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Abstract: Mycotoxins should be monitored in order to properly evaluate corn silage safety quality. 
In the present study, corn silage samples (n = 115) were collected in a survey, characterized for con-
centrations of mycotoxins, and scanned by a NIR spectrometer. Random Forest classification models 
for NIR calibration were developed by applying different cut-offs to classify samples for concentra-
tion (i.e., μg/kg dry matter) or count (i.e., n) of (i) total detectable mycotoxins; (ii) regulated and 
emerging Fusarium toxins; (iii) emerging Fusarium toxins; (iv) Fumonisins and their metabolites; and 
(v) Penicillium toxins. An over- and under-sampling re-balancing technique was applied and per-
formed 100 times. The best predictive model for total sum and count (i.e., accuracy mean ± standard 
deviation) was obtained by applying cut-offs of 10,000 μg/kg DM (i.e., 96.0 ± 2.7%) or 34 (i.e., 97.1 ± 
1.8%), respectively. Regulated and emerging Fusarium mycotoxins achieved accuracies slightly less 
than 90%. For the Penicillium mycotoxin contamination category, an accuracy of 95.1 ± 2.8% was 
obtained by using a cut-off limit of 350 μg/kg DM as a total sum or 98.6 ± 1.3% for a cut-off limit of 
five as mycotoxin count. In conclusion, this work was a preliminary study to discriminate corn si-
lage for high or low mycotoxin contamination by using NIR spectroscopy. 

Keywords: random forest; machine learning; emerging mycotoxins; forage 

Key Contribution: Corn silage, one of the main ingredients of dairy cow diets in many part of the 
world, can be co-contaminated by several regulated and emerging mycotoxins, thus causing reduc-
tion in feed intake, in milk yield and quality as well as reproductive problems in livestock. We cal-
ibrate a NIR apparatus using the Random Forest machine learning classification technique to de-
velop qualitative discriminant models able to rank silage based on mycotoxins co-contamination as 
on farm applicable risk screen tool. 
 

1. Introduction 
Silage is produced to preserve forage with high moisture content by controlled fer-

mentation and represents an important feed for cattle. Corn (Zea mays L.) is the most 
widely grown crop for silage [1,2] mainly due to its high-yielding, consistent source of 
forage, high digestibility, good animal palatability, and ability to be successfully ensiled. 
As a result, most dairy farms in northern Italy have adopted a cropping plan mainly based 
on the cultivation of corn hybrids for whole-crop plant production, thus increasing the 
self-sufficiency of the energy requirements [2]  

The microbiota in ensiled mass changes during conservation due to modification of 
temperature, humidity, oxygen availability, and pH conditions that normally occur in dif-
ferent ensiling stages. Further, poor storage conditions can also lead to undesirable 
mound contamination, mycotoxin production, and a reduction in nutritional value [3,4]. 

In particular, mycotoxins are secondary metabolites produced by fungi mainly be-
longing to Aspergillus, Fusarium, Alternaria, and Penicillium strains [5,6]. Corn silage can 
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be co-contaminated by several mycotoxins with negative consequences on animals, such 
as a reduction in feed intake and milk yield and quality or reproductive problems [7]. 
Importantly, ruminants are less affected by mycotoxins than monogastric animals thanks 
to their ability to degrade mycotoxin mother molecules [8,9]. Rumen microflora and feed 
particles contained in the rumen-reticulum compartment are capable of degrading, deac-
tivating, or binding toxic molecules. In particular, a study on monogastric animals showed 
that mycotoxins can compromise several intestinal functions, such as digestion, absorp-
tion, and permeability, and can result in lower productivity and poor health [10]. Due to 
the increasing use of silage in monogastric diets (e.g., swine or avian species such as broil-
ers, hens, geese, etc. [11]), its safety represents a pre-requisite for silage use in animal diets, 
not only for ruminants but for other species as well. 

Therefore, animal diets include starch and protein feeds, their by-products, and, 
mainly for ruminants, grazed forage, hay or grass, grass/legume, whole-crop forage 
maize, high moisture ear corn, high moisture corn, and small grain and sorghum silages 
[12]. Mycotoxins could contaminate all these feeds and the use of roughages in ruminants 
can increase the risk of mycotoxin exposure compared to swine and poultry that usually 
have less varied diets. Some evidence [13,14] reported the main exposure of cattle to my-
cotoxins is usually related to the consumption of contaminated silage, even if this aspect 
remains poorly investigated. To overcome this safety problem, inoculation of silage with 
lactic acid bacteria (LAB) before ensiling is a common practice to improve the fermenta-
tion quality and increase its aerobic stability [15–17]. However, the antifungal effects of 
this practice are uncertain, particularly in the oxygen-rich microenvironment of silage in 
which caked and clumpy areas develop visible green-gray mold indicative of mycotoxin 
contaminations, such as aflatoxins and several Fusarium-produced mycotoxins [18–20]. 

Despite the potential benefits of using LAB inoculants for preserving silage safety, 
Ogunade et al. [4] reported that few studies have examined the use of mold-inhibiting 
chemical additives or microbial inoculants to prevent or reduce mycotoxin contamination 
during different ensiling stages. As recently reported [21,22], some LAB were able to re-
duce aflatoxin contamination in corn silage, whereas the same tested strains did not re-
duce these mycotoxins in high moisture corn. Furthermore, analysis of levels of mycotox-
ins detectable in silage indicated that LAB inoculants interacted with several fungal pop-
ulations by changing the mycotoxin profile relative to untreated silage, thereby increasing 
levels of some mycotoxins and decreasing levels of others [16,17,20]. Consequently, future 
investigations should examine the relationship between LAB and mycotoxigenic fungi 
during ensiling in an effort to develop methods to produce safe silage. 

Hence, global mycotoxin regulations are essential to keep levels of mycotoxin low 
while following the recommended agricultural, storage, and processing practices. How-
ever, regulators have focused on a few groups of mycotoxins while several “emerging 
toxins” can contaminate both concentrate and forage [23]. Further, feeds are rarely con-
taminated by only one mycotoxin, but more often by several mycotoxins simultaneously. 
A recent survey carried out on corn silage showed multi-mycotoxin contamination and 
indicated that 47% of samples contained five or more mycotoxins out of the 22 analyzed 
[24].  

The quantification of both regulated and emerging toxins is necessary to evaluate 
feed safety. The most common approach to monitoring mycotoxins relies on chromato-
graphic and immunological methods [25,26]. Such techniques allow for accurately quan-
tifying multiple mycotoxins. However, these approaches are expensive and time-consum-
ing due to the extraction and clean-up steps. Alternative cheaper and faster methods have 
been proposed and are increasingly being applied to complement the standard analytical 
technique [27]. Emerging mycotoxin detection/sorting techniques include biosensors for 
cereal [28], nano-biosensors for feed [29], -omics tools [30], and other rapid and non-de-
structive quantifications (see Fumagalli et al. 2021 for a review). 

Recently, Mota et al. [31] reviewed the use of sensor-based electronic nose systems 
for mycological analysis. The review shows that sensor-based electronic nose systems are 
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mostly focused on the food industry and targeting the genus Penicillium in particular, but 
contaminations from Aspergillus and Fusarium are also investigated via the sensor-based 
electronic nose. Near-infrared spectroscopy (NIR) and an electronic tongue and electronic 
nose have been at the forefront of quality control technologies in the food industry due to 
their real-time data processing capabilities [32]. As an example, the use of an electronic 
nose was recently applied for assessing aflatoxin B1 and fumonisins contamination in 316 
and 229 corn samples, respectively, achieving the best classification result with the artifi-
cial neural network. The aim was to investigate whether the electronic nose was capable 
of grouping samples contaminated at levels above or below the legal limits, achieving 
correct estimation for aflatoxin B1 in about 77% of samples and 78% of correct classifica-
tions for Fumonisins [33]. 

