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Abstract: Resistance against infection by the fungus Aspergillus flavus Link in commercial maize
(Zea mays L.) is the topic of many studies, but few studies have investigated the effects of A. flavus
infection on gene expression levels in ear kernels. A crucial component of gene expression profiling
by RT-qPCR is having a reliable set of reference genes that show relatively constant expression across
the treatments and phenotypes under study. Currently, however, there is no published information on
reference genes suitable for measuring changes in kernel gene expression levels after infection with
A. flavus. Thus, in this study, six candidate reference genes (ACT1, β-Tub2, eIF4A2, TATA, EFIα, and
GAPDH) were evaluated and ranked according to their expression stability. The genes were amplified
from first-strand cDNA samples synthesized from kernels of two susceptible and two resistant maize
lines that were either inoculated with A. flavus or water or not inoculated. Three software packages
were used to calculate and rank the stability of expression for these genesgeNorm, NormFinder, and
BestKeeper. The analysis revealed that the most stable genes to normalize expression levels from
maize kernels responding to A. flavus inoculation and wounding were ACT1, EFIα, and eIF4A2.

Keywords: candidate gene; gene expression; aflatoxin

Key Contribution: This work delivers a set of reliable and validated reference genes that can be used
for gene expression profiling of maize kernels during an outbreak of A. flavus.

1. Introduction

Many commercial maize (Zea mays L.) varieties are highly susceptible to fungal
pathogens, including Aspergillus flavus Link. This fungus produces aflatoxin, the accumula-
tion of which causes critical health and economic problems [1]. Over 200 genes have been
proposed in the current literature as candidates that may help the maize plant suppress the
effects of A. flavus [2] or the production of aflatoxin. However, the role of the majority of
these genes in resistance still needs to be validated. One accurate method to perform such
validation is by verifying gene expression changes following fungal infection via RT-qPCR
(reverse transcription quantitative PCR) [3].

One of the preferred methods to quantify gene expression patterns via RT-qPCR is
the 2−∆∆Cq method proposed by Livak and Schmittgen [4]. This method measures the
relative change in target transcripts between a treated and an untreated control sample,
and it relies heavily on the normalization of the acquired Cq (quantitation cycle) values
of all samples. Without the adjustment of the variation in the reverse-transcription yields
and efficiency of amplification of mRNA, the comparison across different samples is
meaningless [5]. This normalization is usually done using a baseline reference gene,
which is stably expressed across all samples and treatments evaluated in the study. Thus,
the selection of such a reference gene is vital to achieving reliable results, because if the
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reference gene that was chosen is regulated (and changed) by experimental conditions, this
will lead to uninterpretable results [6]. Although the correct selection and use of stably
expressed reference genes are part of the MIQE (minimum information for publication of
qPCR experiments) guidelines of expression studies [7], a surprising number of published
gene expression data using RT-qPCR still rely on the use of a single unvalidated reference
gene [8].

Although studies to select reference genes suitable for RT-qPCR in maize under differ-
ent stress conditions have been published in the literature [9–11], there is no information
on validated reference genes to perform quality gene expression analysis on maize kernels
under fungal attack (particularly A. flavus). This study attempts to fill this gap by evalu-
ating the expression stability of six candidate reference genes in maize kernels, namely,
ACT1, β-Tub2, eIF4A2, TATA, EFIα, and GAPDH. These genes are responsible for basic cell
functions in eukaryotic cells, and, as such, expected to be constitutively expressed. They
were tested for stability of gene expression in maize kernels from two aflatoxin accumu-
lation resistant (Mp313E and Mp719) and two susceptible (Va35 and B73) maize lines in
response to the inoculation of A. flavus spores or double distilled autoclaved water. The
most stable reference genes identified will allow the normalization of genes studied by
RT-qPCR to determine the change in expression following fungal inoculation.

