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Abstract: Pakistan’s national tuberculosis control programme (NTP) is among the many programmes
worldwide that value the importance of subnational tuberculosis (TB) burden estimates to support
disease control efforts, but do not have reliable estimates. A hackathon was thus organised to solicit
the development and comparison of several models for small area estimation of TB. The TB hackathon
was launched in April 2019. Participating teams were requested to produce district-level estimates
of bacteriologically positive TB prevalence among adults (over 15 years of age) for 2018. The NTP
provided case-based data from their 2010–2011 TB prevalence survey, along with data relating to TB
screening, testing and treatment for the period between 2010–2011 and 2018. Five teams submitted
district-level TB prevalence estimates, methodological details and programming code. Although the
geographical distribution of TB prevalence varied considerably across models, we identified several
districts with consistently low notification-to-prevalence ratios. The hackathon highlighted the
challenges of generating granular spatiotemporal TB prevalence forecasts based on a cross-sectional
prevalence survey data and other data sources. Nevertheless, it provided a range of approaches to
subnational disease modelling. The NTP’s use and plans for these outputs shows that, limitations
notwithstanding, they can be valuable for programme planning.
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1. Introduction

There is increasing demand for tuberculosis (TB) estimates at subnational level to
inform TB programme planning in low and middle-income countries [1] Indeed, there
is substantial geographical heterogeneity in TB prevalence in high TB burden countries.
Subnational estimates are therefore considered valuable by national TB control programmes
(NTP) to optimise resource allocation.

Case notifications are the main source of subnational TB data, but even in countries
with good health coverage, these data may not reflect patterns in disease burden [1].
Reasons include: (1) cases from one reporting area may be diagnosed in neighbouring
areas due to better access and quality of care (or people’s perception thereof); (2) even in
countries where TB is a notifiable disease some service providers may not report through
the national reporting system (e.g., private sector providers) [1]. Issues with subnational
TB burden based on notifications are further exacerbated in contexts where access to care
and reporting vary geographically.

National population-based prevalence surveys provide a direct measurement of the
burden of disease. They are considered the gold standard in estimating the prevalence
of TB, but they are typically not powered to provide subnational estimates of TB. Most
TB prevalence surveys only allow the generation of reasonably precise estimates of TB
prevalence at the national level in a small number of strata (e.g., two to three geographical
regions) [1].

A number of approaches to produce sub-national estimates of TB burden have been
proposed, but validating the accuracy of model predictions remains challenging. Indeed,
these estimation methods are typically implemented in settings where the information
need is greatest, which is almost always where there is no accurate empirical data against
which to evaluate the validity of model predictions [2,3]. Notable examples of subnational
TB burden estimation include the SUBsET model which aims to estimate subnational
incidence of TB in Indonesia [4], Bayesian models to estimate subnational TB mortality [5]
and incidence [6] in Brazil or TB prevalence in Cambodia [7]. Alternative approaches to
subnational TB estimation include indirect methods to estimate sub-national notification
gaps in Bangladesh [8], Nepal and Pakistan [9]. While the cited approaches implemented
various statistical methods of validation, the extent to which predictions accurately reflect
real burden often remains uncertain. To the best of our knowledge, there have been no
attempts to apply more than one modelling approach in the same setting, meaning that
cross-validation of approaches has not been attempted.

Pakistan’s NTP is among the many programmes worldwide who value the importance
of subnational estimates of TB burden but do not have reliable estimates to support the
TB response. Pakistan is a very diverse country with a population of 217 million in four
provinces and three regions. TB is a major public health concern, with an estimated
570,000 new cases in 2019 and 43,900 deaths attributable to the disease [10]. Pakistan was
among the eight countries that accounted for two thirds of the total global number of
incident cases worldwide in 2019 [10]. Moreover, under-diagnosis and under-reporting of
cases are considered key barriers to ending TB. Pakistan is among the five countries which
accounted for more than half of the people with TB who are missed globally, as measured
by the gap between the number of incident cases and the number of people notified on TB
treatment in 2019 [10]. This is partly attributed to under-reporting by public and private
providers who operate outside the NTP [11].

Against this backdrop, the Pakistan NTP partnered with epidemiologists at KIT Royal
Tropical Institute to launch a virtual hackathon for the estimation of the subnational TB
burden in Pakistan. Hackathons are problem solving events where participants collaborate
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intensively to develop a proposed solution for a specific issue within a short period of
time. Hackathons originated in the field of software development and are increasingly
proposed as a problem solving model in health. To date, most hackathons in global health
have been conducted to develop new medical technologies [12,13] and especially solutions
relying on mobile and wireless devices [14,15]. Examples also include the development
of new analytical [16,17] methods and fostering multi-cultural dialogue [18]. One of
hackathons’ most appealing features is the potential for greater innovation due to the
heterogeneity of participants’ backgrounds and the encouragement of collaborations across
institutions [16,19].