The first application of infrared spectroscopy to the analysis of microorganisms can 
be traced back to the 1950s [34,35]. Moreover, in the 1980s, papers on the use of NIR to 
detect fungal contamination [36] or for quantifying mycotoxins in barley, corn, and wheat 
[37] were published. More recently, a linear discriminant analysis was applied to deter-
mine Aspergillus spp. contamination levels in peanuts by comparing NIR spectroscopy 
and an electronic nose [38]. Other studies conducted on brown rice samples artificially 
inoculated with Aspergillus flavus and A. parasiticus strains of fungus, demonstrated that 
NIR and MIR technology had the potential to simultaneously detect aflatoxin B1, B2, G1, 
and G2 while achieving good predictive accuracy for both NIR (R2 = 0.936–0.973, RPD = 
2.5–4.0) and MIR spectroscopy (R2 = 0.922–0.970, RPD = 2.5–4.0) [39]. Therefore, Infrared 
(IR) spectroscopy can be used to quickly assess the hygiene quality of the feeds, other than 
their chemical composition. In particular, the IR spectroscopy is rapid, non-destructive, 
versatile, often applicable on-field, and requires no chemicals. All these characteristics 
have led to its use in multiple applications [40].  

As reported by Min and Cho [41], spectroscopic techniques have proven to be alter-
native tools for the early detection of mycotoxins in agricultural products, and their ad-
vantages over conventional invasive methods are related to their rapidity and non-de-
structive characteristics. Because of the deleterious health effects of mycotoxins, the quick 
monitoring of animal feed contamination can avoid economic losses while preserving an-
imal health. The use of this technology favors quick feedback in the field, and a larger and 
more frequent number of analyses may be performed, ensuring greater safety in the use 
of the cereal in both animal and human nutrition [42]. Moreover, the use of so-called 
“rapid methods” is highly relevant for improving knowledge on the presence and distri-
bution of mycotoxins in food and feed. NIR analysis represents one of the most promising 
tools for farm screening silage mycotoxin tools as affirmed by Cheli et al. [18].  

Quantification models can lack the sensitivity necessary to determine mycotoxin con-
tamination, due to the small size of mycotoxins molecules [25] present in low concentra-
tions in the range of ppm (mg/mL) or a few parts per billion (ppb; ng/mL), and infrared 
spectroscopy currently is not always sufficiently sensitive for this quantitative purpose 
[37].  

According to previous reports describing the strengths and criticalities of the appli-
cation of NIR spectroscopy in the quantification or discrimination of mycotoxins, an alter-
native approach was proposed to develop qualitative discriminant models for the classi-
fication of mycotoxins [19,20]. Due to the difficulty of the NIR spectrometer to develop 
robust regression models for the quantification of individual mycotoxins, and in relation 
to the fact that silages are usually subject to co-contamination of these toxins, the aim of 
the current study was therefore to obtain qualitative models able to discriminate silage for 
total concentrations or total counts of groups of mycotoxins. In order to rank silage based 
on mycotoxins co-contamination, we calibrate a NIR apparatus using the Random Forest 
(RF), a machine learning classification technique. 

2. Results 
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The acquired spectra were assessed using Principal Component Analysis (PCA) to 
identify putative outliers. No samples had values both outside the F-residuals and Ho-
telling’s T2 threshold values. Consequently, no spectrum was removed (Figure 1a). 

 

 

 
Figure 1. PCA results: (a) Hotelling’s T2 values and F-residuals plot were performed in principal 
component analysis to detect spectra outliers with an interval of confidence of 99%; (b) rotated load-
ings; and (c) rotated subject scores. 

a 

c 

b 
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The samples included in calibration were characterized for chemical, fermentative, 
and organoleptic traits and mycotoxin contamination. Chemical and fermentative traits 
are reported in Table 1 and data were adapted by Gallo et al. [20].  

Table 1. Chemical, biological, and fermentative traits (% DM) characterizing corn silages. 
 Chemical and Biological Parameters (% DM) 

Items Mean Standard Deviation 
DM (% fresh matter) 34.34 2.38 

Ash 5.78 0.13 
CP 8.26 0.44 
EE 2.94 0.09 

NDF 37.24 1.27 
ADF 24.74 0.92 
ADL 3.00 0.16 
NDIP 1.02 0.13 
ADIP 0.74 0.09 

24 h NDFD (% NDF) 50.64 1.80 
Starch 31.54 2.77 

 Fermentative and Organoleptic Parameters (% DM) 
 Mean Standard Deviation 

pH (dmnl) 3.82 0.13 
Acetic acid 3.19 0.50 

Propionic acid 0.18 0.14 
Butyric acid 0.005 0.003 
Lactic acid 3.21 0.82 

Lactic to Acetic  1.32 0.59 
Ethanol 0.52 0.13 

1,2 propanediol 0.50 0.21 
N-NH3 (% Total N) 10.46 2.56 

The variables included in the NIR calibration were the count and sum (i.e., concen-
tration) of different secondary metabolites produced by some fungal organisms. The NIR 
calibration concerned total counts of mycotoxins and the sum of single mycotoxin concen-
trations of mycotoxigenic fungi species such as Aspergillus, Fusarium, Penicillium, and Al-
ternaria. Other variables included in calibration were regulated and emergent Fusarium-
produced mycotoxins, only emerging Fusarium-produced mycotoxins, Fumonisins myco-
toxins produced by fungi of the Fusarium genus, and lastly, Penicillium produced myco-
toxins. 

The contamination levels of the original 115 corn samples are reported in Table 2.  

Table 2. Descriptive statistics for sums (μg/kg DM) and counts (n) of Regulated and Emerging my-
cotoxins in corn silage in the original database. 

Items Mean Sd3 Skewness Kurtosis 25% 
Percentile 

50% 
Percentile 

75% 
Percentile 

Sum of mycotoxins 5895.70 7252.46 2.08 4.37 1208.68 2643.24 7235.01 
Sum of R&E-Fusarium toxins1 4781.04 6539.44 2.33 5.54 981.76 2077.46 5446.44 

Sum of E-Fusarium toxins2 2453.83 3571.47 2.82 8.19 641.81 1187.43 2125.63 
Sum of Fumonisins 2181.59 3430.07 2.25 4.58 256.67 620.21 2476.63 

Sum of Penicillium toxins 177.74 221.88 2.25 6.44 30.66 67.67 243.14 
Count of mycotoxins 26.20 6.42 0.44 −0.07 21.50 26.00 30.50 

Count of R&E-Fusarium toxins1 15.33 3.61 0.51 1.67 13 16 17 
Count of E-Fusarium toxins2 7.02 1.73 0.00 0.76 6 7 8 

Count of Fumonisins 5.45 1.61 −0.46 −0.25 4 6 7 
Count of Penicillium toxins 3.61 1.25 0.26 −0.16 3 4 4 