2. Results

Analysis of the melt curve for each reference gene showed the specificity of the
amplification product (Supplementary Figure S1). The efficiencies of amplification of the
selected primers ranged between 92% to 108% (R2), where the TATA gene had the lowest
efficiency, and the EFIα gene had the highest (Table 1). The β-tub2 gene failed to amplify at
the most diluted point of the curve, thus producing a standard curve of only four points
instead of five; all other genes had five (Supplementary Figure S2).

Table 1. Selected candidate reference genes, their Gramene accession number (Gene Acc. No.), primers pair sequences and
characteristics, expected amplicon sizes, and amplification efficiency (E %). Gene abbreviations will be used herein to refer
to each candidate reference gene.

Gene Abbrev. Gene Acc. No. Primer Sequence 5′ → 3′ (Forward/Reverse) n-mer (bp) TM (◦C) Size (bp) E % R2

ACT1 Zm00001d010159
GCCTATCGTATGTGACAATGGCACTGG 27

61.0 188 101 0.999
CCAAGAGAGGCATCCTGACACTGAAGT 27

β-Tub2 Zm00001d010275
AGGGTATCGATCTCTCATCATCTGAACTGAATCC 34

62.4 120 95 0.921
CCATCAGGTTTTCAGGTTTGCCACTCGC 28

EFIα Zm00001d037905
GCGACCACTCCCAAGTATTCCAAGGCC 27

65.4 196 108 0.988
GGTCCAACCCTGCTTGAGGCTCTTGACC 28

eIF4A2 Zm00001d016351
AGAGGAATCGTCCCACTATGCAAGGGC 27

63.4 276 92 0.995
GCCCTGCTAAGTGGAGCTCAGGTTCTA 27

GAPDH Zm00001d035156
TGATGTTTTGATGTCCTGAGGTGC 24

63.0 168 105 0.988
CCCCTGGGGATGCTAAATCTACAACG 26

TATA Zm00001d019598
TGACCTAGGTGCACATGGTATGGCTGG 27

63.4 144 93 0.956
CGTCTGACAAGCCCACAGTTTCGCTG 26

Box plots were created to evaluate the expression profile of the candidate reference
genes, using the raw Cq values across all samples (n = 36) (Figure 1). The most highly
expressed gene, e.g., the one with the lowest Cq, was EFIα (mean Cq = 19.315), and the least
expressed gene was GAPDH (mean Cq = 31.324). By calculating the difference between the
upper (75th) and lower (25th) percentile (∆P), it is possible to determine the stability index,
which is proportional to the spread of the data [12]. Considering only the Cq value spread
(∆P), the stability rank was ACT1 (0.955), β-Tub2 (0.995), eIF4A2 (1.187), TATA (1.277), EFIα
(1.494), and GAPDH (11.152) (Table 2).



Toxins 2021, 13, 386 3 of 11

Toxins 2021, 13, x FOR PEER REVIEW 3 of 11 
 

 

Cq value spread (ΔP), the stability rank was ACT1 (0.955), β-Tub2 (0.995), eIF4A2 (1.187), 
TATA (1.277), EFIα (1.494), and GAPDH (11.152) (Table 2). 

 
Figure 1. The expression profile for candidate reference genes over biological replications and 
treatments (n = 36). The length of the box represents the distance between the 25th (bottom) and 
75th (top) percentiles, and the difference between these is proportional to the stability index. The 
horizontal line in the box interior represents the group median, and the whiskers are extended to 
the group’s minimum (bottom) and maximum (top) values, not including outliers of the data, 
which are represented as white circles. 

Table 2. Quantification cycle (Cq) details for the candidate reference genes over biological 
replications and treatments. Genes are organized in the table by the most stable (top) to least 
stable according to the stability index (ΔP = 75th Percentile – 25th Percentile) (bottom). 

