weak cytotoxins, which have been declared
potent antitoxins, able to block the transport of “standard” cyanotoxins MCs and NODs to
hepatocytes: nostocyclopeptides (Ncps), nostopeptolids (Nos), nostoweipeptins (W1-W7)
and nostophycin (Table 1), from which the last two were isolated only from aquatic strains
of the genus [59,163,164].
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Table 1. Toxin-producing genera and their toxic compounds (or toxin synthetase genes) in the groups of aeroterrestrial and other extremophilic algae. Legend: Aeroterr.—aeroterrestrial,
Envm—environments, T/G—toxic compound or toxin synthetase gene (in cases when only genes have been reported), OC—occurrence in the relevant ecological group, ?—finding
supposed. Aquatic ambient habitats are included since most toxins have been proved only in freshwater, brackish or marine environments. For toxin abbreviations and other explanations,
see the text of the paper.

Algal
Phylum/Genus Toxin/Toxins and TOCs

Aquatic
Ambiente

Envm

Aquatic
Extreme

Envm
Airborne

Aeroterr.
Ambiente

Envm

Aeroterr.
Extreme

Envm

Thermal
Envm Cold Envm Caves

T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC

Cyanopro-
Karyota

Anabaena s.l.
MC, CYL; BMAA,

spumigin J, Laxaphysins
A-E; Geo

x x x x x x x x X (?)

Anabaenopsis MC x x x x

Anagnostidinema MC x x

Anacystis MC (?) x x x x X (?)

Aphanocapsa MC-LR, NOD; MIB x x x x x x x

Aphanothece nostocyclamide, NOD x x x x x x x x x

Calothrix BMAA, LPS; Geo x x x x x x

Chlorogloeopsis BMAA x x x

Chroococcidiopsis BMAA x x x x

Chroococcus MC (?) x x (?) x x x x (?) x x x x

Coleofasciculus MC, BMAA, DAB,
AEG, GTX x x x (?) x x

Cyanobium MC (mcyA gene),
CYN (pks gene) x x x x x x

Cyanospira MC x x x

Cylindrospermum Geo x x x x x x
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Table 1. Cont.

Algal
Phylum/Genus Toxin/Toxins and TOCs

Aquatic
Ambiente

Envm

Aquatic
Extreme

Envm
Airborne

Aeroterr.
Ambiente

Envm

Aeroterr.
Extreme

Envm

Thermal
Envm Cold Envm Caves

T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC

Fischerella

MCs (MC-LR, MC-LA,
MCLF, MC-FR and
demethyl-MC-LR),

BMAA, fisherindole L,
ambiguine isonitriles

A–F, hapalindoles
(G, H, L), fungicidal

hapalindoletype alkaloids,
ambigol A, B and indole
alkaloid tjipanazole D,

fischerellin A, LPS; Geo

x x x x x x x x x

Geitlerinema MCs, SXTs; mitsoamide x x x x x x

Gloeocapsa MC x x x x x x x

Gloeotrichia MC-LF, MC-RR x x x

Gomphosphaeria MCs x x x x

Hapalosiphon MCs (MC-LA), hapalosin x x x x x x x x

Iningainema NOD x x

Komvophoron MCs, CYN (?) x x x x

Leptolyngbya MCs; Geo x x x x x x x

Limnospira MC-YR; ATX x x x x

Lyngbya
SXTs, CYN, deoxy-CYN,

BMAA, LAs (A-C),
AT, DAT

x x x x x x x ?

Merismopedia MCs, NOD x x x x
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Table 1. Cont.

Algal
Phylum/Genus Toxin/Toxins and TOCs

Aquatic
Ambiente

Envm

Aquatic
Extreme

Envm
Airborne

Aeroterr.
Ambiente

Envm

Aeroterr.
Extreme

Envm

Thermal
Envm Cold Envm Caves

T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC

Microchaete A90720A
(protease inhibitor) x x x x x

Microcoleus
MC (mcyA, mcyE genes),
ANAs, BMAA (?), CYN
(pks genes), LPS; GEO

x x x (?) x x (?) x x x x x (?)

Microcystis MCs, ATXs, BMAA, MV-J,
kawaguchipeptin-B x x x x x (?) x (?)

Nodularia NOD, [L-Har2] NOD,
BMAA, spumigins x x x x x x x

Nostoc

MCs, NOD, NOD-R
(desmethylNOD-R), ATX,

SXT, BMAA, Aer-865,
Aps, banyasides, CPs, Cr,
CV-N, MVs, Ncps, Nos,

Ns, nostocyclamide,
Nd A, nostophycin,

nostoweipeptins (W1-W7),
nostoginins, nostopeptins,

insulapeptolides,
nostocyclins, microginins,

muscaride A, Psp
A-F; Geo

x x x x x x x x x x x

Oscillatoria
MCs (-LR, -RR), ATX,

HTX, CYN, 7-epi-CYN,
DAT; Geo

x x x x x x x (?) x x x x x
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Table 1. Cont.

Algal
Phylum/Genus Toxin/Toxins and TOCs

Aquatic
Ambiente

Envm

Aquatic
Extreme

Envm
Airborne

Aeroterr.
Ambiente

Envm

Aeroterr.
Extreme

Envm

Thermal
Envm Cold Envm Caves

T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC

Phormidium MCs, ATX, HTX, BMAA x x x x x (?) x x x x

Planktotohrix

MCs, ATXs,
BMAA, oscillatorin

(oscyllamide Y),
oscillapeptin

x x

Plectonema MCs, BMAA x x x x x x x

Pseudanabaena MC-LR, MC (mcyA gene),
CYN (pks gene) x x x x x x x x x (?)

Pseudocapsa MC-RR, MC-YR x x

Schizothrix DAT, LPS, schizothrin A x x x x x x x x x x

Scytonema MC-LY, SXT, BMAA x x x x x x x

Snowella MCs x x x

Spirulina MCs, ATXs x x x x

Symploca BMAA x x x x x x x

Synechocystis MC (incl. MC-LR),
BMAA, LPS x x x x x x

Synechococcus
MC, microcin-C like,
NOD, BMAA, LPS,

Thionsulfolipid
x x x x x x x x

Tolypothrix Tb x x x x

Westiellopsis MC, westiellamide x x x x x x (?)

Woronichinia MCs x x x x

Pyrrhophyta

Gymnodinium SXT, endotoxin;
ichyotoxin x x x
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Table 1. Cont.

Algal
Phylum/Genus Toxin/Toxins and TOCs

Aquatic
Ambiente

Envm

Aquatic
Extreme

Envm
Airborne

Aeroterr.
Ambiente

Envm

Aeroterr.
Extreme

Envm

Thermal
Envm Cold Envm Caves

T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC T/G OC

Karenia PbTx, gymnocin (GC) x x x

Ostreopsis

PLTXs (osteozin D,
ovatoxin A, ostreotoxin-1

and 3, mascarenotoxin
A and B)

x x x

Peridinium s.l.
ichtyotoxins incl.

alkaloid similar to
12-methoxyibogamine

x x x x

Prorocentrum
OA, DPX,

prorocentrolides
(PLC), borbotoxin

x x x

Chlorophyta

Ulva hemolysins x x x

Ochrophyta

Amphora DA x x x x x x

Ochromonas ichthyotoxic, hemolytic,
and antispasmodic activities x x x x
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Ncps are a small class of naturally produced low molecular NRPs with unique imino
linkage in the macrocyclic ring, which do not bind to protein phosphatase (PP) 2A and
block the hepatotoxic actions of MCs (MC-LR) and NODs through inhibition the organic
anion transporters, OATP1B3 and OATP1B1 (which also mediate the hepatic transport of
hormones, drugs, etc.) [59,117,165,166]. Thus, Ncps are potent antitoxins that can serve as
antidotes, which efficiently counteract the MC and NOD induced apoptosis and can provide
new therapeutic tools to replace toxic and less specific hepatic transport inhibitors [117,166].
Ncps were firstly isolated in two variants (Ncp-A1 and Ncp-A2) from the Nostoc strain
ATCC5389 from the Aaron Island (Scotland), reported earlier as a Cr-producer [144,165].
More recently, two new Ncps producers were purified from the Baltic Sea [117,167]: Nostoc,
isolated from a gastropod symbiont, strain XSPORK 13A, which formed different Ncps
variant Ncp-M1 (and later was found to form also seven variants of nostoweipeptins,
W1-W7 [164]) [117] and a free-living N. edaphicum CCNP1411 [167]. The last one, besides
the known peptides, Ncp-A1 and Ncp-A2, contained six other compounds (Ncp-E1-L and
E2-L, Ncp-E3 and Ncp-E4-L) putatively defined as new Ncp analogues [167].

Nos are cyclic hybrid NRPs/PKs natural products [59], found in different variants
from aeroterrestrial Nostoc strains: Nos A1-A3 were isolated from the free-living Nostoc sp.
GSV224 [168,169] and Nos L1-L4—from the symbiotic Nostoc sp. UK2almI [164]. During a
genome-based study, in which Nostoc punctiforme PCC73102 was taken as a model strain
capable of facultative entering in symbiotic relations, Nos A and Nos 1052 were found
together with Aps (nostamide A and Ap NZ857) and highly unusual MV types N3-N9 [103].