1 R&E-Fusarium toxins, Regulated and Emerging -Fusarium toxins: 2 E-Fusarium toxins, Emerging 
Fusarium toxins 3 Sd, Standard Deviation. 
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The samples included in this study rank between low-l to high-contamination levels 
from a minimum of 14 to a maximum of 45 types of mycotoxins detected in the 115 corn 
silages, with a mean of 26.20 ± 6.42 and a 25% and 75% quartile of 21.50 and 30.50, respec-
tively. Moreover, the average concentration of total mycotoxins was 5895.70 ± 7252.46 
μg/kg DM. The mean concentration of emerging Fusarium toxins was 2453.83 ± 3571.47 
μg/kg DM. Conversely, the mean concentration of regulated and emerging Fusarium tox-
ins was 4781.04 ± 6539.44 μg/kg DM, whereas the counts of this mycotoxin category were 
15.33 ± 3.61. Concerning all fumonisins mycotoxins, the range of concentration values was 
16,104.84 μg/kg DM for a maximum of eight co-occurrence of these, and high fumonisins 
occurrences were observed for non-regulated FB3, FB4, FA1, and masked forms of FA1. 
Penicillium toxins ranked between a minimum of 2.12 to a maximum of 1286.49 μg/kg DM. 
Ochratoxin A was not detected in any samples, and mycophenolic acid and/or its metab-
olite mycophenolic acid IV was found in only five samples. 

Calibration Model Results 
In Table 3, we reported the performances of the total sum and mycotoxin count cali-

brations for each cut-off value for the balanced validation dataset. The average accuracy 
ranked from 82.2 ± 5.9%, using a cut-off of 4000 μg/kg DM, to 96.0 ± 2.7%, adopting the 
highest cut-off value of 10,000 μg/kg DM. Sensitivity and specificity were >80%, inde-
pendently, if the threshold applied to discriminate the two classes was 4000, 7000, or 
10,000 μg/kg DM. The lowest sensitivity and specificity (80.2 ± 8.5% and 81.3 ± 8.0%, re-
spectively) were obtained using 4000 μg/kg DM as a threshold, whereas the best model 
performance was achieved using 10,000 μg/kg DM as a threshold. 

In regard to the total count of mycotoxins in corn silage samples, the best model was 
achieved using 34 co-occurring mycotoxins to discriminate the high vs. low classes. In this 
model, misclassification of the upper contamination was negligible with 0.03 ± 0.30 sam-
ples wrongly attributed to class 1 and 2.7 ± 1.7 to class 2. 

Table 3. Near-infrared spectroscopy calibration parameters from the prediction set on the total sum 
(μg/kg DM) and count (n) of Mycotoxin class1. 

TOTAL SUM of Mycotoxins 
 Cut off 4000 µg/kg DM Cut off 7000 µg/kg DM Cut off 10,000 µg/kg DM 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 25.7 ± 2.7 6.3 ± 2.7 35.6 ± 2.4 5.4 ± 2.4 42.9 ± 2.1 3.1 ± 2.1 
Class2 4.6 ± 2.3 25.5 ± 2.3 1.3 ± 1.5 35.8 ± 1.5 0.4 ± 0.9 40.7 ± 0.9 

Accuracy 82.2 ± 5.9% 91.5 ± 3.5% 96.0 ± 2.7% 
Sensitivity 80.2 ± 8.5% 86.9 ± 5.9% 93.2 ± 4.6% 
Specificity 81.3 ± 8.0% 96.6 ± 4.0% 99.2 ± 2.2% 

CI 2 (70.4 ± 6.9%), (90.6 ± 4.3%) (83.1 ± 4.4%), (96.5 ± 2.2%) (89.7 ± 3.7%), (98.8 ± 1.4%) 
p value <0.05 <0.05 <0.05 

TOTAL COUNT of mycotoxins 
 Cut off n = 28 Cut off n = 31 Cut off n = 34 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 30.9 ± 2.4 5.1 ± 2.4 38.9 ± 1.7 4.2 ± 1.7 46.3 ±1.7 2.7 ±1.7 
Class2 3.2 ± 2.2 28.9 ± 2.2 0.6 ± 1.1 38.4 ± 1.1 0.03 ± 0.3 44.0 ± 0.3 

Accuracy 87.8 ± 4.4% 94.2 ± 2.6% 97.1 ± 1.8% 
Sensitivity 85.7 ± 6.7% 90.4 ± 3.9% 94.6 ± 3.5% 
Specificity 90.2 ± 6.7% 98.5 ± 2.8% 99.9 ± 0.7% 

CI 2 (77.8 ± 5.3%), (94.3 ± 3.0%) (86.9 ± 3.4%), (98.1 ± 1.5%) (91.5 ± 2.7%), (99.3 ± 0.7%) 
p value <0.05 <0.05 <0.05 

1 Class 1, class of samples lower than cut-off limits; Class 2, class of samples higher than cut-off 
limits 2 CI, Confidence Interval 95%. 
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In Table 4, we report all the calibration models related to regulated or emerging 
Fusarium-produced mycotoxin (i.e., R&E-Fusarium toxins). Inferior performances were 
achieved using cut-off limits of 1500 μg/kg DM and 13 for sum or count, respectively. 
Accuracy levels were lower than 80% in these two models, although we recorded an im-
provement in ranking samples within the class with contamination levels of 2500 μg/kg 
DM for the Fusarium-mycotoxin contamination sum and 15 for the Fusarium-mycotoxin 
count. In both cases, the sum and count NIR calibration showed a relatively narrow con-
fidence interval (95%) of about 77.9 ± 4.7%, 93.2 ± 2.9% and 71.1 ± 5.6%, 90.1 ± 3.8%, respec-
tively. 

Table 4. Near-infrared spectroscopy calibration parameters from the prediction set on the sum 
(μg/kg DM) and count (n) of the Regulated and Emerging Fusarium-toxins class1. 

SUM of R&E-Fusarium Toxins 2 
 Cut off 1500 µg/kg DM Cut off 2000 µg/kg DM Cut off 2500 µg/kg DM 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 17.4 ± 2.4 6.6 ± 2.4 25.2 ± 2.5 6.8 ± 2.5 29.89 ± 2.53 8.11 ± 2.53 
Class2 5.1 ± 2.7 23.9 ± 2.7 3.7 ± 2.5 35.3 ± 2.5 2.86 ± 2.44 43.14 ± 2.44 

Accuracy 77.9 ± 6.1% 85.1 ± 4.8% 86.9 ± 4.0% 
Sensitivity 72.6 ± 10.0% 78.6 ± 7.8% 78.7 ± 6.7% 
Specificity 82.4 ± 9.2% 90.4 ± 6.5% 93.8 ± 5.3% 

CI 3 (64.6 ± 6.8%), (88.0 ± 4.7%) (74.8 ± 5.6%), (92.3 ± 3.5%) (77.9 ± 4.7%), (93.2 ± 2.9%) 
p value <0.05 <0.05 <0.05 

Count of R&E-Fusarium toxins 2 
 Cut off n = 13 Cut off n = 14 Cut off n = 15 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 12.8 ± 2.0 5.2 ± 2.0 18.5 ± 2.4 7.49 ± 2.35 24.1 ± 2.5 7.9 ± 2.5 
Class2 5.2 ± 2.7 15.8 ± 2.7 5.3 ± 2.7 25.67 ± 2.73 4.7 ± 2.7 33.3 ± 2.7 

Accuracy 73.3 ± 7.7% 77.5 ± 5.6% 82.0 ± 4.9% 
Sensitivity 71.2 ± 10.9% 71.2 ± 9.1% 75.4 ± 7.8% 
Specificity 75.1 ± 12.9% 82.8 ± 8.8% 85.6 ± 7.2% 

CI 3 (57.0 ± 8.3%), (85.9 ± 5.8%) (64.6 ± 6.2%), (87.4 ± 4.3%) (71.1 ± 5.6%), (90.1 ± 3.8%) 
p value 0.049 ± 0.091 <0.05 <0.05 

1 Class 1, class of samples lower than cut-off limits; Class 2, class of samples higher than cut-off 
limits 2 R&E-Fusarium toxins, Regulated and Emerging -Fusarium toxins 3 CI, Confidence Interval 
95%. 

