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Abstract: Phthalic acid esters (PAEs) are a class of lipophilic chemicals widely used as plasticizers
and additives to improve various products’ mechanical extensibility and flexibility. At present,
synthesized PAEs, which are considered to cause potential hazards to ecosystem functioning and
public health, have been easily detected in the atmosphere, water, soil, and sediments; PAEs are also
frequently discovered in plant and microorganism sources, suggesting the possibility that they might
be biosynthesized in nature. In this review, we summarize that PAEs have not only been identified
in the organic solvent extracts, root exudates, and essential oils of a large number of different plant
species, but also isolated and purified from various algae, bacteria, and fungi. Dominant PAEs
identified from natural sources generally include di-n-butyl phthalate, diethyl phthalate, dimethyl
phthalate, di(2-ethylhexyl) phthalate, diisobutyl phthalate, diisooctyl phthalate, etc. Further studies
reveal that PAEs can be biosynthesized by at least several algae. PAEs are reported to possess
allelopathic, antimicrobial, insecticidal, and other biological activities, which might enhance the
competitiveness of plants, algae, and microorganisms to better accommodate biotic and abiotic stress.
These findings suggest that PAEs should not be treated solely as a “human-made pollutant” simply
because they have been extensively synthesized and utilized; on the other hand, synthesized PAEs
entering the ecosystem might disrupt the metabolic process of certain plant, algal, and microbial
communities. Therefore, further studies are required to elucidate the relevant mechanisms and
ecological consequences.

Keywords: phthalic acid esters; natural sources; biological activity; di-n-butyl phthalate; di(2-
ethylhexyl) phthalate

Key Contribution: PAEs detected in the environment are mostly considered human-made pollutants;
however, our review provides evidence that they can actually be biosynthesized by certain species
of plants, algae, bacteria, fungi, etc., to enhance the competitiveness of their hosts. Their biological
activities have the potential to be explored and utilized further.

1. Introduction

Phthalic acid esters (PAEs) are common plasticizers added to polymeric materials to
improve their flexibility and workability [1]. PAEs have been widely used in numerous con-
sumer products, including cosmetics, food packaging, building materials, medical supplies,
home furnishings, etc., due to their characteristic properties, such as their good insulation,
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high strength, excellent corrosion resistance, low cost, and ease of fabrication [2–4]. The
current global production of PAEs is estimated at 300 million tons, and it is expected to
reach 500 million tons by 2050, most of which will be single-use products [5]. Moreover,
China has become the world’s largest producer, consumer, and importer of plasticizers,
accounting for nearly 42% of the world’s consumption in 2017 [6]. As one of the most
abundantly produced phthalates, di(2-ethylhexyl) phthalate accounts for one-third and
80% of the phthalates made in the European Union and China, respectively [7]. With
such extensive application of phthalate-containing products, PAEs have attracted increas-
ing attention as environmental and biomedical pollutants, which may invisibly enter the
human body through airborne transmission, skin contact, and food chain transmission,
constituting potential health and ecological system threats [8]. In fact, a number of studies
have been carried out to investigate the toxicity of PAEs on human beings and/or animals.
Epidemiologic studies found that early phthalates exposure could induce significant neuro-
developmental damage [9]. Some PAEs have been proven to possess reproductive and
developmental toxicities to animals and are suspected of causing endocrine-disrupting
effects to humans [10–12]. PAEs were also harmful to aquatic organisms. Di-n-butyl,
diethyl phthalate, and their mixture were found to effectively activate zebrafish embryos’
antioxidant system and lead to immunotoxicity and neurotoxicity [13,14]. Zhao et al.
(2014) reported that di-n-butyl and di(2-ethylhexyl) phthalate disrupted the antioxidant
system of carps, meanwhile combined exposure to these two compounds exacerbated this
change [15].

Up to now, most of the published literature has focused on the detection methods,
pollution distribution, and toxicological hazards of PAEs. However, the natural sources
of various PAEs are rarely studied. The first report of phthalic acid as a natural substance
was conducted by Schmid and Karrer (1945) [16] and, since then, more than 50 differ-
ent derivatives of PAEs have been reported from different taxonomic groups, including
bacteria, actinomycetes, fungi, fern, higher plants, and even animals [17]. What remains
unclear, however, is that in many cases, it is rather complicated to determine whether
these compounds come from synthesized materials that later cause contamination of the
air, water, or soil, or whether they may be produced by the plants and microorganisms
themselves. The objective of this review is to summarize the plant and microorganism
origin of PAEs so as to better understand their possible sources: Are they synthesized
chemicals, or are they naturally occurring secondary metabolites?

