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Abstract: Aflatoxins (AFs) represent one of the main mycotoxins produced by Aspergillus flavus
and Aspergillus parasiticus, with the most prevalent and lethal subtypes being AFB1, AFB2, AFG1,
and AFG2. AFs are responsible for causing significant public health issues and economic concerns
that affect consumers and farmers globally. Chronic exposure to AFs has been linked to liver cancer,
oxidative stress, and fetal growth abnormalities among other health-related risks. Although there are
various technologies, such as physical, chemical, and biological controls that have been employed
to alleviate the toxic effects of AF, there is still no clearly elucidated universal method available
to reduce AF levels in food and feed; the only mitigation is early detection of the toxin in the
management of AF contamination. Numerous detection methods, including cultures, molecular
techniques, immunochemical, electrochemical immunosensor, chromatographic, and spectroscopic
means, are used to determine AF contamination in agricultural products. Recent research has shown
that incorporating crops with higher resistance, such as sorghum, into animal feed can reduce the risk
of AF contamination in milk and cheese. This review provides a current overview of the health-related
risks of chronic dietary AF exposure, recent detection techniques, and management strategies to
guide future researchers in developing better detection and management strategies for this toxin.

Keywords: Aspergillus flavus; Aspergillus parasiticus; aflatoxin exposure; liver cancer; oxidative stress;
hormonal changes; food safety

Key Contribution: The global impact of aflatoxin contamination has escalated due to its detrimental
impact on human health and considerable economic losses. This review focuses on the recent long-
term health-related risks related to the dietary consumption of aflatoxin. Additionally, this review
provides insights into emerging detection techniques and management practices for controlling
aflatoxin contamination in food products.

1. Introduction

Mycotoxins present a detrimental threat to human and livestock health by contami-
nating various food substances and agricultural products [1]. The Food and Agricultural
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Organization of the United Nations has reported that mycotoxins affected at least 25% of
the global food crop in 2004 [2]. Consumption of mycotoxin-contaminated products can
lead to acute and chronic toxicity [3]. Aflatoxins (AFs), produced primarily by Aspergillus
flavus and Aspergillus parasiticus, represent one of the most poisonous mycotoxins [4].

AFs can be classified into six types: AFs B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2),
M1 (AFM1), and M2 (AFM2) [5]. Of these, AFB1 and AFB2 are produced by A. flavus,
whereas AFG1 and AFG2 are released by A. parasiticus [6]. In contrast, AFM1 has been
considered the hydroxylation byproduct of AFB1 in the liver of lactating dairy cows after
the ingestion of contaminated feed [7]. AFB1, AFB2, AFG1, and AFG2 are primarily found
in food crops, whereas AFM1 (a metabolite of B1) and AFM2 are commonly found in
animal by-products, such as milk and dairy products [8–10].

Food products, such as grains, tree nuts, oilseeds, and spices, are frequently affected
by AFs under warm and humid storage conditions [4]. Other environmental factors
(temperature, relative humidity, rainfall, soil type, and evapotranspiration) and pre- and
post-harvest management practices (cropping, timely harvesting, drying, sorting, storage
conditions, and transportation) may also contribute to fungal proliferation and trigger
subsequent mycotoxin excretion [11]. Mainly, AF contamination affects agricultural prod-
ucts in African and Southeast Asia countries due to their climatic conditions [12], where
hot and humid tropical and subtropical climates with mean annual rainfalls > 700 mm
provide ideal conditions conducive to the growth of molds and post-harvest products
stored under conditions with high relative humidity and poor aeration that promote fungal
growth [13–15]. However, with increasing global warming, AF is now becoming a threat in
previously unaffected countries, including Europe [16].

Despite numerous works of literature on AFs contamination in the current field, there
is still limited documented evidence on the level of AF awareness and the food handling
practices that can help minimize AF food and feed contamination. There is an urgent need
to carry out interventions to protect food safety and security. Thus, in this review, we focus
on the health-related risks of human and livestock dietary exposure to AFs, along with the
various methods used to detect, control, and manage AFs.

