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Abstract: Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on
aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of
the aquaculture industry could be adversely affected by the occurrence of HABs. This review
examines HAB species which are known to bloom both globally and in NZ and their effects on
commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been
associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera,
notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and
reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB
population structure and dynamics, as well as the physiological responses of fish and shellfish,
potentially further compromising aquatic species. Those HAB species which have been detected
in NZ and have the potential to bloom and harm marine life in the future are also discussed. The
use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early
detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB
monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to
supply a sizable proportion of the world’s protein, the effects of HABs in reducing productivity is of
increasing significance. Research into the multiple stressor effects of climate change and HABs on
cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform
stock management strategies.

Keywords: green-lipped mussels; oysters; finfish; salmon; aquaculture; climate change

Key Contribution: We review the current literature on the effects of several globally important
Harmful Algal Bloom (HAB) species on commercially important fish and shellfish. Using NZ as a
case study, we discuss the HAB species which may bloom in the future, in a changing environment
and, highlight the importance of early detection, rapid HAB screening, testing local HAB strains and
the need for research into the effects of HABs and other climate change related stressors to enable
effective stock management.

1. Introduction

Harmful algal blooms (HABs) can cause significant impacts on human and animal
health due to the production of toxic or bioactive compounds, mucilage, aggravating
cellular structures like spines, or oxygen depletion of seawater [1–4]. Occurring when
favourable environmental conditions exist for abundant algal growth (reviewed in [5]),
HABs can have major economic and environmental repercussions [6–9]. For example, in
the Gulf of Mexico, USA, annual blooms of the nonthecate dinoflagellate Karenia brevis
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(=“red tide” alga), have caused massive problems for recreational fisheries, tourism, the
aquaculture sector, and the wider environment through the production of potent marine
neurotoxins known as brevetoxins, BTXs [10]. The major impact of K. brevis blooms on the
aquaculture industry has been from closure of harvest areas containing brevetoxic shellfish
and toxic effects of K. brevis exposure also directly impact commercially fished bivalve
species [11–14].

The direct effects of HABs on cultured fish and shellfish species can be substantial
and are likely to become more significant considering increasing climate anomalies and
as the farmed supply of seafood grows [15]. The early life stages of cultured species are
particularly susceptible to harmful algae and their associated toxic compounds [12,16–23].
Most farmed species are confined and cannot escape blooms. This makes them extremely
vulnerable to HABs, which are often sporadic and severe, and can cause losses of entire
cohorts [24–26]. For example, in 2019, a bloom dominated by the ichthyotoxic haptophyte,
Chrysochromulina leadbeateri, occurred in the Nordic fjords and was accompanied by the
death of around seven and a half million farmed Atlantic salmon, Salmo salar, valued at over
US$90M [27]. Chrysochromulina leadbeateri has been reported in Aotearoa/New Zealand
(NZ)’s temperate coastal waters; however, it has not been associated with fish mortality to
date [28].

In addition to acute lethal effects, HABs can cause a suite of behavioural and phys-
iological effects on shellfish and fish, affecting the whole organism, or impacting at the
tissue, cellular, or molecular level e.g., [13,29–35]. These sublethal effects (reviewed in [2,3]
and discussed in Section 2) are often overlooked but can result in decreased feeding
and thus slower growth rates and increased susceptibility to disease, further reducing
commercial productivity.

New Zealand Aquaculture and HABs

In NZ, the aquaculture industry is worth nearly NZ$650M (=US$0.5B, [36]) and com-
prises three predominant species: the green-lipped mussel (Greenshell™ mussel/GSM,
Perna canaliculus), king salmon (=Chinook, Oncorhynchus tschawytscha), and the Pacific
oyster (Crassostrea gigas). In 2019, total annual aquaculture production in NZ was ap-
proximately 115,000 tonnes, 88% of which came from bivalve production (mainly GSM,
98,447 tonnes and Pacific oysters, 1871 tonnes) and 12% from king salmon production
(nearly 15,000 tonnes; [37]). The government’s 2019 Aquaculture Strategy targets growth of
the industry to NZ$3B (>US$2B) by 2030 [36]; however, a risk to this ambitious target is
the occurrence of HABs and the uncertainty around the effects of HAB species and their
associated toxins on cultured species.

New Zealand Marine Biotoxin Monitoring Programmes encompassing both commer-
cial and non-commercial shellfish harvesting, have been operating since 1993, funded by
industry and the NZ Government’s Ministry for Primary Industries. Samples are analysed
for potentially toxic phytoplankton and/or biotoxins and these data are used to inform risk
assessments on which seafood managers can base harvesting decisions. Seawater samples
are routinely collected from approximately 100 specific sites throughout NZ for laboratory
identification and enumeration of toxic micro-algae. A risk assessment is supplied to
biotoxin regulators and farm managers within 24 h of sample receipt. Many of these sites
are near shellfish and finfish farms to provide an early warning of HABs that may affect
stocks. Some finfish farmers also carry out independent, routine phytoplankton monitoring
on their leased sites. Despite the extensive monitoring programmes in place in NZ, there
remain unknowns regarding which microalgal species or combinations of microalgae are
harmful to aquatic animals and what their effects are.

Recent salmon mortality, severe declines in GSM spat settlement, and unexplained
summer mortalities of GSM have been reported in NZ [38–40]. Although the causes of
these events are not clear, HABs may be a contributing factor. Previous HAB events in
NZ have impacted cultured species, e.g., [41–44] and HABs frequently occur in important
growing areas for Pacific oyster, GSM, and king salmon (i.e., Southland, Stewart Island,
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Marlborough Sounds, Bay of Islands, Auckland, and Coromandel, Figure 1). Such events
appear to be increasing in geographic range, duration, and frequency. In the Marlborough
Sounds, novel HABs of the thecate dinoflagellate Alexandrium pacificum first appeared in
Queen Charlotte Sound in 2011 [45], around the same time as a reduction in GSM spat-
fall in traditional spat catching areas was first observed [38,40]. Blooms have since been
detected in the neighbouring Pelorus Sound, Tasman Bay, and Golden Bay and are moving
towards the West Coast of the South Island [25,45,46], Figure 1.
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Figure 1. Map showing New Zealand locations mentioned in the manuscript.

Common HAB species present in NZ and their geographic distributions have recently
been reviewed in [25] and a comprehensive review on the risk of paralytic shellfish poison-
ing (PSP) toxins on shellfish aquaculture in NZ was carried out by [45]. To complement
these works, the aim of this study was to identify the effects of HAB species which have
bloomed in NZ and impacted on commercially important fish and shellfish species of rele-
vance to the aquaculture industry. We also consider HAB issues that may be encountered
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in a changing environment. New Zealand locations mentioned in the text are shown in
Figure 1.

2. Effects of Bloom Forming HAB Species on Species of Relevance to the NZ
Aquaculture Industry

Several HAB-forming species present in NZ have been implicated in lethal or sublethal
effects on commercially important fish and shellfish species (Figure 2, Table 1). Here,
we consider these and other key genera including Alexandrium, Gymnodinium, Karenia,
Dinophysis, Pseudo-nitzschia, and Heterosigma, Fibrocapsa, which have bloomed in NZ waters,
and their impact on species of relevance to the aquaculture industry in NZ.

Toxins 2022, 14, x FOR PEER REVIEW 4 of 33 
 

 

of relevance to the aquaculture industry. We also consider HAB issues that may be en-

countered in a changing environment. New Zealand locations mentioned in the text are 

shown in Figure 1. 

2. Effects of Bloom Forming HAB Species on Species of Relevance to the NZ Aquacul-

ture Industry 

Several HAB-forming species present in NZ have been implicated in lethal or suble-

thal effects on commercially important fish and shellfish species (Figure 2, Table 1). Here, 

we consider these and other key genera including Alexandrium, Gymnodinium, Karenia, Di-

nophysis, Pseudo-nitzschia, and Heterosigma, Fibrocapsa, which have bloomed in NZ waters, 

and their impact on species of relevance to the aquaculture industry in NZ. 

 
Figure 2. Known lethal (red arrows) and sublethal (orange arrow) effects of harmful algal species 

that have bloomed on fish and shellfish in New Zealand. Arrows indicate blooms that have im-

pacted fish (e.g., Heterosigma akashiwo), shellfish (e.g., Alexandrium pacificum), or affected both fish 

and shellfish (e.g., Karenia brevisulcata). Image: Eden Cartwright, Bird Circus.com. 