2. Physicochemical Properties and Applications of PAEs

Phthalic acid esters (dialkyl or alkyl aryl esters of 1,2-benzenedicarboxylic acid), usu-
ally called PAEs, phthalate esters, or just phthalates, are a group of important derivatives
of phthalic acids which are synthesized from phthalic anhydride and specific alcohols
by Fischer esterification [18,19]. PAEs based on hydrogen bond and van der Waals force
interconnection are hydrophobic compounds with log Kow ranging from 1.6 to 12 [20].
Most of the phthalate esters are colorless liquids with a low volatility, high boiling point,
and poor solubility in water, but they are soluble in organic solvents and oils [8]. These
esters’ general chemical structure consists of a rigid planar aromatic ring and two malleable
nonlinear fatty side chains. The two side-chain groups can be the same or not, and there are
approximately 30 types of different side chains, ranging from dimethyl phthalate to tridecyl
ester [21]. Due to phthalate esters being widespread in the biosphere and potential hazards
in relation to ecosystem functioning and public health, six PAEs have been listed as prior-
ity pollutants by the United States Environmental Protection Agency and the European
Union [20,22], including dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, butyl
benzyl phthalate, di(2-ethylhexyl) phthalate, and di-n-octyl phthalate. These phthalate
esters’ physicochemical properties and common applications are summarized in Table 1
and Figure 1.
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Table 1. Physicochemical properties and application of six PAEs listed as priority pollutants.

PAEs Molecular
Formula

Molecular
Weight

CAS Reg-
istration
Number

Specific
Gravity
(20 ◦C)

Water
Solubility

(mg/L)

log
Kow

Melting
Point
(◦C)

Application References

Dimethyl
phthalate C10H10O4 194.18 131-11-3 1.19 4000 1.47 5.5 Insect repellent, personal

care products, etc. [12]

Diethyl
phthalate C12H14O4 222.24 84-66-2 1.12 1000 2.38 –40 Personal care products,

plasticizers, cosmetics, etc. [38]

Di-n-butyl
phthalate C14H38O4 278.35 84-74-2 1.05 11.2 3.74 –35 PVC plastics, explosive

materials, nail paints, etc. [39]

Butyl
benzyl

phthalate
C19H20O4 302.39 85-68-7 1.11 2.7 4.59 –35

Rapping materials, food
conveyor belts, artificial
letter, traffic cones, etc.

[40]

Di(2-
ethylhexyl)
phthalate

C24H38O4 390.62 117-81-7 0.99 0.003 7.5 –40

Medical devices, food
packaging, building
products, children’s

products, etc.

[41]

Di-n-octyl
phthalate C24H38O4 390.62 117-84-0 0.99 0.0005 8.06 –25 Conveyor belts, pool liners,

garden hoses, etc. [22]

PAEs are a class of lipophilic chemicals widely used in the plastics manufacturing in-
dustries as plasticizers and additives to improve the mechanical extensibility and flexibility
of various products, such as plastics, paints, and synthetic fibers [23]. Phthalates of lower
molecular weight, such as dimethyl phthalate, diethyl phthalate, and di-n-butyl phthalate,
are widely used in cosmetics and personal care products; dimethyl phthalate and diethyl
phthalate allow perfume fragrances to evaporate more slowly, making the scent linger
longer, and a small amount of di-n-butyl phthalate can make nail polish chip-resistant.
Di-n-butyl phthalate is also used in cellulose esters, printing inks, latex adhesives, and
insect repellents [11,24].

Higher phthalate molecules, such as di(2-ethylhexyl) phthalate, diisononyl phthalate,
and butyl benzyl phthalate, have a wide range of applications as plasticizers in the polymer
industry to improve flexibility, workability, and general handling properties, and about
80% of PAEs are used for this purpose [20,25]. The stability, fluidity and low volatility of
these compounds make them very suitable for manufacturing PVC and other resins, such
as polyvinyl acetates and polyurethanes [26]. One of the most widespread phthalate plasti-
cizers, di(2-ethylhexyl) phthalate, has several useful applications in numerous consumer
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products, commodities, and building materials [27]. Diisononyl phthalate is commonly
used in garden hoses, pool liners, flooring tiles, tarps, and toys. Additionally, butyl benzyl
phthalate, as a component of materials, is extensively used in vinyl flooring, synthetic
leather, inks, and adhesives [19]. Phthalates are not covalently bound to the polymer
matrix, rather they usually remain present as a freely mobile and leachable phase; there-
fore, they can be lost from soft plastic over time and released to the environment during
production and manufacture. Not surprisingly, phthalates can often be found in freshwater
lakes and oceans [28,29], urban and suburban soil [30,31], the atmosphere [32,33], and
sediments [34,35]. Bu et al. (2020) [36] summarized the concentrations of six representative
phthalates from published papers in the last twenty years (2000–2019) to analyze the pollu-
tion characteristics of phthalates worldwide and found that their mean concentration in
settled dust was 500.02 µg/g in North America, 580.12 µg/g in Europe, and 945.45 µg/g in
Asia, with DEHP being the most predominant phthalate, with mean and median values of
615.78 µg/g and 394.03 µg/g, respectively; the mean concentration of six representative
phthalates in indoor air was 598.14 ng/m3 in North America, 823.98 ng/m3 in Europe,
and 1710.26 ng/m3 in Asia. In another study, Hu et al. (2020) [37] detected 8 PAEs in
67 sediment samples collected from Hangzhou Bay, Taizhou Bay, and Wenzhou Bay in
China; the total concentrations of detected PAEs were in the range of 654–2603 ng/g, with
di(2-ethylhexyl) phthalate being the predominant PAE (mean 663 ng/g, accounting for a
mean of 52% of total PAEs).