Cyanovirin-N (CV-N) is a low molecular lectin with potent activity against different
enveloped viruses but is not toxic for humans (when applied as 0.5–2% gel) [59]. It was
firstly isolated from a crude extract of cultured Nostoc ellipsosporum from Hawai [59,170].
This 11-kDa polypeptide, identified in a search against HIV, with a clarified mode of action,
is of considerable interest in designing drugs against AIDS, but up-to-now the physiological
role of this compound for its producer is not known [59,170–173].

Nostosins (Ns) are linear NRPs firstly isolated and characterized from a terrestrial Nos-
toc sp. FSN from a paddy field in Golestan Province (Iran) [174]. These low molecular linear
tripeptides, which are the smallest and most potent trypsin inhibitors, exist in six variants
(Ns A-F) [59,174,175]. Although found only in Nostoc, Ns have some similarity in the
effects with the linear CNPs aeruginosins (Aers, namely, Aer-GH553, Aer-EI461, Aer-298B)
and spumigin (spumigin E in particular), known from other cyanoprokaryotes [59,174].
Aers, in particular, were also found in aeroterrestrial Nostoc with Aer-865 being the first
variant, discovered in the strain Lukešová 30/93, isolated from a mountain forest soil in
the Czech Republic [176]. This novel tetrapeptide has unique structure, not typical for
other Aers, such as the presence of uronic acid and a fatty acid moiety, and therefore it was
supposed to be a type of evolutionary intermediate [176]. Moreover, the finding of this
new variant with strong anti-inflammatory activity and almost no cytotoxicity suggested
discovery of novel potential immunomodulating agent [176]. Other protease inhibitors, the
novel peptides banyasides, containing unique amino acids, were isolated from a freshwater
bloom of Nostoc in three variants (A1-A2 and B3) [177]. Later, these glycopeptides, similar
to Aers, were identified together with variants from other peptides including nostoginins,
microginins and Aps in 45 from 133 terrestrial Nostoc and Nostoc-like strains, isolated
from various alkali grassland habitats in Great Hungarian Plain, in which MCs were not
found [178]. Aps, protein inhibitors, which are produced also by other cyanoprokaryotes,
were found together with Cr and Ncps in a Nostoc strain ASN_M collected from a paddy
field in Iran [151] and their novel variant, Ap NZ857, was characterized during integrated
transcriptional and metabolomics studies with HD cultivation of the terrestrial Nostoc
punctiforme strain PCC 73,102 [103,107].

In this regard, we have to outline, that Nostoc can produce also other protein inhibitors,
CPs [179], commonly detected in other cyanoprokaryotes [180], but similarly to Aps and
microginins, these NRPs frequently have some unique structure modifications [59]. For
example, in Nostoc, the oligopeptide compounds with similar to CPs structures are known
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as nostopeptins, insulapeptolides and nostocyclins, isolated mostly from versatile aquatic
environments (Table 1) [59].

Besides all mentioned above NRPs, Nostoc can produce some ribosomal peptides,
which inhibit proteases and elastase and have been found also in other cyanoprokary-
otes [59,120]. Such example for ribosomally synthesized and post-translationally modified
peptides (RiPPs) is the unique 16-membered family of the toxins microviridins (MVs),
named after their first discovered producer—the aquatic toxic Microcystis viridis (strain
NIES-102) [181,182]. Later, more variants and MVs were found in Microcystis and in other
bloom-forming species from the genera Planktothrix, Anabaena and Nodularia and in more
structural variants in other bacterial groups [120,183–190]. In aeroterrestrial algae, MVs
were reported from Nostoc minutum NIES-26 [191] and N. punctiforme PCC73102, in which
Nos and Aps were also found [103]. Although these oligopeptides are largely studied,
their low yield is considered one of the bottlenecks for their production and evaluation in
cyanoprokaryotes [120].

Nostoc was reported also as producer of “standard” cyanotoxins. Nostoc is a rare
example of non-Nodularia producer of the cyclic pentapeptide NOD, but its production by
Nostoc was at 100-fold lower levels than that observed for the aquatic, NOD-producing
Nodularia sp. (Table 1) [59,192,193]. The synthesis of NOD and [L-Har2]-Nod by two ter-
restrial cycad symbiont isolates of Nostoc sp. ‘Macrozamia serpentina 73.1’ and Nostoc sp.
‘Macrozamia riedlei 65.1’ was confirmed genetically and chemically [192]. In Nostoc sym-
bionts, which inhabit the roots of Cycas and Macrozamia, BMAA was identified [126,194,195],
but not long ago, it was isolated also from four free-living marine, brackish and fresh-
water Nostoc strains [126,196]. MCs were found in few free-living strains (some of which
from aquatic habitats) [47,197–208] and in some symbiotic strains, isolated from terrestrial
lichens, liverworts and flowering plants [126,209,210]. SXTs were reported from Nostoc
microscopicum, N. linkia and N. punctiforme [200,201] and peaks with retention time near to
the ATX were detected by HPLC in N. linckia [200]. Interestingly, experiments with Nostoc
flagelliforme, which is commonly used for food in China, did not show adverse effects on
rats, which may indicate its safety for human consumption [211].

Nostoc was pointed also as the main causative agent for the production of Geo in
soils [62]. This compound, due to its specific earthy and musty taste, is better studied from
freshwaters, but its release has been associated also with the terrestrial cyanoprokaryotes
Aphanizomenon, Coelosphaerium, Dolichospermum, Phormidium and Tychonema. Recently, a
new aeroterrestrial species, producer of Geo, was described from the Lisbon city center –
Microcoleus asticus [62].

Other newly described terrestrial cyanoprokaryotes, isolated from dried paddy fields
of Mazandaran (Iran), Neowestiellopsis, with two species N. persica and N. bilateralis were
supposed to be cryptic taxa of true-branching cyanoprokaryotes [212]. Considering that the
phylogenetically close Westiellopsis prolifica has been shown as producer of toxic antibacterial
westiellamide (a bistratamide-related cyclic peptide) in soils and MCs in freshwaters [66,213],
it is possible to speculate similar toxigenic abilities in the aeroterrestrial Neowestiellopsis.

In a search for neurotoxins among different ecological and morphological cyanoprokary-
otes, BMAA production was proved in strains of the aeroterrestrial genera Chlorogloeopsis
(isolated from Indian soil); Chroococcidiopsis (isolated from marine rock in India) and Calothrix,
Phormidium and Plectonema (with unknown origin) [126] (Table 1).

The ubiquity of soil and aerophytic algae explains their importance for wide-human
exposure [126]. Therefore, the interest in aeroterrestrial algae and their potential toxicity is
increasing due to increasing safe requirements and new eco-friendly processes, related with
the application of algae as soil conditioners [214] and in different cosmetic products [24].

Phycotoxins Contamination of Soils and Plants

Presence of phycotoxins in soil algae can be a potential source for soil contamination,
but its main cause is considered to be the irrigation by infested water. Water used for
irrigation, comes from natural or man-made waterbodies but commonly is not a subject
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for special quality control, and on the background of the globally increasing frequency
of algal blooms in freshwaters, the concern from soil contamination by phycotoxins is
emerging [115]. Two additional sources are the removed amounts of algal biomass from
waterbodies to agricultural lands or forests, without any additional treatment and the direct
fertilization of soils by cyanoprokaryotes, experienced in some countries [115]. The risk
associated with toxin stocks for further contamination of groundwaters through infiltration
from soils and phycotoxin migration which follows precipitation was already shown by
different studies [115].

Therefore, starting from the last decade of 20th century, the research on toxin accumu-
lation and influence on the commercially cultivated plants after irrigation by contaminated
water became a specific aspect of the studies of phycotoxins in soils (e.g., [34,215–227].
Although constantly increasing, the number of experiments is limited with exceptional
work in natural conditions, and few studies addressed the plants susceptibility to phyco-
toxins at environmentally relevant concentrations [225,226,228]. Despite some crop plants
and some aquatic macrophytes (e.g., Ceratophyllum demersum, Elodea canadensis, Phragmites
australis, Vesicularia dubyana, and Azolla filiculoides) having demonstrated possibilities for
self-decontamination, for development of tolerance or resistance to cyanotoxins and even
registered better growth at certain MC or CYN concentrations, there is a general consensus
on the strong negative economic impact with health risk hazards of toxin-containing water,
applied as standard or spray irrigation [227–240]. Moreover, after conventional treatment,
water still can contain extracellular phycotoxins (e.g., MCs), released after lysis of cells [236].
All studies showed that aquatic macrophytes absorb through all submerged parts [229,231],
and crop plants irrigated by infested water can absorb phycotoxins through roots or ac-
cumulate it on leaves, and that the effects can be harmful for humans even in cases of no
visible changes [115,225,241]. For example, cyanotoxins can affect the plants metabolism,
which can lead to the accumulation of potential allergenic proteins [242]. Therefore, the
consumption of contaminated vegetables and food supplements became recognized as
additional important exposure route [228,236,243].