2. Impact on Human and Animal Health

AF can have a negative impact on the physiological status of humans and animals
by causing DNA damage, cancer, and developmental abnormalities in embryos under
long-term exposure [17]. Upon consumption, the alternating groups of carbonyl and
methylene, called polyketides, are absorbed, modified, and transferred to different parts of
the body [6]. Long-term exposure to AFs can result in aflatoxicosis, an acute poisoning that
can be life-threatening and predominantly causes liver damage [4]. Research has shown
that children receive the most significant exposure to all AF-contaminated food types,
followed by adolescents and adults, who were the least-exposed group [18]. The existing
evidence suggests that infants and young children have a greater possibility of experiencing
the deleterious effects of mycotoxins due to their immature metabolic pathways, higher
intake-to-body weight ratio, greater metabolic rates, and lesser detoxification capability
relative to adults [19,20]. Based on the reported epidemiological studies, AFB1 is the most
dangerous AF [21]. Ezekiel and colleagues (2021) determined the liver cancer risk for
households that consume cereals and nuts regularly. They observed that the liver cancer
risk from AFB1 exposure in children was twice that of adolescents and six times that of
adults. In contrast, Nabizadeh and colleagues (2018) revealed no considerable differences
in the margin of exposure between adults and children in the Zanjan Province, Iran, despite
both groups being at significant risk of liver cancer due to AFB2 from the consumption
of unrefined olive oil [22]. It is suggested that the reason may be linked to a lower daily
intake of olive oil in children.

Similarly, Milićević and colleagues (2021) found that pasteurized and UHT milk had
the highest level of contamination (79%) and the greatest mean concentration of AFM1
(22.34 ± 0.02 ng kg−1), while cheese had the lowest mean concentration (1.36 ± 0.01 ng
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kg−1) [20]. The main contributor to the risk of hepatocellular carcinoma (HCC) resulting
from AFM1 exposure was the consumption of milk products, in the form of pasteurized
and UHT milk, with estimated cases of 0.00038 and 0.00039 per 100,000 individuals per year
for the lower bound and upper bound scenarios, respectively. Interestingly, the age group
of 1–3 years was associated with the highest risk of HCC (0.00034), indicating no health risk
for the groups assessed. Toddlers were estimated to have a higher daily exposure to AFM1
in milk compared to children aged 3–9 years, with an estimated daily intake of 0.164 and
0.193 ng kg−1 bw day−1 for the lower and upper bound exposure scenarios, respectively.

In a recent study by Arak and colleagues (2021), the consumption of raw rice grain
powder and methanol extract containing AFs caused a significant increase in lactate dehy-
drogenase activity in experimental ducklings [23]. Histopathological examinations revealed
an accumulation of large fat droplets and hepatocyte cell swelling in the ducklings exposed
to dietary AFs. The presence of AFB1, in combination with biomolecules, led to liver
damage and impaired liver metabolic functions. Similarly, de Freitas Souza and colleagues
(2019) observed hepatocyte anisocytosis, moderate fat infiltration, apoptosis, and the multi-
focal necrosis of hepatocytes in silver catfish at 5 days post-feeding with an AFB diet [24].
The severity of toxic hepatitis significantly increased by day 10 post-feeding.

Rotimi and colleagues (2021) investigated the effects of prenatal exposure to AFB1
in mice and its impact on weight, lipid levels, and hormone levels in the offspring [25].
The results indicated that both low and high levels of prenatal AFB1 exposure caused a
significant reduction in weight and a decrease in cholesterol levels, accompanied by an
increase in triglyceride levels. Furthermore, the weight of the newborn mice was reduced,
and weight gain was affected even after the exposure was withdrawn. Additionally,
hormonal changes were observed in male and female mice, including decreased levels of
testosterone, progesterone, and luteinizing hormone.

Morales-Moo and colleagues (2020) revealed that AFB1 was detected in at least 47% of
popcorn samples, highlighting the potential risk associated with consuming this popular
snack [26]. The risk of liver cancer due to the consumption of AF-contaminated popcorn
was found to be 0.993 cancers/year per 100,000 females, while for males, the average risk
was 0.137 cancers/year per 100,000. Notably, males under the age of 18 carried the highest
risk at 0.137 cases per 100,000 persons. The reasons for the presence of AF in processed
foods remain poorly understood; however, it is thought to be linked to the limitations
of the current cooking processes that can only partially destroy AF, resulting in residual
contamination [27].

