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Abstract: In Western Europe, the incidence of DST is likely the highest globally, posing a significant
threat with prolonged bans on shellfish harvesting, mainly caused by species of the dinoflagellate
genus Dinophysis. Using a time series from 2014 to 2020, our study aimed (i) to determine the
concentration of D. acuminata in water at which shellfish toxin levels could surpass the regulatory
limit (160 µg OA equiv kg−1) and (ii) to assess the predictability of toxic events for timely mitigation
actions, especially concerning potential harvesting bans. The analysis considered factors such as
(i) overdispersion in the data, (ii) distinct periods of presence and absence, (iii) the persistence of cells,
and (iv) the temporal lag between cells in the water and toxins in shellfish. Four generalized additive
models were tested, with the Tweedie (TW-GAM) model showing superior performance (>85%) and
lower complexity. The results suggest existing thresholds currently employed (200 and 500 cells L−1)
are well-suited for the Portuguese coast, supported by empirical evidence (54–79% accuracy). The
developed algorithm allows for thresholds to be tailored on a case-by-case basis, offering flexibility
for regional variations.

Keywords: Dinophysis; diarrhetic shellfish toxins; okadaic acid; time series; generalized additive
models; Tweedie distribution; early warning; monitoring; food safety; HABs

Key Contribution: A predictive model, Tweedie model, was developed to assess the risk of shellfish
toxin contamination caused by Dinophysis acuminata, validating the existing thresholds, while
enabling regional customization and assisting with timely mitigation.

1. Introduction

The term harmful algal blooms (HABs) refers to any proliferation of microalgae
perceived as harmful owing to its negative impact on public health, the economy (e.g.,
aquaculture activities, tourism) and/or on the environment, due to the production of toxins
(regardless of the concentration) or by attaining high biomass [1]. HABs cannot easily be
eliminated or prevented, but the potentially negative consequences can be managed and
mitigated, which is particularly valuable in aquaculture production systems. According
to the last Global Harmful Algal Bloom Status Report (GHSR), across the globe, events
associated with seafood biotoxins (1985–2018) accounted for 48% of the total number of
events (n ~ 9500), followed by high biomass proliferations and/or water discoloration caus-
ing a socioeconomic impact (43%), mass animal or plant mortalities (7%), and 2% of other
events (including foam and mucilage production) [2]. Among all of the events linked with
seafood toxin syndromes, diarrhetic shellfish toxins (DSTs) were ranked second, accounting
for 30% of events, immediately below paralytic shellfish toxins (35%) [2]. Western Europe
likely has the highest incidence of DSTs in the world [3–6] and this syndrome is the most
harmful in terms of the duration of shellfish harvesting bans [3]. Between 1985 and 2018, a
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4-fold increase was reported globally for the main causative species of DSP (belonging to
the dinoflagellate genus Dinophysis) with impacts consisting mostly of shellfish harvesting
closures [7]. Two monitoring strategies can be applied: (1) monitoring the presence of
toxins in shellfish, which is mandatory for shellfish consumption and (2) monitoring the
presence of toxic phytoplankton species. The first strategy operates according to European
Union directives that specify the regulatory level (RL) of 160 µg OA equiv kg−1 of shellfish
meat of the edible product [8]; mussels (Mytilus spp.) are extensively employed as sentinel
species in marine biotoxin monitoring programs, primarily owing to their higher toxin
accumulation and depuration rates compared to other filter bivalve species [9–13]. The
second strategy is based on the definition of thresholds for bloom concentration that may
cause shellfish toxicity (warning levels). As the occurrence of toxic cells in water typically
precedes the detection of biotoxins, collecting data on the abundance of toxin-producing
phytoplankton can offer insights into the likelihood of biotoxin accumulation in bivalves.
These numerical limits for toxigenic cell levels are set according to geographic region and
are non-regulatory values. They serve as informal technical guidance to assist federal,
state, and local authorities, and managers of public or community water systems, to protect
public health and harvesting practices. Both strategies are crucial to ensure a thorough
assessment of the risk associated with elevated toxin levels in each harvesting area.

Along the Portuguese coast (NW Atlantic), the main cause of shellfish harvesting
bans are those associated with proliferations of Dinophysis species, mainly D. acuminata
and D. acuta. These dinoflagellates are producers of the okadaic acid (OA) group of
toxins. Dinophysis species are usually observed in the water during periods of thermohaline
stratification between moderate pulses of upwelling, or during downwelling events [14]
and contamination with OA and its analogues ranks amongst the top ten highest levels
reported worldwide for bivalves [15]. In Portuguese shellfish harvesting areas, closures are
prevalent for almost the entire year, extending from February to November [16–18]. These
closures are primarily linked to the presence of the parent toxin OA and the occurrence
of D. acuminata in the water. Additionally, in late summer to autumn, closures can also be
attributed to the presence of its analogue dinophysistoxin-2 (DTX2) due to the presence
of D. acuta [11,19,20]. In Portugal, the current reference levels for Dinophysis cells in the
water were established through consensus among European monitoring laboratories [21].
These levels are defined at 200 cells L−1, a warning threshold indicating potential bloom
development, and 500 cells L−1, a warning threshold for a potential shellfish harvesting
ban due to concentrations that can lead to diarrhetic shellfish poisoning (DSP) events.