Table 1. Harmful algal bloom species which have bloomed in New Zealand (NZ) waters and their 

known effects on commercially important shellfish and fish species. NZ refs are in bold. 

Class Genus Species # Effects on Shellfish and Fish  Exposure to Key References 

Bacillariophyceae Pseudo-nitzschia  
Larvae of Pecten maxiumus: growth, 

development and survival reduced 
Domoic Acid (DA) [46] 

  
P. australis (DA-producer)  

P. fraudulenta (DA-producer) 

Juvenile P. maximus & Crassostrea 

gigas: Preferential filtration of non-

toxic algae 

Whole cell culture [47] 

Figure 2. Known lethal (red arrows) and sublethal (orange arrow) effects of harmful algal species that
have bloomed on fish and shellfish in New Zealand. Arrows indicate blooms that have impacted fish
(e.g., Heterosigma akashiwo), shellfish (e.g., Alexandrium pacificum), or affected both fish and shellfish
(e.g., Karenia brevisulcata). Image: Eden Cartwright, Bird Circus.com.

Table 1. Harmful algal bloom species which have bloomed in New Zealand (NZ) waters and their
known effects on commercially important shellfish and fish species. NZ refs are in bold.

Class Genus Species # Effects on Shellfish and Fish Exposure to Key References

Bacillariophyceae Pseudo-nitzschia
Larvae of Pecten maxiumus:
growth, development and

survival reduced
Domoic Acid (DA) [46]

P. australis
(DA-producer)
P. fraudulenta
(DA-producer)

Juvenile P. maximus & Crassostrea
gigas: Preferential filtration of

non-toxic algae
C.g.: Reduction in clearance rate

(P. australis only)

Whole cell culture [47]
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Table 1. Cont.

Class Genus Species # Effects on Shellfish and Fish Exposure to Key References

P. multiseries
(DA-producer)

Juvenile & adult C. virginica:
increased pseudofaeces

production, lower filtration rates
Whole cell culture [48–50]

C.v. & Mytilus edulis: selective
rejection of toxic cells Whole cell culture [51]

M.e.: no effect on larval survival &
development but, increased
phenoloxidase production

Whole cell
culture & DA [52]

Adult C. gigas: Reduction in the
number and phagocytic activity

of hemocytes
Whole cell culture [53]

P. delicatissima
(non-toxic) Adult C.v.: lower filtration rate Whole cell culture [50]

Juvenile sea bass (Dicentrarchus
labrax): mucus over production

in gills
Whole cell culture [54]

Dictyophyceae Pseudochattonella P. verruculosa
(Hara & Chihara)

Mortality of sea-cage salmon,
Oncorhynchus tshawytscha Field bloom [43]

Dinophyceae Alexandrium
Adult and larvae of various fish

spp.: mortalities and impairment
of sensory-motor function

Field blooms, whole
cell culture, paralytic

shellfish toxins
& saxitoxins

[19] (and references
there in)

Alexandrium
pacificum

Adult Perna canaliculus:
Reduction in byssus production,
reversable temporary increase in

oxygen uptake

Whole cell culture [55,56] (as
A. tamarense)

P.c. spat (2 mm): Reduction in
byssal pad production

and growth
Whole cell culture [57]

Adult Pecten novaezelandiae:
clearance rate reduced and altered

in other bivalve species.
Whole cell culture [58,59]

(as A. tamarense)
Adult Argopecten irradians,

Geukensia demissa, Mercenaria
mercenaria, Mya arenaria, Mytilus

edulis, Ostrea edulis, Paphies
donacina, Placopecten magellanicus
and Spisula solidissima: various

effects including shell valve
closure, changes in clearance rate,
production of mucus, inhibition

of byssus production, violent
swimming & erratic

siphon activity

Whole cell culture

[34,55,60–62]
(as Gonyaulax

tamarensis,
Protogonyaulax
tamarensis and
A. tamarense)

Juvenile C. gigas: changes in
hemocyte parameters Whole cell culture [63] (as A. catenella)

A. irradians larvae: increased
mortalities; reduced activity, and

growth of larvae; reduced
attachment and climbing ability

of juveniles

Whole cell culture
& saxitoxin

[64,65]
(as A. tamarense,

strain ATHK)

Alexandrium
minutum

Adult C. gigas: reduced clearance
and filtration rate, increased shell

micro-closures, inflammatory
response in digestive gland,

increased circulating hemocyte
concentration and phagocytic

ability, genotoxic effects
and increased

detoxification/antioxidant gene
expression. Reduced motility and

ATP content of sperm, smaller
larval size and increased
mortalities at settlement.

Whole cell culture [66–73]

Gametes and larvae of C.g.:
increased ROS in oocytes,

decrease in sperm viability &
fertilization. Reduced larval

hatching, swimming, feeding,
growth, settlement and survival

Whole cell culture [16,17,74]

Adult P. maximus: delayed shell
growth, alteration of sensing

processes, less efficient escape
response, muscular damage

Whole cell culture [75]
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Table 1. Cont.

Class Genus Species # Effects on Shellfish and Fish Exposure to Key References

Cerataulina
pelagica C. pelagica Mortality of Fin fish & shellfish Field bloom (lack

of oxygen) [76]

Gonyaulax Gonyaulax fragilis Mortality of marine fauna
including fin-fish Field bloom (slime) [77]

Dinophysis

Lethal and sub-lethal effects on
various fin fish species, including:

behavioural changes, poor
co-ordination, inactivity, oxidative
stress and histological changes in

adults, and: reduced hatching,
swimming activity, growth &

feeding of larvae

Okadaic Acid &
dinophysis toxins

[18] (and references
there in)

Dinophysis
acuminata

Adult C. gigas, Perna perna &
Anomalocardia brasiliana: Changes
in the hemocyte immunological

parameters, especially in P. perna.
Hemocyte infiltration in the
digestive gland of C. gigas.

Field bloom [78,79]

Gametes of C.g.: increased oocyte
mortality & reduced
fertilization success

Whole cell culture [80]

Gymnodinium Gymnodinium
catenatum Mortality of finfish Field blooms [81,82]

C. gigas spat (3 mm): reduced
clearance rate, increased valve

closure & pseudofaeces
production. Inflammation of the

gill and digestive gland.

Whole cell culture [83,84]

C.g. larvae: no observable effects Whole cell culture [85]
Juvenile Argopecten ventricosus &

Nodipecten subnodosus Whole cell culture [86–88]

Karenia
K. brevisulcatum
(Chang) Gert
Hansen &
Moestrup

Mortalities of fish and shellfish Field blooms [89,90]

Mortality of various larval &
juvenile fish and shellfish species

(Oncorhynchus tschawytscha,
Chrysophrys auratus, P. canaliculus,
Evechinus chloroticus and Haliotis

iris, Pleurobranchia maculata,
C. gigas)

Whole cell culture,
cell free culture, SPE

extract, purified
brevisulcatic acids

[91]

K. mikimotoi
(Miyake &
Kominami ex Oda)
Gert Hansen &
Moestrup

Fish (Sciaenops ocellatus)
erythrocytes: hemolytic activity Crude algal extract [92]

Lethal and sublethal effects on
finfish and shellfish

Field blooms, whole
cell culture

[23,93–95] (and
references there in)

Fin fish, eel and
abalone mortalities Field blooms [96–98]

Various adult shellfish species:
reduced clearance rates, changes

in immune functions, reduced
escape locomotion and paralysis

Field blooms, whole
cell culture

[33,61,93,99–104]
(as Gyrodinium

aureolum)

Various larval shellfish species:
embryo, larval and spat
mortalities, reduction in

activity rate

Whole cell culture,
SPE extract, bloom

water, filtered bloom
water

[85,91,105–109]

K. sellifomis
Haywood,
Steidinger &
MacKenzie

Mortality of various fin fish &
shellfish, especially Haliotis iris,

Paphies subtriangulata &
P. canaliculus

Field bloom [110,111]

Mortality of various fin fish
& shellfish Field bloom [112,113]

(references there in)
C. gigas larvae: mortalities. Whole cell culture [114]

Adult Ruditapes philippinarum:
hemocyte variables changed Whole cell culture [103,115]

K. umbella de Salas,
Bolch & Hallegraeff

Mortalities of Oncorhynchus
mykiss & Salmo salar Field bloom [116]
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Table 1. Cont.