Recently, Hatipoglu and colleagues (2022) demonstrated that AFB1 can induce oxida-
tive stress by generating reactive oxygen species (ROS) and causing lipid peroxidation [28].
This leads to a significantly increased level of malondialdehyde (MDA) and decreased
activities of glutathione (GSH) and superoxide dismutase (SOD). Additionally, AFB1 trig-
gers the release of pro-inflammatory cytokines, including tumor necrosis factor-a (TNF-a),
interleukin-1b (IL-1b), and interleukin-6 (IL-6). Abnormal liver function tests that included
high levels of AST and ALT further explained the loss of hepatocyte structural integrity.
AFB1 can disrupt cell membrane permeability and the mitochondrial membrane in hepato-
cytes, leading to liver damage.

AF derivatives, such as AFM1, can contaminate milk products through animal ex-
cretion [4]. Islam and colleagues (2021) reported that over half of the 62 human breast
milk samples from the Bangladesh cohort were contaminated with AFM1 due to maternal
consumption of AFB1-contaminated food [29]. Using enzyme-linked immunosorbent assay
(ELISA), the presence of AFM1 was detected in 51.6% of the samples, with an average daily
intake of AFM1 in human newborns of 0.49 ng/kg b.w./day. This investigation was the
first of its kind to determine the occurrence of AFM1 in human breast milk in Bangladesh,
where limited data exist on AF occurrence in food commodities. Further studies involving
a larger cohort are proposed to gain more insight into the extent of infant exposure through
maternal milk in Bangladesh.
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Interestingly, Njombwa and colleagues (2021) observed a very low incidence of AFM1-
induced HCC in children, at 0.038 cases/100,000 individuals, and adults, at 0.023 cases/
100,000 individuals, despite their high consumption of raw milk, at 300 mL/day and
541 mL/day, respectively [30]. According to the eighty-third report of the World Health
Organization and the Food and Agriculture Organization of the United Nations, AFM1 only
contributed a small amount (<1%) to AF-induced cancer risk for the general population
compared to AFB and AFG [31]. Additionally, Conteçotto and colleagues (2021) revealed
the risk of HCC in children was at 0.0015 to 0.0045 cases/100.000 individuals from the
consumption of ultra-high temperature milk, powdered milk, and infant formula [32]. The
average number of HCC cases associated with AFM1 exposure was reported between
0.0027 and 0.0029 cases/100,000 individuals.

Currently, there is a lack of literature available on the levels of AFM2 in naturally
contaminated cheese and the associated health risks of its consumption. Despite this,
some studies have investigated the distribution of AFM2 in mozzarella cheese made with
buffalo milk. Pietri and colleagues (2003) and Fedele and colleagues (2007) both reported
lower levels of AFM2 compared to AFM1 and suggested that this may be due to a lower
interaction of AFM2 with casein [33,34]. Figure 1 shows the schematic representation of
health-related risks for humans and animals upon dietary AF exposure, while Table 1
summarizes the impacts of AF on human and animal health, as appraised in this review.
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Table 1. A summary of AF impacts on human and animal health.

Type of Aflatoxins Country Host/Food Commodities Detection Method Study Subjects Major Findings References

AFB1 North Central Nigeria Cereals, millet, rice,
sorghum, nuts, and legumes

Liquid chromatography
tandem mass spectrometry

(LC-MS)

Average household
population, which regularly
consumes cereals and nuts

• Liver cancer risk for AFB1 exposure in chil-
dren was twice that of adolescents and four
times that of adults.

[18]

AFB2 Iran

Sunflower oil, canola oil,
refined olive oil, unrefined

olive oil, frying oil, and
blend oil

High-performance liquid
chromatography (HPLC)

with a fluorescence detector

Children and adult
populations exposed to
contaminated edible oils

• There was no considerable difference in the
margin of exposure between adults and chil-
dren in the Zanjan Province, Iran despite
both groups being at significant risk of liver
cancer due to AFB2 from the consumption
of unrefined olive oil.