Commercially available bivalves for human consumption in Portugal are predomi-
nantly sourced from natural banks, particularly in locations such as Ria Formosa on the
south coast of the Algarve region. The annual bivalve catch in 2019 reached approximately
6700 tons, with clams accounting for 26.9%, oysters for 13.2%, and Mytilus species for
5.5% [22,23]. Wild blue mussels, including Mytilus galloprovincialis and/or M. edulis, are
traditionally handpicked from rocky surfaces and manmade structures. In recent years, the
growth of aquaculture production areas along the Portuguese coast, primarily limited to the
Algarve coast (south), has facilitated the establishment of offshore companies for mussel
production, taking advantage of the region’s favorable oceanographic conditions [24]. On
the other hand, for Donax clams, a portion of the commercially harvested specimens in the
southwest and south coasts of Portugal is obtained through hand dredging. Blue mussels
and donax clams are the bivalves more easily accessible for recreational harvest. From 1998
to 2012, around two hundred cases of human intoxication were reported in Portugal due to
the consumption of mussels and clams contaminated with DST [11,25–27]. When several
shellfish species are growing in the same production area and toxin accumulation rates are
available, the species with the highest rate may be used as an indicator species. Since 2002,
the Marine Biotoxins Laboratory at IPMA has adopted Mytilus galloprovincialis and Donax
trunculus as indicator species for DST [11,20,28].

The aims of this study, performed by analyzing time series data from D. acuminata
cells in water and OA levels in shellfish from 2014 to 2020, were to determine: (i) the
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concentration of D. acuminata in water at which toxin levels in shellfish could meet or
exceed the regulatory limit (160 µg OA equiv kg−1) and (ii) the extent to which toxic events
can be predicted in time, to inform mitigating actions, most often compromising potential
harvesting bans. Furthermore, the model outputs are expected to provide insights that
can guide the development of regional early warning thresholds according to shellfish
species/habitat.

2. Results
2.1. Cells in the Water vs. Toxins in Shellfish

D. acuminata was consistently detected in monitoring samples, primarily from March to
October (Figure 1). Concentrations in the water varied significantly by month and between
years, with the highest blooms recorded on the northwestern (NW), southwestern (SW),
and southern (S) coasts, at levels of about 13 × 103 cells L−1 (April 2020), 4 × 103 cells L−1

(July 2014), and of 12 × 103 cells L−1 (February 2020), respectively. Bloom densities
surpassing 200 cells L−1 were predominantly observed in the spring and summer (Table 1
and Figure 1). The occurrence of cells in the water exceeding warning levels (200 and
500 cells L−1) was more frequent on the northwest coast. These events persisted for a
minimum of one month, defined as a period when cell proliferation leads to a harvesting
ban due to shellfish toxification. There were consistently more than 20 events annually,
each usually lasting several weeks, as illustrated in Figure 1.

Toxins 2024, 16, x FOR PEER REVIEW 3 of 17 

Laboratory at IPMA has adopted Mytilus galloprovincialis and Donax trunculus as indicator 
species for DST [11,20,28]. 

The aims of this study, performed by analyzing time series data from D. acuminata 
cells in water and OA levels in shellfish from 2014 to 2020, were to determine: (i) the 
concentration of D. acuminata in water at which toxin levels in shellfish could meet or 
exceed the regulatory limit (160 µg OA equiv kg−1) and (ii) the extent to which toxic events 
can be predicted in time, to inform mitigating actions, most often compromising potential 
harvesting bans. Furthermore, the model outputs are expected to provide insights that can 
guide the development of regional early warning thresholds according to shellfish 
species/habitat. 