Class Genus Species # Effects on Shellfish and Fish Exposure to Key References

Ostreopsis O. cf. siamensis Mortalities of sea urchins,
Evechinus chloroticus Field bloom [117,118]

Haptophyceae Prymnesium P. calathiferum
Chang & Ryan Fish and shellfish mortalities Field bloom [119]

Raphidophyceae Heterosigma H. akashiwo
(Hada) Sournia Mortality of O. tschawytscha Field bloom [41,120]

Mortalities of various juvenile
and adult fin fish

Field blooms, toxins
from blooms [94,121–123]

Pinctada fucata martensii &
Argopecten irradians gametes &

larvae: Reduced sperm
swimming velocity, increased
mortalities & abnormalities,

reduced activity of trocophore
& D-larvae

Cell free culture,
whole cell culture [124–126]

Adult C. virginica: shell closure,
reduction in filtration and
increased hepatopancreas
lysosomal destabilization

Whole cell culture [32,127]

C. virginica and M. mercenaria
hemocytes (in vitro): mortality

Whole cell culture,
culture filtrate [33]

Fibrocapsa F. japonica
Adult C. virginica: increased
lysosomal destabilization in

digestive gland
Bloom water [128]

Solea solea larvae: mortality Whole cell culture,
culture extracts [129]

#: Species classifications based on AlgaeBase (Guiry in [130]). Alexandrium classification as for [131]. A. catenella
(=A. fundyense).

2.1. Alexandrium and Gymnodinium spp.

Blooms of Alexandrium pacificum, A. minutum, and Gymnodiniun catenatum, all thecate
dinoflagellates, have been recorded in NZ coastal waters [25,45]. Cells of these species can
produce paralytic shellfish toxins (PSTs), including saxitoxin and its many analogues, and
other bioactive extracellular compounds (BECs) which can cause ichthyotoxic and negative
effects on shellfish [16,66,67,132,133]. The presence of these other BECs, in addition to PSTs,
can make it difficult to determine the causative compound of any cytotoxic effects.

Negative behavioural and physiological effects following exposure of adult shellfish
species to A. pacificum have been reported by several authors [34,60–63,134], as have
lethal and sublethal effects on the early life stages of scallops, Argopecten irradians, where
toxicity was attributed primarily to the presence of unknown bioactive toxins rather than
PSTs [64,65]. Within NZ, investigations into the effects of A. pacificum on cultured shellfish
species have largely focussed on later life stages (Figure 2). Behavioural and physiological
effects include erratic siphon activity of surf clams, Paphies donacina, and alterations in the
clearance rate of bivalves, including scallops, Pecten novaezelandiae, and flat oysters, Ostrea
chilensis, exposed to bloom concentrations of A. pacificum see [55,56,58,59]. Juvenile oysters,
O. chilensis (~20 mm), were also paralysed, but still alive, during the first A. pacificum bloom
that occurred in Queen Charlotte Sound in 2011 and lasted for 2 months [135]. Most of
these animals eventually died, as the mantle over-grew the shell margins, and they could
not close their valves after the bloom subsided. A reduction in adult byssus production [55],
and spat (~2.5 mm) byssal pad formation and growth [57], have been reported in GSM
exposed to A. pacificum, which has implications for the survival, attachment, and retention
of wild and farmed spat. It remains unclear if negative effects are caused by ingestion of
toxic cells (intracellular toxins), contact with extracellular toxins (PSTs or other), or cell
surface contact.

During A. pacificum blooms in NZ, cells have been observed within salmon farms, but
cell numbers have generally been low and no adverse effects on the health of the fish have
been reported [45]. The neurotoxicity of PSTs, however, is well documented in fish [2].
They cause the impairment of sensor-motor function, such as loss of orientation, paralysis,
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and abnormal swimming behaviour, that affects both adult and larval fish survival [19]
(and references there in).

Blooms of Alexandrium minutum have been investigated since 1993 in NZ, when the
first incident of PSP contamination in shellfish was identified [136–138]. Since then, this
dinoflagellate has been implicated in several incidents in NZ, which have required the
closure of commercial shellfish harvesting in the Marlborough Sounds and human illness
from recreational harvest in the Bay of Plenty [25,45,139]. Alexandrium minutum has not
been associated with fish mortalities and investigations into the effects of A. minutum on
shellfish in NZ are lacking.

There has been extensive study of the effects of Alexandrium minutum on Pacific
oysters, C. gigas. Inflammatory responses are typically seen in the digestive gland and
hemolymph of adult C. gigas exposed to bloom concentrations of A. minutum [68,69],
and behavioural modifications can include reduced clearance and filtration rate, valve
activity and increased shell micro-closures, genotoxic effects, and an increase in antioxidant
and detoxification gene expression in the gills [70–73]. Crassostrea gigas exposed to toxic
A. minutum during gamete ripening, showed negative impacts on sperm motility, larval
size, and settlement of larvae produced from exposed parents [67,68]. Recent studies
have provided a better understanding of the toxicity of A. minutum to bivalves [66,75],
with BECs found to be responsible for the negative effects on the gills of adult C. gigas,
whereas PSTs impact the digestive gland [66]. Direct exposure of the early life stages
of C. gigas also negatively affected gamete quality, fertilization success, and subsequent
larval development [16,17,67,74], with negative effects attributed primarily to BECs rather
than PSTs.

In the Port River in South Australia, an A. minutum bloom in the late 1980s showed
an ichthyotoxic potential for this dinoflagellate species [140]. It was evident that the
ichthyotoxicity was not caused by PSTs and that the toxin(s) were most likely effective
exocellularly. This has been suggested to be a defence or allelopathic mechanism [25].
While saxitoxin-like and brevetoxin-like activity was indicated by a neuroblastoma tissue
culture assay, no BTXs were detected, and the toxic principle remains unknown [140].

One of the most harmful blooms to be documented in NZ was that of PST producing
Gymnodinium catenatum [45]. Blooms started in the North Island in May 2000 and lasted
until 2003, during which time they caused wide-spread contamination and closure of
shellfish harvest areas [141]. There have been further blooms since that time [45].

Exposure of trochophore C. gigas to 107 cells L−1 of G. catenatum for 10 h had no effect
on larval survival [85], however; Pacific oyster spat (3 mm) exposed to a lower concentra-
tion of G. catenatum (3 × 105 cells L−1) for 24 h, showed behavioural and physiological
changes, such as reduced clearance rates, increased valve shell closures, and increased
pseudofaeces production [83]. Following a longer, 14 d exposure of C. gigas spat, exfoliation
and epithelial rupture and inflammation were recorded in the digestive gland and gill, as
were increased expression of genes involved in antioxidant defence, cell detoxification,
intermediate immune response activation, and stress responses [83,84]. Additional physio-
logical responses, including paralysis and apoptosis of hemocytes, have also been recorded
in scallops, Argopecten ventricosus, and Nodipecten subnodosus [86–88]. The effects of NZ
G. catenatum strains on aquaculture species are yet to be determined.

Blooms of Gymnodinium catenatum have rarely been associated with wild fish kills
worldwide (see [81,82]) and never in NZ. Although blooms of this species have been
extensive in the North Island of NZ, they occur relatively infrequently and to date have not
affected the main finfish aquaculture areas in the south [45].

2.2. Karenia spp.

Several species in the non-thecate dinoflagellate genus Karenia have been identified
in NZ waters, including Karenia papilionacea, K. selliformis, K. bidigitata (=K. bicuneiformis),
K. mikimotoi, K. umbella, and K. brevisulcata, of which some produce toxins such as BTX, BTX-
like compounds, gymnodimine, and haemolytic glycolipids [142]. To date, K. mikimotoi,
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K. selliformis, K. brevisulcata and, more recently, K. umbella have formed and dominated
blooms, with the former three species also implicated in large scale finfish and shellfish
mortalities [90,96–98,110,142,143], Figure 2.