Regarding mycotoxins that have no specific regulations (Table 5), satisfactory cali-
bration models for sum parameters were developed using the three different thresholds 
of 700, 1000, and 1200 μg/kg DM; however, in the latter case, the accuracy achieved was 
~90% with a 95% CI of 83.2 ± 3.8%, 95.4 ± 2.2% and a precision of 94.9%. Similarly, calibra-
tion for a count of emerging Fusarium-mycotoxin showed good performances when the 
limit of class determination was eight co-occurring emerging mycotoxins. In this case, 
only 3.9 ± 2.2 low-contamination samples were erroneously attributed to the high-contam-
ination category. 

Table 5. Near-infrared spectroscopy calibration parameters from the prediction set on the sum 
(μg/kg DM) and count (n) of Emerging Fusarium-toxins class1. 

SUM of E-Fusarium Toxins 2 
 Cut off 700 µg/kg DM Cut off 1000 µg/kg DM Cut off 1200 µg/kg DM 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 13.3 ± 2.3 6.67 ± 2.28 23.8 ± 2.7 8.3 ± 2.7 27.1 ± 2.8 8.0 ± 2.8 
Class2 3.3 ± 1.9 33.66 ± 1.92 2.2 ± 1.8 56.8 ± 1.8 1.5 ± 1.7 63.6± 1.7 

Accuracy 82.4 ± 5.2% 88.5 ± 3.1% 90.6 ± 3.1% 
Sensitivity 66.7 ± 11.3% 74.2 ± 8.5% 77.3 ± 8.0% 
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Specificity 91.0 ± 5.2% 96.2 ± 3.1% 97.8 ± 2.7% 
CI 3 (70.2 ± 6.1%), (91.1 ± 3.7%) (80.1 ± 3.8%), (94.1 ± 2.2%) (83.2 ± 3.8%), (95.4 ± 2.2%) 

p value 0.019 ± 0.046 <0.05 <0.05 
COUNT of E-Fusarium toxins 2 

 Cut off n = 6 Cut off n = 7 Cut off n = 8 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 16.0 ± 2.2 7.0 ± 2.3 30.6 ± 2.9 8.4 ± 2.9 51.1 ± 2.2 3.9 ±2.2 
Class2 5.2 ± 2.3 21.8 ± 2.3 2.26 ± 2.18 51.7 ± 2.2 0 76 

Accuracy 75.7 ± 5.8% 88.5 ± 3.8% 97.0 ± 1.7% 
Sensitivity 69.7 ± 9.9% 78.4 ± 7.3% 92.9 ± 4.0% 
Specificity 80.9 ± 8.5% 95.8 ± 4.0% 100.0% 

CI 3 (61.6 ± 6.4%), (86.6 ± 4.5%) (80.3 ± 4.5%), (94.1 ± 2.8%) (92.6 ± 2.4%), (99.1 ± 0.9%) 
p value <0.05 <0.05 <0.05 

1 Class 1, class of samples lower than cut-off limits; Class 2, class of samples higher than cut-off 
limits 2 E-Fusarium toxins, Emerging Fusarium toxins 3 CI, Confidence Interval 95%. 

Concerning the fumonisins sum NIR calibration (Table 6), the average level of accu-
racy was 88.3 ± 4.3% with a precision average of 92.4%. In the same classification, the allo-
cation by the model to class 2 achieved, on average, a precision of 84.6%. 

Regarding the same mycotoxin contamination parameter, setting 6 as the classifica-
tion limit allowed us to obtain a good classification RF model. The accuracy was 92.8 ± 
3.3%; a few samples (i.e., 1.0 ± 1.4) were misclassified in class, with low co-occurrence 
contamination, and the specificity for the high level was 97.6 ± 3.1%. 

Table 6. Near-infrared spectroscopy calibration parameters from the prediction set on the sum 
(μg/kg DM) and count (n) of fumonisins mycotoxin class1. 

SUM of Fumonisins 
 Cut off 400 µg/kg DM Cut off 700 µg/kg DM Cut off 1000 µg/kg DM 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 13.5 ± 2.1 5.5 ± 2.1 27.1 ± 3.0 7.0 ± 3.0 34.8 ± 2.7 6.2 ± 2.7 
Class2 5.2 ± 2.2 11.8 ± 2.2 4.9 ± 2.5 26.1 ± 2.5 2.9 ± 2.3 34.1 ± 2.3 

Accuracy 70.5 ± 7.3% 81.8 ± 5.2% 88.3 ± 4.3% 
Sensitivity 70.8 ± 11.1% 79.6 ± 8.7% 84.9 ± 6.6% 
Specificity 69.3 ± 12.8% 84.3 ± 8.0% 92.2 ±6.3% 

CI 2 (52.8 ± 7.6%), (84.0 ± 5.7%) (70.44 ± 6.0%), (90.1 ± 3.9%) (79.2 ± 5.2%), (94.3 ± 3.0%) 
p value 0.074 ± 0.121 <0.05 <0.05 

COUNT of Fumonisins 
 Cut off n = 4 Cut off n = 5 Cut off n = 6 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 13.5 ± 2.1 4.5 ± 2.1 25.0 ± 2.1 6.0 ± 2.1 45.2 ± 2.9 5.8 ± 2.9 
Class2 5.6 ± 2.0 9.4 ± 2.0 5.7 ± 2.6 21.3 ± 2.6 1.0 ± 1.4 43.0 ± 1.4 

Accuracy 69.5 ± 7.8% 79.8 ± 5.3% 92.8 ± 3.3% 
Sensitivity 75.2 ± 11.7% 80.6 ± 6.8% 88.7 ± 5.6% 
Specificity 62.7 ± 13.5% 78.9 ± 9.6% 97.6 ± 3.1% 

CI 2 (51.3 ± 8.2%), (84.0 ± 5.9%) (67.3 ± 5.9%), (89.0 ± 4.0%) (85.8 ± 4.2%), (96.9 ± 2.2%) 
p value 0.122 ± 0.153 <0.05 <0.05 

1 Class 1, class of samples lower than cut-off limits; Class 2, class of samples higher than cut-off limits 
2 CI, Confidence Interval 95%. 

The last calibration was about Penicillium-produced mycotoxin concentration with 
the count reported in Table 7. The accuracy values of both threshold contaminations of 
250 and 350 μg/kg DM ranged from 90 to 95%, with an average of 92.9% and 95.1%, re-
spectively. Better results were obtained both for sensitivity and specificity using 350 μg/kg 
DM concentration as the class limit (i.e., 91.0 ± 4.9% and 99.7 ± 1.6%, respectively). 
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Adopting three or five as a cut-off in terms of count class division increased the ac-
curacy by 18.3% with no misclassified samples in class 1. 

Table 7. Near-infrared spectroscopy calibration parameters from the prediction set on the sum 
(μg/kg DM) and count (n) of Penicillium mycotoxin class1. 