• It is suggested that the reason may be
linked to a lower daily intake of olive oil
in children.

[22]

AFM1 Serbia Milk, dairy products, and
infant formula

ELISA and
LC-MS/MS analysis

Toddlers (1–3 years) and
children (3–9 years)

• Pasteurized and UHT milk had the
highest level of contamination (79%)
and the greatest mean concentration
of AFM1 (22.34 ± 0.02 ng kg−1), while
cheese had the lowest mean concentration
(1.36 ± 0.01 ng kg−1).

• The main contributor to the risk of HCC
resulting from AFM1 exposure was the con-
sumption of milk products, in the form of
pasteurized and UHT milk, with estimated
cases of 0.00038 and 0.00039 per 100,000 in-
dividuals per year for the lower bound and
upper bound scenarios, respectively.

• The age group of 1–3 years was as-
sociated with the highest risk of HCC
(0.00034), indicating no health risks for the
groups assessed.

• Toddlers were estimated to have a higher
daily intake of AFM1 in milk as compared
to children aged 3–9 years, with an esti-
mated daily intake of 0.164 and 0.193 ng
kg−1 bw day−1 for the lower and upper
bound exposure scenarios, respectively.

[20]
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Table 1. Cont.

Type of Aflatoxins Country Host/Food Commodities Detection Method Study Subjects Major Findings References

AFB1 Iran

Rice grains (contaminated
rice grain powder, methanol

extract of contaminated
rice grains)

HPLC Four-day-old
Pekin ducklings

• The consumption of raw rice grain
powder and methanol extract contain-
ing AFs caused a significant increase
in lactate dehydrogenase activity in
experimental ducklings.

• Histopathological examinations revealed
an accumulation of large fat droplets and
hepatocyte cell swelling in the ducklings
exposed to dietary AFs.

• The presence of AFB1, in combination with
biomolecules, led to liver damage and im-
paired liver metabolic functions.

[23]

AFB Brazil Rice

LC-MS, equipped with a
turbo ion spray electron

spray ionization source at
atmospheric pressure, and

an Agilent
chromatography system

Silver catfish
(Rhamdia quelen)

• Hepatocyte anisocytosis, moderate fat infil-
tration, apoptosis, and the multifocal necro-
sis of hepatocytes were observed in sil-
ver catfish at 5 days post-feeding with an
AFB diet.

• The severity of toxic hepatitis significantly
increased by day 10 post-feeding.

[24]

AFB1 Nigeria Not stated Not stated Male and female Wistar rats

• Both low and high levels of prenatal AFB1
exposure caused a significant reduction in
weight and a decrease in cholesterol lev-
els, accompanied by an increase in triglyc-
eride levels.

• The weight of newborn mice was reduced,
and weight gain was affected even after the
withdrawal of exposure.

• Hormonal changes were observed in male
and female mice, including decreased levels
of testosterone, progesterone, and luteiniz-
ing hormone.

[25]
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Table 1. Cont.

Type of Aflatoxins Country Host/Food Commodities Detection Method Study Subjects Major Findings References

AFB1 Mexico Popcorn (Zea mays everta)

HPLC equipped with an
isocratic pump, a

fluorescence detector, and
an autosampler

Women and men in the city
of Veracruz (food frequency

questionnaires)

• AFB1 was detected in at least 47% of the
popcorn samples.

• The risk of liver cancer due to the con-
sumption of AF-contaminated popcorn
was found to be 0.993 cancers/year per
100,000 females, while for males, the aver-
age risk was 0.137 cancers/year per 100,000.

• Notably, males under the age of 18 car-
ried the highest risk, at 0.137 cases per
100,000 persons.

[26]

AFB1 Turkey Not stated Not stated Wister albino rats

• AFB1 induced oxidative stress by generat-
ing ROS and causing lipid peroxidation.

• This leads to a significantly increased level
of MDA and decreased activities of GSH
and SOD.