 
25th  

Percentile 
75th  

Percentile Mean Median Std. Dev. % CV ΔP 

ACT1 21.165 22.120 21.792 21.603 0.762 3.526 0.955 
β-Tub2 29.515 30.510 30.062 29.888 0.910 3.045 0.995 
eIF4A2 21.917 23.104 22.669 22.432 1.383 6.165 1.187 
TATA 29.405 30.682 29.884 29.759 0.831 2.793 1.277 
EFIα 18.398 19.892 19.316 18.946 1.336 7.051 1.494 

GAPDH 25.949 37.101 31.324 28.656 5.674 19.801 11.152 

To calculate the stability of reference genes using geNorm [13], the Cq raw data must 
first be converted to relative expression levels (ΔCq). This normalized data is then used to 
calculate the expression stability value (M), which has an ideal threshold of 1.5. The 
stability of the genes is inversely proportional to M, thus the lower this value, the more 
stable the gene. GAPDH was above the M threshold value, and the three most stable genes 
were ACT1, EFIα, and eIF4A2 (Figure 2A). 

Another feature of the geNorm algorithm is to calculate the optimal number of 
reference genes needed for accurate normalization. Following this, pairwise variation 
values (V) are calculated, and values below 0.15 (Vn/Vn+1 < 0.15) indicate that the “N+1” 
number of genes is not necessary, since an addition will not significantly improve the 
accuracy of normalization [13]. The geNorm manual recommends the removal of the least 
stable genes only up to the point that the optimal number of genes remain so that the 
algorithm can calculate an accurate M value using the data from the most stable genes 
only. The software performs this step progressively, eliminating one gene at a time until 

ACT1 eIF4A2 EIFα GAPDH β-Tub2 TATA

15
20

25
30

35
40

Q
ua

nt
ita

tiv
e 

C
yc

le
 (C

q)

Figure 1. The expression profile for candidate reference genes over biological replications and
treatments (n = 36). The length of the box represents the distance between the 25th (bottom) and
75th (top) percentiles, and the difference between these is proportional to the stability index. The
horizontal line in the box interior represents the group median, and the whiskers are extended to the
group’s minimum (bottom) and maximum (top) values, not including outliers of the data, which are
represented as white circles.

Table 2. Quantification cycle (Cq) details for the candidate reference genes over biological replications
and treatments. Genes are organized in the table by the most stable (top) to least stable according to
the stability index (∆P = 75th Percentile – 25th Percentile) (bottom).

25th
Percentile

75th
Percentile Mean Median Std. Dev. % CV ∆P

ACT1 21.165 22.120 21.792 21.603 0.762 3.526 0.955

β-Tub2 29.515 30.510 30.062 29.888 0.910 3.045 0.995

eIF4A2 21.917 23.104 22.669 22.432 1.383 6.165 1.187

TATA 29.405 30.682 29.884 29.759 0.831 2.793 1.277

EFIα 18.398 19.892 19.316 18.946 1.336 7.051 1.494

GAPDH 25.949 37.101 31.324 28.656 5.674 19.801 11.152

To calculate the stability of reference genes using geNorm [13], the Cq raw data must
first be converted to relative expression levels (∆Cq). This normalized data is then used
to calculate the expression stability value (M), which has an ideal threshold of 1.5. The
stability of the genes is inversely proportional to M, thus the lower this value, the more
stable the gene. GAPDH was above the M threshold value, and the three most stable genes
were ACT1, EFIα, and eIF4A2 (Figure 2A).
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Figure 2. (A) Mean of stability value (M) for each candidate reference gene calculated by the
geNorm algorithm over biological replications and treatments. Genes are ranked from the least
(left) to the most (right) stable. Only genes with an M < 1.5 are considered useful with stable
expression. (B) Average pairwise variation (V) calculated by the geNorm algorithm to determine
the optimal number of reference genes for normalization analysis. Pairwise values that are below
the 0.15 threshold indicate that the addition of another reference gene will have no significant
improvement on normalization analysis.