SUM of Penicillium Toxins 
 Cut off 150 µg/kg DM Cut off 250 µg/kg DM Cut off 350 µg/kg DM 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 24.9 ± 2.4 7.1 ± 2.4 36.8 ± 2.1 4.2 ± 2.1 42.8 ± 2.3 4.3 ± 2.3 
Class2 4.5 ± 2.7 24.5 ± 2.7 1.3 ± 1.8 35.7 ± 1.8 0.1 ± 0.7 41.9 ± 0.7 

Accuracy 81.0 ± 5.8% 92.9 ± 3.4% 95.1 ± 2.8% 
Sensitivity 77.9 ± 7.4% 89.8 ± 5.2% 91.0 ± 4.9% 
Specificity 84.4 ± 9.2% 96.4 ± 4.8% 99.7 ± 1.6% 

CI 2 (69.1 ± 6.6%), (89.7 ± 4.4%) (85.0 ± 4.4%), (97.3 ± 2.0%) (88.5 ± 3.8%), (98.4 ± 1.5%) 
p value <0.05 <0.05 <0.05 

COUNT of Penicillium toxins 
 Cut off n = 3 Cut off n = 4 Cut off n = 5 
 Class1 Class2 Class1 Class2 Class1 Class2 

Class1 24.0 ± 2.6 6.0 ± 2.6 42.5 ± 2.4 4.5 ± 2.4 56.4 ± 1.5 1.6 ± 1.5 
Class2 5.2 ± 2.1 21.8 ± 2.1 0.9 ± 1.4 41.4 ± 1.4 0 52.0 ± 0 

Accuracy 80.2 ± 5.3% 94.0 ± 3.1% 98.6 ± 1.3% 
Sensitivity 79.9 ± 8.6% 90.5 ± 5.0% 97.3 ± 2.5% 
Specificity 80.6 ±7.8% 97.9 ± 3.3% 100.00% 

CI 2 (67.7 ± 5.9%), (89.5 ± 4.0%) (87.0 ± 4.0%), (97.7 ± 1.8%) (94.3 ± 2.1%), (99.7 ± 0.5%) 
p value <0.05 <0.05 <0.05 

1 Class 1, class of samples lower than cut-off limits; Class 2, class of samples higher than cut-off 
limits 2 CI, Confidence Interval 95%. 

3. Discussion 
The assessment of multiple mycotoxin contamination in feedstuffs and total mixed 

rations should be considered when formulating dairy cow diets, albeit those mycotoxins 
may be below regulatory limits [43]. In the current manuscript, we developed different 
NIR calibrations to provide a tool to rapidly assess mycotoxin co-contamination risk to 
animals, with a special focus on corn silage total contamination. The mean values of nu-
tritional composition or fermentative traits were typical for corn silage produced in this 
geographical area [20]. The mycotoxins included in the calibration belong to the main my-
cotoxigenic fungi Aspergillus spp., Fusarium spp., and Penicillium spp. which are prevalent 
in corn silage [44]. In the current manuscript, we aggregated mycotoxins produced by the 
same fungal genera and quantitatively measured them using the LC-MS/MS reference 
method. In order to have more information regarding the specific mycotoxins that were 
detected in our samples, we referred Gallo et al. [20] for details. The proposed calibration 
aims to develop a rapid and non-destructive method to classify corn silage into low or 
high contamination classes, representing a qualitative clustering technique. 

3.1. Mycotoxin’s Contamination Occurrences and the NIR Calibration Approach 
In particular, Aspergillus produced the mycotoxins rugulusovin or brevianamide F, 

as detected in most of the corn silages, with an incidence >88.9%. Despite these com-
pounds being assigned to this class, they represent the unspecific diketopiperazine pro-
duced by many microbial species among several Aspergillus strains. No aflatoxins or 
nigragillin were detected, but emodin was detected at low concentrations in more than 
50.0% of samples. Kojic acid was found in most of the corn silages, and incidences lower 
than 21% were calculated for 3-nitropropionic acid, averufin, bis(methylthio)gliotoxin, 
and asperphenamate [20]. Fusarium produced mycotoxins were quantified and the regu-
lated FB1 and FB2 were detected in the majority of the corn silages with occurrence values 
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higher than 95.5%; high fumonisin occurrences were also observed for non-regulated FB3, 
FB4, FA1, and masked forms of FA1, their incidences being higher than 54.2%. The aver-
age concentrations of FB6 and FA2 results were lower than 12.4 μg/kg DM, and ZEA was 
detected in all samples with incidences ranging from 22.2% to 100.0%. No trichothecenes 
type-A, regulated T-2, and HT-2 toxins were detected; trichothecenes type-B and DON 
were detected as well as nivalenol and deoxynivalenol-3-glucoside, but at low concentra-
tions and low incidences. Other than regulated Fusarium produced mycotoxins, siccanol, 
moniliformin, equisetin, epiequisetin, and bikaverin were detected in the majority of an-
alyzed corn silages. Finally, enniatins were detected in some samples, while Beauvericin 
was quantified in the majority of corn silages with an incidence of >83.3%. Regarding Pen-
icillium produced mycotoxins, ochratoxin A and barceloneic acid were not detected in any 
samples, whereas 7-hydroxypestalonic, pestalotin, oxaline, phenopyrrozin, and ques-
tiomycin A were detected at low concentrations (<50.0 μg/kg DM) in several corn silages, 
with incidences higher than 60%. Mycophenolic acid, as well as its metabolite mycophe-
nolic acid IV, were detected only in two samples.  

Since corn silage could be contaminated by a high number of regulated and emerging 
mycotoxins, it was decided to calibrate the NIR spectrometer in relation to their concen-
tration or count. The samples included in the study were randomly collected from live-
stock production realities representative of the intensive dairy farm system in Italy and 
consequently, their distribution in class was biased towards low levels of contamination. 
One of the major obstacles in mycotoxin modeling is related to mycotoxin monitoring data 
often being unbalanced towards low mycotoxin concentrations [45]. To obtain more ro-
bust and accurate calibrations, a re-balancing approach was adopted to obtain class-bal-
anced distribution. Re-balancing has been previously adopted in NIR calibration using 
different mathematical approaches, but ultimately by under-sampling the majority class 
and/or generating a new representative of the minority class [46–48]. Moreover, a recent 
study evidenced that the combination of oversampling and downsampling techniques 
performed better than using exclusively one or the other [49]. 

Here, we applied the “smote and undersample” algorithm to oversample the minor-
ity class by SMOTE while undersampling the majority class, as this method was specifi-
cally conceived to handle extremely imbalanced data [50]. The RF classification model was 
then applied as it has been successfully applied by others to classify single corn kernels 
with aflatoxin contamination from NIR spectra [51]. To evaluate real model performances 
not related to the possible random good distribution of samples, the process was repeated 
100 times and the results showed were the mean of these repetitions.  

3.2. NIR Calibrations 
The model developed in this study allowed us to obtain a good calibration in terms 

of accuracy, sensitivity, and specificity thanks to its ability to balance errors in datasets 
where classes are not equally distributed [52,53]. Such good performances were obtained 
thanks to the correlation between the NIR spectra for various functional groups and major 
fungal constituents.  