According to the accumulated knowledge, such infested water may impair the photo-
synthesis, inflict severe oxidative stress, affect mineral accumulation by plants, provoke
adverse histological modifications in primary plant tissues, reduce the germination rate of
seeds, inhibit the growth and development of seedlings, cause alteration of the quality and
the productivity of crop plants with a potential to move these toxins into farm animals and
thus have detrimental impact in the whole food chain [115,217,223,226–228,236,244–246].
The reported effects on metabolic processes and related germination and growth rates
depend both on the toxin variant used and on the detoxication enzymatic activity of tested
plants, such as Azolla filiculoides, Anethum graveolens, Brassica napus, Brassica cretica (Syn.:
Brassica oleracea var. italica), Ceratophyllum demersum, Cicer arietinum, Coriandrum sativum,
Cucumis sativus, Daucus carota, Elodea canadensis, Eruca vesicaria (Syn.: Eruca sativa), Glycine
max, Lactuca sativa, Lens culinaris (Syn.: Lens esculenta), Lepidium sativum, Lolium perenne,
Medicago sativa, Oryza sativa, Petroselinum crispum, Phaseolus vulgaris, Phragmites australis,
Pisum sativum, Raphanus sp., Sinapis alba, Spinacia oleracea, Solanum lycopersicum, Solanum
tuberosum, Trifolium repens, Triticum durum, Vesicularia dubyana, Vicia faba, Vigna radiata, Zea
mays, etc. [34,223,226,229,230,233,238,239,247]. For example, Pisum sativum (pea) was one of
the most sensitive to MC-LR exposure plants contrasting to the more resistant Lens culinaris
(lentil) [223]. After exposure to MCs visible changes in Cucumis sativus (cucumber) and
Spinacia oleracea (spinach) were observed [228,248], while no changes were found in Lactuca
sativa (lettuce) and in Vicia faba (faba bean) [249,250]. Experiments under varying condi-
tions demonstrated the significant CYN uptake by Brassica cretica (Starbor, kale), Brassica
juncea (brown mustard) and Sinapsis alba (white mustard) with accumulation in leaves and
roots [251]. Sinapsis alba and Oryza sativa (Asian rice) can be affected by CYN with visible
anatomy modifications and growth inhibition, with possible tissue necrosis concomitant
with oxidative stress caused by longer exposures [115,252,253]. In contrast, the experiments
with subchronic exposure to CYN by the aquatic fern Azolla filiculoides demonstrated the
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low uptake of CYN and no effect on photosynthesis and protein synthesis, which pointed
towards to its safe use as biofertilizer and as food and forage source but also indicated
that Azolla is not suitable for CYN phytoremediation [240]. The marine phycotoxin OA
can efficiently block chlorophyll accumulation in Zea mays (maize) leaves [254], as well
as the root hair growth and can alter the cortical cell shape in Arabidopsis thaliana [255].
OA in combination with MC-LR or MC-LR alone act as protein phosphatase inhibitors
and inducers of reactive oxygen species production and can cause versatile genetic and
physiological changes in different plants like Ipomoea batatas (sweet potatoes), Spinacia
oleracea, Lepidium sativum (cress, watercress) seedlings, Solanum lycopersicum (tomato) and
Oryza sativa (for details see [217]).

As it could be seen, up-to-now, studies addressed mostly MCs due to the long-term ac-
cumulated evidence on their broad prevalence in eutrophic waters, while few data are avail-
able on dermatotoxins and neurotoxins [65,115,237,240]. MCs, due to their ring structure,
are stable under sunlight, and their long persistence in soils, with half-life between 6 and
17.8 days, was proved [220,236,256,257]. Similarly, MCs introduced through irrigation wa-
ter are bioavailable to crop systems during long period but can be affected also by soil struc-
ture, chemical composition and local or modified microbiota [218,221,227,235,246,258–266].
To exemplify, sandy soil was incapable to remove cyanotoxins [259] but modified clays and
soils can accelerate the improvement of the quality in eco-friendly manner [265,267,268].
The degradation and removal of MCs from the soils in agroecosystems or decrease of plant
stress seems to be possible due to microbial activity in the rhizosphere [246]. The plants
cultivated in hydroponic systems accumulated more MCs in their organs in comparison
with soil-grown plants [269,270], and this is explainable in cases when the roots were in
direct contact with toxin solutions [217]. Specific study on lettuce showed that washing
and rinsing is not enough to remove the toxic cells from the leaves [255].

In regard with the movement of MCs through the food chains, the research was ori-
ented towards their absorption, translocation and accumulation in plants, and in edible
plants in particular (e.g., [34,217,226,232,235,239,241,246,248,255,270]). Additional prob-
lem comes from the fact that plants can absorb MC-LR in low external concentrations
(0.5 µg L−1); this was firstly shown on aquatic macrophytes [229,231]. Since toxin accu-
mulation in edible plants could pose a potential risk for human and animal health, if the
MC intake exceeded the recommended tolerable limits, most studies addressed MC-LR for
which WHO limits exist [226]. For example, accumulation of MCs in concentrations over
the threshold tolerable daily intake (TDI) 0.04 µg kg−1 body weight, announced by WHO
in 2004 (and confirmed in 2020 [271]), for humans was reported for cucumber, carrot and
lettuce [34,222,232,271] and recalculated for clover grazed by cattle [222]. Currently, more
provisional health-based guideline values were announced: for short-term (ST) and lifetime
(LT) drinking water (DW) and recreational water (RW) for MC-LR (ST ≈ 12 µg L−1 and
LT ≈ 1 µg L−1 in DW, ≈24 µg L−1 in RW), for ATX (ST ≈ 30 µg L−1 in DW and ≈60 µg L−1

in RW) and for CYN (LT ≈ 0.7 µg L−1 and ST 3 µg L−1 in DW), as well as for SXTs acute
guideline value for DW ≈ 3 µg L−1 [271–274].

Despite all findings cited above, more studies are needed for full understanding of all
factors which influence the toxin uptake and accumulation, differences in absorption by dif-
ferent crop species and their exposure organs, all possible morphological and physiological
effects on plants and on toxin persistence after harvesting [34]. Doubtless, all accumulated
evidence confirmed the earliest suggestions that phycotoxin uptake by edible plants could
be detrimental for human health [255,275]. This raised concerns about food safety, showing
that crop production environments have to be free of phycotoxins at least during the
cultivation period, and the relevant monitoring in both aquatic and land habitats of the
agricultural systems and plants affected by cyanotoxin contamination is needed [34,239].

5.1.2. Aeroterrestrial Endolithic Algae

Endolithic algae inhabit the inner surfaces or fissures of stones and rocks and comprise
a very specific community, which after the pioneer works by Imre Friedmann and his
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colleagues (e.g., [276–279] is considered extremophilic [7,280,281]. Nevertheless, little
is known about the global biodiversity of algal endoliths, but despite some fine-scale
partitioning depending on the rock types and local climate conditions, the similarity in
species composition allows to generalize that cyanoprokaryotes, and the polyextremophilic
BMAA producing [126] genus Chroococcidiopsis in particular, often dominates [4,13,280–287].
Among all recorded endolithic algae, occur other genera, from which toxigenic species
have been found in different, mainly aquatic habitats: Anabaena, Aphanocapsa, Lyngbya,
Phormidium and Plectonema (e.g., [276–279,284,287–295]) (Table 1).

Despite of ever-growing number of papers dedicated to the microorganisms in the
rocks, there is a single record of phycotoxins from the endolithic strain of Pseudocapsa dubia,
isolated from a marbel building situated at 353 m a.s.l. in Spain, in which MC-RR and
MC-YR were detected [50]. Currently, a number of secondary metabolites, produced by
endolithic cyanoprokaryotes, was found and was supposed to be possibly involved in the
competition with eukaryotic algae (e.g., green Trebouxia) for access to the limited space
suitable for photosynthesis within the ignimbrite rocks [296]. Some of these secondary
metabolites were with potent antimicrobial activity, including NRPs and PKs, a number of
genes for which were detected [296].

5.1.3. Aeroterrestrial Algae from Deserts and Polar Regions

Deserts occupy approximately 15% of the Earth surface and are spread in all geo-
graphical realms [7]. On the basis of precipitation/evaporation ratios they are classified as
subtropical, cool coastal, cold winter and polar [7]. Algae in deserts have to survive, grow
and reproduce in even more harsh arid or semiarid environmental conditions in compar-
ison with other aeroterrestrial algae. Their adaptive traits allow the organisms to thrive
both balances of thermal and water energy [25], but often they experience high salinity in
addition to strong insolation, temperature fluctuations and low nutrient supply [7].

Data on aeroterrestrial algae from the hot deserts of the world addressed mainly soil
and different lithophytic communities (for references, see [297,298]). Despite some dissimi-
larities, caused by soil and rock types and specific local conditions, cyanoprokaryotes were
the most important inhabitants of these arid environments [297]. The significance of their
exopolysaccharides to enhance soil stability and water retention, as well as for architec-
ture of biological crusts and providing of microhabitats, was well recognized [299–301].
Comparison of species composition showed that 72% of the algae found in the lithophytic
communities of Negev have been recorded in other deserts from Africa, America and Asia,
with Nostoc commune, N. punctiforme, Nodularia harveyana, Schizothrix arenaria, S. fresii, S,
lenormandiana, Synechococcus elongatus, Tolypothrix byssoidea being the most widespread [297].
Similarly, Nostoc, Coleofasciculus (Syn. Microcoleus p.p.) and Phormidium s.l. can be outlined
as common in desert soils [281,298,301,302]. Currently, a close relative of Coleofasciculus
chthonoplastes (Syn. Microcoleus chtonoplastes) from hot deserts soils was described as a new
genus, Desertifilum [297]. The transect study covering 800 km and three soil types (lateritic
soils, red soils and soils burdened by mine-waste) in arid region in eastern India revealed
the general common composition of the biological crusts, which comprised Scytonema,
Tolypothrix and Lyngbya along with few species from Cylindrospermum, Nostoc, Calothrix and
Fischerella [303]. Although most of the abovementioned species were toxigenic in other
habitats (Table 1), algae from hot deserts and other arid habitats have been rarely studied
in relation to phycotoxins.