The Pakistan TB hackathon aimed to bring together various research groups interested
in TB modelling to collaborate on a joint modelling exercise of the subnational TB burden
in Pakistan in 2018. The hackathon’s objectives were two-fold: (1) to compare and cross-
validate different models for small area estimation of TB in Pakistan; (2) to provide Pakistan
NTP with data to tailor their efforts to ending TB to different sub-national contexts.

2. Methods

The TB hackathon was a virtual event which did not require people to be physically
present in the same space at the same time. It was launched in April 2019 by means of
announcements on the KIT website, on social media and in mailings lists. Participants were
offered three months and the same set of data (Table 1) to develop their own models to
estimate sub-national TB burden.

Table 1. Datasets made available to TB hackathon modelers by Pakistan NTP.

Dataset Disaggregation Time Period

1. Prevalence survey data 1 Individual 2010–2011

2. TB notifications District quarterly
2009–2018

3. Laboratory External Quality Assessment data District quarterly
2013–2017

4. Drug-sensitive TB treatment outcomes data District quarterly
2009–2015

5. Drug-Resistant TB notifications District quarterly
2009–2018

6. Master list of TB facilities Health facility 2019

7. Sputum smear testing data District quarterly
2009–2017

8. Private sector notifications District Yearly
2017–2018

9. HIV registrations Province 2001–2018

10. HIV testing rates among TB cases District quarterly
2009–2018

11. Census Population estimates District 2017

12. Shape files District 2019
1 Including village names corresponding to the survey-clusters

Participating teams were requested to produce district-level estimates of bacteriologi-
cally positive TB prevalence among adults (over 15 years of age) for 2018. The choice of
2018 as prediction year was the result of a compromise between the information needs
of the NTP (who needed the most recent possible estimate for programme planning) and
what was considered reasonable within the scope of available data for modelling (with
auxiliary data for modelling expected to be available up until 2018 at the latest).
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Nine teams applied for and signed data sharing agreements with the Pakistan NTP.
Participating teams developed their models between mid-May and mid-September 2019.
Five teams submitted district-level estimates for the whole country by the September
2019 deadline. Submitted models were appraised and compared by an evaluation panel
comprising global TB and statistical experts including representatives from Pakistan’s NTP
and the World Health Organisation. Feedback from the evaluation panel was provided to
the modellers.

2.1. Data Sources

Table 1 provides a complete overview of the data provided to hackathon modellers.
Participants were invited to use the data provided, and any other publicly available data,
for their model.

The Pakistan NTP provided case-based data for their 2010–2011 TB prevalence survey
data. The national TB prevalence survey was a nationwide cross-sectional survey with
multistage cluster sampling conducted in 95 clusters from 68 districts [20]. The clusters
corresponded to tehsils (sub-districts) and were selected using sampling proportional to
the estimated tehsil population size in 2010 projected from 1998 census data [20,21]. The
Federally Administered Tribal Areas, district Dera Bugti in Balochistan, and 17 tehsils,
of Khyber Pakhtunkhwa, were excluded from the survey due to serious security threats.
Combined, these excluded areas account for 6.4% of Pakistan’s population. A total of
105,913 adults (≥15 years of age) participated in the survey, of whom 10,471 (9.9%) were
eligible for sputum examination [20]. Of these, 8521 (81.4%) submitted at least one specimen
for sputum examination. The proportion of TB bacteriologically positive people (out of all
tested) by cluster according to the 2010–2011 prevalence survey is shown in Figure 1 [20].
(These do not take into account the Pakistan TB prevalence survey report adjustment for
missing TB results among participants eligible for smear examination or non-participation.).
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Figure 1. Proportion of TB bacteriologically positive people (out of all tested) by cluster in Pakistan
in 2010–2011 prevalence survey [21].

The Pakistan NTP also shared data relating to TB testing and treatment, in both the
private and public sectors, for the period between 2010 and 2018 (Table 1) to fill the gap
between the year of the TB prevalence survey (2010–2011) and the year for which predictions
were requested (2018). This was complemented by further data on HIV registrations as
well as screening and testing for HIV in TB patients (since people living with HIV are more
likely than others to develop TB disease). Participants were also directed to the 2017 census
provisional province-wise population counts by sex and rural or urban location [22] and
overall population counts by tehsil [23] (which were openly available online at the time). To
ensure geographical consistency across all model predictions, participants were provided
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with the latest district shapefiles obtained from GADM (gadm.org). In April 2019, the
GADM versioning included 143 out of the 146 districts which existed up to the 2017 census
(in addition to the frequent redrawing of district boundaries in Pakistan, there was a major
overhaul as part of the 2017 census, leading to the current 156 districts).

2.2. Comparison of Models and Predictions

In the absence of an empirical ground truth to evaluate the predictions (e.g., a 2018
subnational prevalence survey), we first compared the models and then appraised the
quality of predictions using maps and a series of bespoke data quality indicators.

To compare models, we described the modelling building approaches (modelling and
inferential frameworks, covariance structures, selection of final model, post-modelling
processing of predictions) and strategies for variable selection (choice of outcome and
predictor variables, variable processing, lowest level of spatial aggregation).