Another feature of the geNorm algorithm is to calculate the optimal number of
reference genes needed for accurate normalization. Following this, pairwise variation
values (V) are calculated, and values below 0.15 (Vn/Vn+1 < 0.15) indicate that the “N+1”
number of genes is not necessary, since an addition will not significantly improve the
accuracy of normalization [13]. The geNorm manual recommends the removal of the least
stable genes only up to the point that the optimal number of genes remain so that the
algorithm can calculate an accurate M value using the data from the most stable genes only.
The software performs this step progressively, eliminating one gene at a time until only
the optimal number of genes is left, then ranking the genes for stability. The results of the
pairwise variation analysis are presented for the genes in this study in Figure 2, which
suggests that the three least stable genes can be eliminated from the analysis set. Based on
the calculated M values, geNorm ranks the remaining three most stable genes (in order of
most to least stable) as β-Tub2 > ACT1 > EFIαI (Table 3).
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Table 3. Stability values of each candidate reference gene as calculated by geNorm, NormFinder, and
BestKeeper algorithms. Genes are ranked in order of most stable (top) to least stable (bottom) by the
expression stability value (M) for geNorm, stability level for NormFinder, and standard deviation
(SD) for BestKeeper.

geNorm NormFinder BestKeeper

Gene M Gene Stability Gene SD

β-Tub2 0.860 β-Tub2 0.250 ACT1 0.580

ACT1 0.907 EFIα 0.460 β-Tub2 0.680

EFIα 0.953 eIF4A2 0.680 TATA 0.680

eIF4A2 REMOVED ACT1 0.820 eIF4A2 0.960

TATA REMOVED TATA 1.500 EFIα 1.050

GAPDH REMOVED GAPDH 5.400 GAPDH 5.500

The NormFinder [14] software package, like geNorm, calculates gene stability using
relative expression levels (∆Cq); thus, the data used for calculation in geNorm were also
used in NormFinder. Unlike geNorm, NormFinder allows the user to group the data
according to categorical variables. With NormFinder, the gene GAPDH ranked as the least
stable, and the genes EFIα and eIF4A2 were the most stable (Table 3).

BestKeeper calculates the stability of the reference genes based on the standard devi-
ation of the raw Cq values [15]. Thus, genes with a higher standard deviation, e.g., with
broader dispersion of the data points, are less stable than genes with a lower standard de-
viation. With this stability measurement, the gene ACT1 was the topmost stable candidate,
followed by β-Tub2 and TATA, which were tied for second; GAPDH was the least stable by
a considerable margin (Table 3).

The gene β-Tub2 was among the top three most stable candidates for all the algorithms
used. However, it is essential to note that this gene had a low expression in all maize
kernels in this study, as the detected Cq averaged only 30.062 and the lowest Cq was 28.307
(Figure 1). A highly expressed reference gene is important in gene expression analysis
that uses the 2−∆∆Cq method [4] since a low expression reference gene could result in an
unrealistic fold change. A similarly low expression can be observed for the gene TATA,
which ranked as the third most stable gene when using BestKeeper (Table 3). Thus, the
three best reference genes for expression and stability were ACT1, EFIα, and eIF4A2, and
the least stable was the gene GAPDH.