However, even the few conducted studies allowed to suggest the associated health
risk. It was supposed that the inhalation of dust containing dried, suspended cyanobacteria
during dust storms, may be an important exposure route that adversely impacts human
health in desert regions [304]. Earlier, a causative link between promoting or enhancing
amyothrophic lateral sclerosis (ALS) of Gulf War veterans and chronic exposure to low
amounts of BMAA from cyanoprokaryotes in desert dust was supposed [305]. In algal soil
crusts from hot deserts, dry riverbeds and supertidal salt flats in Qatar MCs and BMAA
with its isomers DAB, BAMA and AEG were found, and GTX was detected by enzyme
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inhibition assay analysis [109,304,305]. BMAA and DAB were already known as neurotox-
ins, but for the AEG, isolated from Qatar material, for the first time, preliminary toxicity
assays with the nauplii of Artemia salina were performed and indicated its low toxicity [109].
However, it was supposed that some synergistic or additive effects of common exposure
to BMAA, AEG and DAB could occur increasing the risk of adverse health effects [109].
The most important constituent of desert soil crusts from all environments in Qatar was
Microcoleus, and it was presumed as primary MC producer, but since it was occasionally
intermingled with filaments of Phormidium, it was considered to be the second potential
candidate, while for BMAA a range of possible producers was speculated [304,305]. Later,
adverse effects on dogs in the region were supposed to be primarily caused by ATX [306].

Algae are well-known also as first colonizers of the pyroclastic substrates formed after
volcano eruptions and of hydrothermal deposits formed around hot springs in volcanic
geothermal regions, which are often iron poor but silica rich [7]. Cyanoprokaryotes were
found as significant participants in such communities both on the substrate surfaces and
inside the rocks [293,307,308]. In these works, species from genera Anabaena, Leptolyngbya,
Lyngbya, Oscillatoria and Phormidium have been recorded by conventional light microscopy,
from which toxic species are known (Table 1). Genetic studies indicated that much of the
diversity on these new landforms were either closely related to uncultured organisms or
distinct from any reported 16S rRNA gene sequences. The presence of cyanoprokaryotes
was detected by 16S rRNA in vegetated volcano soils of Mount St Helens and around
Kilauea volcano at Hawai [309,310], but their toxins have not been investigated.

In the warmer northerly latitudes of Antarctic Peninsula and on the Signy and Marion
islands, the so-called fellfields with thaw-freeze regime and soils of high porosity are
widely spread, which are covered by algal mats in their uppermost layer of 1 mm [311,312].
These mats comprise of different algae but generally are dominated by non-heterocytous
filamentous cyanoprokaryotes Phormidium autumnale and Pseudanabena catenate, sometimes
intermingled with diatoms like Pinnularia borealis [7]. The first two species have been
reported in freshwaters as toxigenic (Table 1).

In the Dry Valleys of Antarctica, the coldest and driest Earth deserts cover about
4800 km2; cyanoprokaryotes are the most important primary aeroterrestrial soil and
epilithic (also hypolithic) phototrophs [7], among which early studies identified species of
the genera Calothrix, Nostoc and Scytonema [295] and on the sublithic soils Plectonema-like
clones were identified [292]. Later, by metagenomic analyses, higher biodiversity from the
orders Chroococcales, Oscillatoriales and Nostocales was discovered [313,314]. An interest-
ing result from these studies was that the nearby lakes were the source of species for the
terrestrial mats, and therefore, it was supposed that their cyanoprokaryotes could be toxic
in the same way like their aquatic counterparts. Studies of MCs in hydroterrestrial Antarc-
tic mats from the Marshall Valley (with Nostoc as relevant cyanotoxin producer [47,106])
and from McMurdo Dry Valley identified MC-LR, MC-FR and MC-RR and eight new MC
congeners with specific glycine containing modifications [208].

In the Nearctic, LM and 16S rRNA gene analysis of the soil crusts in the Colorado
Plateau and in the peculiar mesothermal rain shadow Chihuahuan desert revealed domi-
nance of Microcoleus vaginatus, Nostoc spp. and Scytonema spp. depending on the succes-
sional stage [300]. Despite toxin analyses on these samples not being conducted, we have
to note that toxic species from these genera have reported (Table 1). In the Arctic, firstly the
presence of MC-LR and ATX was demonstrated in biocrusts from the North-West coast of
Spitsbergen [315]. This was also the first documentation of ATXs from the Arctic, because
MCs were found earlier in Arctic freshwaters [316]. According to the pilot identification
of biocrust inhabitants, it was tentatively suggested that Nostoc paludosum, Nostoc sp. and
Chroococcus sp. were the possible MC-producers, and Oscillatoria and Phormidium were
related with ATXs production [315].

In the first molecular survey of biological crusts from the Arctic and Antarctic green
algal genera, Chloromonas, Coccomyxa, Elliptochloris and cyanoprokaryote Nostoc were iden-
tified in all samples regardless of origin, thus confirming their ubiquitous distribution, with
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high abundance of Cyanoprokaryota and frequent occurrence of two diatoms (Amphora,
Stauroneis) [317]. This study did not check toxigenic species, but Nostoc and Amphora are
potentially toxic genera (Table 1).

5.1.4. Aeroterrestrial algae of Hypersaline Environments

Data on the algal biodiversity of hypersaline environments concerned mainly the
benthic mats in hypersaline coastal lagoons, saltworks and some inland hypersaline lakes,
but even fewer studies addressed the terrestrial algae on their shores or algae of hypersaline
soils (e.g., salt flats, evaporite crusts, solonchaks) [318–321]. Most of them, and the salt flats
in particular, experience frequent changes in the salinity, diel and seasonal temperatures
and water ability because they are unprotected by the moderating effects of the permanent
water [319]. Despite the scanty information, it is possible to state that contrary to the
earlier opinions on low biodiversity of these habitats, most studies revealed relatively rich
phycoflora in oxygenic layers, especially in regard to cyanoprokaryotes [318,320–322]. They
dominate or co-dominate with diatoms or green algae in soils and biological crusts in these
environments, often representing more than half of the recorded species [319–324]. Despite
some differences in the detailed species composition and abundance, all studies proved the
general prevalence of filamentous non-heterocytous algae (e.g., Geitlerinema, Halomicronema,
Komphovoron, Leptolyngbya, Lyngbya, Microcoleus, Phormidium, Pseudanabaena) in these soils,
with some differences in the abundance of the colonial (e.g., Aphanocapsa, Aphanothece)
and filamentous heterocytous (Anabaena, Calothrix, Nodularia, Nostoc) algae depending
on the localities.

On the salt flat shore of the very peculiar, shallow hypersaline Don Juan Pond (Victoria
Land, Antarctica), which contains saturated CaCl2 brine, a 2–5 mm thick mat of about 1 ton
weight was found to cover about 600 m2 [325]. The pilot light microscopic observations
revealed that it was formed mainly by entangled filaments of Oscillatoria-type, intermingled
with Gloeocapsa and some green cells of Chlorella and Dunaliella types and yellow-green
unidentified tetrads, with occasional presence of diatoms, suggesting the worth of more
detailed studies [325,326].

As it could be seen, the species lists provided from different regions of the world contained
cyanoprokaryote taxa, reported as real or potential toxin-producers from other habitats (Table 1).
This allows us tentatively to suppose that future aimed measurements can reveal phycotoxins,
most probably cyanotoxins, in hypersaline aeroterrestrial environments.

5.2. Airborne Toxigenic Algae and Their Toxins

Airborne algae, “the free-floating algae in the atmosphere” [327] (p. 2), are now uni-
versally recognized as a component of the naturally occurring aerial biota and comprise a
considering part of atmospheric bioaerosols [20,328]. Similar to “standard” aeroterrestrial
algae, the airborne organisms have to survive the UV-radiation, desiccation and broad tem-
perature variations [329]. Despite these stressful factors, more than 350 species are known,
with the highest diversity of green algae and cyanoprokaryotes, followed by diatoms and
yellow-green algae [19,20,327]. It has been commonly accepted that cyanoprokaryotes are
most abundant in temperate regions, while green algae dominate in tropics [327,330,331],
but these geographic peculiarities can be strongly dependent on the sampling season [332].