3. Natural Existence of PAEs in Living Organisms
3.1. PAEs from Plant Sources

Literature surveys revealed that PAEs were previously detected in different parts
(stems, leaves, flowers, fruits, roots, and seeds) of 60 plant species that belong to 38 families,
as well as in various algae, such as Gracilaria lemaneiformis, Chaetomorpha basiretorsa, and
Cladophora fracta (Figure 2). PAEs were often found in the following families: Lamiaceae
(seven species, accounting for 11.7% of the total), Rosaceae (four species, accounting for
6.7%), Solanaceae (four species, accounting for 6.7%), Liliaceae (three species, accounting for
5%), and Asteraceaeare (three species, accounting for 5%) (Table 2), which represented 35%
of the total species, with di-n-butyl phthalate, diisobutyl phthalate, and di(2-ethylhexyl)
phthalate being the most frequently detected PAEs.
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PAEs have been detected via GC/MS in the organic extracts of certain plant species,
with their percentages varying from 1.0% to 32.0% (Table 2). For instance, di-n-butyl
phthalate was found in the extracts of Brassica oleracea (32.0%), Ixora amplexicaulis (15.0%),
Gossypium hirsutum (7.9%), and Zea mays (7.0%) [42–45]. Di-n-octyl phthalate was identified
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to be abundant in the extracts of Prunella vulgaris (29.9%), Jatropha curcas (21.6%), and
Photinia parvifolia (10.1%) [46–48]. Other PAEs, such as diethyl phthalate, isobutyl octyl
phthalate, etc., were also reported in different plant extracts. Noteworthily, some of the
detected PAEs are not commonly used in industry, implying that they might originate from
biosynthesis rather than from contaminated soil or air.

Most PAEs were found in plant-derived essential oils (EOs). EOs can be synthesized
by all plant organs (flowers, buds, seeds, leaves, twigs, bark, herbs, wood, fruits, and
roots), which can be extracted using traditional hydrodistillation, organic solvent-steam
distillation, headspace solid-phase microextraction (HS-SPME), and supercritical CO2
fluid extraction (CO2-SFE) procedures [49]. EOs not only play an important role in many
physiological and biochemical reactions, but are also widely utilized in pharmaceutical,
sanitary, cosmetic, agricultural, and food industries [50,51]. PAEs are constantly being
identified in different varieties of Eos. Twenty-six plants have been reported to contain
PAEs, with di-n-butyl phthalate being the most abundant constituent, which has been found
in eighteen species, with the percentage ranging from 1.5% to 87.2% (Table 2). Species that
are rich in di-n-butyl phthalate include Radix pseudostellaria (87.2%), Clerodendrum inerme
(59.3%), Pyrola rotundifolia (40.5%), Osmanthus fragrans (15.1%), and Alocasia macrorrhiza
(14.4%) [52–56]. Di(2-ethylhexyl) phthalate is also a common component detected in Eos;
for instance, it is found in the Eos produced by Cirsium japonicum (30.8%), Pyrus ussriensis
(29.4%), Ziziphus mauritiana (18.0%), and Clerodendrum inerme (17.3%) [56–59].

Some PAEs were found in the litter and root exudates of plants, which are actually
considered the primary inputs of allelochemicals to the external environment that affect
neighboring plants’ growth [60]. At least in part, allelopathy helps explain the mechanism
of the establishment of dominance of certain plant species, including invasive alien species;
allelopathy also provides a theoretical basis for revealing the mechanism of crop intercrop-
ping and rotation obstacles in agricultural production [60,61]. In fact, some PAEs, such
as di-n-octyl phthalate, have been confirmed to be active allelochemicals [62]. Di-n-butyl
phthalate and diisobutyl phthalate are the most frequently identified PAEs in root exudates
of plants such as Solanum lycopersicum, Capsicum annuum, Z. mays, Solanum melongena, etc.
(Table 2). Cheng and Xu (2012) [63] collected root exudates of Lilium brownii, which revealed
that phthalate acid esters, such as diisooctyl phthalate (52.1%) and di(2-ethylhexyl) phtha-
late (41.0%), were dominant. Zhou et al. (2010) [64] studied the root exudates of grafted
eggplants using the root soaking method, which led to the identification of di-n-butyl
phthalate (13.6%), diisobutyl phthalate (1.9%), and diisononyl phthalate (0.8%). GC–MS
analysis showed that there were eleven organic compounds in the methanol extract of root
exudates of Allium fistulosum, including derivatives of phthalate ester, such as diisooctyl
phthalate (52.1%) and di(2-ethylhexyl) phthalate (41.0%).