To evaluate the reliability of the candidate reference genes, expression analysis of
the maize gene Zm00001d020612 was performed (Figure 3). The product of this gene is a
choline/ethanolamine kinase responsible for catalyzing the first step in the biosynthesis of
phospholipids, which are essential for the formation of cell membranes [16] and the first
place of contact and recognition for plant pathogens. This gene has shown a significant
increase in RNA transcript in maize leaves 72 h post-inoculation of the Colletotrichum
graminicola fungus [17]. Additionally, this gene was identified as one of the top candidates
to reduce aflatoxin accumulation in a GWAS (Genome-Wide Association Study) analysis
performed in maize challenged with A. flavus [18].
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Figure 3. Expression analysis of the gene Zm00001d020612 in maize kernels normalized with (A) ACT1, EFIα, and eIF4A2,
(B) ACT1 and EFIα, (C) ACT1 and eIF4A2, and (D) EFIα, and eIF4A2 as the reference genes. The control treatment used to
calculate the relative expression of the samples inoculated with A. flavus spores are samples inoculated with water, and for
samples inoculated with water, the control treatments used were uninoculated samples of the same genotype. Genes in
which FC < 1 was downregulated in response to the stress applied and genes in which the mean FC > 1 was upregulated.
The length of the box represents the distance between the 25th (bottom) and 75th (top) percentiles; the horizontal line in the
box interior represents the group median; the black dot inside the boxes represents the group mean; and the whiskers are
extended to the group’s minimum (bottom) and maximum (top) values, not including outliers of the data.

Since the pairwise analysis from geNorm suggested that a minimum of three reference
genes be used to normalize the data, the gene of interest (Zm00001d020612) from each
maize was normalized using the three most stable and highly expressed genes, ACT1, EFIα,
and eIF4A2, together or in combinations of two (ACT1 and EFIα; ACT1 and eIF4A2; and
EFIα and eIF4A2) (Figure 3). The normalization was performed using the method proposed
by Livak and Schmittgen [4].

The same pattern of relative fold change (FC) is observed in all the genotypes and treat-
ments using all of the two- and three-gene combinations of reference genes. The resistant
maize genotypes, MP313E and Mp719, showed an approximately two-fold upregulation
when inoculated with A. flavus spores, while the susceptible lines, Va35 and B73, show no
differences in the gene expression (FC = 1) for the same treatment. In response to the water
inoculation, no maize line except for Mp313E showed any difference in expression of the
gene Zm00001d020612.

To confirm the unsuitability of the gene GAPDH as a reference gene, the same maize
samples were analyzed for the expression of the gene Zm00001d020612 following the
same parameters described on Figure 3. The Cq values for GAPDH were highly variable
among the samples, ranging from 24.629 to 38.629 (Figure 1), which transposed to the
normalization of the evaluated samples. The most affected genotype was the susceptible
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line Va35, which showed an FC ranging from 0.5 to 45 for the water inoculation treatment
(data not shown) versus 0.5- to 2-fold when the same samples were normalized by the most
stable reference genes (Figure 3). The resistant genotype Mp313E showed an unrealistic
downregulation of Zm00001d020612 in response to the inoculation of A. flavus instead of
an upregulation, as seen with the other reference genes. The high variance around the
expression profiles normalized with GAPDH makes comparisons between treatments or
genotypes uninformative.

3. Discussion

The current literature is populated with over 200 candidate genes that may play an
essential role in the interaction between maize and A. flavus [2]. Before these genes can
become useful in maize breeding programs designed for A. flavus resistance, they must
first be validated [19]. To achieve the objective of this study and identify reference genes
for candidate gene validation using RT-qPCR, three different software packages (geNorm,
NormFinder, and BestKeeper) were used to rank the stability of the selected candidate
reference genes. When comparing the ranking set by each software package, the three
most stable genes varied among the different analysis sets (Table 3). By eliminating the
three genes that had expression values too low or too variable to be useful (β-Tub2, TATA,
and GAPDH), we found the remaining three genes to be the most stable and suitable for
normalization, in the order ACT1, eIF4A2, and EFIα. As expected from their predicted
housekeeping functions (Table 1), these three genes had low Cq values, indicating high
expression in maize kernels (Figure 1).