The role of airborne algae in inducing respiratory problems and skin reactions has
been recognized long ago (e.g., [333]) and investigated in series of works, summarized
in subsequent reviews [19,20,327]. In these works, some green algal species, which have
never been reported as toxin producers, have been pointed as allergenic components of the
aerosols: Chlamydomonas sp., Chlorella sp., Coccomyxa dispar, Myrmecia sp., Neochloris sp.,
Palmella sp. and Scenedesmus spp. [19]. However, they were the least studied organisms in
aerosols in terms of hazardous health effects [20,334], and yet there are no WHO standard
levels determined for them in air quality guidelines [19,271–274,327]. Nevertheless, the
knowledge on the potential toxin producers among them has been accumulated with
increasing accepting inhalation and skin contact as significant exposure routes [19].
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Currently, about 20 species identified in aerobiological studies are known as toxin pro-
ducers in their natural environments. They belong to cyanoprokaryote genera Anabaena s.l.,
Anabaenopsis, Arthrospira, Cylindrospermum, Gloeocapsa, Hapalosiphon, Leptolyngbya, Lyn-
gbya s.l., Microcystis, Nodularia, Nostoc, Oscillatoria s.l., Phormidium s.l., Pseudanabaena,
Snowella, Synechococcus, Synechocystis, Westiellopsis and Woronichinia; to the dinoflagel-
late genera Gymnodinium s.l., Peridinium s.l., and Prorocentrum and to diatom genus Am-
phora [19,20,66,328,335,336] (Table 1). Among the most frequently occurring was Lyngbya,
which means that it was found in >40% of the sampling areas, in every climatic zone, and
therefore, it may pose serious threat to the air quality and human health [19]. Regarding
this, we have to note that the analysis of data accumulated since the first publication of
Ehrenberg [337] on the materials collected by Charles Darwin [338] revealed that only
less than 20% of the airborne algae were common [19], while all others depended on the
geographical, topographical, climatic, diurnal and seasonal factors [19,328]. At the same
time, locally, some potentially toxigenic and allergenic algae can be common in the air
of a given region, as it was well exemplified in a study over the Varanasi city of India,
where Nostoc muscorum and Phormidium fragile were found and outlined as hazardous
species [339]. Soon after, N. muscorum was proved as MC-producer in freshwaters [205].

Generally, the dispersal distances are mainly short, less than 1 km, as it was shown for
one of the best-known toxigenic species—Microcystis aeruginosa, transported by the wind
from the original blooming pool [340]. The dispersal distance for algae could be even longer
depending on meteorological factors such as wind velocity and direction, air humidity and
also from the algal resistance to desiccation stress [327,330,338,341]. Doubtless, the diversity
and abundance of airborne algae depend on the communities at the source. Considering
the increase of harmful algal blooms triggered by global warming and increased nutrient
loading, it is possible to suppose that the resuspension in the air from the aquatic habitats
will be enhanced, increasing the importance of inhalation as exposure route [19,20]. There
is accumulating evidence that recreational activities in water bodies with harmful algal
blooms can generate aerosolized toxins. The aerosols can contain diverse toxins from
different algal groups depending on the given bloom causative agent [19,20,327].

Most research concerned the toxic aerosols obtained from the red tides of the ma-
rine dinoflagellate Karenia brevis with the effects of its Pbtxs being the most studied phe-
nomenon due to high deposition efficiency of its small-sized particles (6–10 µm) [342–348].
Marine aerosols can also contain PLTXs, produced by dinoflagellates from the genus
Ostreopsis [19,349,350] (Table 1).

Inhalation of aerosolized phycotoxins from freshwaters was believed to be spatially
associated with unusual high incidences of sporadic ALS in a population with chronic
exposure to frequent lake blooms (mostly of Anabaena and Microcystis) with BMAA (and
high concentrations of MCs in lake sediments) and with the increased respiratory intox-
ications during Microcystis aeruginosa blooms with MC [351–355]. Moreover, during the
experiments with animals (mice), the inhaled phycotoxins (MC-LR and ATX) were more
effective in lower doses than the ingested toxins, and nasally inhaled MCs were ten times
more available than the ingested ones [356–358].

Adverse effects of inhalation of dusts, containing particles of soil algae with neurotox-
ins (BMAA in particular) and possible relation with ALS were reported in the discussed
above study of hot desert crusts in Qatar [305]. Airborne cyanoprokaryotes possess also
endotoxins LPS, suspected to cause health problems [19].

Airborne algae are permanent constituents not only of outdoor but also of indoor
environments [129,327,359]. Although they were largely ignored group in indoor envi-
ronments, the results from the few conducted studies demonstrated the cyanoprokaryote
dominance with representatives of the toxigenic genera Anabaena, Nostoc, Phormidium
and Schizothrix [328,359–362]. Inside buildings human movement seemed to be impor-
tant dispersal vector for airborne algae and this has to be considered in future targeted
studies important because of the concern from “sick building syndrome” declared by
WHO [328,363].
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Other possible deterioration effects of toxic airborne algae are related with their
transport and subsequent possible deposition in water bodies, where they can cause
harmful blooms [327,364].

According to data summarized above, it becomes clear that toxigenic airborne algae
have origin in other ecological groups and their toxicity is hardly related with the newly
occupied atmospheric environment.

5.3. Extremophilic Algae and their Phycotoxins
5.3.1. Toxigenic Cave Algae

In the natural cave ecosystems, characterized by scarcity of light, water and nutrients
but almost constant microclimate conditions, algae are the main photosynthetic compo-
nents [4]. The estimations of their total numbers strongly varied (627 [365] and 340 [366]),
but the most diverse [up to 60%] and commonly the most abundant cave inhabitants are the
cyanoprokaryotes, followed by green algae and diatoms (e.g., [367–370]). The phycoflora of
the artificially illuminated caves (show caves), named lamp flora, although comprising dif-
ferent species, generally exhibit a similar pattern of biodiversity with highest contribution
of cyanoprokaryotes, green algae and diatoms [371,372].

According to the revealed general species composition, it is possible to suppose that
at least some of the cave cyanoprokaryotes may be toxic since almost all aeroterrestrial
and extremophilic toxigenic genera have been found there (Table 1). However, to our best
knowledge, there are no studies on toxic algae neither in natural nor in the show caves. The
only exceptions are the BMAA-producing Scytonema PCC 7110 from a limestone Bermuda
cave [126] and the epilithic MC-LY containing strain of Scytonema drilosiphon, isolated from
a cave, situated at 250 m a.s.l. in Spain [50].

5.3.2. Toxigenic Acidophilic and Toxigenic Peat-Bog Algae

Organisms with optimal growth below pH 3 are classified as acidophiles [13]. They
occupy environments such as the outflows of mine drainages, solfataric areas which give off
sulphureous gases and steams, fumaroles, acidic hot springs, coal spoils and bioreactors [13].
In these extreme habitats, the biodiversity of algae is low, and the best-known are the obligate
acidophilic and moderate thermophilic unicellular red algae from order Cyanidiales, which
can thrive pH between 0 and 4 and temperatures up to 57 ◦C [13,373]. Broader pH range
can be tolerated by the green Chlamydomonas acidophila (pH 3.8) and the golden flagellate
Ochromonas sp. LG strain [374]. From all these acidophiles, only Ochromonas from aquatic
habitats have been documented as a potential toxin producer (Table 1).

The most common acidic aquatic habitats occupied by algae are the peat bogs and
mires. Often, they include springs of streams and rivers and therefore provide important
drinking water sources. The peat (turf) itself is traditionally used as an energy source
but can be applied in gardening, agriculture (incl. greenhouse horticulture), can be used
in filter systems and for medical purposes and balneotherapy as well [375]. Therefore,
the importance of studies on hazardous algae in peatlands is increasingly important. In
classical acidic peat bogs, with pH below 5, cyanoprokaryote genera such as Aphanothece,
Chroococcus, Hapalosiphon, Merismopedia, Nostoc and Tolypothrix are commonly known [4].
Despite the presence of these potentially toxigenic genera, there are very few targeted
studies on harmful algae and their toxins in acidic peat bogs. The risk from possible
massive proliferation of Microcystis (M. aeruginosa) and the eventual occurrence of potent
toxic cyanobacteria blooms was demonstrated in a study of a typical acidic peat bog of
in Algeria [376]. Abundant development of Microcystis (M. aeruginosa, M. wesenbergii,
M. grevillea) was detected in the peculiar mountain swamp Choklyovo Blato, long used as
a sanitary peatery in Bulgaria [377]. In an epipelic strain of Pseudanabaena frigida, isolated
from peat bog situated at 1600 m a.s.l. in Spain, MC-LR was proved [50].
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5.3.3. Toxigenic Algae of Hypersaline Environments

Hypersaline environments are widely distributed on our planet, and their inhabi-
tants have to cope not only with high ionic composition but also with alkaline pH values,
low oxygen availability, high or low temperatures, presence of heavy metals or other
toxic compounds [378]. Based on their ionic composition and origin, hypersaline lakes
can be classified either as thalassohaline or athallasohaline [378]. Thalassohaline water-
bodies originate from evaporation of sea water and such are most neutral salt lakes and
saltwork/salterns, while the alkaline soda lakes are of land origin and are atahalasso-
haline. In all hypersaline environments, cyanoprokaryotes are among the most diverse
inhabitants [31,379].

Toxigenic Halophilic Algae

Coastal salterns are man-made ponds constructed by man to produce salt through
evaporation of sea water, which include a gradient of salinities from the sea water (35 g L−1

Nacl) to halite saturation (>300 g L−1) and are frequently experiencing fluctuations in
salinity [7,319,380]. Much of the understanding of halophilic organisms comes from studies
of these waterbodies. Considering the fact that they are the providers of salt to our table,
the studies on their algal flora with potential presence of harmful species and relevant
phycotoxin production is of significant importance. However, very few data on the topic
are available.

Generally, cyanoprokaryotes are well developed in saltworks and salt lakes, occurring
both in plankton and benthic mats at concentrations up to 200–250 g L−1 [7,319,380].
They are represented by both unicellular coccal algae like Aphanothece halophila and non-
heterocytous filamentous Coleofasciculus chthonoplastes (Syn. Microcoleus chtonoplastes),
Halospirulina tapeticola and Phormidium sp. [319,380]. Here we have to recall that Aphanothece
halophila was found to produce nostocyclamide [142], which long was attributed solely
to Nostoc [59].