• Additionally, AFB1 triggers the release
of pro-inflammatory cytokines, including
TNF-a, IL-1b, and IL-6.

• Abnormal liver function tests that in-
cluded high levels of AST and ALT fur-
ther explained the loss of hepatocyte
structural integrity.

• AFB1 can disrupt the cell membrane perme-
ability and the mitochondrial membrane in
hepatocytes, leading to liver damage.

[28]

AFM1 Bangladesh Human breast milk samples Competitive ELISA Nursing mothers and
nursing babies

• Maternal consumption of AFB1-contaminated
food led to more than half of the 62 human
breast milk samples from the Bangladesh co-
hort that was contaminated with AFM1.

• Using ELISA, the presence of AFM1 was de-
tected in 51.6% of the samples, with an av-
erage daily intake of AFM1 in human new-
borns of 0.49 ng/kg b.w./day.

[29]
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Table 1. Cont.

Type of Aflatoxins Country Host/Food Commodities Detection Method Study Subjects Major Findings References

AFM1 Malawi Raw milk samples VICAM aflatest fluorometry
Adults and children from

small-scale dairy
farming households

• A very low incidence of AFM1-induced
HCC was observed in children, at 0.038
cases/100,000 individuals, and adults, at
0.023 cases/100,000 individuals, despite
their high consumption of raw milk, at
300 mL/day and 541 mL/day, respectively.

[30]

AFM1 Brazil
Ultra-high temperature

milk, powdered milk, and
infant formula

HPLC with a fluorescence
detector

Children from a child
education center (food

frequency questionnaires)

• The risk of HCC in children was identified
at 0.0015 to 0.0045 cases/100.000 individ-
uals from the consumption of ultra-high
temperature milk, powdered milk, and in-
fant formula.

• The average number of HCC cases asso-
ciated with AFM1 exposure was reported
to be between 0.0027 and 0.0029 cases/
100,000 individuals.

[32]
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3. Detection of Aflatoxin

Apart from their impact on human health, AFs also lead to significant economic
losses due to the widespread contamination of food products. Therefore, the detection and
quantification of AFs in food and feed are crucial for ensuring safety. Several methods are
usually employed for the quantification of AFs in food commodities.

3.1. Culture-Based Techniques

Different culture media, such as coconut agar medium (CAM), coconut milk agar
(CMA), yeast extract sucrose (YES) medium, and AF-producing ability (APA) media, can
be used to distinguish between toxigenic and atoxigenic strains of A. flavus based on their
morphological characteristics [35–37]. To differentiate between these strains, UV light
of 365 nm wavelength was used to observe a fluorescent ring surrounding the A. flavus
colony on CAM, CMA, and YES media amended with 3% methyl-cyclodextrin, while the
atoxigenic isolates showed no fluorescence. Research conducted by Wang and colleagues
(2019) investigated the AF production of A. flavus at different temperatures and media.
They observed that AF production was highest in solid media at 28 ◦C and 37 ◦C and
in liquid media at 28 ◦C [38]. The reason for more AF production in solid media can be
attributed to the association of multiple metabolic pathways.

3.2. Molecular-Based Techniques

Molecular-based techniques outperform culture-based techniques with their higher
sensitivity, reproducibility, and reliability [39]. To amplify the genes involved in the AF
biosynthesis pathway, various markers have been utilized. Multiplex and real-time PCR
assays have been developed for this purpose, and they target genes, including aflD(nor),
omtA, aflM(ver), aflR, and aflJ [40]. Hu and colleagues (2021) developed a novel luminescence
detection method that employs ATP-releasing nucleotides (ARNs) and AFB1 aptamer for
AFB1 detection [41]. The authors synthesized two ARNs (dTP4A and dGP4A) without using
ATP as the starting material, and the method provided a lower detection limit of 0.3 pM.
Zhao and colleagues (2021) used a self-replicating catalyzed hairpin assembly method
based on the formation of a helix DNA H1–H2 complex for AFB1 identification [42]. Within
15 min, AFB1 was detected with a detection limit of 0.13 ng/mL, as the DNA complex
splits the double-stranded probe DNA, leading to the development of DNA replicas and
fluorescence signals.