Fusarium mycotoxins are primarily produced by F. proliferatum and F. verticillioides 
and FB1 and FB2 appeared to be the most predominant among fumonisins [54]. FB1 and 
FB2 were detected in almost all samples included in this calibration; FB6 and FBA2, on the 
contrary, showed low incidences in our data. The ability of the NIR spectrometer to see 
Fusarium mycotoxins was supported by previous relatively good qualitative prediction 
using NIR spectrometer obtained for Fusarium verticillioides fungal infection, ergosterol, 
and Fumonisin B1 content with model performances from R2 = 0.78 for F. verticillioides and 
Fumonisin B1 to R2 = 0.81 for ergosterol content [53]. 

Fumonisin contamination in corn silage is usually ascribed to pre-harvest crop condi-
tions [4,18], but management strategies before harvest, can increase Fumonisin contamina-
tions. Here we see the importance of discriminating corn silage based on total Fumonisin 
mycotoxin contamination. This kind of forage is often infected by mycotoxin-producing 
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Fusarium fungi, first among all DON and ZEN but also their modified forms. In fact, pos-
itive correlations were established between concentrations of the co-occurring mycotoxins 
and their modified forms, and to avoid underestimation, it is necessary to also quantify 
modified mycotoxins; more than half of all forage corn samples (i.e., 57%) included in the 
study were co-contaminated with DON, ZEA, and other modified forms because DON 
and ZEN are produced by the same Fusarium species (F. graminearum and F. culmorum) 
[55]. Moreover, the great accuracy in predicting total contamination of mycotoxin in terms 
of count or concentrations was supported by comparative studies using NIRS and imag-
ing methods and concluding that NIR has good recognition of heavily mold-infected and 
lower infected kernels [56]. Further, the proliferation level of these toxic compounds in 
forage was strictly related to milk in its chemical composition with an accumulation of 
sphingolipids, together with purine and pyrimidine derivatives, in bad quality corn sam-
ples [57], which supports the importance of quickly determining mycotoxin corn silage 
contamination. 

The performances achieved for fumonisin mycotoxin contamination were in line 
with those reported by Levasseur-Garcia et al. [58] on 117 corn samples collected in Italy, 
Denmark, France, Hungary, The Netherlands, and Poland with a percentage of well-clas-
sified samples of 96%. Similar predictive capacities of NIR towards contamination by both 
fumonisins and ZEA were found by Tyska et al. [59]. In this study, a total of 676 Brazilian 
corn samples were employed to calibrate the NIR using 236 samples for FBs and 440 for 
ZEN contamination, achieving an R2 of 0.899 and 0.984, respectively.  

The complex mixture of mycotoxins in silages can originate from pre-harvest mold 
contamination, in particular for Fusarium spp., as well as from post-harvest contamination 
with toxins produced by fungal species such as Aspergillus and Penicillium [4]. Because of 
Penicillium's ability to grow in silage conditions (i.e., low oxygen and high carbon dioxide 
concentrations, low temperatures, and high concentrations of volatile fatty acids), the de-
termination of these fungi mycotoxins is particularly important. Importantly, P. roqueforti 
is the most frequently occurring toxicogenic fungal species in Europe [60]. Despite the 
concentration in samples included in the present study being lower than levels associated 
with animal disorders, the classification risk of Penicillium toxins is important to evaluate 
the co-contamination in corn silage.  

In all calibrations, the ability of NIR to differentiate between low contamination and 
high contamination toxins was greater using higher threshold classes both for the count 
and for the sum. NIR spectroscopy was able to provide information about the chemical 
functional groups in the molecules [37]. A fungal attack damages tissues and cells so the 
changes in corn silage properties, such as protein, carbohydrates, and lipid content, were 
related to changes in fungal contamination as reflected in their spectral signature [61]. 
Adopting a greater level of cut-off allows for better sorting between low and high con-
taminated corn silages.  

Critically, the current NIR calibrations were proposed as practical tools useful to clas-
sify corn silage by their contamination by developing qualitative predictive models. Both 
mycotoxins and fungi cannot be directly detected by NIR spectroscopy due to the lack of 
sensitivity of this method, but indirect information regarding the contaminations could 
be noted, e.g., changes related to alterations due to fungal attack are visible using the NIR 
system [62]. Another strength of this method is the possibility of performing simultaneous 
analysis of the different types of mycotoxins arising from the contamination of different 
fungi. To improve the proposed method, and make it more robust and applicable, it is 
necessary to expand the initial database of 115 samples. Additionally, the use of Vis/NIR 
spectroscopy can further improve the calibrations [63]. Functional groups (CH, NH, and 
OH) in chemical components could exhibit characteristic absorption in the Vis/NIR region 
which would result in significant changes in specific spectral bands during fungal growth. 
These changes could be reflected by Vis/NIR spectrum and NIR hyperspectral imaging 
(HSI) as reported by Mishra et al. [64]. 
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3.3. Practical Application 
In order to better explain the potentialities of our method, we report some recent 

studies published in the last three years showing the great practical-applicative potential-
ities of the use of NIR in monitoring mycotoxin contamination in several matrices used in 
animal or human nutrition in Table 8. In particular, the results obtained in our study were 
in line with the classification studies reported below [65–71]. The study reported here gave 
a practical application of NIR calibration in order to underline the importance of this type 
of approach as a practical tool to assess the safety of silage. For a deep overview of the 
previous studies using NIR for the prediction of mycotoxin in different feeds and food, 
please refer to Levasseur-Garcia [37]. 
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Table 8. Bibliographic information (i.e., source) published in the last three years regarding the use of NIR for predicting mycotoxin contaminations in different 
matrices. 

Feed Matrix Target Mycotoxin Wavelength Statistical Model * Results Obtained Practical Application Source 

Ground corn samples 

Fumonisin B1 and B2 900–1700 nm PLS, SVM, and LPLS-S 
R2 prediction = 0.71–0.91 

RMSEP = 12.08–22.58 mg/kg 
Pocket-sized NIR spectrometers 

controlled by a smartphone 
[65] 

  PCA, PLS-DA, and SVM-
DA 

Prediction accuracy = 86.3–88.2% 
Error in prediction = 11.8–13.7% 

  
      

Rice (Oryza sativa L.) Aflatoxin B1 400–2498 nm MSA + PLS 

Low-aflatoxin-level (≤35 μg/kg): 
R2 calibration = 0.72–0.99 

RMSEC = 0.11–5.02 μg/kg 
High-aflatoxin-level (>35 μg/kg): 

R2 calibration = 0.72–0.99 
RMSEC = 0.56–13.74 μg/kg 

Monitoring aflatoxin B1 contamina-
tion in milled rice during posthar-

vest storage 
[66] 

Almonds Aflatoxin B1 900–1700 nm PLS 
R2 = 0.786–0.958 

RMSEP = 0.089–0.197 μg/g 
Commercial application [67] 

Distiller’s dried grains Fumonisin B1 and B2 400–2500 nm PLS 
FB1 R2 = 0.80 
FB2 R2 = 0.79 

Potential to support decision mak-
ing regarding the use of feed ingre-
dients and, consequently, to protect 

animal health 

[68] 

Barley (Hordeum vul-
gare) 

Deoxynivalenol (cut off 
limit cut off 1250 μg/kg) 

10,000 cm−1–4000 
cm−1 

PLS-DA 
Sensitivity in cross-validation = 90.9% 
Specificity in cross-validation = 89.9% 

Green technique to monitor DON 
contamination 

[69] 

Corn products 
Fusarium verticillioides 

and F. graminearum 
1000–2500 nm PLS-DA Accuracy = 99.7% 

Monitoring the safety of feed and 
food supply 

[70] 