Salterns exist also on the Bulgarian coast of the unique Black Sea, where the gradient
starts from much lower point—16–18 g L−1 but reaches the same high concentrations
of ca. 280 g L−1 [381]. During the last century, biodiversity of five different salt-work
complexes showed similar pattern of cyanoprokaryote dominance with widely spread
genera Coleofasciculus and Lyngbya, followed by Spirulina and Phormidium [382], all of
which are known as toxigenic (Table 1). In some of these salterns the green macrophytic
algae from Ulva and Cladophora reached high abundance [381], which is important due to
growing evidence for allelopathic properties of Ulva [383].

Toxigenic Algae of Saline-Alkaline Environments

Saline alkaline environments (lakes and soils) are characterized by high total ion
content (>60 g L−1 total salinity) and high pH > 9.5–11, widely known by soda systems due
to simultaneous action of sodium carbonate and sodium bicarbonate [13]. Saline-alkaline
soils are natural or man-made, formed by intensive irrigation/evaporation cycles, while
most of soda lakes are land by origin (atahalassohaline), and their most diverse inhabitants
are prokaryotes [13]. Cyanoprokaryotes of the genera Arthrospira, Cyanospira, Synechococcus
and Synechocystis are essential in soda lakes [13,384]. In the soda lakes of Rift Valley,
Eastern Africa, series of studies caused by mortality of Lesser Flamingo revealed presence
of cyanotoxins (MCs, ATXs) in samples from lake water and benthic algal mats, in the
isolated algal cultures and in stomachs, livers and fecal pellets of dead flamingoes as well,
allowing to suppose that they were possibly related with their die-off episodes [385–391].
The suspected causative agents were Limnospira fusiformis (Syn. Arthrospira fusiformis) (the
main food resource of the flamingoes) and Anabaena and Anabaenopsis from lakes waters,
as well as Oscillatoriales and Synechococcus from the nearby situated hot springs, which
drain directly in the lakes [386].

In the peculiar magnesium sulfate dominated Hot Lake, Washington, with pH range
7–8.5 and salinity gradient from 100 g L−1 salts on the water surface and 400 g L−1 salts on
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the bottom, the streptophyte macrophytic alga Chara was attached to the bottom, while in
the water column below 1 m cyanoprokaryotes from the genera Anacystis, Gomphosphaeria,
Oscillatoria and Plectonema developed [13,392]. Considering that Anacystis currently is
recognized as genus separate from Microcystis [393], we have to note that all these genera
are potentially toxigenic (Table 1).

The comprehensive studies of cyanoprokaryotes of the shallow alkali marshes (conduc-
tivity range 500–3000 µS cm−1) of Belize in Caribbean region revealed rich phycoflora in the
phytoplankton and metaphyton and abundant development of benthic mats, dominated
by cyanoprokaryotes [394–398]. The biodiversity of these marshes, as well as the algal
flora of similar habitats in Florida Everglades and Islas dos Aves near Venezuelan coast,
was locally characterized by endemic morpho- and ecospecies with unusual high species
richness of cyanoprokaryotes from all main types (coccal, filamentous non-heterocytous
and filamentous heterocytous) [397,399,400]. Although the newly described species have
not been investigated for toxicity, some of them belong to toxin-producing genera (e.g.,
Anabaena, Gloeotrichia, Nodularia, Tolypothrix), and therefore, it could be expected that future
studies will reveal presence of phycotoxins in these specific habitats.

An interesting report on cyanotoxins comes from investigation of water samples
collected from several saline-alkaline lakes located at Centenário farm in the southern
part of the sub-region Nhecolândia Pantanal wetland area in the north of the municipality
of Aquidauana, Mato Grosso do Sul State, Brazil [193]. From a single benthic strain
Nostoc sp. CENA543, isolated from a small, shallow lake in the region, a novel 6-membered
family of linear tetrapeptides, pseudospumigins (Psp) was discovered [193]. Psp (Psp
A-F) are new protease inhibitors close to other linear tetrapeptides, known from Nodularia
spumigena, such as spumigins and Aers but are less potent, and the Psp gene cluster is
more similar to the spumigin biosynthetic gene cluster than the Aer gene cluster [193].
The same Nostoc strain was found to be the first free-living NOD-producer from the
genus Nostoc. Moreover, it produced NOD (desmethylNOD-R) at comparable levels as
the toxic, bloom-forming, Nodularia spumigena with exceptionally high amounts of NOD-R.
Therefore, studied wetlands were proved as a new environment in which the hepatotoxic
NOD could be an adverse factor for human and domestic animal health. Of note, in
ambient aquatic environments, besides the typical brackish waters, NODs were found also
in freshwater lakes with Nodularia spumigena [32,401] and in a freshwater spring in tropical
Australia (pH = 8.3, salinity 667 mg L−1), where the producer was the newly described
cyanoprokaryote Iningainema pulvinus [402].

5.4. Toxigenic Radioresistant Algae

Ultraviolet (UV) and ionizing radiation (IR) are among the major threats to the Earth
organisms. Few of them are adapted to live in higher than annual average of 2mGy og
ionizing radiation, developing variety of preventing and repairing mechanism, includ-
ing polyploidy [13]. The unicellular coccal cyanoprokaryote Synechocystis sp PCC68034
is able to accumulate large concentrations of Mn2+ [13]. The IR-resistance in the coccal
cyanoprokaryote Chroococcidiopsis from desert and hypersaline environments possibly
reflects its ability a to survive prolonged desiccation due to its thick protective mucilagi-
nous (extracellular polysaccharide) envelopes and intracellular trehalose accumulation,
as well as through efficient repair of the DNA damage that accumulates during dehydra-
tion [283,285,286]. There are no targeted toxin investigations on these radioresistant strains,
but both genera have been reported as cyanotoxin producers [73,126] (Table 1).

5.5. Toxigenic Algae of Thermal Springs

Hot springs are well-isolated habitats which occur in clusters in globally distant
regions and demonstrate clear patterns of phylogeny and distribution consistent with
their geographical distribution [403,404]. Algae in these peculiar, “fascinating steady-state
habitats” [4] (p. 203), are exposed to high constant temperatures but quite variable diurnal
and seasonal insolation, with very limited grazing and insignificant seasonal differences
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and thrive mainly in structured benthic mats [4,405–407]. Cyanoprokaryotes, green algae
and diatoms are the main contributors to the biodiversity in the vulnerable communities of
the thermal springs [4,408,409]. No toxic green algae have been reported so far, but one
of the classical inhabitants of thermal springs is the diatom Amphora coffeaformis, which
currently is regarded as a DA-producer (Table 1) [410,411]. However, no data are available
on the physical or chemical parameters triggering the synthesis of DA in this species [411].

Cyanoprokaryotes as primary producers comprise important part of the biodiversity
and biomass of hot springs (e.g., [404–406,412–414]). Their polysaccharides and filaments
were thought to present the backbone of the algal mats [407]. Mastigocladus is one of the
most widespread genera in the thermal habitats, and therefore, it is worth to mention that
it is phylogenetically close to the genus Fischerella [415], in which the cytotoxic antifungal
fisherindole L [416,417], ambiguine isonitriles A–F, hapalindoles (G, H, L), fungicidal
hapalindoletype alkaloids, ambigol A, B and indole alkaloid tjipanazole D, fischerellin A
and MCs (-LR, -LA, -LF, -FR and demethyl-MC-LR) with their synthase genes (mcyA-J) were
found [77,418,419]. In particular, in Fischerella strain PCC 7521, isolated from Yellowstone
hot spring, free BMAA and protein BMAA were found [126]. Recent study suggested
that hapalindoles should be added to the growing number of neurotoxins such as SXTs
and ATXs [420]. Years ago, it was stressed that the presence of cyanoprokaryotic mats in
hot springs may present health risk to humans through skin contact or due to accidental
ingestion of contaminated water during recreational or bathing activities [421].

The first and best-known report on phycotoxins in thermal springs concerned NOD
and its specific variant, a cyclic pentapeptide, [L-Homoarginine2] NOD, or [L-Har2],
detected in the strain Nodularia PC7804 isolated from a thermal spring in France [422].
The parallel work on the same strain led to the simultaneous description of the same
compound [423]. This important strain was firstly named as N. harveyana; later, it was
revised as N. sphaerocarpa, but then, it was retained as strain PC7804 which is genetically
distinct from both abovementioned species [424].

Reports on eye and skin irritations in people who used the Gazan hot springs of
volcano origin in Saudi Arabia, where cyanoprokaryote mats developed, led to their
investigation [425]. In a targeted study of two of these springs (Beni Malik, 48 ◦C and
Al Bozah, 52 ◦C), 16 species were identified, but according to ELISA and HPLC analysis,
only two of them, Oscillatoria limosa and Synechococcus lividus, were able to produce MCs
(Table 1), and the values obtained exceeded the WHO limit for recreational waters [425]. In
the same study, LPS were revealed for first time in hot springs by LAL assays with highest
activity in the cultures of Calothrix thermalis, Fischerella thermalis, Microcoleus vaginatus,
Schizothrix calcicola and Synechococcus lividus [425].