3.3. Immunochemical Methods

Immunochemical methods, such as ELISA, radioimmunoassay (RIA), and immun-
odipsticks utilize the specific binding of antigens and antibodies. In ELISA, enzymes
are used to label antigens or antibodies that can be analyzed with specific substrates to
improve their sensitivity, making it an easy and quick method for detecting AFs in crops
and food products [43]. Three-dimensional structured AF can be differentiated by specific
antibodies [44]. ELISA kits, such as Veratox®, are commonly used for AF measurement in
different samples and can detect AF concentrations ranging from 5 to 50 ppb [45]. Azri and
colleagues (2018) developed an ultrasensitive electrochemical immunosensor that utilized
an indirect competitive ELISA to detect AFB1 [46]. The immunosensor had a detection
limit of 0.3 pg/mL, with 4.78% reproducibility and 2.71% repeatability, using modified
multi-walled carbon nanotubes/chitosan/screen-printed carbon electrodes.

Similarly, a competitive magnetic immunodetection assay was implemented by
Pietschmann and colleagues (2020) for the detection and quantification of AFB1, but
it has a detection limit of 1.1 ng/mL [47]. Recently, Peltomaa and colleagues (2022)
developed a single-step immunoassay based on a monoclonal capture antibody and a
recombinant anti-immunocomplex antibody fragment isolated from a synthetic antibody
repertoire to detect AF in contaminated food samples [48]. This assay has a detection
limit of 70 pg/mL and produces results within 15 min, utilizing a single incubation step
where all three antibody reagents (biotinylated monoclonal antibody, anti-IC binder,
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and europium-labeled secondary antibody) are added simultaneously. The simple and
rapid protocol of the established method makes it highly suitable for rapid testing
or the high throughput screening of various food products for AF and other small
molecule contaminants.

3.4. Electrochemical Immunosensors

Electrochemical immunosensors have gained recognition as a simple, inexpensive,
and time-saving technique for detecting AFs [49,50]. These biosensor devices incorporate
antibodies on a biorecognition layer and amplify signals using biosensor amplifiers to
recognize and quantify the signals generated [51]. The electrochemical immunosensors
function by restricting the antibodies on the electrode surface, and some use enzymes as
biological agents to produce signals. Non-enzymatic electrochemical immunosensors are
also available for analyzing AFs.

Abera and colleagues (2019) employed an electrochemical immunosensor technique
to detect AFM1 in milk samples using biosensors made from versatile printing electrodes,
such as insulators, conductors, and semiconductors, that work in tandem with single-
walled carbon nanotubes and specific antibodies for higher sensitivity [50]. This technique
could detect AFM1 at concentrations ranging from 0.01 to 1 g/L. Sojinrin and colleagues
(2019) developed a rapid and sensitive gold nanoparticle (AuNP) immunochromatographic
strip to detect AFB1 in peanuts, corn, rice, and bread samples [52]. The researchers used
novel AuNPs-conjugated AFB1 antibody derivatives to develop a colorimetric assay in
96-well plates and lateral flow immunochromatographic assays (LFIAs) strips. The detec-
tion of AFB1 could be monitored via a visible color change from red to purple or blue,
with a detection limit of 2 ng/mL in the 96-well plate assay and 10 ng/g in the LFIA. The
researchers suggested smartphone-based LFIAs for AFB1 detection in food samples with a
detection limit of 0.3 ng/g based on the results obtained.

3.5. Chromatographic Methods

Chromatographic techniques, such as HPLC, thin-layer chromatography (TLC), and
LC-MS, are based on the physical interaction between a mobile phase (liquid or gaseous
components) and a stationary phase (liquid or solid) [53]. Chromatography involves the
separation of molecules in a mixture that is applied on a surface or into a solid, with the
aid of a mobile phase. Due to differences in molecular weight, certain parts of the mixture
remain in the stationary phase and move slowly through the chromatography system, while
others rapidly pass into the mobile phase and leave the system more rapidly. To investigate
the prevalence of toxigenic Aspergillus species in processed meat samples, Algammal
and colleagues (2021) employed HPLC to sequence the aflR1 gene [54]. By combining
phenotypic and molecular identification methods, the researchers successfully amplified
the internal transcribed spacer region of A. flavus and detected AFB1 in 15% of the basturma
samples. However, the application of the chromatographic methods was limited by their
cumbersome procedures, the use of heavy equipment, and complex operations.