Wheat flour Deoxynivalenol  PLS-DA and PC-LDA 

Contamination level ≤ 450 μg kg−1 
Accuracy (PLS-DA) = 85–87.5% 
Error (PLS-DA) = 10–15% error; 

Accuracy (PC-LDA) = 85% 
Error (PC-LDA) = 10–15% error 

Screening method to evaluate DON 
contamination to support decision 

making in industries 
[71] 

* PLS = Partial least squares; SVM = Support vector machine; LPLS-S = local PLS based on global PLS score; PCA = principal component analysis; PLS-DA = partial 
least squares discriminant analysis; SVM-DA = support vector machine discriminant analysis; MSA = modified simulated annealing; PC-LDA = Principal Compo-
nent Analysis-Linear Discriminant Analysis. 
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4. Conclusions 
NIR spectroscopy has several advantages with respect to traditional analytical meth-

ods, mainly due to its capability of being a rapid, non-destructive, and economical tool 
capable of estimating several chemical-biological parameters simultaneously. Its applica-
tion to classify or estimate fungal and mycotoxin contamination has received more and 
more attention, however, the very low concentration levels of mycotoxin could limit the 
effective detection and quantification of corn silage contamination. The NIR method de-
veloped in the current paper was based on the detection of the sums or counts of a differ-
ent group of mycotoxins, while not focusing on a specific fungi toxin. Coupled with the 
contamination class re-balancing step, this method produced good calibration models in 
terms of accuracy, sensitivity, and specificity and appears to be a suitable screening 
method to provide rapid information regarding silage mycotoxin contamination. Samples 
belonging to a high contaminated class should be successively analyzed by conventional 
methods in order to assess the real risk of mycotoxin contamination for regulated animals 
in particular.  

5. Materials and Methods 
5.1. Sample Collection, Preparation, and Analysis 

A total of 115 corn silage samples were collected in a survey from dairy farms located 
in the Po Valley (Italy) and Sardinia. These farms were randomly selected and visited over 
the years 2017–2019. The collection was conducted by adopting a sampling procedure 
based on methods described by Undersander et al. 2005 from horizontal bunker silos. The 
wet sample was about 2 kg and was sampled from at least four different points of each 
bunker feed out face, placed in a clean plastic jar, hermetically closed, and analyzed as 
reported below. 

Each sample was dried at 60 °C in a ventilated oven until achieving a constant weight, 
then milled through a 1-mm and 0.5-mm screen using a laboratory mill (Thomas-Wiley, 
Arthur H. Thomas Co., Philadelphia, PA, USA), and stored for analysis. The 1-mm milled 
aliquot was intended for chemical, fermentative, and mycotoxin analysis, while the 0.5-
mm milled aliquot was intended for NIR analysis in order to remove spectral noise caused 
by particle size [72,73]. 

All 1-mm corn silages sampled were characterized for the presence and quantifica-
tion of fungal metabolites by using LC-MS/MS at the Department of Agrobiotechnology 
according to Sulyok et al. [74]. 

These authors validated a Liquid Chromatography coupled to a tandem Mass Spec-
trometry (LC-MS/MS) based method to quantify more than 500 secondary microbial me-
tabolites thanks to its high selectivity, sensitivity, robustness, and multi-analyte capability 
that allow for the determination of a large number of analytes simultaneously. 

The analytical procedure consists of weighing 5 g of samples and the subsequent ex-
traction with 20 mL acetonitrile/water/acetic acid (79:20:1, v/v/v) for 90 min on a rotary 
shaker (GFL, Burgwedel, Germany) for 90 min at room temperature in a horizontal posi-
tion. A volume of 500 μL of the extract was diluted with 500 μL of dilution solvent com-
posed of acetonitrile:water:acetic acid (20:79:1, v/v/v) in vials. Then, 5 μL was injected into 
an LC-MS/MS system with QTrap 5500 MS/MS (Sciex, Foster City, CA, USA) coupled with 
an Agilent 1290 series UHPLC system (Agilent Technologies, Waldbronn, Germany). 
Chromatographic separation was performed at 25 °C on a Gemini C18 column (150 × 4.6 
mm i.d.,5 μm particle size) equipped with a 4 × 3 mm precolumn with the same charac-
teristics (Phenomenex, Torrance, CA, USA). The eluents used were composed of metha-
nol/water/acetic acid (10:89:1, v:v:v) as eluent A and methanol/water/acetic acid (97:2:1, 
v:v:v) as eluent B. Scheduled multiple reaction monitoring was used for analyte detection. 
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Stock solutions of each reference standard of mycotoxin and fungal metabolite were pre-
pared by dissolving the substance, at 250 μg/mL, in acetonitrile with a few compounds 
dissolved in acetonitrile/water 1:1 (v/v), methanol, or water instead.  

Sixty-two intermediate mixes were prepared by mixing the stock solutions of 10 an-
alytes each, but the final multi-analyte standard was freshly prepared prior to spiking 
experiments by mixing the intermediate mixes. All solutions were stored at −20 °C. Exter-
nal calibration using a serial dilution of a multi-component stock solution was used for 
the quantification of the mycotoxins. The accuracy of the method was verified by the au-
thors on a continuous basis by participating in ring trials with a current success rate (z-
scores between −2 and +2) of approximately 95% for over 1400 results submitted. Moreo-
ver, the ion ratio had to agree with the corresponding values of the standards within 30% 
whereas, for the retention time, a stricter criterion of ±0.03 min was applied in this study. 

Samples were also characterized for chemical and fermentative traits, as previously 
reported by Gallo et al. [20]. The DM was determined by gravimetric loss of free water by 
heating at 105 °C for 3 h (Association of Official Analytical Chemists or AOAC 1995, 
method 945.15); ash was determined as a gravimetric residue after incineration at 550 °C 
for 2 h (AOAC 1995, method 942.05), and ether extract (EE) was obtained following the 
method 920.29 of AOAC (1995). The crude protein (CP, N × 6.25) was determined using 
the Kjeldahl method (AOAC 1995, method 984.13). The soluble fraction of CP (expressed 
on a DM basis) was determined according to Licitra et al. [75]. Neutral detergent fiber 
(NDF), acid detergent fiber (ADF), and lignin (ADL) were determined using the AnkomII 
Fiber Analyzer (AnkomTechnology Corporation, Fairport, NY, USA) according to the 
method described by VanSoest et al. [76]. The NDF analysis utilized a neutral detergent 
solution containing sodium sulfite and a heat-stable amylase (activity of 17.400 Liquefon 
units/mL, Ankom Technology, Fairport, NY, USA). NDF, ADF, and ADL contents were 
corrected for the residual ash content. Starch was measured by polarimetry (Polax 2L, 
Atago®, Tokyo, Japan). The disappearance of NDF after 24 h of rumen incubation (24 h 
NDFD) was measured in situ by incubating nylon bags in the rumen of two cannulated 
dairy cows for 24 h [77]. Regarding fermentative parameters, 50 g of wet samples were 
extracted with a Stomacher blender (Seward Ltd., West Sussex, Worthing, UK) for 3 min 
in distilled water (water:sample fresh weight ratio: 3:1). After filtering using gauze, an 
aliquot was centrifuged at 3000 r.p.m. for 15 min at room temperature. A liquid phase 
added with an internal standard (i.e., pivalic acid) was injected into a gas chromato-
graphic-flame ionization detector (GC/FID) system that was equipped with a capillary 
column DB-WAX UI (60 m × 0.250 mm; 0.25 μm; Agilent Technologies S.p.A., Milano, 
Italy). Lactic acid was instead determined using HPLC [78]. 