2. Results
2.1. Cells in the Water vs. Toxins in Shellfish

D. acuminata was consistently detected in monitoring samples, primarily from March
to October (Figure 1). Concentrations in the water varied significantly by month and 
between years, with the highest blooms recorded on the northwestern (NW), 
southwestern (SW), and southern (S) coasts, at levels of about 13 × 103 cells L−1 (April 2020), 
4 × 103 cells L−1 (July 2014), and of 12 × 103 cells L−1 (February 2020), respectively. Bloom 
densities surpassing 200 cells L−1 were predominantly observed in the spring and summer 
(Table 1 and Figure 1). The occurrence of cells in the water exceeding warning levels (200 
and 500 cells L−1) was more frequent on the northwest coast. These events persisted for a 
minimum of one month, defined as a period when cell proliferation leads to a harvesting 
ban due to shellfish toxification. There were consistently more than 20 events annually, 
each usually lasting several weeks, as illustrated in Figure 1. 
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Table 1. Annual Dinophysis acuminata maxima (cells L−1) in the water and region and maximum con-
centrations (µg OA equiv kg−1) identified in mussel and donax samples per region. Concentrations
exceeding 850, 625, and 550 µg OAO equiv kg−1 surpass the limits of the calibration range used for
quantifying OA, DTX1, and DTX2. The parentheses contain an approximate reference regarding how
many times the European Union Reference Level (EU RL) has been surpassed. The number of times
the regulatory limit (RL), 160 µg OA equiv kg−1 of shellfish-derived edible product, was surpassed
by shellfish species.

Region Year

(cells L−1) 2014 2015 2016 2017 2018 2019 2020

NW 7544 3180 4300 8140 4660 1740 12,960
SW 3700 3500 2240 820 580 1560 700
S 7200 2380 3740 280 3420 1700 11,660

(µg OA equiv/kg) 2014 2015 2016 2017 2018 2019 2020

NW >850
(12 × RL)

>850
(13 × RL)

>850
(23 × RL)

>625
(37 × RL)

>550
(50 × RL)

>550
(8 × RL)

>550
(9 × RL)

SW >850
(10 × RL)

>850
(17 × RL)

>850
(23 × RL)

>625
(13 × RL) 587 649 >550

(5 × RL)

S 1402 >850
(14 × RL)

>850
(10 × RL)

>625
(4 × RL)

>550
(8 × RL) 830 >550

(10 × RL)

Number of times
RL was surpassed

in Mytillus
2014 2015 2016 2017 2018 2019 2020

NW 72 68 41 40 20 58 52
SW 16 17 13 17 15 15 15
S 20 23 16 13 19 18 23

Number of times
RL was surpassed

in Donax
2014 2015 2016 2017 2018 2019 2020

NW - - - - - - -
SW 25 22 20 25 20 19 17
S 43 36 25 23 14 11 16

From 2014 to 2020, DSTs were monitored on a weekly basis and consistently detected in
shellfish samples from all three coasts (NW, SW, S) throughout the year (Figure 2). The more
intense DST episodes typically occurred between March and December. Concentrations
exceeding the legal threshold for closure (160 µg OA equiv kg−1 of shellfish-derived
edible product), leading to harvesting bans, were most prevalent towards the end of
spring and during the summer months. Some of these events exhibited exceptionally high
concentrations in shellfish, resulting in prolonged periods of shellfish bans (Figure 2 and
Table 1). Compared to the SW and S coasts, the NW coast experienced the most significant
impact from DST events, especially in 2017 and 2018, when mussels reached particularly
high concentrations (Table 1).

2.2. Model Fitting

Four generalized additive models, Poisson (POIS-GAM), Tweedie (TW-GAM), zero-
inflated Poisson (Z-GAM), and negative binomial (NB-GAM), were tested to explain the
relationship between D. acuminata cells in the water and the concentration of okadaic acid
in M. galloprovincialis and D. trunculus.
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Figure 2. DST concentrations in (a) Mytilus samples from the NW, SW, and S coast and (b) Donax from the SW and S coast, between 2014 and 2020. The line on the
graph represents the EU RL for DST. (Concentrations above 400 µg OA equiv kg−1 are not presented in the graphic because they were discarded from the analysis).
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Initially, the data set (n = 6463) was examined through a Spearman’s correlation (a
non-parametric measure that explores the correlation between variables without assuming
a linear relationship and using the ranks of the data for calculation [29]) without lags
between cells and toxins and with lags of several weeks (Table 2). The results showed
clearly that the monotonic relationship between the variables is weak. Lags greater than
2 weeks did not retrieve any meaningful information (not shown). These results led to
further adjustments of the model, such as considering the persistence of cells in the water
(>100 cells L−1) for at least 2 weeks and a sub-dataset of values below 400 µg OA kg−1

(n = 4847).

Table 2. Spearman’s correlation (ρ) between D. acuminata and two different shellfish species, also
tested with 1- and 2-week lags. Values where 0.20 ≤ |ρ| ≤ 0.29 indicate a weak monotonic associa-
tion [29]. A positive value indicates a positive monotonic relationship.

Spearman Correlation
Shellfish

Mytilus Donax

D_acuminata 0.23 0.26

Lag1_acuminata 0.27 0.36

Lag2_acuminata 0.26 0.34

Generally, for both species and both 1- and 2-week lags, the residual plots and the
smoothing functions of each fitted model showed an accumulation of residuals at zero
(which indicates that, on average, the models tend to predict values close to the observed
ones) but with a high degree of variability (overdispersion of positive values) and less
significance for the TW-GAM model (Figure 3—forms of smoothing functions).