Although the GC/MS procedure is effective in detecting PAEs, it has its limitations. In
some studies, calculation of the retention indices (RI) was ignored; thus, the accuracy of the
identification of PAEs was reduced. Traditionally, preparative chromatographic purification
of secondary metabolites produced by plants includes the application of silica gel column
chromatography, sephadex LH−20 gel column chromatography, semi-preparative HPLC,
preparative TLC, etc. During this process, PAEs such as di-n-butyl phthalate, diisobutyl
phthalate, etc., were purified from different plant species (Table 2). Liu et al. (2011) [65]
isolated di-n-butyl phthalate and diisobutyl phthalate from the leaves and stems of Toona
ciliata. Shi et al. (2005) [66] obtained di-n-butyl phthalate and diisobutyl phthalate from C.
basiretorsa for the first time by spectroscopic methods. As secondary metabolites, di-n-butyl
phthalate and diisobutyl phthalate were also isolated from the whole plants of C. fracta [67],
the root of Croton lachynocarpus [68], and the fruits of Pyrus bretschneideri [69]. Consequently,
PAEs identified and purified in plant materials illustrate that the plants could synthesize
them to some extent.
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Table 2. PAEs detected in plant materials.

Family Identified from Origin Type of PAEs Relative Content
of PAEs (%) * References

Acanthaceae

Avicennia marina Fruits
Diethyl phthalate 1.2

[70]Dimethyl phthalate 0.6
Methyl nonyl phthalate 0.4

Asystasia gangetica Aerial Parts

Diisobutyl phthalate 6.1

[71]

Bis-Decyloctyl phthalate 5.7
Bis-Diundecyl phthalate 5.7
Bis-Decylhexyl phthalate 4.2

Bis-isodecylhexyl phthalate 4.1
Diheptyl phthalate 3.6

Bis-Didecyl phthalate 2.6
Bis-Heptyloctyl phthalate 2.4

Di-n-butyl phthalate 2.3
Di(2-ethylhexyl) phthalate 1.5

Bis-7-Methy loctyl phthalate 1.0

Araceae Alocasia macrorrhiza Whole Plants
Bis (2-isobutyl) phthalate 32.5 [55]Di-n-butyl phthalate 14.4

Asteraceae

Ageratina adenophora Leaves, Shoots
Di(2-ethylhexyl) phthalate

N/A ** [72]Di-n-butyl phthalate

Cirsium japonicum Whole Plants

Di(2-ethylhexyl) phthalate 30.8

[57]

Diisooctyl phthalate 16.6
Mono (2-ethylhexyl) phthalate 16.0

Diisobutyl phthalate 1.1
Butyloctyl phthalate 0.7
Di-n-octyl phthalate 0.1

Chrysanthemum indicum Leaves, Stems Diethyl phthalate N/A [73]

Apiaceae Angelica sinensis Roots
Di-n-butyl phthalate

N/A [74]Di(2-ethylhexyl) phthalate
Bis (2-methylpropyl) phthalate

Brassicaceae Brassica oleracea Stalks

Di-n-butyl phthalate 32.0

[42]
Diisooctyl phthalate 18.5
Diisobutyl phthalate 3.4

Diethyl phthalate 1.3

Chenopodiaceae Beta vulgaris Root Exudates
Di-n-butyl phthalate 47.2

[75]Diisobutyl phthalate 8.6

Campanulaceae Campanula colorata Whole Plants
Butyloctyl phthalate 10.2

[76]Di-n-butyl phthalate 7.4
Diisooctyl phthalate 0.6

Calycanthaceae Chimonanthus praecox Flowers Di-n-butyl phthalate 4.5 [77]

Cladophoraceae
Cladophora fracta Whole Plants

Diisobutyl phthalate
N/A [67]Di-n-butyl phthalate

Chaetomorpha basiretorsa Whole Plants
Di-n-butyl phthalate

N/A [66]Diisobutyl phthalate

Cyperaceae Fimbristylis miliacea Whole Plants Di-n-octyl phthalate N/A [62]

Crassulaceae Hylotelephium
erythrostictum Flowers Di-n-butyl phthalate 1.2 [78]

Convolvulaceae Ipomoea carnea Whole Plants Di-n-butyl phthalate N/A [79]

Caryophyllaceae Radix pseudostellariae Whole Plants
Di-n-butyl phthalate 87.2

[52]Ditridecyl phthalate 0.7

Euphorbiaceae
Croton lachynocarpus Roots

Di-n-butyl phthalate
N/A [68]Diisobutyl phthalate

Butyl isobutyl phthalate

Jatropha curcas Leaves Di-n-octyl phthalate 21.6 [46]

Ericaceae
Pyrola rotundifolia Whole Plants Di-n-butyl phthalate 40.5 [53]

Rhododendron calophytum Flowers
Di-n-butyl phthalate 4.9

[80]Diisobutyl phthalate 1.4



Toxins 2021, 13, 495 7 of 17

Table 2. Cont.