3.6. Spectroscopic Methods

Fluorescence spectrophotometry is a useful tool for detecting AF, as different fluo-
rescent compounds emit energy at specific wavelengths. In less than 5 min, AFs can be
quantified using fluorescence spectrophotometry within the range of 5 ppb to 5000 ppb [55].
Meanwhile, hyperspectral imaging (HSI) has emerged as a powerful technique that com-
bines imaging, spectroscopy, and computer vision to provide both spatial and spectral
information from a sample [56]. To rapidly detect AF, Zhong Zhi and colleagues (2020)
employed a hyperspectral imaging method that exploited the ultraviolet fluorescence and
superficial distribution of AF [57]. They proposed a machine learning detection method
based on a support vector machine that combined the band index and narrow band. By
comparing the AF concentration, they presented three fluorescence indexes based on the
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average gray value of the radiation index. The optimal wavelength, selected using Fisher’s
discriminant, was 410–430 nm, which outperformed the other three band selection methods.

4. Management and Control Strategies

AF contamination in crops is a major concern, as it poses significant risks to production,
food safety, public health, and the economy. To address this issue, various methods have
been developed to reduce AF contamination in crops, including physical, chemical, and
biological approaches [9]. Moreover, many countries have established stringent regulations
for AFs in human food and animal feed to safeguard public health [58]. The acceptable
limit of AF for human consumption ranges from 4 to 30 µg/kg [59]. The European Union
has set the strictest safety levels, with AFB1 and total AFs not exceeding 2 g/kg and 4 g/kg,
respectively, in any direct consumption product [60,61].

4.1. Physical Methods

Prevention measures, including the implementation of good agricultural and man-
ufacturing practices and proper storage conditions, have been adopted to decrease AF
contamination; however, these approaches are not always effective [17]. Physical methods,
such as steam under pressure, dry roasting, and other cooking methods, have been found
to be effective in controlling or reducing AF contamination in many crops [62]. High hydro-
static pressure and pulsed electric field treatments have been shown to significantly reduce
AF levels in grape juice, with a shorter processing time compared to thermal processing,
while maintaining nutritional quality and being more ecologically friendly [63]. When
peanuts were exposed to 2.3 mW/cm2 UV-C irradiation coupled with an 11 rpm rotation
for 2 h, the percentage of AFB1 degradation increased from 60.8 to 75.0 pmol/g/h [64].
Similarly, gamma irradiation, at a dose of 6 kGy, effectively reduced the AFB1 level [65].
Zhang and colleagues (2018) suggested that gamma irradiation at a dose above 10 kGy may
significantly decrease the AFB1 concentration in soybeans [66].

4.2. Chemical Methods

When used appropriately, certain chemicals and gases have been shown to reduce the
growth and production of AFs. These include acids, alkalis, oxidizing agents, aldehydes,
and some gasses [67]. Chemicals, such as sodium bisulfite, calcium hydroxide, formalde-
hyde, sodium hypochlorite, sodium borate, and sorbents, have been found to significantly
reduce AF levels in various food products [68]. Jubeen and colleagues (2020) reported the
production of AFD1, a less toxic product, when citric and lactic acids were used to convert
AFB1 via hydrolysis of the lactone ring [69]. Citric acids were found to have better AF
detoxification results compared to conventional methods. A maximum reduction of 99% of
AFB1 was observed in walnuts treated with 9% aqueous citric acid for 15 min. Similarly,
Dhanshetty and colleagues (2021) demonstrated that roasting, in the presence of sodium
chloride and citric acid, reduced AFB1 contents the most [70]. Cooking under pressure,
with the presence of sodium chloride and citric acid, also significantly reduced AF levels
compared to the frying method.