The selected algorithm represents a generalized additive model with a Tweedie family
distribution, using a logarithmic link function, and fitted using the REML estimation
method, to analyze the relationship between Dinophysis acuminata cells concentration and
other predictor variables. It unfolds as follows:

(a) M. galloprovincialis_1-week lag

Gam(Dinophysis acuminata cells concentration ∼ s(OA toxin concentration in M. galloprovincialis 1−
week lag, by = Coastal area)+Cells persistence in the water, f amily = tw(link = log), method = REML)

(b) M. galloprovincialis_2-week lag

Gam(Dinophysis acuminata cells concentration ∼ s(OA toxin concentration in M. galloprovincialis 2−
week lag, by = Coastal area)+Cells persistence in the water, f amily = tw(link = log), method = REML)

(c) D. trucullus_1-week lag

Gam(Dinophysis acuminata cells concentration ∼ s(OA toxin concentration in D. trunculus 1−
week lag, by = Coastal area)+Cells persistence in the water, f amily = tw(link = log), method = REML)

(d) D. trucullus_2-week lag

Gam(Dinophysis acuminata cells concentration ∼ s(OA toxin concentration in D. trunculus 2−
week lag, by = Coastal area)+Cells persistence in the water, f amily = tw(link = log), method = REML)

The quantile–quantile (QQ) plots of the models (to check the fit of a dataset to a
specific distribution, assess model assumptions, and identify potential issues such as
outliers) showed that only the residuals of the TW model appear to be close to a straight
line, suggesting a reasonable normal distributional assumption. The residuals vs. linear
predictor plots suggests that the variance is approximately constant as the mean increases
for all models with the exception of the NB model, where the constant variance assumption
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is clearly untenable. The histogram of residuals displayed a relatively symmetric bell-
shaped distribution that is evenly centered around zero. This suggests that the normality
assumption of variance is likely valid for all the models, particularly for the TW model
(with the exception of the NB model). This indicates the model is capturing the underlying
patterns in the data. As the predicted values increase, the observed responses tend to follow
the same trend, increasing in a linear fashion. This positive linear relationship implies
that the model is capturing the underlying patterns in the data effectively and is making
predictions that align well with the actual outcomes. However, for cell counts above 500,
the models tend to underestimate the real values. The NB model in particular tends to
underestimate the actual values and, for higher counts, it tends to overestimate them. In
general, the majority of the models showed some overdispersion meaning the variability in
the data is greater than what the model predicts.
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The global evaluation of the models showed that the TW-GAM models performed
better (86–88%) with the lower AIC score (Table 3); POIS-GAM had the highest AIC and
the worst performance. The Z-GAM model had the highest deviance explained and the
NB-Model the lowest. In general, the Z-GAM model presented better scores in the other
performance parameters, such as RMSE (average prediction error, how close the model’s
predictions are to the actual values). However, TW-GAM presents good scores as well,
characterized by lower complexity compared to the Z-GAM model, making it the optimal
choice for fitting the data and consequently adopted as the model of choice. All models
have lower accuracy for Donax (smaller dataset) than for Mytilus.

Table 3. Results of model fitting (performance score) and model validation (accuracy) with different
GAM distribution and their respective quality criteria. Model TW-GAM performed best. GAM: gen-
eralized additive model, GAMTW: Tweedie generalized additive model, NBGAM: negative binomial
generalized additive model, ZGAM: zero-inflated generalized additive model, GAMPOIS: Poisson
generalized additive model, AIC: Akaike information criterion, RMSE—root mean square error.

Model Fitting Model
Accuracy (%)Species Lag Distribution Deviance

Explained AIC RMSE n Performance
Score (%)