Karenia mikimotoi is one of the most common HAB species in NZ waters and
is regularly associated with losses of farmed fish, and commercial and wild shellfish
worldwide (reviewed by [23,93,94]). Japanese pearl oysters, Pinctada fucata martensii, for
example, have been severely affected by recurrent blooms (e.g., [144,145]). Unsurpris-
ingly, the early life stages of this and other commercially important shellfish species have
been shown to be susceptible, with toxicity speculated to be from unknown bioactive
compounds [85,99,105–109]. Cells of K. mikimotoi have been shown to produce haemolysin,
which elicits toxic effects upon direct contact with the cells, and the reduced clearance rates
of these cells by commercially important species such as adult C. gigas and M. galloprovin-
cialis may be for this reason [61,100–102]. Exposure to this dinoflagellate also affects the
immune functions of shellfish [33,103,104].

A K. mikimotoi dominated bloom that occurred in 1992 to 1993 in the Hauraki Gulf
was a turning point for the NZ seafood industry and resulted in the development of the
monitoring programmes that exist today [146]. At the onset of the bloom, El Niño climate
conditions were occurring, with resultant cold sea temperatures off the north-east coast.
Initially, GSM developed blood red guts, which was unappealing to consumers. This was
due to a bloom of the ciliate Mesodinium rubrum (=Myrionecta rubra) which co-occurred
with a Noctiluca scintillans (dinoflagellate) bloom. Shellfish were, however, unaffected at
that time [143]. A Karenia bloom followed, developing during December 1992 [143,147] and
BTXs were detected in shellfish from the area, although the Karenia species responsible for
the toxins at that time has never been definitively determined [146]. It is interesting to note
that using invertebrate larvae assays [91], K. mikimotoi was shown to impact pāua (abalone;
Haliotis iris) larvae (LT50 10 h at 12 × 106 cells per litre), as pāua were reported to fall from
the rocks (and mass mortalities of other marine organisms were recorded) during the early
1993 phase of the bloom. Low concentrations of brevetoxin-like lipid soluble toxins were
reported in these affected shellfish [138].

A large bloom of K. mikimotoi in South Australia in 2014 caused massive mortality
of abalone, rock lobster, turbo shells, various finfish, and echinoderms [95], and crude
extracts of K. mikimotoi exhibited high lytic activity towards fish erythrocytes [92]. In NZ,
K. mikimotoi has been implicated in fish mortalities [96,98]. In Northland, 2007, wild fish
and eel mortalities were recorded, and an associated red discolouration of the seawater
noted. Karenia mikimotoi was determined as the cause based on molecular assay results
(fluorescent in situ hybridisation assays, quantitative PCR, and sandwich hybridisation
assays). No BTXs were detected by liquid chromatography/mass spectroscopy and while
haemolytic glycolipids could not be ruled out, anoxia was considered the prime cause of
the mortalities [98].

Blooms of the fish-killing K. selliformis cause significant ecological damage including
water column anoxia and marine fauna toxicity worldwide, including in NZ, Mexico,
Tunisia, Kuwait, Iran, China, and Chile [112]. In mid-September 2021 over a period of
two months, an unprecedented mixed bloom of Karenia species, including K. selliformis,
K. mikimotoi, K. longicanalis, Karlodinium sp., and Takayama spp., occurred along the south-
eastern coast of Hokkaido, Japan [148], with mass die-offs of sea urchins (Strongylocentrotus
intermedius and Mesocentrotus nudus), salmon (Oncorhynchus keta) in fixed nets, octopus
(Paroctopus conispadiceus), whelks (Neptunea spp.), chitons (Cryptochiton stelleri), bivalves
(e.g., Pseudocardium sachalinense), and juvenile fish in rearing facilities [113,148]. Following
laboratory exposures, adult Manila clams, Ruditapes philippinarum, have also been shown to
be sensitive to exposure to K. selliformis, with cellular changes in the hemolymph recorded
up to 6 weeks following exposure to bloom concentrations [103,115].

Extensive blooms of the then undescribed species, K. selliformis, occurred in Southland,
NZ, during two successive summers 1993/94 and 1995/96 [142]. The toxin detected in
extracts of exposed Bluff oysters, Ostrea chilensis, proved to be Gymnodimine and appeared
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to be a neuromuscular blocking agent, production of which was enhanced by addition of
organic acids to the K. selliformis growth medium [149,150]. A south-north progression
of the bloom, which also contained cells of K. bicuneiformis (as K. digitata) and K. papil-
ionacea, was associated with the mortality of a variety fish and shellfish along the southeast
coast [110,111]. Widespread deaths of pāua (H. iris) and a mass stranding, estimated at
about one million tuatua (surf clams, Paphies subtriangulata) was reported. There was evi-
dence that the bloom penetrated as far north as Port Underwood in Marlborough where it
was associated with farmed juvenile GSM mortalities [110]. There was some experimental
evidence that K. selliformis had a fast-acting toxic effect on oyster larvae [114].

The highly toxic K. brevisulcata (see [89]), which produces an array of toxins, includ-
ing ten lipid soluble K. brevisulcata toxins and six water soluble brevisulcatic acids, killed
all marine life in Wellington Harbour, NZ, in 1998 [90]. Tuna (Thunnus alalunga), striped
marlin (Kajikia audax), and broad bill swordfish (Xiphias gladius), as well as kina/sea urchins
(Evichinus chloroticus), starfish species, and pāua, were found washed up on the coastline
and aerosols of the bloom caused respiratory distress and eye and skin irritation in humans
in the vicinity [90]. Brevisulcatic acids extracted from K. brevisulcata, have been shown to
be toxic to juvenile king salmon and snapper, Chrysophrys auratus (as Pagrus auratus) in
experimental trials [91]. This toxicity extended to GSM, sea urchin and pāua larvae, and, to
a lesser degree, sea slugs, Pleurobranchaea maculata and oyster (C. gigas) larvae [91].

Karenia umbella was first associated with mortalities of cage-reared rainbow trout
and Atlantic salmon in Tasmania in the late 1980s and early 2000s [116]. Karenia umbella is
common in NZ’s coastal waters and blooms have been observed previously in sheltered
embayments in the Marlborough Sounds. In early March 2018 and mid-February 2020,
blooms of K. umbella were detected in Akaroa Harbour, south of Christchurch. The 2020
bloom dispersed throughout the harbour, including in and around several salmon farms in
the area, causing distress to fish, although mortalities were low [135]. Samples collected
from the salmon farm pens on 21st to 23rd February 2020 contained cell numbers up to
5 × 104 cells L−1 [114]; however, toxin production by this species has not been confirmed.

2.3. Dinophysis spp.

Blooms of the thecate dinoflagellates Dinophysis acuminata and D. acuta have been
documented throughout NZ, with the former occurring every year in an important GSM
culture area, Port Underwood, in the Marlborough Sounds [151,152]. The cellular toxin
content of bloom forming D. acuminata in NZ is low and the toxin profile is dominated by
pectenotoxin-2 and dinophysistoxin-1 [152]. In Brazil, natural blooms of the same species
have been shown to have negative effects on the immune system of adult C. gigas, the
brown mussel, Perna perna, and the clam, Anomalocardia brasiliana (see [78,79]). Recent
work by [80] in which gametes of C. gigas were exposed to D. acuminata for two hours,
resulted in a reduction in fertilization success, which was attributed mainly to the presence
of pectonotoxin-2. A similar species, D. caudata, which also produces pectenotoxins, has
been shown to induce mucus and pseudofaeces production, paralysis, and negative effects
on the digestive gland of adult scallops, Patinopecten yessoensis, and Mimachlamys nobilis
(see [153]).

Although there have been no recorded fish mortality events associated with Dinophysis
blooms, experimental exposure of fish to okadaic acid, dinophysistoxins, and Dinophysis
cells produce a range of negative effects at different life stages, either by waterborne or
dietary routes. These effects range from impacts on fish fitness, swimming performance,
feeding, foraging, and escape from predators to reduced fish abundance [18]. There is a
lack of information on lethal impacts, and sublethal and chronic effects of toxic Dinophysis
in the environment [154].

2.4. Pseudo-nitzschia spp.

The amnesic shellfish poisoning diatom genus Pseudo-nitzschia is a regular bloom
former throughout NZ coastal waters, particularly during the Austral spring and sum-
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mer [155]. It is responsible for occasional domoic acid (DA) contamination of shellfish,
in particular scallops, Pecten novaezealandiae, and, rarely, GSM. Many bloom-forming
Pseudo-nitzschia spp. have been reported in NZ waters with highly variable DA produc-
tion [155,156]. Dominant bloom formers have been identified as P. fraudulenta and P. pseu-
dodelicatissima, with P. australis and P. pungens common in spring, and P. multiseries,
P. multistriata, P. heimii, and P. delicatissima, also detected in bloom concentrations at
different times [25,155].