A Foss NIRSystem 5000 spectrometer (Foss 5000 NIR systems; Foss Electric, York, 
UK) was used to collect near-infrared (NIR) spectra. The instrument had a scanning range 
from 1100 to 2500 nm and diffuse reflectance NIR spectra were obtained with a 2nm step 
acquisition (i.e., 700 variables) from 2–3 g of samples ground at 0.5 mm. Ground samples 
were scanned using a standard ring cup of the FOSS NIR instrument, a small round quartz 
cup with a 3.75 cm diameter, as a sample holder. 

Each sample was scanned twice and then an average of the two acquisitions was used 
for the present calibration (Appendix A).  

5.2. Discriminant Cut-Off Limits Applied to Mycotoxin Groups  
To compare different classification approaches, three different cut-off levels were 

adopted related to each mycotoxin contamination in order to assign for each sample a 
high or low level of contamination with respect to these values. With this aim, a high 
contamination class and a low contamination class were created with samples that had 
values of mycotoxin infection higher or lower to identified cut-off limits. 

The mycotoxin contamination parameters (Table 2) that were used were (i) the total 
concentration (i.e., μg/kg dry matter or DM) and total count of detectable mycotoxins (i.e., 
Aspergillus toxins, Alternaria toxins, zearalenone and its metabolites, trichothecenes type 
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B, fumonisins and their metabolites, enniatins, beauvericin, other emerging Fusarium tox-
ins, penicillium toxins, and other fungi toxins and unspecified fungi toxins); (ii) regulated 
(i.e., fumonisins B1 and B2, deoxynivalenol, and zearalenone, being those detected in the 
samples) and emerging Fusarium toxins called R&E- Fusarium toxins count and sum; (iii) 
only emerging Fusarium toxins called E- Fusarium toxins count and sum; (iv) Fumonisins 
and their metabolites; and (v) Penicillium toxins count and sum as reported in a previous 
work by Gallo et al. [20]. 

In particular, for the total sum of mycotoxin, the cut-off limits were arbitrarily set to 
4000, 7000, or 10,000 μg/kg dry matter (DM), and counts were set to 28, 31, or 34. Regulated 
and emerging Fusarium-produced mycotoxins had 1500, 2000, or 2500 μg/kg DM as sum 
cut-off limits while 13, 14, or 15 were set as count limits. Only emerging Fusarium-pro-
duced mycotoxins were distinguished with high or low contamination levels with limits 
of 700, 1000, or 1200 μg/kg DM and 6, 7, or 8. Fumonisin sum and count classes were 
identified with 400, 700, or 1000 μg/kg DM and 4, 5, or 6 levels, respectively. 

Finally, the Penicillium-produced mycotoxin classes were identified with contamina-
tion levels greater or less than 150, 250, or 350 μg/kg DM and 3, 4, or 5. For each cut-off 
limit, samples that have mycotoxin concentration values or counts below the threshold 
are classified as class 1, or if higher than the used threshold, as class 2. 

5.3. Outlier Spectra Detection, Re-Sampling Procedure, Development, and Evaluation of 
Classification Models 

PCA was used to analyze spectra and detect outliers according to the influence plot, 
based on Hotelling’s T2 statistic with a 99% confidence interval [79]. This statistical ap-
proach is used as a diagnostic tool for out-of-scope sample detection during multivariate 
model development [80]. The acquired spectra were processed by Unscrambler X version 
10.5.1 (CAMO Software AS, Oslo, Norway).  

The thresholds previously specified created an imbalanced class distribution with 
most of the samples in the lower contamination group, whereas few samples were labeled 
in the high contamination class, characterized by a higher risk of the presence of myco-
toxins.  

To provide comparable size between classes in the data, we applied the Synthetic 
Minority Over-sampling Technique (SMOTE) algorithm [81] as implemented in the 
‘smote_and_undersample’ function from the HyperSMURF v2.0 R package [82]. SMOTE 
is specifically conceived to handle imbalanced data and re-balance classes. Letting 𝐼 
be the instances of the minority class and 𝐼, the more abundant class, be the high and 
low mycotoxins contaminated samples, respectively, SMOTE generates realistic new in-
stances by linear interpolation between randomly chosen pairs of close samples in the 
minority class. Specifically, for every minority instance 𝑥 ∈  𝐼 the k nearest-neighbor 
instances 𝐾𝑁𝑁 ⊂  𝐼 are computed and 𝑥ᇱ ∈ 𝐾𝑁𝑁 is randomly drawn. Then, a new 
synthetic instance 𝑥ௌ is computed by linear interpolation between them: 𝑥ௌ = 𝑥 + 𝜆(𝑥′ −  𝑥) (1)

where 𝜆 is a random number between 0 and 1. The process is repeated and results in new 
“synthetic” data 𝐼ௌ. The majority class 𝐼 is then resized by random subsample to 
obtain 𝐼′ where ห𝐼′ห = ห𝐼ห + ห𝐼ௌห. 

A classification model to predict high vs. low contamination using wavelength as 
predictors was fitted through a random forest (RF) as implemented in the ‘randomForest’ 
R package Version 4.6-14 [83].  

Here, we applied an RF to a classification problem (categorical response), rather than 
a regression problem (continuous response). For classification, RF uses Gini impurity 
(Gini) to determine the spit at each node of each decision tree, as in: 
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𝐺𝑖𝑛𝑖 = 1 − (𝑝)ଶ
ୀଵ  (2)

where pi represents the relative frequency of the class observed and c represents the num-
ber of classes. Each decision tree selected a set of important predictors fb, which were 
bagged (bootstrapped and aggregated), and the majority voted to a final model fi as in 

𝑓𝚤 = 1𝐵  𝑓(𝑥ᇱ)
ୀଵ  (3)

where x’ is the individual decision tree of B trees. 
Different classification models (e.g., PCA, partial least squares discriminant analysis, 

neural network, etc.) were tested in a preliminary phase of the study, with RF considered 
the most promising one. Here, we reported the results obtained by applying RF for clas-
sification. In particular, the class-balanced dataset was split into training and testing sub-
sets including 70% and 30% of the samples, respectively. The RF generated several uncor-
related decision trees, each evaluating a random subset of features. The results of the trees 
were then averaged to provide the final model.  

To evaluate the accuracy of the RF classification model, sensitivity and specificity 
were calculated [84]. Accuracy was the ability of the model to differentiate the high and 
low contamination samples. The sensitivity of the model was its ability to determine the 
low contamination cases correctly. To estimate it, we calculated the proportion of correctly 
low classified samples with the total of low classified samples by model. Specificity was 
the same as sensitivity but regarded the highest class. 

Moreover, the interval of confidence (CI) and p-value of discriminant models were 
reported. The 95% confidence interval (CI) of the overall accuracy rate was provided in-
cluding it and a one-sided test to assess if the accuracy was better than the “no information 
rate” which is taken to be the largest class percentage in the data (CARET package in R 
studio software). 
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Appendix A 

 

 

 
Figure A1. NIRs spectra of each corn silage sample in the wavelength range (i.e., 1100–2500 nm) (a) 
and variable importance in total mycotoxins count and sums with the Random Forest (RF) model 
(b,c). The bands at 1430, 1470, 1820, 2140, and 2180 nm related to total fungal infection could be 
assigned to the first overtone of the OH stretching modes of glucose, NH in most amino acids, and 
CH combination bands in cis unsaturation [53].  
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