The gene ACT1 encodes actin, of which the cytoskeleton of plant cells is composed,
and which plays an important role in intracellular movements [20]. The two other genes,
eIF4A2 and EFIα, participate in mRNA translation, a step in the expression of every gene
that occurs continuously in all living cells. The gene eIF4A2 encodes a subunit of the eIF4F
initiation factor complex that participates in the first step of the translation process [21].
This protein is a DEAD-box helicase that mediates recognition of the 5′-cap structure
and unwinds the mRNA so that other eIFs can interact with the small subunit of the
ribosome and initiate the translation process. The EFIα gene, the most highly expressed
gene in this study, encodes the eukaryotic translation elongation factor 1A, which is the
most abundant synthesis factor protein in a cell [22]. This GTP-binding protein binds the
aminoacetyl-tRNAs to ribosomes during translation and releases them when the correct
codon anticodon match is made. EFIα also participates in other cell functions, including
nuclear export of tRNAs, protein degradation, apoptosis, and viral propagation [23].

This study has identified three reference genes suitable for normalization of expression
data from maize kernels responding to A. flavus contamination and to wounding, which
may be caused by fungal infection or by insect feeding. It can be predicted that in a study
with similar characteristics to this one, these same three genes will maintain their stability,
as shown in our results. Studies that identify possible candidate genes for resistance to
biotic stresses, such as fungal pathogen and insect resistance, have multiplied with the
publication of genetic, proteomic, and metabolomic studies. As a first step in validating
these biotic stress resistance candidates, RT-qPCR, any of these three stable reference genes
(and preferably two) can be used to create gene expression profiles for normalization of
candidate genes. It should be noted, however, that the selection of reference genes for
normalization of gene expression studies must be customized to the specific study, as
different treatments might influence all but the most basic cell activities.

4. Materials and Methods
4.1. Plant Tissue and Treatments

The maize germplasm chosen for this research included two aflatoxin accumulation
resistant lines (Mp313E and Mp719) and two susceptible lines (Va35 and B73). Each line
was grown in a randomized complete block design with plant replicates in the experimental
field at the Mississippi State University R. R. Foil Plant Science Research Center. Eighteen
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days after mid-silk (when half of the primary ears showed silk), the kernels were at the
milk stage (R3) [24] and were inoculated with fungal spores. From each genotype, three
ears were randomly selected to receive one of the following treatments inoculation of
spores from the toxigenic A. flavus strain NRRL 3357; water-inoculation containing double
distilled autoclaved water; or no inoculation.

The A. flavus inoculum for each strain was prepared by growing the strain on sterile
corn cob grits (size 2040, Grit-O-Cobs, Maumee, Ohio) in 500 mL flasks, containing 50 g
of grits and 100 mL sterile distilled water and incubated at 28 ◦C for 21 days. Conidia
were obtained by washing the grits with a mixture of 500 mL of sterile distilled water and
0.1% Tween 20 (to prevent conidial clumping). The liquid containing the spores was then
filtered through four layers of cheesecloth. Conidial concentration was calculated using a
hemocytometer, and the final inoculum concentration was diluted to 9 × 107 conidia/mL
using sterile distilled water.

Inoculation of corn ears was performed by peeling back the husk and injecting the
maize kernels with the eye of a size 12 quilting needle (Entaco Limited, Worcestershire,
England, Cat. No. JJ12012) extending 2 mm from the base of a pencil eraser. The needle
eye was dipped in the appropriate inoculum (conidia or water) before inoculating the
maize kernels. The kernels were inoculated in two rows, alternating with uninoculated
rows between the inoculated rows. After inoculation, the husk was put back around the
ear, which was covered with two paper shoot bags and secured in position with rubber
bands. Maize ears were collected three days after inoculation (DAI); the inoculated kernels
were removed from the ears and flash-frozen in liquid nitrogen and immediately stored at
−80 ◦C until RNA extraction.