Effects on the feeding behaviour of bivalves have been observed in juvenile Pacific
oysters, C. gigas, and scallops, P. maximus, exposed to French strains of P. australis and
P. fraudulenta. Both bivalve species preferentially filtered non-toxic algae compared to
the Pseudo-nitzschia cells and the clearance rate of C. gigas was reduced when exposed to
toxic P. australis (see [47]). Interestingly, the presence of bivalves was found to induce an
increase in the cellular DA contents of both Pseudo-nitzschia species [47]. Similarly, both
juvenile and adult eastern oysters, C. virginica, and mussels, Mytilis edulis, were shown
to reduce their clearance rate and increase pseudofaeces production when exposed to
toxic P. multiseries [48–51]. The oysters did not differentiate between toxic P. multiseries
and non-DA producing P. delicatissima, however, they exhibited comparable filtration of
both algal species [50]. Physiological changes have also been observed in adult C. gigas
exposed to DA-producing P. multiseries, with a spike in the hemocyte count and phagocytic
activity of hemocytes recorded following only 4 h exposure [53]. The early life stages of
Pecten maximus were found to be sensitive to exposure to dissolved DA with the growth,
development to eye-spot stage and survival of larvae negatively affected [46]. However,
the authors of [52] showed P. multiseries and DA exposure had no effect on the survival and
development of M. edulis larvae.

In NZ, a novel, toxic, DA isomer, referred to as iso-DA-C, was detected in GSM,
scallops and Pacific oysters harvested from the Marlborough Sounds and the Bay of Plenty
in August 2001 [157]. The causative organism was determined as P. australis, but no effects
were reported in the bivalves [158].

It is well documented that planktivorous fish can accumulate high levels of DA during
toxic Pseudo-nitzschia blooms (e.g., [159]) and that DA can then be transferred up the food
chain to seabirds and marine mammals when toxic fish are consumed [160]. While there
are documented cases of resultant mass mortality events, there has been no environmental
evidence for the fish being directly affected by toxic Pseudo-nitzschia blooms [161]. Direct
injection of DA can cause excitotoxicity behaviours in fish, but ecologically relevant routes
of exposure do not appear to cause harm to fish as they do to humans, marine mammals,
and birds. Some effect may be induced by mechanical damage to gills including mucosa ir-
ritation (i.e., mucus overproduction), which can affect gill function or increase susceptibility
to secondary bacterial, viral and parasitic infections [54].

2.5. The Raphidophytes: Heterosigma and Fibrocapsa

The first major loss of farmed fish in NZ occurred in January 1989 in Big Glory Bay,
Rakiura/Stewart Island. More than eight hundred tonnes of Chinook salmon, valued at
>NZ$17M at the time, died from impaired functioning of gills due to exposure to a bloom of
the raphidophyte Heterosigma akashiwo (see [41,120], Figure 2). At the time, warmer than
usual weather and a stable water column due to a La Niña phase of the Southern Oscillation
provided ideal conditions for H. akashiwo to bloom, particularly as cells could migrate to
deeper, more nutrient rich waters at night [41,120]. This species has been associated with
fish kills globally [94,121–123] and since the first identification of H. akashiwo in NZ in
1989, it has been found to be common in NZ’s coastal waters and significant blooms have
occasionally developed (for example, in Pelorus Sound, in the summer of 2017/18).

Both early and adult life stages of bivalves have been shown to be sensitive to bloom
concentrations of H. akashiwo. The presence of algal cells reduced the swimming velocity
of spermatozoa, as well as larval survival, activity, and metamorphosis of the Japanese
Pearl oyster, Pinctada fucata martensii, and of the scallop, Argopecten irradians, with the toxic
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mechanism thought to be from the shed algal glycocalyx structures and mucus [124–126].
Adult Eastern oysters, C. virginica, exposed to bloom concentrations of H. akashiwo, closed
their shells and reduced filtration [32,127] and in vitro exposure of C. virginica and hard
clam (M. mercenaria) hemocytes to cultures of H. akashiwo resulted in increased haemocyte
mortality [33].

In NZ, microalgal blooms are often associated with El Niño climate conditions and
Fibrocapsa japonica was a major component of HABs during the early stages of the major
Karenia bloom of 1993 [143,162]. The cells of F. japonica produce trichocysts and the ejection
of these should be considered as a potential threat to shellfish larvae recruitment through
entanglement [162]. Adult eastern oysters, C. virginica, exposed to water collected from a
bloom of F. japonica, showed significantly increased lysosomal destabilization rates in the
digestive gland [128] and other bivalve species may also be sensitive to exposure. Blooms of
F. japonica have been implicated in the reduction of fish stocks overseas, but the mechanisms
involved are still unclear. It has been demonstrated, however, that mortalities of the larvae
of the common flat fish sole, Solea solea, occur in the presence of F. japonica cells, particularly
when exposed to late exponential phase cultures, and that warmer temperatures had a
distinct effect on the mortalities [129]. The involvement of endo- and exotoxins has been
postulated with haemolytic polyunsaturated fatty acids as the main endotoxins, and other
haemolysins and reactive oxygen species as the main exotoxins. Blooms of F. japonica have
not been associated with fish mortalities in NZ, and studies of NZ strains did not detect
ichthyotoxins [163].

2.6. Other Bloom Forming HAB Species in New Zealand

In 2010, approximately two hundred tonnes of farmed Chinook salmon died in Queen
Charlotte Sound, Marlborough Sounds. The cause proved to be the dictyophyte Pseu-
dochattonella verruculosa (Figures 2 and 3) and the mortalities occurred at cell concentra-
tions ten-fold less than those caused by the earlier H. akashiwo bloom in Big Glory Bay. The
pathologies of the dead fish were inconclusive, although hypoxia was considered a primary
cause. Moving net pens to a bloom-free site saw the recovery of the surviving fish. The
bloom occurred after a long period of heavy rainfall and when seawater temperatures were
at their annual minimum (12 ◦C), as was daylength, at nine hours [43].
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Highly potent palytoxin-like compounds may be produced by the thecate dinoflagel-
late genus Ostreopsis. In NZ, Ostreopsis cf. siamensis (=Ostreopsis sp.) reported by [164]
produces such compounds [165,166] and kina (sea urchin, Evechinus chloroticus), are partic-
ularly vulnerable to the toxins. During recurrent blooms of O. cf. siamensis in Northland
waters, mass mortalities occurred [117], Figure 2. Declines in adult kina density in the
order of 56–60% were reported following a period of calm sea conditions with warmer than
average water temperatures [118]. Larvae were, however, unaffected by O. cf. siamensis
in in vitro assays, suggesting that the survival and recruitment of larvae in the wild may
continue despite blooms [166].

On occasion, reports of blood red oysters are received [167] and this can usually be
traced back to blooms of the deeply red coloured ciliate Mesodinium rubrum in the vicinity.
The oysters are generally considered unfit to eat but are not toxic and appear unaffected by
the ciliate.

In 1983, in Northland’s Bream Bay, NZ, fish and shellfish mortalities were associated
with a mixed bloom of the diatom Cerataulina pelagica (Figure 2) and an undescribed
haptophyte, a Prymnesium species. This genus had been associated with fish mortalities
previously. The new species was described and classified as P. calathiferum (see [119],
Figure 2) and proved closely related to the biotoxin producer P. parvum. The latter produces
prymnesins and has caused mortalities of fish and invertebrates world-wide (see [168,169]).

Even when HABs are non-toxic, they may cause shellfish or finfish mortalities due to
a lack of oxygen, particularly when they occur in confined bays and harbours. For exam-
ple, the usually harmless green flagellate, Tetraselmis sp., caused the death of pilchards,
Sardinops sagax in a Wellington Harbour lagoon in 1993 due to an oxygen deficit [170]. The
diatom Cerataulina pelagica similarly caused finfish and shellfish deaths, in Bream Bay
in 1982 [76]. Blooms have been reported to cause clogging of gills through production of
mucus for more than a century. Gonyaulax fragilis produces transparent exo-polymers
composed primarily of galactose and glucose monomers. This ‘slime’ can cause mass
mortalities of marine fauna and impede fishing activities and has been responsible for fish
deaths in Tasman Bay, NZ [25,77], Figure 2. Ubiquitous spiny diatoms such as Chaetoceros
spp. can cause mechanical damage due to the barbed setae becoming embedded in the
lamellar epithelium of salmonid gills with resultant production of excessive amounts of
mucus. Death can result from asphyxia or increased susceptibility to secondary infec-
tions [171,172].