Family Identified from Origin Type of PAEs Relative Content
of PAEs (%) * References

Fabaceae
Dalbergia odorifera Flowers

Di-n-butyl phthalate 14.0 [81]Diisooctyl phthalate 4.4

Medicago sativa Root Exudates Di-n-butyl phthalate 10.7 [82]

Gracilariaceae Gracilaria lemaneiformis Whole Plants Butyl isobutyl phthalate N/A [83]

Gesneriaceae Lysionotus pauciflorus Whole Plants Diisobutyl phthalate 2.7 [84]

Hypericaceae Hypericum scabrum Seeds, Leaves Di(2-ethylhexyl) phthalate 5.8 [85]

Liliaceae

Allium fistulosum Root Exudates

Diisooctyl phthalate 11.4

[86]

Di-n-butyl phthalate 4.7
Diethyl phthalate 3.2

Dimethyl phthalate 0.9
Diisobutyl phthalate 0.7

Butyl methyl phthalate 0.6

Lilium brownii Root Exudates

Diisooctyl phthalate 52.1

[63]
Di(2-ethylhexyl) phthalate 41.0

Methyl 2-ethylhexyl phthalate 0.9
2-ethyl hexyl butyl phthalate 0.8

Di-n-butyl phthalate 0.3

Paris polyphylla Roots
Isobutyl-3-pentenyl phthalate 24.7

[87]Butyl-2-isobutyl phthalate 5.5
Di(2-ethylhexyl) phthalate 4.2

Lamiaceae

Clerodendrum inerme Leaves
Di-n-butyl phthalate 59.3

[56]Di(2-ethylhexyl) phthalate 17.3

Melissa officinalis Aerial Parts
Diisobutyl phthalate 2.5 [88]Di-n-butyl phthalate 1.4

Ocimum obovatum Leaves
2-ethylhexyl undecyl phthalate 5.3

[89]Di-n-butyl phthalate 4.5

Phlomis umbrosa Flowers
Diisobutyl phthalate 13.4

[90]Di-n-butyl phthalate 1.5
Butyl isobutyl phthalate 0.4

Prunella vulgaris Whole Plants
Di-n-octyl phthalate 29.9 [47]Diethyl phthalate 2.5

Phlomis medicinalis Roots Butyl isobutyl phthalate N/A [91]

Scutellaria barbata Whole Plants
Di-n-butyl phthalate 8. 3

[92]Diisobutyl phthalate 3. 6

Malvaceae Gossypium hirsutum Stalks Di-n-butyl phthalate 7.9 [45]

Myricaceae Myricarubra sieb Fruits

Phthalic acid, hex-3-yl isobutyl
ester 9.7

[93]Diisooctyl phthalate 4.2
Di-n-butyl phthalate 2.0
Dimethyl phthalate 0.8

Meliaceae Toona ciliata Leaves, Stems Diisobutyl phthalate
N/A [65]Di-n-butyl phthalate

Orchidaceae Cymbidium sinense Flowers Diisobutyl phthalate 12.5 [94]

Oleaceae Osmanthus fragrans Flowers

Mono (2-ethylhexyl) phthalate 26.5

[54]
Bis (2-methylpropyl) phthalate 21.9

Di-n-butyl phthalate 15.1
Diethyl phthalate 2.1

Pontederiaceae Eichhornia crassipes Whole Plants

Di-n-octyl phthalate

N/A [95]Diisooctyl phthalate
Mono (2-ethylhexyl) phthalate

Methyl dioctyl phthalate

Polygonaceae Polygonum amplexicaule Roots Diisobutyl phthalate N/A [96]

Poaceae Zea mays Straws
Di-n-butyl phthalate 7.0

[44]2-Methyl-pentyl-isobutyl
phthalate dibutyl 6.4
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Table 2. Cont.

Family Identified from Origin Type of PAEs Relative Content
of PAEs (%) * References

Rosaceae

Malus prunifolia Root Exudates Phthalate derivates 52.5 [97]

Pyrus bretschneideri Seeds
Di-n-butyl phthalate

N/A [69]Diisobutyl phthalate

Pyrus ussriensis Fruits Di(2-ethylhexyl) phthalate 29.4 [58]

Photinia parvifolia Fruits Di-n-octyl phthalate 10.1 [48]

Rubiaceae
Paederia scandens Whole Plants

Di-n-butyl phthalate 5.0

[98]Dimethyl phthalate 3. 7
Diisobutyl phthalate 3.2
Di-n-octyl phthalate 2.9

Ixora amplexicaulis Branches, Leaves Di-n-butyl phthalate 15.0 [43]