Mytillus
galloprovincialis

Lag1

Tweedie 68.7 3351 1.43

1011

86.46 79.4

Poisson 75.4 36471 2.74 59.55 8.1

Z-Inflated 83.7 17121 0.74 51.14 79.4

Negative
Binomial 23.6 3754 147 20.00 79.4

Lag2

Tweedie 68.1 3391 1.43

1009

86.47 78.7

Poisson 75.5 38004 2.68 59.54 78.7

Z-Inflated 92.7 16606 0.66 53.04 78.7

Negative
binomial 24.1 3805 137.49 20.00 78.7

Donax
trunculus

Lag1

Tweedie 69.00 1385 1.33

279

85.98 54.3

Poisson 81.9 10814 3.24 59.14 54.3

Z-Inflated 100.00 5724 1.04 48.63 54.3

Negative
Binomial 28.3 1590 20.00 54.3

Lag2

Tweedie 64.4 1455 1.34
278

87.86 60.0

Poisson 76.1 13943 2.60 59.4 8.8

Z-Inflated 100.0 7411 1.00 47.68 8.8

Negative
Binomial 27.6 1651 85.26 20.00 60.0

2.3. Model Validation

Model validation was performed using a new dataset (n = 1616), representing 25% of
the dataset of this study, and generated by computer. The model validation indicated higher
accuracy of the TW-GAM (54–79%) compared to the other models (Figure 4, Table 3), with
the POIS-GAM model exhibiting the lowest scores. Z-GAM had the deviance explained at
100%, which means the model was able to account for and capture all the variability present
in the data but with a low performance score (e.g., due to overfitting of the training data).
Considering the performance assessment, the TW-GAM model represented the simplest
approach and demonstrated consistently high scores, making it the optimal choice for
fitting these data and consequently adopted as the primary model in this study. Only the
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results of this model are presented and discussed, information on the remaining models is
available as Supplementary Materials.
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Model accuracy is defined as the number of classifications a model correctly predicts
divided by the total number of predictions made.

Mytilus galloprovincialis—1-week lag model

The TW-GAM employing a one-week lag smooth function exhibited an almost linear
rise in cell concentrations with increasing OA levels along the NW coast. Along the SW
coast, cell concentrations displayed an initial fluctuating pattern with the rise in OA until
350 µg OA kg−1, followed by a sharp decline, accompanied by an increase in standard
error (Figure 3). Conversely, the S coast revealed a positive trend in D. acuminata cell
concentration with increasing OA concentration up to 200 µg OA kg−1, followed by a slight
decrease and an associated increase in standard error (Figure 3).

The TW-GAM, boasting a model accuracy of 79.4% for a 1-week lag, predicted that
concentrations of D. acuminata leading to OA accumulation in M. galloprovincialis exceed-
ing regulatory limits would be, for the NW coast, 248 ± 25 cells L−1; for the SW coast,
447 ± 87 cells L−1; and for the S coast, 1128 ± 206 cells L−1.

Mytilus galloprovincialis—2-week lag model

The TW-GAM, incorporating a two-week lag smooth function, revealed an almost
linear escalation in cell concentrations with increasing OA levels along the NW coast (as
with a 1-week lag) (Figure 3). Conversely, the SW coast exhibited a nearly linear rise in
cell concentrations with increasing OA up to 250 µg OA kg−1 (lower than with a 1-week
lag), followed by a sharp decline, accompanied by an increase in standard error (as with
a 1-week lag) (Figure 3). The S coast displayed a similar trend, albeit with a smoother
decrease after 250 µg OA kg−1 and an associated increase in the standard error.
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With a model accuracy of 54.3% for a 2-week lag, the TW-GAM predicted that con-
centrations of D. acuminata leading to OA accumulation in M. galloprovincialis beyond
the regulatory limit would be, for the NW coast, 296 ± 26 cells L−1; for the SW coast,
505 ± 101 cells L−1; and for the S coast, 482 ± 84 cells L−1.

Donax trunculus—1-week lag model

The TW-GAM, featuring a one-week lag smooth function, demonstrated a strictly
linear augmentation in cell concentrations with the increase in OA, observed consistently
along both the SW and S coasts. This trend, however, was accompanied by an increase in
the standard error (Figure 3).

With a model accuracy of 78.7% for 1-week lag, the TW-GAM forecasted that concen-
trations of D. acuminata leading to OA accumulation in D. trunculus surpassing regulatory
limits would be, for the SW coast, 334 ± 44 cells L−1, and for the S coast, 344 ± 37 cells L−1.

Donax trunculus—2-weeks lag model

The TW-GAM, incorporating a two-weeks lag smooth function for the SW coast,
depicted an almost linear elevation in cell concentrations with the rise of OA until 250 µg
OA kg−1, followed by a smooth decline thereafter, albeit with an increase in standard
error (Figure 3). Conversely, along the S coast, there was an almost linear increase in
cell concentrations with the escalation of OA until 300 µg OA kg−1, stabilizing thereafter,
accompanied by an increase in the standard error (Figure 3).

With a model accuracy of 60% for a 2-week lag, the TW-GAM forecasted that concen-
trations of D. acuminata leading to OA accumulation in D. trunculus exceeding regulatory
limits would be, for the SW coast, 400 ± 85 cells L−1, and for the S coast, 350 ± 48 cells L−1.

3. Discussion

A major challenge faced by shellfish monitoring programs is to succeed in raising
awareness among the health and fishery authorities of their respective countries as regards
the nature of the problem and the need to establish early warning systems. Such programs
will contribute (i) to improving the management of toxic events, which have serious
consequences, including severe illness and the loss of human life and (ii) to designing
contingency plans to mitigate the impact of toxic events on shellfish resources, small-scale
fishing, and tourism [18,30].