3. Future Issues

The following section (and Table 2) details HAB species that, although they have
not yet bloomed, occur in NZ waters, and, therefore, have a potential to harm marine
life. This section includes monitoring data from aquaculture production areas around NZ
(Section 3.1.1). Section 3.2 discusses HAB species that are likely to be encountered in NZ in
the future.

Table 2. Harmful algal bloom species which have been detected but not bloomed in New Zealand
waters and their known effects on commercially important shellfish and fish species. NZ references
are in bold.

Class Genus Species # Effects on Shellfish and Fish Exposure to Key References

Dinophyceae Alexandrium A. ostenfeldii

Adult Ruditapes philippinarum
& C. gigas: tissue

inflammatory response,
changes in hemocyte

morphology, oxidative stress
response in the gills

Whole cell culture [173,174]
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Table 2. Cont.

Class Genus Species # Effects on Shellfish and Fish Exposure to Key References

Cochlodinium
(=Margalefidinium) C. polykrikoides Mortalities of finfish Field blooms [94,175]

Adult Argopecten irradians, C.
gigas, M. mercenaria:

mortalities and
reduced growth

Field blooms [176] (and
references there in)

Juvenile A. irradians and
Cyprinodon variegates:

mortalities

Whole cell culture,
cell free

culture medium
[177]

Heterocapsa H. cf. circularisquama
Horiguchi

Pinctada fucata, C. gigas, M.
galloprovincialis, Venerupis

philippinarum, Suculus
diversicolor: Adults:

Mortalities, reduced filtration
rate. Larvae: activity rate,

development rate and
survival reduced

Field blooms, bloom
water, whole
cell culture

[29,85,178–180]

H. illdefina (Herman
& Sweeney) Morrill &
Loeblich III

None known [114,181]

Karlodinium K. veneficum
(Ballentine) Larsen Fin fish mortalities

Field bloom, whole
cell culture,
cell lysate

[182–184]

C. virginica & C. ariakensis
larvae, spat & juveniles:
increased mortalities &

abnormalities, reduction in
swimming and activity,
reduced growth rates.

Whole cell culture [185–189]

Juvenile & adult Mytilus
edulis & Mercenaria mercenaria:

increased hemocyte
phagocytosis and ROS

production, reduced growth
rates

Whole cell culture [188,190]

Pfiesteria Pfiesteria spp. Fin fish mortalities Field blooms [191,192]

P. piscicida Steidinger
& Burkholder

A. irradians, C. gigas & C.
virginica larvae: mortalities Whole cells [193,194]

P. shumwayae
Glasgow &
Burkholder (syn.
Pseudopfiesteria
shumwayae (Glasgow
& Burkholder))

Ichthyotoxic in vitro Whole cell culture [195]

A. irradians, C. virginica, M.
mercenaria, Perna viridis:

mortalities of larvae & adults
Whole cell culture [196]

Prorocentrum P. rathymum Loeblich,
Shirley & Schmidt C. gigas spat: mortality Methanol extracts [197]

Haptophyceae Chrysochromulina
C. leadbeateri Estep,
Davis, Hargreaves
& Sieburth

Mortalities of Salmo salar Field bloom [27,198]

Pavlomulina
P. ranunculiformis
Sym, Pienaar &
Kawachi

Attaching to C. gigas larvae whole cell culture [28]
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Table 2. Cont.

Class Genus Species # Effects on Shellfish and Fish Exposure to Key References

Raphidophyceae Chattonella

C. antiqua (Hada)
Ono (syn.
C. marina var. antiqua
(Hada) Demura &
Kawachi)

Fin fish mortalities Field bloom [94,199]

Mortalities Thunnus maccoyii Field bloom [200,201]
Pinctada fucata martensii:

reduced sperm swimming
velocity, increased larval

mortalities & abnormalities,
reduced activity

Whole cell culture [124,125]

#: Species classifications based on AlgaeBase (Guiry in [130]). Alexandrium classification as for [131].

3.1. Ichthyotoxic HAB Species Present in New Zealand

The spirolide producing dinoflagellate, Alexandrium ostenfeldii, has been shown to
negatively affect commercially important bivalve species [173,174]. Cysts of A. ostenfeldii
are common in coastal sediments around NZ but are rarely found in the plankton [45].
These resting cyst beds may indicate past blooms [110] or that A. ostenfeldii is mainly a
benthic species in NZ.

The karlotoxin producing nonthecate dinoflagellate Karlodinium veneficum (previ-
ously K. micrum) has been recorded in both the northeastern Hauraki Gulf and the more
southern Marlborough Sounds [202]. This species has been shown to have harmful effects
on shellfish, including mussels, M. edulis; clams, Mercenaria mercenaria; and oysters, Cras-
sostrea virginica and C. ariakensis (see [185–188]). This ichthyotoxic species was implicated
in massive finfish mortalities (more than 100,000 fish) in the sub-tropical Upper Swan River
Estuary in Western Australia [182]. Numerous fish species were affected, including black
bream, Acanthopagrus butcheri; Perth herring, Elops machnata; and Swan River gobies, Pseu-
dogobius olorum. Gill histopathology was comparable to the damage shown in laboratory
experiments, and it was also demonstrated that microalgal cell lysis was required for the
toxic effects. In the USA, Karlodinium veneficum (as K. micrum) has been implicated in three
separate fish kills of hybrid striped bass (M. chrysops × M. saxatilis) in Chesapeake Bay,
Maryland [183,184] and toxic substances were detected in cell-based assays. The toxins,
karlotoxins, have been characterised and it is possible that they are involved in predation
by the mixotrophic dinoflagellates [203]. Hong Kong, and the wider coastal waters of
south China, were impacted by a massive bloom of the related K. digitatum (previously
K. digitata) in 1998, with concurrent fish kills. The bloom was indiscriminate, killing at least
twenty-two fish species, both farmed (caged) and naturally occurring. Low wind speeds,
warming harbour waters, and high nitrogen and phosphate levels appeared to trigger the
bloom [204]. The genus Karlodinium should, therefore, be of concern for finfish aquaculture
and requires further research in NZ as well as regular monitoring. It is plausible that the
genus is quite diverse with a single transect of the Southern Ocean south of Tasmania,
Australia, giving rise to five new Karlodinium species [205].

In Japan, ‘red tides’ of the thecate dinoflagellate Heterocapsa circularisquama devas-
tated the bivalve shellfish industry in 1998, impacting on the mariculture of the Japanese
pearl oyster, Pinctada fucata martensii [178]. Only invertebrates were affected at that time,
and the cause appeared to be a labile protein-like complex on the cell surface which was
causing the detrimental effect on bivalves. Further studies revealed mortalities in several
commercially important bivalve species exposed to this microalga [29,85,179,180]. Five
Heterocapsa species have been recorded in NZ, including H. cf. circularisquama, which
occurs in northern sub-tropical waters. To date, no bivalve mortalities have been reported,
although H. illdefina has been responsible for ‘swimmers itch’ and may therefore have some
toxic properties [181].

The thecate dinoflagellate Prorocentrum rhathymum (syn. P. mexicanum under investi-
gation) has been recorded in NZ [206], but has not been associated with marine mortalities.
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It has, however, been linked to oyster spat, C. gigas mortalities in Tasmania, Australia.
Intraperitoneal mouse bioassays revealed fast acting toxins in methanol but not aqueous
extracts of P. rhathymum, with mice dying in less than 20 min [197].

Prevalent along southeast Asian and north American coasts, the thecate dinoflagellate
Cochlodinium polykrikoides (syn. Margalefidinium polykrikoides) has been responsible for
massive fish kills in those regions (e.g., [94,175–177]). The dinoflagellate species poses a
potential risk to finfish in NZ as it has been reported in NZ waters and would most likely
bloom in offshore northern waters where temperature ‘hot spots’ have occurred [207,208].