4.2. Total RNA Extraction and cDNA Synthesis

Total RNA was extracted from kernels by a modified hot borate method [25] with a
minor adaptation using 0.3 mg of ground tissue instead of the published 1 mg, and all
volumes through the extraction process were reduced accordingly. The extracted RNA
was purified using DNase digestion with RQ1 RNase-Free DNase (Promega, Madison, WI,
USA, Cat. No. M6101) according to manufacturer’s instructions, followed by cleanup using
RNeasy Plant Mini Kit (Qiagen, Hilden, Germany, Cat. No. 74903) as instructed in the
product guide. The quality of the extracted RNA was measured using an RNA 6000 Nano
Kit (Agilent Technologies, Santa Clara, CA, USA, Cat. No. 5067-1511), and the concentration
was determined using a NanoDrop Spectrophotometer ND-1000 (Agilent Technologies,
Santa Clara, CA, USA). The first-strand cDNA was synthesized using SuperScript II
Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA, Cat. No. 18064014) according to
the manufacturer’s instructions for 1 µg of total RNA and a total reaction volume of 20 µL
and later quantified using a NanoDrop Spectrophotometer ND-1000 (Agilent Technologies,
Santa Clara, CA, USA).

4.3. Gene Selection and Primer Design

Six genes were used in this study to identify the most stable reference gene(s) for
RT-qPCR analyses of maize kernels in response to wounding and A. flavus inoculation. The
selected genes have been used as internal controls in previous plant studies because of
their constitutive expression [26]. Using the reference genome sequence (B73 AGPv4) [27],
available in the online database Gramene [28], sequences of the following genes were
downloaded Actin-1 (ACT1—Zm00001d010159), β-tubulin2 (β-Tub2—Zm00001d010275),
Elongation factor 1-alpha (EFIα—Zm00001d037905), Eukaryotic initiation factor 4A-2 (eIF4A2—
Zm00001d016351), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH—Zm00001d035156),
and TATA-box-binding protein 2 (TATA—Zm00001d019598).

The coding and genomic sequences for each candidate gene were aligned using
the Clustal W algorithm in the Lasergene Megalign software (DNASTAR, Madison, WI,
USA) to identify the gene structure (exon and introns lengths) and ensure efficient primer
design. The primer sequences were selected only on exonic sequences, and the online
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tool Primer3 [29,30] was used to help select sequences that met set parameters for optimal
amplification. The selected primers were designed to amplify a region ranging between 110
to 300 bp (optimum 220 bp); the primer length had a minimum of 24 bp and a maximum of
35 bp (optimum 27 bp); GC content between 40–60%; and a 2 bp GC clamp (Table 1). Before
ordering the primers, the selected primer sequences were submitted to a BLAST search
against the reference B73 genome sequence RefGen_v4 (http://ensembl.gramene.org/
Tools/Blast?db=core) to ensure the uniqueness of the product amplified by the selected
primer pair.

To confirm that the selected primers would amplify the correct region, the respective
pairs were used to prime amplification in 100 ng of the first-strand cDNA in an end-point
PCR reaction. For each genotype, one sample (out of the nine) of synthesized first-strand
cDNA was selected randomly and used for all primer testing. The master mix for this
reaction was prepared according to the manufacturer’s instructions for the Ex Taq Hot Start
Version (TaKaRa Bio Inc., Kusatsu, Japan, Cat. No. RR006A). The amplification was carried
out with initial denaturation at 95 ◦C for 5 min, followed by 35 cycles of a denaturation
at 94 ◦C for 30 s, annealing for 30 s at the primer pair’s average annealing temperature,
and an extension of 45 s at 72 ◦C; after competition of the last cycle, a final extension was
carried at 72 ◦C for 5 min. To check for the amplification of a single product, the PCR
products were loaded into a 1.5% agarose-TAE gel stained with ethidium bromide and run
at 70 V for 45 min at room temperature. Gel images were obtained using the AlphaImager
HP system (Protein Simple, San Jose, CA, USA).