Shellfish toxification typically is a function of the accumulation of toxins in the resource
and their presence is determined by a complex balance between food selection, adsorption,
species-specific enzymatic transformations, allometric processes [3,9,31], and is influenced
by the HAB species, various environmental factors (e.g., temperature, salinity, nutrient
levels, sunlight), and geographical location [32]. Variations in the predicted shellfish toxin
values for Mytilus, Donax, and different areas (NW, SW, S) were anticipated and have been
previously elucidated here (Section 4.1). Discrepancies between the values for toxicity in
bivalves and the abundance of microalgae were also observed and actually anticipated
since the toxicity value in bivalves reflects continuous exposure before sample collection,
whereas the plankton toxin value represents an instantaneous determination at the time
of capture, prior to accumulation in bivalves. Even in cases where bivalve species coexist
in the same region and are exposed to the same bloom, significant differences in toxin
accumulation can occur [3,31]. However, in relation to mussel and donax species, the DST
results over the seven-year study period indicated that in coastal production areas where
both species coexisted (L5, L6—SW, and L8—S), both exhibited similar toxin accumulation
dynamics, leading to notably high DST concentrations.

GAM models are particularly useful for identifying threshold response levels common
in ecological systems and were chosen instead of GLM because they do not assume a priori
any specific form of the dependent and predictive variable relationships. They are for
uncovering and estimating nonlinear effects, especially in zero-abundant datasets, being
based on the assumption that the data structure is “additive” and that the relationship
between covariates is likely to be smooth [33,34]. This additive structure of TW-GAM
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models facilitated our interpretation of the contributions of individual predictors (e.g., OA
concentration, persistence) to the dependent variable (D. acuminata), and our understanding
of the relationships between variables. The algorithm was refined to take into account
the persistence of cells in the water, along with seasonality, as a predictive variable. The
persistence of cells served as an indicator of sustained favorable conditions leading to
significant changes in cell numbers until warning levels were attained (200 cells L−1). Con-
sidering seasonality involves recognizing the occurrence of zeros is not random but follows
a regular, recurring pattern associated with seasons. The model was adjusted to account for
these seasonal patterns, ensuring a more accurate representation of key processes as they
occurred during particular months or under particular conditions. Seasonal adjustments
improved the overall understanding of the data. The TW-GAM model demonstrated effec-
tiveness and flexibility in dealing with the seasonality and discrepancies between cells in
the water and the subsequent toxification of shellfish (performance scores ranging between
85.98 and 87.86%) [35]. TW-GAM performed well in accurately predicting relatively low
cell concentrations of D. acuminata (<500 cells L−1), leading to a high incidence of shellfish
contaminated with DST toxins, mainly by high concentrations of OA [36]. Correlations with
one- and two-week lag maximums reveled the consistency of a week of bivalve exposure to
cells in the water before toxicity reaches the closure level. The model with a one-week lag
consistently yielded an accuracy of 79%, performing better than the two-week lag model.
Thresholds for Donax were always lower than for Mytilus, which infers that clams toxify
faster than mussels under the conditions described herein for the SW and S coasts. The
smaller dataset available for Donax may also influence these scores despite the fitting and
validation performed well for lower concentrations. On the other hand, Mytilus thresholds
increased towards the south coast, which may reflect the lower phytoplankton abundances
and a shorter productive period known in these areas [37,38].

This high explanatory power may be attributed, in our opinion, to the incorporation of
cell persistence, the inclusion of lags in correlations, the focusing of the model on a concise
dataset within the time series, and the accounting for various shellfish species. Other au-
thors using GAM models to understand Dinophysis dynamics by correlating environmental
parameters obtain scores ≤ 60% (32 and references therein). This study showed for the
first time that the currently employed alert thresholds are well-suited for the Portuguese
coast and are substantiated by empirical evidence rather than consensus. Predicted values
for cells in the water were generally between the range of the current guidance thresholds
(200 and 500 cells L−1), irrespective of the coast orientation and shellfish species. With
the implementation of this algorithm, there is now an opportunity to explore tailored
thresholds on a case-by-case basis for specific areas or regions, potentially allowing for the
strategic/targeted use of safer higher levels if required. Hindcast simulations demonstrated
the efficacy of the new thresholds, showcasing a notably acceptable performance. It is still
necessary to evaluate if these changes need to be translated into modifications to the current
risk assessment and management actions adopted by the bivalve sector and regulatory
authorities. The definition of thresholds, in particular those that anticipate the potential
toxicity of seafood products, is widely recognized a harvesting management tool.