One of the best-known studies on harmful thermal algae was conducted in the
hot springs on the shore of Lake Bogoria (Kenya) in relation with periodical mass mor-
tality of Lesser Flamingos, which threatened their populations in the African Rift Val-
ley [385,386,390,426]. This was the first report on the occurrence of cyanotoxins—MCs
-LR, -RR, -LF and -YR and ATX in hot springs in thermal algal mats dominated by four
cyanoprokaryotes, Oscillatoria willei, Phormidium terebriformis, Spirulina subsalsa and Syne-
chococcus bigranulatus. Cyanotoxins in diverse concentrations were found in the tissue and
stomach content of dead flamingos [385,386,390]. The presence of abovementioned toxins
but in significantly (about 20-fold) lower concentrations in the same springs was detected
four years later [386]. The same four species dominated in the hot springs of Manyara (Tan-
zania) where only MCs (0.1 µg L−1) were detected [386]. MCs in low amounts (0.2 µg L−1)
were found in the samples the Hell’s Gate hot springs (Tanzania), where Pseudanabaena
galeata dominated [386]. In Natron hot springs (Tanzania), in which Cyanobacterium miner-
vae dominated in the shoreline mats, neither MCs nor ATX was detectable [386]. In Magadi
hot springs (Kenya), where Phormidium sp. dominated, only MC (n.d. −0.5 µg L−1) in
low concentrations were detected in the samples, but MC-LR in toxicologically relevant
concentrations (0.4–0.8 µg g−1 FW) was found in the endemic fish Oreochromis grahami,
which feed on cyanoprokaryotes [386].
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Molecular-genetic screening for toxigenic genes in epilithic samples from three hot
springs (Caldeira das Furnas, Furnas Hot Spring and Caldeira Velha) on S. Miquel Island
(Azores, Portugal) revealed presence of genes for MC (mcyA and mcyE) and CYN produc-
tion (pks and ps), but the presence of toxins was not investigated [427]. Only mcyA was
detected in Caldeira das Furnas spring (pH = 8.7 and 54 ◦C), and all searched MC and CYN
genes were found in Furnas Hot Spring (pH = 6.4 and 40 ◦C) [427] while no cyanotoxin
synthase genes were registered in Caldeira Velha (pH = 4.6 and 30 ◦C); according to 16S
rDNA sequences, six sequences similar to unidentified uncultured strains from hot vents
in Mexico and Hawai were detected, and three more genera were reported: Microcoleus,
Pseudanabaena, and Gloeothece [427]. The comparison of mcy and pks findings with 16S
species identification showed presence of Microcoleus and Pseudanabaena in samples, from
which MC and CYN synthase genes were found [427].

The total number of algae of thermal springs of Bulgaria, known for its geothermal
activity and diversity of hot springs from different facies, contained 241 taxa (110 of which
from Cyanoprokaryota), found in Bulgarian 35 thermal spring systems during a period of
120 years [414,428]. Considering the increasing role of thermal waters in the daily life of
modern Bulgarian society, during a current investigation of one of the complexes, used for
balneotherapy, a comparison of the species list with current data on cyanotoxin producers
revealed that 40 species (or 74% of all algae found) could be outlined as potential producers
(separately or in combination) of MCs, NODs, ATX, HTX and SXTs [428].

The use of mineral thermal spring hot waters for recreation and curation is a traditional
activity since Thracian and Roman times. Due to their great prophylactic and therapeutic
potential, nowadays, thermal springs gain increasing popularity as “sanitas per aquam”
(SPA) resorts. The financial value of hot springs long has been evaluated by the ability to
attract tourists or to generate thermal energy [406], but currently, the biotechnological inter-
est in their inhabitants is increasing together with the increasing safety requirements [24].
The studies cited above showed that despite inimical for many organisms, the hot springs
can be suitable environment for the growth of toxigenic species and that in some cases toxin
levels can exceed the health limits, which inevitably demonstrated the need for screening
and monitoring of these extreme habitats.

5.6. Toxigenic Algae of Cold Habitats

Traditionally, the cryosphere is defined as consisting of all parts of the globe in which
water occurs in solid phase (ice or snow). In total, about 85% of our Planet (including
oceans) has a permanent temperature below 5 ◦C, ice covers about 13% of the Earth surface
and snow about 35% of the land surface [429]. Nowadays, it is widely accepted that
cryoenvironments exist primarily in polar and high alpine regions and include versatile
habitats like, snow, glaciers, ice caps and sea ice, and permafrost, but also cold lakes and
ponds with permanent ice cover, as well as peculiar subzero saline springs, warmed by
geothermal energy and deep ocean zones [7,13]. In contrast to the prior view that they
are almost sterile, these places are actively inhabited by organisms named cryophiles
(or psychrophiles) and contribute significantly to global organic carbon [4,13,430]. Many
algae are distributed across a variety of cold environments and have to thrive and cope
not only with low temperatures but also with the strong insolation perturbated with UV,
osmotic stress, dryness from the wind, as well as with a poverty of nutrients and liquid
water [13,24,104,431,432].

There are pronounced differences in the diversity and biomass of algae in the heteroge-
nous cryoenvironments (i.e., on and in the ice (marine and freshwater), on snow surface
and on, in other substrata like rocks and soils) [13].

More than 100 green algae thrive on snow surfaces and some of them in suitable
locations can proliferate and cause snow pigmentation [13]. Commonly, green algae from
the division Chlorophyta, and particularly Chlamydomonas/Chloromonas/Microglena or
Raphidonema, dominate and cause bloody-red or green snow, but also green streptophytes
like Mesotaenium berggrenii and Ancylonema nordenskjoldii can develop in visible grey or
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purple layers [13,423]. Rarer, yellow snow was reported as formed by mass development
of the golden ochrophyte algae from the genus Ochromonas [13,423]. Up-to-now, the last
one is the only recorded potential toxin-producing genus on the snow surface (Table 1).

In contrast to their sparse distribution on snow, ochrophytes (chromophytes) and
particularly diatoms from genera Aulacoseira, Fragillariopsis and Navicula often domi-
nate in freshwater and sea ice habitats, while cyanoprokaryotes (mainly filamentous)
dominate in algal mats in high alpine or polar regions [13,315]. Peculiar living layers
of cyanoprokaryotes, stromatolites, were found in the permanently ice-covered alka-
line Antarctic Lake Untersee (pH 9.8–12.1) in the interior of the Gruber Mountains of
central Queen Maud Land [433]. Domination of cyanoprokaryotes was proved also
for the bottom of very specific psychrophilic habitats, distributed globally in glacier
environments-cryoconites [13,434–438]. They are ice holes in glacial ablations with rela-
tively low albedo due to accumulated dark particles, in which freezing and thaw phases are
altering [13,437,438]. Although biological information on these transitional freshwater-ice
habitats is still scarce, it has been supposed that generally cryoconites contained communi-
ties similar to that from lakes in the nearest valleys [104]. No specific research on toxins
was done, but it has to be noted that most of the cyanoprokaryote genera identified in cry-
oenvironments have already been reported as toxigenic in freshwater habitats: Geitlerinema,
Leptolyngbya, Microcoleus, Nostoc and Phormidium (Table 1).

In the harsh conditions of polar regions, much of the productivity comes from biocrusts
dominated by filamentous cyanoprokaryotes from genera Anabaena, Leptolyngbya, Lyngbya,
Nostoc, Nodularia, Oscillatoria and Phormidium, as it was revealed by studies in aquatic
habitats (freshwater or brackish to saline meltwater ponds) of Antarctic [105,313,439–441].
These genera are well-known as cyanotoxin producers in different freshwaters (Table 1).
Therefore, the finding of MCs (MC-LR) in benthic mats collected from Antarctic meltwater
ponds [105,313,316,441,442] was expected. Other MCs (MC-FR, and MC-RR with some
glycine modifications) were detected in ponds and lakes biofilms from distant geographic
locations of Antarctic [105,440,441], and Oscillatoria, Nostoc and Phormidium were supposed
as potential MC-producers [208,313]. Currently, MCs and BMAA were detected in pre-
served 100-year-old mats collected from Ross Island and McMurdo Ice Shelf during the
legendary Captain R.F. Scott’s Discovery Expedition [443] and a new cyanoprokaryotic
MC-producer, containing mcyE gene, Anagnostidinema pseudacutissimum, was discovered in
a pond mat collected 35 years ago from Cape Crozier, Ross Island [444]. These findings
confirm that MCs, BMAA and its isomers AEG and DAB are preserved under dry herbar-
ium conditions [443] in accordance with the earlier reports on detectable MCs in herbarium
specimens collected 60–170 years ago from temperate and tropical environments [445].
Considering all these data and also the results on aeroterrestrial algae from polar deserts,
discussed in the beginning of the review, we agree with the opinion that the occurrence
of cyanotoxins can exert a long-term impact on organisms co-existing in biocrust com-
munities and can have far-reaching consequences for the entire polar ecosystem [315].
Moreover, the findings of cyanotoxins in almost all habitats of polar regions (with the
fastest rates of recent climate warming) are of special importance since recent laboratory
studies suggested that MCs are not only present in these ecosystems but also could increase
with prolonged elevated water temperatures due to either preferential growth of toxigenic
species or increased MC biosynthes [442].