The globally distributed, heterotrophic, dinoflagellate genera Pfiesteria and Pseu-
dopfiesteria are both considered responsible for fish kills in eutrophic estuaries in the
USA [191], although considerable strain variability in toxicity has been noted [209]. These
dinoflagellates possess a peduncle (feeding tube) that can be extended between its sulcal
plates and used to feed on micro-algae, bacteria, fish, and other organisms. This feeding
behaviour is known as myzocytosis and can cause tissue damage and contribute to the
death of fish [191,192] and bivalve larvae [193,194].

Both Pfiesteria and Pseudopfiesteria have been reported in NZ, particularly in estuarine
habitats, and the potential risk to animal health is dependent on the continued control
of nutrient inputs into NZ’s estuaries and brackish lakes. The thecate Pfiesteria piscicida
and Ps. shumwayae are resident in the sediments of Tasman Bay’s well-flushed estuaries
and Canterbury’s brackish lakes, as determined by quantitative PCR assays targeted at
ribosomal DNA [195,210,211] and confirmed by scanning electron microscopy of motile
cells [195]. Most detections have been of cysts in sediments, but motile cells have been
detected in water samples in late summer–autumn [195]. Similarly, Ps. shumwayae causes
mortality of larval and adult bivalve species [196] and a strain of Ps. shumwayae, isolated
from Tasman Bay sediments, has been shown to be ichthyotoxic [195].

The raphidophyte genus Chattonella has caused massive fish kills in Australia. Mass
mortalities of caged bluefin tuna, Thunnus maccoyii, in South Australia in 1996 were caused
by C. marina blooms with a cost to the industry of an estimated AU$45 million [200,201].
The higher potency of the Australian blooms (which killed at 66,000 cells L−1 compared to
Japan at 500,000 cells L−1 where similar mass fish mortalities have occurred; see [199]) was
attributed to the higher sensitivities of tuna and to the higher ichthyotoxicity of Australian
high-light adapted algal strains [212]. The toxic potential of Chattonella is believed to be
associated with a high production of reactive oxygen species [213]. Early life stages of the
Japanese Pearl oyster, Pinctada fucata martensii have been shown to be sensitive to C. marina
with negative effects observed on sperm swimming velocity [124] and on the umbo and
pre-settling larval stages [125]. In NZ, C. marina var. antiqua has been isolated from the
northeast and the southernmost coast of the North Island. Cultures were tested and were
negative for BTXs [214].

Another potentially problematic microalga is the newly described haptophyte species
Pavlomulina ranunculiformis (Figure 4), which has been observed attaching to oyster
larvae and then swelling (apparently becoming engorged) before dropping away [28].
Whether this proves to be an issue for aquaculture remains to be seen.

3.1.1. Potentially Harmful Taxa Detected Using High-Throughput
Sequencing Metabarcoding

Seawater samples from around the South Island of New Zealand, collected as part
of the New Zealand Marine Biotoxin Monitoring Programmes and containing cells of
potentially ichthyotoxic species were analysed using high-throughput sequencing metabar-
coding. Four primer sets (Supplementary Table S1) targeting the 18S and 28S ribosomal
RNA regions were used to attempt to capture a wide range of potentially toxic taxa. Spe-
cific primers for dinoflagellates and haptophytes were used to maximise coverage of these
important groups. Morphological classification of these groups is also problematic, and we
aimed to increase molecular data and knowledge of these harmful taxa. No raphidophyte
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or dictyochophyte taxa were detected using any of the primer pairs and so our analyses
focused on diatoms, dinoflagellates, and haptophytes.
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All sites were dominated by the diatoms Chaetoceros spp. (Figure 5), and the harmful
species C. convolutes was detected (Supplementary Table S2). This species has large barbs
which can cause finfish mortalities even at very low concentrations due to microbial
infections of damaged gill tissue, haemorrhage of gill capillaries or suffocation from excess
mucus production at the sites of penetration of the gills by the spines [171]. Pseudo-nitzschia
pseudodelicatissima was also found at Waitata Reach (Figure 5). It is a common bloom
forming species in New Zealand which can also cause physical damage to fish gills.

The diversity of dinoflagellates at all sites was high for both gene regions used, and
several harmful taxa were detected, including Alexandrium spp., Gonyaulax fragilis, Dino-
physis spp., Karenia spp., Karlodinium spp., Pfiesteria sp., and Prorocentrum spp. (Figure 6).
Most of these genera were present at low levels; however, Alexandrium pacifium was a
dominant species at most of the Marlborough Sounds sites. A bloom of Karenia umbella was
detected in Akaroa (Figure 6B), a species that has caused issues in this harbour previously.
Karlodinium and Takayama species were also both detected and while no associated fish kills
or toxin events have occurred in New Zealand to date, both genera have been implicated
in fish kills in Australia [111].

Some genera, such as Dinophysis and most Prorocentrum spp., were unable to be
classified to species-level using the two gene regions used, although good resolution was
achieved for other genera including Alexandrium, Karenia, and Karlodinium, highlighting
the usefulness of these gene regions for nucleic acid-based detection methods [215].
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using universal 18S ribosomal RNA primers. No raphidophytes or dictyochophytes were detected.
X = Unclassified from the higher rank of taxonomic classification.
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The harmful genus Chrysochromulina was common at all sampled sites (Figure 7),
although the most common species associated with fish mortalities worldwide, C. polylepis
and C. leadbeateri, were not detected (Supplementary Table S2). Both gene regions showed
good taxonomic resolution for this genus. The 18S ribosomal gene did detect a higher
number of haptophyte species, likely due to a more comprehensive database available for
this region. Other harmful genera detected were Phaeocystis and Prymnesium, although
these could not be resolved to the species level (Figure 7; Supplementary Table S2).
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These data show that many potentially harmful taxa are common at important aquacul-
ture sites in New Zealand, especially in the important aquaculture region, the Marlborough
Sounds. An increase in the DNA sequence data available for these taxa will enable the
development of more specific and rapid molecular tools for the detection and characterisa-
tion of HABs. This is especially important for species that are difficult to identify by light
microscopy (e.g., Chrysochromulina; [216]).

3.2. HABs in a Changing Environment

Sea surface and sub-surface waters around New Zealand are warming [207]. From
2002 to 2020, there was an estimated 0.2–0.4 ◦C decade−1 increase in sea surface temperature
in the important GSM-producing Pelorus Sound, Marlborough Sounds, which has likely
contributed to difficulties in gaining year-round wild-spat supply and a decrease in mussel
condition, leading to a reduction in the value of harvest [217]. In addition to this ocean
warming, the 2017 marine heatwave, that persisted for the entire Austral summer, during
which sea surface temperature abnormalities reached up to +3.7 ◦C in the Eastern Tasman
Sea [208], contributed to the deaths of many salmon in the Marlborough Sounds [39].

Increased temperatures and temperature anomalies affect the metabolic and physiolog-
ical responses of commercially important fish and shellfish species, rendering them more
susceptible to the effects of abiotic and biotic stressors such as HABs (Figure 8, [218–220]).
Previous studies have demonstrated the interactive effects of harmful algae and other biotic
stressors (i.e., infectious agents), on the immune response of bivalves [221,222]. Research on
the multiple stressor effects of temperature changes (and related climate change stressors)
and HABs is lacking. This knowledge is essential to obtain a more ecologically accurate
assessment of the effects of HABs on commercially important species [223].

Increased water temperatures, temperature anomalies, and temperature-driven strati-
fication will also change the abundance, composition, biogeography, and seasonal distri-
bution of the phytoplankton (Figure 8, [5,224]). Such changes may result in exceptional
HABs, such as the unprecedented large-scale HABs reported in the coastal waters off the
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south-eastern coast of Hokkaido, Japan, from mid-September 2021, about one month after
intense and extensive marine heatwaves subsided [113].
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Figure 8. The effects of climate change stressors (e.g., temperature, pH, nutrients, hypoxia, salinity,
turbidity, and anthropogenic) on Harmful Algal Blooms (HABs) and fish and shellfish species.
Alterations in HAB concentration, species composition, biogeography, seasonality, and toxicity in
a changing environment, combined with an altered physiological state of fish and shellfish species,
could results in antagonistic, additive or synergistic effects on commercially important species. Image:
Eden Cartwright, Bird Circus.com.