4. Materials and Methods
4.1. Study Area

In this analysis, thirteen classified coastal harvesting areas (L1 to L9) [39], distributed
along the Portuguese coast, were grouped into three primary regions, northwestern (NW,
L1 to L4), southwestern (SW, L5 to L7a), and southern (S, L7c1 to L9) (Figure 5). This aggre-
gation reflected the geographical and oceanographic diversity inherent in this extensive
region. Its geography can be briefly summarized as a continental margin divided into
sub-regions (NW, SW, S) by the occurrence of seamounts, submarine canyons (especially
along the NW coast), and abyssal plains.
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coastal production areas and are numbered (L1, L2, L3, L4, L5a, L5b, L6, L7a, L7c1, L7c2, L7c2, L8
and L9) Source: National Monitoring Program of Shellfish Molluscs (SNMB) held by IPMA [39].

The NW sector is characterized by a wider shelf (35–60 km) and a gentler gradient than
the SW (10–20 km) and southern (8–28 km) areas [37]. From an oceanographic point of view,
the Portuguese coast is located in a biogeographic transition zone, between temperate and
subtropical waters under the influence of the Iberian upwelling system [40]. A large fraction
of its variability is forced by winds and freshwater input from river runoff. Seasonal and
interannual changes are observed between spring and summer, namely lower precipitation
and intensification of northerly winds along the west coast (associated with upwelling
events), and from the west along the south coast, and in autumn–winter, when precipitation
is higher and there is a prevalence of southerly winds favorable to downwelling [41–43].
The productive period (based on Chlorophyll-a concentrations) is defined from April to
September for Portuguese coastal waters [38]. River runoff has a significant impact on
nutrient concentration in the coastal zone (greater on the W coast) and on stratification of
the water column; especially along the NW coast where a greater number of coastal water
bodies occurs compared to the remaining coastal areas [44]. Runoff may be associated with
the formation of low-salinity buoyant plumes that impact biological fields due to their
efficiency in retaining organic matter [45]. Dinophysis acuminata has been reported to be
associated with these lenses, in particular growing within thin layers [46].

4.2. Sampling Strategy

The time series analyzed comprise seven years (2014 until 2020) of weekly sampling
of water (with a bucket, if the water column had <5 m depth and with a hose if depth
was >5 m) and shellfish from coastal harvesting areas (Figure 1), collected simultaneously
from each harvesting area. Samples were routinely collected under the National System
of Monitoring Shellfish (SNMB) for human consumption, held by IPMA, I.P. (Portuguese
Institute for the Sea and Atmosphere) [39]. The sampling grid analyzed includes 18 coastal
stations distributed along coastal shellfish harvesting areas.

Water samples were collected during high tide (±1 h) and preserved with 1% neutral
Lugol’s iodine solution, in the field [21].

Regarding shellfish samples, since bivalves species have different distributions and
abundances alongshore and with depth, sentinel species for the NW, SW, and S coasts were
Mytilus galloprovincialis (intertidal/water column organism) and also Donax trunculus (sub-
strate organism) for the SW and S coasts. For shellfish samples, the time series consisted of
weekly sampling of the sentinel species for each coastal area during the seven-year period.
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4.3. Cell Estimation

Samples were analyzed within 24–48 h of collection by settling 50 mL of Lugol pre-
served water following the Utermöhl (1958) method [47]. The samples were examined for
the presence of all Dinophysis species including D. acuminata, with an inverted microscope
equipped with phase contrast and bright field illumination (Leica DMi8), at a magnification
of 200× with a detection limit of 20 cells L−1 (abundances were expressed in cells L−1).

4.4. Biotoxins Analysis

The bivalve soft tissues were removed from the shell, washed with running tap water
to remove residues, drained and then homogenized in a blender. Toxin extraction was
performed according to the standard operating procedure (SOP) for the determination of
lipophilic marine biotoxins in molluscs by LC-MS/MS provided by the European Union
Reference Laboratory [48,49]. Briefly, a 2 g portion of homogenized tissue was double-
extracted with 100% methanol, followed by alkaline hydrolysis in order to determine the
total content of OA group, by converting the acylated esters of OA and/or dinophysistoxins,
DTX1 and DTX2 (DTXs), to the parent OA and/or DTXs. After hydrolysis, the extracts were
filtered and analyzed by liquid chromatography with tandem mass spectrometric detection
(LC-MS/MS). From 2014 to 2016 the LC-MS/MS analysis were performed with a Thermo
Dionex Ultimate 3000 LC-system coupled to a Thermo TSQ Quantum Access Max triple
quadrupole mass spectrometer, and after 2016 sample extracts were analyzed in an Agilent
1290 Infinity LC-system coupled to an Agilent 6470 triple quadrupole mass spectrometer.
A six-point calibration curve of OA, DTX 1, and DTX2 with a correlation > 0.990 was
developed for quantification, with a quantification limit of 28 µg OA equiv kg−1.