Rhamnaceae Ziziphus mauritiana Fruits
Di(2-ethylhexyl) phthalate 18.0

[59]Di-n-butyl phthalate 12.3

Solanaceae

Capsicum annuum Leaves and Root
Exudates

Di-n-butyl phthalate 41.5

[99]
Butyl cyclohexane phthalate 15.6

Butyl isobutyl phthalate 13.1
Ditert butyl phthalate 10.1

Nicotiana tabacum Root Exudates
3-hexyl isobutyl phthalate 4.8

[100]Diisobutyl phthalate 2.9

Solanum lycopersicum Root Exudates

Di-n-butyl phthalate 5.8

[101]
Dimethyl phthalate 2.1
Diisooctyl phthalate 1.7
Diisobutyl phthalate 0.4

Solanum melongena Root Exudates
Di-n-butyl phthalate 13.6

[64]Diisobutyl phthalate 1.9
Diisononyl phthalate 0.8

Saxifragaceae Saxifraga stolonfera Whole Plants Butyloctyl phthalate 5.5 [102]

Sargassaceae Nizamuddinia zanardinii Whole Plants
Di-n-butyl phthalate 5.1

[103]Diethyl phthalate 0.7

Sapindaceae Nephelium lappaceum Peels
Isobutyl octyl phthalate 16.5

[104]Diisooctyl phthalate 8.9

Salviniaceae Salvinia natans Whole Plants
Mono (2-ethylhexyl) phthalate 29.3

[105]Di-n-butyl phthalate 1.0

Thymelaeaceae Stellera chamaejasme Root Exudates
2-Ethyl hexyl phthalate 18.7

[106]Di-n-butyl phthalate 4.6
Diisobutyl phthalate 0.2

* Relative Content of PAEs (%) detected via GC/MS; ** N/A: Not applicable.

3.2. PAEs Identified and Purified from Microorganisms

Phthalate compounds as bioactive natural products can be produced not only by
plants, but also by bacteria and fungi (Table 3). Keire et al. (2001) [38] reported the first
known example of diethyl phthalate produced by a bacterium, Helicobacter pylori, which
represents a new class of immune-modulatory agent. Aboobaker et al. (2019) [107] iso-
lated di-n-butyl phthalate as the major bioactive compound from the endophytic fungi,
Pelargonium sidoides, which exhibits a significant inhibitory effect on Gram-positive bacteria
(Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia
coli and Pseudomonas aeruginosa). Rajamanikyam et al. (2017) [108] purified two PAEs,
di(2-ethylhexyl) phthalate and di-n-butyl phthalate, from Brevibacterium mcbrellneri, both
of which were isolated for the first time from the bacteria. Di-n-butyl phthalate was iso-
lated from Streptomyces melanosporofaciens as an effective inhibitor of α-glucosidase, which
could provide useful reference information for the design of new effective inhibitors of
glycosidase [109]. Furthermore, di(2-ethylhexyl) phthalate was isolated from Streptomyces
bangladeshensis [110] and Penicillium olsonii [111]. Therefore, it is expected that PAEs can be
characterized in various microorganisms, although their sources remain unclear.
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Table 3. PAEs purified from microorganisms.

Category Family Species Type of PAEs References

Bacteria Brevibacteriaceae Brevibacterium mcbrellneri
Di(2-ethylhexyl) phthalate

[108]Di-n-butyl phthalate
Fungi Davidiellaceae Penicillium skrjabinii Di-n-butyl phthalate [107]
Fungi Davidiellaceae Penicillium olsonii Di(2-ethylhexyl) phthalate [111]

Bacteria Helicobacteraceae Helicobacter pylori Diethyl phthalate [38]
Bacteria Streptomycetaceae Streptomyces melanosporofaciens Di-n-butyl phthalate [109]
Bacteria Streptomycetaceae Streptomyces albidoflavus Di-n-butyl phthalate [112]
Bacteria Streptomycetaceae Streptomyces bangladeshensis Di(2-ethylhexyl) phthalate [110]

4. Biological Activities of PAEs
4.1. Allelopathic/Phytotoxic Activity

Allelopathy refers to any direct or indirect harmful or beneficial effect exerted by one
plant on another through the production of chemical compounds that are released into the
environment. In some cases, allelopathy is suspected to contribute to the establishment
of dominance of certain plant species, including some invasive alien species. Due to the
phytotoxic property of allelochemicals, they are often considered valuable candidates
for environmentally friendly bioherbicies [113,114]. Di-n-octyl phthalate isolated from
Fimbristylis miliacea can remarkably inhibit the seed germination of tested weed species
Ludwigia hysopifolia, Echinochloa colonum, Cyperus iria, and Paspalam digitatum [62]. Zhu
et al. (2014) [72] isolated two allelochemicals, di(2-ethylhexyl) phthalate and di-n-butyl
phthalate, from the root exudates of the invasive plant, Ageratina adenophora. In a bioassay,
di-n-butyl phthalate was found to possess a significant inhibitory effect on seed germination
and seedling growth of A. adenophora. Meanwhile, these two compounds significantly
increased the superoxide dismutase (SOD) activity of A. adenophora’s leaves and caused
lipid peroxidation and cell membrane damage. Xuan et al. (2006) [115] identified the
derivatives of phthalic acids from root exudates of Echinochloa crusgalli and found that
diethyl phthalate strongly affects the seedling growth of alfalfa, Indian jointvetch, lettuce,
monochorea, and sesame. Huang et al. (2017) [116] analyzed the extracts of aerial parts
plants, root exudates, and plant rhizosphere soil of Chrysanthemum indicum to determine the
effect of the allelochemical diethyl phthalate, and the results show that it has a noticeable
impact on promoting the fresh weight of lettuce, as well as the root growth of lettuce and
rape. Shanab et al. (2010) [95] extracted four phthalate derivatives from Eichhornia crassipes,
including di-n-octyl phthalate, mono (2-ethylhexyl) phthalate, methyl dioctyl phthalate,
and diisooctyl phthalateis, which possess strong inhibitory effects on Chlorella vulgaris.