6. Discussion and Conclusions

Although yet many aspects of knowledge on toxic aeroterrestrial, airborne and other
extremophilic algae and their toxins remain obscure, an increasing number of surveys have
addressed the topic. More evidence has been accumulated on the frequency of occurrence
and concentrations at which phycotoxins are found, indicating the strong prevalence of the
first oxygen-producing phototrophs on the Earth, cyanoprokaryotes, as toxigenic species
and of cyanotoxins in all discussed ecological groups and versatile habitats (except for
snow and ice). The exceptional taxonomic diversity of toxigenic species among airborne
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algae is caused by their origin in other ecological groups and cannot be related with
the atmospheric environment. It has to be noted that similarly to the cases of ambient
aquatic habitats, in the aeroterrestrial and other extreme habitats, just a low number of
genera and species from the general vast biodiversity of the globe have been proved as
toxigenic (Figure 1). According to the collected data in this review, only 47 genera of
cyanoprokaryotes, five of dinoflagellates, and one from each of the groups of green algae,
golden algae and diatoms can be related with phycotoxin and TOC production in different
discussed habitats (Table 1). Among them, Nostoc stands out with the highest number
of isolated and identified toxic compounds and seems to be widespread in almost all
environments. Although some speculations can be made due to the great potential of
this genus to occupy different habitats in both free-living and symbiotic stage, we shall
not discuss it here, considering that the low number of studies on the other genera may
be the simplest explanation for the case. A good example is the increasing number of
toxic compounds found and clarified by mode of action in the genus Fischerella, spread
in both ambient and extreme habitats, which started to attract the attention of different
scientists since the early 90s of 20th century with increasing number of publications. A
similar statement can be made, and the same explanation can be supposed, for the highest
amount of toxins and toxigenic genera detected in all aeroterrestrial habitats (and in polar
regions and deserts specifically). In contrast, evidence for toxin occurrence in caves is
extremely rare and is practically lacking for snow and ice surfaces.
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The analyzed ecological groups of aeroterrestrial and other extremophilic algae are
specific per se and offer some specific compounds or their highly unusual types (nostosins,
Nd A, Aer-865, Ap NZ857, MVs N3-N9, muscoride A, etc.) and even when “standard”
phycotoxins have been also detected, often they occurred in specific structural variants with
more congeners identified, which can be coupled with the harsh conditions, in which these
organisms have to thrive (e.g., extremely low or high temperatures, strong thermal fluctua-
tions, extreme aridity, high levels of solar and UV radiation). Interestingly, species from
different ecological groups and with different mode of life were found to produce similar
toxic compounds. A good example is nostocyclamide, found in aeroterrestrial/freshwater
Nostoc and planktonic halotolerant Aphanothece halophila. Moreover, it was demonstrated
that many of the studied strains produce more than one toxin type. However, their share



Toxins 2021, 13, 322 29 of 45

and the supposed relations between diversity of toxins and environmental factors have to
be clarified. On the other hand, analysis of collected data revealed the great potential of
aeroterrestrial, airborne and other extremophilic algae to be an interesting source of novel
compounds, and of toxic compounds with unique structures and wide spectrum of bio-
logical activities indicate their potential significant application in biotechnology, medicine
and agriculture. Despite the meager data, the increasing number of findings of toxigenic
algae and phycotoxins in environments different from the ambient aquatic habitats with
increasing significance of inhalation and skin contacts as exposure routes and tracing of
their accumulation in the food chains shows the clear need for studies geared at addressing
this topic. In this way, the field is wide opened for many scientific disciplines. The fact
that toxigenic algae and phycotoxins are widespread in a variety of habitats indicates how
important is their screening and can serve as alarm for the need to intensify the studies,
and the metabolomic studies in particular, at global scale in order to prevent many sani-
tary and environmental problems. Some studies showed the potential of genome-based
discovery (“genome mining”) of natural products and the more intensive use of culture
collections in such types of studies together with pure ecological and physiological ones has
to be expected.

To conclude, despite the increasing interest to toxins of aeroterrestrial and other
extremophilic algae, some aspects yet are either unexplored or underexplored, which
allows us to outline the gaps in knowledge and to propose some ideas for future research.
In the first place, there is a striking need of correct identification of toxin-producers based on
polyphasic approach and conducting of simultaneous taxonomic and biochemical studies.
This need is evident from the analysis provided above, in which most of the producers
have not been accurately identified to species level. Another hinderance for analyses
and future comparisons comes from insufficiently described sampling sites, and in this
regard, we would like this review to serve as a plea for providing more detailed data on
the localities or habitats. Second, even the scanty data on toxins and their producers in
extreme habitats inevitably showed their presence in all general types of extremophile
habitats. This shows the need for broad screening of phycotoxins in all these environments
which will allow an overall view on their distribution and will help to outline the potential
risks from recreational and curative activities, as well as from the consumed food and
food additives. Parallel collection of data on coexisting or disparate toxic and non-toxic
strains from the same species may help to elucidate their advantages or disadvantages in
attempts to discover the biological role of phycotoxins. Third, comparison of the spread of
different phycotoxins in such contrasting habitats like water and air may help to clarify the
functional role of the toxic compounds and their evolutionary advantages. It is to recall that
diverse taxa from the same taxonomic group can produce similar phycotoxins (Table 1),
but also the same phycotoxins can occur in different evolutionary lineages, which is of
phylogenetical interest. For example, similarity exists between toxins in eukaryotic red
algae and diatoms (e.g., DA), but also some phycotoxins from prokaryotic and eukaryotic
algae are the same and even if not completely identical, they have similar targets and modes
of action (e.g., SXTs, CRs, Nd A and neurymenolide A). Fourth, considering the problems
with time-consuming algal cultivation and difficulties of collection and transportation from
the extreme habitats, we have to stress that every improvement in this field will be more
than welcome. Fifth, the meager data on importance of symbiotic relations for production
of phycotoxins for creation of resistance or tolerance against them allow to suppose this
topic as significant in future studies. Sixth, the discovery of novel compounds, or at
least novel variants of known biomolecules, has a great potential for medicine, pharmacy,
cosmetics, bioremediation, agriculture and many other fields related with biotechnology.
In this respect, the potential of aeroterrestrial and extremophilic algae is really untapped. It
is not necessary to repeat in detail all aspects of the studies needed for revealing the driving
forces of phycotoxin production and their importance in regard of increased eutrophication
and global warming and associated health risks from the detrimental effects of harmful
algae. However, we would like to stress that even for some important toxins and their
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producers, the driving forces are almost not clarified. We realize that this review more
provokes questions than provides answers, and therefore, we believe that it will inspire an
“extremophile” interest of more researchers in the algae from all non-ordinary habitats.
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167. Fidor, A.; Grabski, M.; Gawor, J.; Gromadka, R.; Węgrzyn, G.; Mazur-Marzec, H. Nostoc edaphicum CCNP1411 from the Baltic
Sea—a new producer of nostocyclopeptides. Mar. Drugs 2020, 18, 442. [CrossRef] [PubMed]

168. Golakoti, T.; Yoshida, W.Y.; Chaganty, S.; Moore, R.E. Isolation and structures of nostopeptolides A1, A2 and A3 from the
cyanobacterium Nostoc sp. GSV 224. Tetrahedron 2000, 56, 9093–9102. [CrossRef]

169. Hoffmann, D.; Hevel, J.M.; Moore, R.E.; Moore, B.S. Sequence analysis and biochemical characterization of the nostopeptolide A
biosynthetic gene cluster from Nostoc sp. GSV 224. Gene 2003, 311, 171–180. [CrossRef]

170. Boyd, M.R.; Gustafson, K.R.; McMahon, J.B.; Shoemaker, R.H.; O’keefe, B.R.; Mori, T.; Gulakowski, R.J.; Wu, L.; Rivera, M.I.;
Laurencot, C.M.; et al. Discovery of Cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral
surface envelope glycoprotein gp120: Potential applications to microbicide development. Antimicrob. Agents Chemother. 1997, 41,
1521–1530. [CrossRef]

171. Dey, B.; Lerner, D.L.; Lusso, P.; Boyd, M.R.; Elder, J.H.; Berger, E.A. Multiple antiviral activities of cyanovirin-n: Blocking of
human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses.
J. Virol. 2000, 74, 4562–4569. [CrossRef] [PubMed]

172. Botos, I.; O’Keefe, B.R.; Shenoy, S.R.; Cartner, L.K.; Ratner, D.M.; Seeberger, P.H.; Boyd, M.R.; Wlodawer, A. Structures of the complexes
of a potent anti-hiv protein Cyanovirin-N and high mannose oligosaccharides. J. Biol. Chem. 2002, 277, 34336–34342. [CrossRef]

173. Zappe, H.; Snell, M.E.; Bossard, M.J. PEGylation of cyanovirin-N, an entry inhibitor of HIV. Adv. Drug Deliv. Rev. 2008, 60, 79–87.
[CrossRef] [PubMed]

174. Liu, L.; Jokela, J.; Wahlsten, M.; Nowruzi, B.; Permi, P.; Zhang, Y.Z.; Xhaard, H.; Fewer, D.P.; Sivonen, K. Nostosins, trypsin in-
hibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. J. Nat. Prod. 2014, 77, 1784–1790. [CrossRef] [PubMed]

175. Wang, X.; Feng, J.; Xu, Z.; Ye, T.; Meng, Y.; Zhang, Z. Total synthesis and stereochemical assignment of Nostosin, B. Mar. Drugs
2017, 15, 58. [CrossRef]
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