4.4. Quantitative Real-Time PCR Conditions

All samples used in this study were pooled (200 ug of each sample; 36 samples total)
and diluted in a five-fold serial dilution to create a standard curve, which was amplified
via RT-qPCR using the Applied Biosystems StepOnePlus Real-Time PCR System (Thermo
Fisher Scientific, Waltham, MA, USA). The Applied Biosystems Power SYBR Green PCR
Master Mix (Thermo Fisher Scientific, Whatman, MA, USA, Cat. No. 4367659) was used for
qPCR following the manufacturer’s guidelines for a reduced final reaction volume of 10 µL.
The reactions were amplified in the MicroAmp Optical 96-Well Reaction Plate (Thermo
Fisher Scientific, Whatman, MA, USA, Cat. No. N8010560) sealed with MicroAmp Optical
8-Cap Strips (Thermo Fisher Scientific, Whatman, MA, USA, Cat. No. 4323032). Each
reaction was run with initial denaturation at 95 ◦C for 10 min, followed by 40 cycles of
denaturation at 95 ◦C for 15 s, annealing for 30 s at the primer pair’s average personalized
annealing temperature, and an extension of 15 s at 72 ◦C; after completion of the last the
cycle, a melt curve analysis was performed according to the machine’s preset Step and
Hold protocol (95 ◦C for 15 s; 60 ◦C for 1 min; temperature ramp increment of 0.3 ◦C up to
95 ◦C).

The Cq values obtained from technical replicates run for each point of the curve were
averaged and plotted against the logarithm of the pooled cDNA dilution factors to create a
linear regression equation. The amplification efficiency [4] of each gene was then calculated
using the slope from the linear regression equation with the following formula: % E =
(10[−1/slope] − 1) × 100.

4.5. Determination of Expression Stability of Reference Genes

The expression profile of the candidate genes was plotted using R, version 1.2.1335 [31].
To evaluate the stability of gene expression for each candidate reference gene, three software
packages were used geNorm [13], NormFinder [14], and BestKeeper [15]. The geNorm
add-in for Microsoft Excel was used to calculate the expression stability value (M) and
the pairwise variation (V) for each gene. Since geNorm calculates M and V based on the
relative expression levels (∆Cq), the raw Cq of each sample was averaged over technical
triplicates only; biological replicates were treated as different samples. Cq values aver-
aged over technical reps were then converted using the formula: 2−(∆Cq), where ∆Cq =
(sample’s averaged Cq—minimum Cq for analysis set). To perform stability calculations

http://ensembl.gramene.org/Tools/Blast?db=core
http://ensembl.gramene.org/Tools/Blast?db=core
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with NormFinder, the R software version 3.5.132 was used with the code provided by the
authors in the original publication. The data input used for NormFinder was the same
as that used for geNorm. The add-in for Microsoft Excel was used to calculate the stable
gene expression using BestKeeper. This last software utilizes raw Cq values; therefore, the
averaged values of technical triplicates were used as individual input data points.

4.6. Validation of Reference Genes

To validate the stability of the selected reference genes, the three most stable genes,
ACT1, EFIα, and eIF4A2, and the least stable, GAPDH, were used to normalize the ex-
pression profile of the maize gene of interest (GOI) Zm00001d020612 under the different
genotypes and treatments. The qRT-PCR methods used were the same as described above.
The primers used to amplify the GOI and its characteristics are described in Supplementary
Table S1. The obtained quantitation cycle (Cq) from the RT-qPCR results was used to calcu-
late the relative gene expression of the selected candidates’ genes using the 2−∆∆Cq method
proposed by Livak and Schmittgen [4]. When samples were normalized to more than one
reference gene, the geometric mean value was taken and used for the calculation of the
∆∆Cq [13]. Statistical analysis using one-way ANOVA (analysis of variance) and post-hoc
Tukey at a confidence interval of 95% were performed using R, version 1.2.1335 [31]. None
of the statistical analyses were significant (p > 0.05).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxins13060386/s1, Figure S1: Melt curve for the candidate reference genes, Figure S2:
Standard curve to calculate amplification efficiency of candidate reference genes, Table S1: Primers
characteristics for the gene of interest Zm00001d020612 used to validate reference candidate genes.
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