Physiological studies have indicated that PAEs can influence enzyme activity, which
might be at least one of their phytotoxicity mechanisms. Deng et al. (2017) [117] revealed
that as the concentration of PAEs secreted by tobacco roots increased, the rate of production
of superoxide anion radicals, the concentration of malondialdehyde, and the activity of
peroxidase and SOD in tobacco root increased significantly. A series of changes could re-
duce the root system’s antioxidant properties and cause oxidative damage to the apical cell
membrane system, thereby affecting root absorption and ultimately showing autotoxicity.
Dong et al. (2016) [67] extracted diisobutyl phthalate and di-n-butyl phthalate from the
ethyl acetate extract of C. fracta, both of which show a strong inhibitory effect on the growth
of Heterosigma akashiwo and Gymnodinium breve, which may be related to the production of
reactive oxygen species (ROS) induced by diisobutyl phthalate and di-n-butyl phthalate
in algal cells. Excessive ROS inhibits the activities of catalase and SOD, leading to lipid
oxidation and the destruction of algae cell membranes.

4.2. Antimicrobial Activity

Natural products, including secondary metabolites produced by plants and microor-
ganisms, have long been studied for their antimicrobial activity in the search for eco-friendly
substitutes for synthesized chemicals [118]. Di(2-ethylhexyl) phthalate and di-n-butyl
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phthalate isolated from B. mcbrellneri show broad-spectrum antibacterial activity [108].
Di(2-ethylhexyl) phthalate can inhibit the growth of gram-positive (S. epidermidis, MIC
of 9.37 µg/mL; S. aureus, MIC of 18.75 µg/mL) and gram-negative bacteria (E. coli, MIC
of 37.5 µg/mL; P. aeruginosa and Klebsiella pneumoniae, MIC at 75 µg/mL for both). Di-
n-butyl phthalate also inhibits the growth of gram-positive (Bacillus subtilis and S. epi-
dermidis, MIC at 18.75 µg/mL for both) as well as gram-negative bacteria (E. coli and
P. aeroginosa, MIC at 37.5 µg/mL for both). Di(2-ethylhexyl) phthalate isolated from the
flowers of Calotropis gigantean exerts antimicrobial activity against B. subtilis with a MIC of
32 µg/mL [119]. There are also reports on the antimicrobial activity of di-n-butyl phthalate
isolated from Streptomyces albidoflavus showing a MIC for E. coli of 53 µg/mL, with B. subtilis
at 84 µg/mL [112]. Four phthalate derivatives isolated from E. crassipes also exert signifi-
cant antibacterial activity against gram-positive bacteria (B. subtilis and Streptococcus faecalis)
and gram-negative bacteria E. coli, and antifungal activity against Candida albicans [95].
In another study, El-Mehalawy et al. (2008) [120] found that di(2-ethylhexyl) phthalate
could be produced by certain bacteria, including Tsukamurella inchonensis, Corynebacterium
nitrilophilus, and Cellulosimicrbium cellulans, and di(2-ethylhexyl) phthalate has the function
to inhibit fungal spore germination, cell membrane growth, and the production of total
lipids and total protein. Li et al. (2021) [121] isolated di-n-butyl phthalate from a new
marine Streptomyces sp. and found this compound significantly inhibited spore germination
and mycelial growth of Colletotrichum fragariae. In addition to this, an obvious decrease
was detected in sugar and protein contents of C. fragariae mycelia. Other studies have
shown similar results. For instance, di-n-butyl phthalate was reported to inhibit spore
germination and mycelium growth of Colletotrichum gloeosporioides, Colletotrichum musae,
and Gaeumannomyces graminis [122–124].