Ozone gas has shown promise for reducing AFB1 levels in poultry feed [71]. Torlak
and colleagues (2016) reported a significant reduction in AFB1 levels of 86.4% following
ozone treatment for 240 min. However, the high cost of ozonation may limit its application
in post-harvest processes.

4.3. Biological Factors

Biological control technologies have employed selected microorganisms, such as
bacteria, yeasts, and nontoxigenic molds, to reduce AF contamination in pre- and post-
harvest agricultural production [17]. The adverse effects of these microorganisms, such as
space and nutrient competition, or biological interactions, such as antibiosis, are used by
researchers to control AF. In countries producing maize, non-toxigenic strains of A. flavus
(Mytoolbox Af01) have been employed as a biological control to reduce AF levels, relying on
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the competitive role between atoxigenic and toxigenic strains [72]. This method successfully
reduced the level of AFs in maize kernels by 51–83%. Ali and colleagues (2021) used various
bacteria, including Enterococcus sp., Bacillus sp., Stenotrophomonas sp., and Pseudomonas sp.,
to reduce AF levels [73]. Their research revealed that Pseudomonas fluorescens MN256402.1
can reduce AFB1, AFB2, and AFG2 by 99% and AFG1 by 100%. Moreover, this is the
first report of Enterococcus casseliflavus SA21, B. haynseii SA22, B. tequilensis S18, and B.
amyloliquefaciens S8C exhibiting AF degradation functions.

One potential strategy to prevent the production of AF in animal feed is to incorporate
crops with higher resistance, such as sorghum, into the feed [74]. This approach involves
natural methods to control the growth and spread of Aspergillus fungi that produce AFs.
Buonaiuto and colleagues (2021) investigated the effects of replacing corn with finely
ground sorghum meal in dairy cow diets in the Parmigiano Reggiano region and reported
no adverse effects on herd productivity, milk quality, or cheese yield [75]. Sorghum meal
is a viable substitute for corn that can contribute to the economic sustainability of farms
by increasing crop production. Compared to other cereals, sorghum exhibits resistance
to environmental stressors, including dry, saline, and hot conditions. By incorporating
sorghum grain into animal feed, the risk of AF contamination in milk and cheese can be
reduced, resulting in safer food products for consumers.

5. Future Prospect

The future of food safety in relation to AF mainly depends on sharpening our focus on
the farmer group. Farmers are the first-hand group that will be dealing with AF and should
be responsible for permitting a more thorough examination of farming practices. However,
research has shown that more than 70% of farmers had zero knowledge about AFs [76].
Factors, such as education level, specialization, and how many years of experience the
farmers had in raising livestock, bore a significant impact on the farmers’ awareness of
AF. Authorities should, therefore, find ways to raise AF awareness in this group. Some
examples are making exposure to life sciences mandatory for all farmers and enforcing
AF knowledge in the school curriculum. Farmers should know the details of how, when,
and where they should use biocontrol and other relevant methods to prevent the spread
of toxins.

Increased customer demand and investments in technology will likely incentivize pro-
cessors to produce alternative products from contaminated food and assign economic value
to AF-contaminated food products [77]. Nevertheless, there is still a need for novel tech-
nologies that can help elucidate the possible effects of climate change on AF contamination,
including the collection of data and the monitoring of AFs and/or AF-producing fungi.

6. Conclusions

Our review paper recognizes the potential limitations with regard to the availability
of the included studies and acknowledges the possibility that some relevant studies and
important findings may have been overlooked. In addition, this review is limited to the
latest articles published between 2018 and 2023. AFs are toxic secondary metabolites
synthesized by Aspergillus species, particularly A. flavus and A. parasiticus. Technological
advancements have facilitated the study of AF structures and biosynthetic pathways,
enabling early detection. Various management techniques have been utilized worldwide to
control AFs. To safeguard consumer health, biocontrol methods should be implemented in
tandem with other physical and chemical approaches, as well as improvements in storage
and packaging materials. This review presents an updated literature study on AFs, which
can be used to aid future researchers in developing mitigating strategies to better detect
and manage this toxin.
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