4.5. Model Selection
4.5.1. Dataset Analysis

From 2014 to 2020 the dataset available was 6463 for cells in the water, 2581 for toxins
in shellfish, and 512 zeros for both cells and toxins. Cells in the water (referred hereinafter
only as cells) and toxins in shellfish (referred hereinafter only as toxins) are datasets that
have a strong seasonality and a high degree of intrinsic variability. Data are over-dispersed
and there are marked periods of presence versus absence (significant periods with zero
concentrations determined for both cells and toxins). During the optimal period for the
toxigenic Dinophysis species, February to November, cells are regularly found in monitoring
samples but ambient conditions are not always conducive to the growth required to achieve
warning concentrations (200 cells L−1 or 500 cells L−1). The persistence of cells in the
water ≥ 100 cells L−1 for more than two weeks was weighed in the model. Regarding the
toxins dataset, the contribution of DTX1 and DTX2 for the total content of the OA group
were subtracted, since DTX1 was absent and the presence of DTX2 was associated with
the presence of D. acuta. Concentrations above 400 µg OA kg−1 were discarded from the
analysis since the focus was the closure level (160 µg OA equiv kg−1 or below) and its
association with cells in the water at an early stage of development. High concentrations
can lead to an excess of variability, making it difficult to isolate specific correlations at
lower concentrations, where correlations relevant to advanced warning may be subtler. By
removing high concentrations, our aim was to enhance the precision of the model, allowing
for a more focused analysis on toxin vs. cell concentrations that are more pertinent to
the goals of the study, thereby increasing confidence in the interpretation of the results
obtained. These adjustments were focused on fine-tuning the model’s parameters to fit
the training data and enhance the model’s ability to generate accurate predictions on the
training data. We were also mindful of avoiding overfitting, ensuring that the model’s
performance during validation was not compromised. The objective was for the model to
excel in both training and new data scenarios.

The algorithm developed herein had two primary objectives: firstly, to determine
the threshold concentration of Dinophysis acuminata in the water, capable of triggering
the closure of harvesting areas due to the presence of biotoxins in Mytilus galloprovincialis
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and Donax trunculus, specifically at 160 µg OA equiv kg−1 of shellfish meat or edible
product. Secondly, the algorithm aimed to assess the extent to which it is feasible to
anticipate the toxification of these shellfish species, enabling the implementation of effective
mitigation actions.

As described, the Portuguese western and southern coastlines exhibit distinctive
geographic and oceanographic characteristics. The model was fitted spatially, for each
coastal area (NW, SW and S) to evaluate how regionally an early warning threshold may
need to be developed and for each bivalve sentinel species. Given that the existence of
Dinophysis cells in water typically precedes the detection of biotoxins, lags of one and two
weeks between cell and toxin detection were fitted. The fitting baseline of the model was
the same, while changing the way the data are assumed to be distributed or the probability
distribution that best describes them.

4.5.2. Tested Models

For model validation, the seven-year dataset was partitioned randomly by computer
with 75% used to fit the model and 25% used to validate model accuracy (n = 1616). The
model predictive accuracy was calculated as well as the predictive D. acuminata concentra-
tions that lead to harvesting bans with one- and two-week lags for both shellfish species.
In accordance with the characteristics of the dataset and the assumptions above, four
generalized additive models (GAMs) with distributions suitable for overdispersed or Zero
inflation data (Poisson, Tweedie, Zero-inflated Poisson and Negative Binomial) were tested
using the “mgcv” package of the R software (version 1.9-1) [50].

The concentration of D. acuminata (discrete variable) was used as a dependent variable
and the predictive variables were (i) okadaic acid concentration per shellfish species by lag
week (discrete variable) with a thin-plate smoothing spline having nine knots (k = 9), (ii) ge-
ographic zones (categorical variable with three levels), and (iii) the persistence or increase
in D. acuminata cells in the water (categorical variable with two levels, “0” for persistence
and “1” for increase). These predictive variables were selected following Wood (2001) [51].
Smoothness parameters were estimated via restricted maximum likelihood (REML).

The four models were tested to identify the best way to minimize the over dispersion
and to better accommodate the excess of zeros in the data having the best fit possible. The
model selected had the best compromise between having the lowest AIC scores and root
mean squared error (RMSE) and the highest deviance explained and performance score
(percentage of correct predictions). The predicted variables were plotted and the shape
of the functional form indicates, if positive, that covariates are related positively to the
dependent variables and vice versa, if negative, according to Wood (2006) [52].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins16050204/s1, Figures S1–S4—GAM check for Mytillus and
Donax, for 1- and 2-week lags. Figures S5–S8—Smooth plots for Mytillus and Donax, for 1- and
2-week lags.
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