The toxicity of HABs is already known to vary significantly among isolates of the same
algal species [225] and even within strains from the same population [226]. Climate-change
driven changes in the phytoplankton may also change HAB toxicity, further highlighting the
need to investigate the effects of local, recent, HAB strains of interest on commercially im-
portant species. The use of relevant bioassays, using bivalve gametes [22,74], larvae [12,22]
hemocytes [33], and fish gill cells [227], for example, will allow rapid screening of poten-
tially toxic HAB species and determination of what is causing the toxic effects (i.e., known
toxins or other, often uncharacterised, bioactive compounds), enabling refinement of risk
assessments and accurate mitigation strategies for producers.

Changes in the phytoplankton may also lead to the proliferation of HABs novel to
NZ. The ciguatera fish poisoning dinoflagellate genus, Gambierdiscus, has been reported
in New Zealand coastal waters and is likely to proliferate with warming waters [228].
The dinoflagellate, Alexandrium catenella (=A. fundyense, Group I, [131]) has contaminated
shellfish in Australia, particularly since 2012 [25,229], and has been responsible for mass
shellfish and fish kills world-wide (e.g., [230–232]). It is likely A. catenella is present in
offshore waters of NZ, given the proximity to Tasmania, Australia. As is hypothesised in
Australia, persistent ocean stratification driven by climate change, may well lead to the
emergence of blooms of this species in NZ [25], as has been seen with A. pacificum with
its spread to the top of the South Island [233]. The use of molecular methods for species
detection and comprehensive monitoring programmes will ensure that such changes are
identified promptly.
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4. Conclusions and Future Directions

Harmful algal blooms (HABs) have wide-ranging effects on aquatic species of com-
mercial importance. In addition to the lethal effects of HAB exposure, sublethal effects
can also reduce commercial productivity by reducing the fitness of the animal [154]. The
use of molecular methods and comprehensive HAB monitoring programmes allow for
early detection of novel and problem species [234] and use of cost-effective, high through-
put bioassays can be used to rapidly identify any local, novel HAB species of concern.
Moreover, improvements in predicting the movement and size of HABs, such as the use
of statistical and machine learning HAB forecasting tools (see [6,235]), are enabling more
proactive management responses. Mitigating the impacts of HABs on industry, however, is
challenging. Stock management strategies could include informed site selection, the use of
physical barriers such as skirts around fish net pens, emergency or early harvest, or moving
stock to offshore areas [6,234]. Novel technologies, such as floating closed containment
systems, are driving innovation in aquaculture system design given they may offer pro-
tection against HABs as well as disease and temperature [236]. Alternatively, land-based
recirculating aquaculture systems offer ultimate control in water quality for high-value
aquaculture species. There remain, however, large knowledge gaps on the effects of HABs,
notably in conjunction with increased temperature (and other climate change stressors) and
research should focus on the effects of these and other relevant multiple stressors.

5. Materials and Methods
5.1. Sampling, PCR Conditions and High-Throughput Sequencing

Seawater samples (100 mL) were collected from around the South Island of New
Zealand as part of the New Zealand Marine Phytoplankton Monitoring Programme during
routine weekly phytoplankton monitoring. Samples containing cells of potentially ichthy-
otoxic species (as determined by the Cawthron Phytoplankton Monitoring Laboratory by
light microscopy analysis) were filtered (Durapore membrane filters, 0.45 µm, Millipore,
Bedford, OH, USA) and stored at −20 ◦C until DNA extraction. Genomic DNA was ex-
tracted using DNeasy PowerSoil isolation kits (Qiagen, Valencia, CA, USA) following the
manufacturer’s instructions using an automated homogenizer (1600 MiniG Automated
Tissue Homogenizer and Cell Lyser, SPEX SamplePrep, Metuchen, NJ, USA) and a robotic
workstation for DNA extraction (QIAcube, Qiagen). Negative extraction controls were
performed every 23 samples. For each sample, gene regions were amplified by Polymerase
Chain Reaction (PCR), using the primers list in Supplementary Table S1 The primers were
modified to include IlluminaTM overhang adaptors following the dual-indexing method
described in [237]. All PCR reactions were undertaken in duplicates with 450 nM of each
primer, 13 µL of 2× MyFi™ Mix (Bioline, London, UK), ca. 5 ng of DNA, and sterile water
for a total reaction volume of 25 µL. Cycling conditions were: 95 ◦C for 5 min, followed
by 32 cycles of 95 ◦C for 30 s, 54 ◦C for 30 s, 72 ◦C for 45 s, and a final extension of 72 ◦C
for 7 min for the 18S and 28S regions; and 98 ◦C for 30 s, followed by 35 cycles of 98 ◦C
for 10 s, 58 ◦C for 30 s, 72 ◦C for 30 s, and a final extension of 72 ◦C for 10 min for the
18S haptophytes and 28S haptophytes target regions. Duplicates of PCR products were
pooled and visualized on 1.5% agarose gel with Red Safe™ DNA Loading Dye (Herogen
Biotech) and UV illumination. PCR negatives were run to assess for contamination during
the PCR steps. The PCR products were purified, cleaned of primer dimers, and normalized
using SequalPrep Normalization plate (ThermoFisher, Waltham, MA, USA), and submitted
to Auckland Genomics (University of Auckland, New Zealand) for library preparation.
Sequencing adapters and sample-specific indices were added to each amplicon via a second
round of PCR using the Nextera™ Index kit (Illumina Inc., San Diego, CA, USA). Ampli-
cons were pooled into a single library and paired-end sequences (2 × 250 bp) generated on
a MiSeq® instrument. The sequencing libraries were prepared following the Illumina 16S
Metagenomics Library Prep manual. Quality control was undertaken using a bioanalyzer
before the library was diluted to 4 nM and denatured. A 15% PhiX spike was used, and the
final loading concentration was 7 pM. Sequence data were automatically demultiplexed
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using MiSeqR Reporter (version 2, Illumina Inc.), and forward and reverse reads assigned
to samples. Raw sequence reads were deposited in the National Center for Biotechnology
Information (NCBI) short read archive under the accession number PRJNAXX.

5.2. Amplicon Sequence Variant Inference and Taxonomic Assignments

Bioinformatic pipelines for all of the rRNA genes were identical unless otherwise
stated. Raw reads were processed, after primers being removed with cutadapt [238], using
the DADA2 package [239] within R. Reads were truncated to 228 and 230 bp and filtered
with a maxEE (maximum number of “expected errors”) of 2 and 4 for forward and reverse
reads, respectively (reads not reaching this threshold were discarded). DADA2 constructs
a parametric error matrix (based on the first 108 bps in the dataset), the samples are derepli-
cated and sequence variants for the forward and reverse reads are inferred based on the
derived error profiles from the samples. Singletons observed in the inference step are
discarded. Subsequently, paired-end reads were merged with a maximum mismatch of
1 bp and a required minimum overlap of 10 bp. Forward and reverse reads, which did not
merge were not included in further analysis. Chimeras were removed using the function
removeBimeraDenovo. The resulting chimera-checked, merged amplicon sequence vari-
ants (ASVs) were used for taxonomic classification using the PR2 database [240] for the 18S
and the 18S haptophytes datasets, the LSU database [241] for the 28S dataset, and the LSU
Haptophyta database [242] for the 28S haptophytes dataset. The sequences were classified
based on the rdp classifier [243] with a bootstrap of 50 to be able to get classifications at
higher taxonomic levels. The results were parsed into a table using the phyloseq pack-
age [244], and negative controls were assessed and the sum of reads from contaminating
ASVs was subtracted from the samples. For comparisons between samples, subsampling
to an even depth was undertaken for each sample at a depth of 10,000 reads for the 18S and
28S datasets, and 4000 reads for the smaller 18S haptophytes and 28S haptophytes datasets.

Stacked bar plots and taxonomy tables were generated using the package ggplot2 [245]
in R based on the average relative abundance of sequence reads attributed to a given
taxonomy at each location sites.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins14050341/s1, Table S1: Details of the primers used in this
study for the high-throughput sequencing metabarcoding analyses [246–248]; Table S2: Sea water
samples from around the South Island of New Zealand, collected as part of the New Zealand Marine
Phytoplankton Monitoring Programme and containing cells of potentially ichthyotoxic species were
analysed using high-throughput sequencing metabarcoding using the four primer pairs listed in
Supplementary Table S1. The resulting taxonomic classifications of eukaryotic phytoplankton types
that are associated with harmful effects are listed. No raphidophytes or dictyochophytes were detected.
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