Janu and Jayanthy (2014) found that diethyl phthalate derived from the fungus As-
pergillus sp. increased the superoxide production and exerted ROS generated oxidative
stress in the cytoplasm of bacterial cells, which eventually led to cell death [125]. In addi-
tion, diethyl phthalate with antimicrobial properties was reported for its ability to interfere
with quorum sensing mediated virulence factors and biofilm formation in Pseudomonas
aeruginosa [126,127]. Another study demonstrated that dimethyl phthalate (concentra-
tion ranged from 20 to 40 mg/L) greatly inhibited the growth and glucose utilization of
Pseudomonas fluorescens, meanwhile the surface hydrophobicity and membrane permeabil-
ity of P. fluorescens were also increased. Dimethyl phthalate could lead to deformation of
the cell membrane and misopening of membrane channels. Additionally, RNA-Seq and
RT-qPCR results revealed that the expression of some genes in P. fluorescens were altered,
including the genes involved in energy metabolism, ATP-binding cassette transporting,
and two-component systems by dimethyl phthalate [128].

4.3. Insecticidal Activity

In addition to their phytotoxic and antimicrobial activity, PAEs were also found to be
insecticidal; attributed to inhibition of acetylcholinesterase enzyme activity, they possess
significant mosquito larvicidal activity. Therefore, some phthalates, such as synthetic
diethyl phthalate and dimethyl phthalate, have been used as active ingredients in insect
repellents [129,130]. Previously, Adsul et al. (2012) [79] isolated di-n-butyl phthalate from
the leaf extract of Ipomoea carnea via column chromatography, and this compound ws found
to be lethal to the fourth instar larvae of Aedes aegypti and Culex quinquefasciatus, with
the lethal concentrations of LC50 being 81.43 and 109.64 ppm, respectively. Di-n-butyl
phthalate and di(2-ethylhexyl) phthalate were isolated from the bacterium B. mcbrellneri;
because of their significant acetylcholinesterase inhibitory activity, they are also active
against the fourth instar of A. aegypti after 24 h of exposure [108]. On the other hand,
various PAEs were also constantly reported as possessing other biological activities, such as
anti-inflammatory, antiviral, anti-tumor, antidiabetic activity, etc., indicating their valuable
potential to be explored further in capacities other than plasticizers [17] (Figure 3).
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5. Conclusions and Perspectives

PAEs have attracted attention due to their ubiquitous presence in environmental
media. Many phthalates have been reported in nature, such as sediments, natural water,
soil, aquatic organisms, etc. [17,20,30,34]. On the other hand, as phthalates exist in many
laboratory products, such as instruments, reagents, solvents, and consumables, source
detection also poses analytical challenges [131–133]. PAEs in the environment are mainly
derived from chemical syntheses that are applied in building materials, care products,
medical equipment, and children’s toys, etc., which are convenient for human production
and life [19,27,132]. However, the published literature also indicated that PAEs can be
synthesized naturally, and they might serve as biologically active substances to enhance
competitiveness. The isotope labeling approach has demonstrated that PAEs can be biosyn-
thesized by several algae, possibly via the shikimic acid pathway [134–136]. Ecologically,
PAEs with allelopathic activity might facilitate the establishment of the dominance of plants
or algae that are capable of producing them. In addition, phthalate esters’ insecticidal
activity protects plants from being consumed by insects [17,129,137], not to mention the
fact that the antimicrobial activity of PAEs may reduce the damage caused by pathogenic
fungi and bacteria [17,107,108,118,119].

Studies have shown that some algae can also synthesize phthalates to defend against
biotic and abiotic factors. Babu and Wu (2010) [138] highlighted that some freshwater
algae and cyanobacteria species are capable of producing di-n-butyl phthalate and mono
(2-ethylhexyl) phthalate. These phthalates may be released into the environment under
pressure, affecting the aquatic ecosystem. The above conclusion is in good agreement with
Chen’s results, who reported on the de novo synthesis of di(2-ethylhexyl) phthalate and
di-n-butyl phthalate in a marine alga. In algal cells, biosynthesized PAEs are presumably
stored in cell membranes to maintain the flexibility of algal cells [134]. These findings
suggest that the production of phthalates may be a common phenomenon on both land
and in the sea. Meanwhile, some PAEs identified in the root exudates of various crops
could effectively reduce soil-borne diseases, improve soil properties, and promote plant
growth [64,101,139]. Nevertheless, the biosynthetic pathways of these secondary metabo-
lites are highly complex and are the result of the combined actions of biotic and abiotic
stressors, which are worthy of in-depth study by phytochemical researchers [134,138,140].

In conclusion, PAEs are widespread around us, not only from synthetic materials but
also from living organisms, such as microbes, algae, plants, etc. Chemically synthesized
PAEs have been widely applied in industry to improve the quality of various products. In
contrast, naturally synthesized PAEs can potentially serve as allelochemicals, antibiotics,
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or insecticides to increase the adaptability of donor species. It is challenging to quantify
the PAEs around us, and the amount of PAEs in the environment will continue to rise. We
know that PAEs can be synthesized naturally, which implies that certain microorganisms
are capable of degrading them, and their potential is worthy of further study to reduce
PAEs’ contamination of the environment.
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