To compare predictions, we first mapped each model’s 2018 district estimate on
common scales. We then calculated summary statistics and data quality indicators of
completeness, pseudo-accuracy, precision, cross-validity and credibility. We assessed
completeness as the proportion of Pakistan’s districts for which predictions were available
(out of 143). For pseudo-accuracy, hackathon modellers were requested to perform leave-
one-out-cross-validation and provide the R2 comparing actual and predicted 2010–2011
cluster-level prevalence point estimates (since there was no prevalence survey or other
empirical data in 2018 this calculation could not be made for the 2018 predictions). For
precision, we calculated an approximated coefficient of variation as the difference between
the upper limit and lower limit of 95% CI divided by the point estimate. Cross-validity
was assessed by comparing model predictions using scatter plots and Pearson’s correlation
coefficient. We also produced a number prediction plots (including histograms, precision
plots and pairwise correlations) to support this comparison of predictions.

The indicator of credibility differs from all others as it is based on expert opinion. We
presented anonymised maps of each model’s 2018 district estimates to four Pakistan TB
experts (from the Pakistan NTP) and asked them to grade the estimates on a scale from
1 to 10 based on how credible they deemed the estimates, based on their knowledge of
the TB epidemic in their country. We presented individual grades and summary statistics
(mean) and calculated the average intra-class correlation coefficient to measure agreement
between experts.

2.3. Identification of Districts with Most Under-Reporting

To provide data to support the NTP’s programme planning, we identified the areas
with most likely under-reporting according to the hackathon models. For this purpose, for
each model we created maps displaying the ratio between new and relapse bacteriologically
positive 2018 TB notification rate from NTP sources (numerator) and model predictions
(denominator), by district. Low values of this ‘notifications to prevalence ratio’ for a
particular district are assumed to correspond to the under-reporting of TB cases to and by
the NTP. For each model, districts were allocated to a quantile based on this ratio and we
identified those districts which consistently scored in the lowest quantile across all models.

3. Results
3.1. Comparison of Models

Details of the model building approaches can be found in Table 2 and Supplementary
File S1. The hackathon models included a Bayesian binomial logistic regression with Markov
Chain Monte Carlo (MCMC) inference (Model 1), an approximate Bayesian binomial logistic
regression model with integrated nested Laplace approximations (INLA) inference (Model 2),
an approximate Bayesian binomial-logistic model fit using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm (Model 3), a Small Area Estimation and Latent Markov model with
MCMC inference (Model 4) and artificial neural network followed by an Bayesian network
(Model 5). In other words, all models were fitted within Bayesian inference frameworks;

gadm.org
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four were statistical models (Models 1–4) and one was a machine learning model (Model
5). Approaches to model selection included use of the log-scoring rule (Model 1), leave-one-
out-cross-validation based on mean squared error and/or R2 (Models 2 and 3) and Chib’s
estimator (Model 4) (see Supplementary File S1 for more details).

Table 2. Model specifications.

Model 1 Model 2 Model 3 Model 4 Model 5

Modelling
framework

Binomial-
logistic
regression

Binomial-
logistic
regression

Binomial-
logistic
regression

Small Area
Estimation
(SAE) and
Latent Markov
(LM)
modelling as
linking model
for SAE

Self-
Organising
Maps (SOM)
on binomial

Inference

Bayesian
inference with
Markov Chain
Monte Carlo
with No-U-
Turn-Sampler
(NUTS)

Approximate
Bayesian
inference with
integrated
nested Laplace
Approximations
(INLA)

Approximate
Bayesian
inference with
Broyden–
Fletcher–
Goldfarb–
Shanno
algorithm

Bayesian
inference with
Data
Augmentation
Markov Chain
Monte Carlo
and Gibbs
sampler

Bayesian
Artificial
Neural
Network

Covariance
structure

Spatially
explicit
hierarchical
model with
fixed and
random effects.

Spatially
explicit
hierarchical
model with
fixed and
random effects

Spatially
explicit
hierarchical
model with
fixed and
random effects

Hierarchical
Discrete latent
state model
depending on
a Gaussian
linking model

N/A

Outcome
variable

Bacteriologically-
confirmed TB
cases from TB
prevalence
survey at
cluster-level by
age and sex

Bacteriologically-
confirmed TB
cases from TB
prevalence
survey at
cluster-level

Bacteriologically-
confirmed TB
cases from TB
prevalence
survey at
cluster-level

Bacteriologically-
confirmed TB
cases from TB
prevalence
survey at
district level

Bacteriologically-
confirmed TB
cases from TB
prevalence
survey at
district level

Final set of
predictors 1

SES, HH size,
Indoor smoke,
BMI,
WAZ,
Vaccination
coverage,
Prevalence of
cough,
Distance to
health facility

Age 15–24
Female
Age 15–24 *
female
Ag 65+
Age_65+ *
Sindh
Underweight
Underweight *
KPH

Population
density
Access to cities
[10]
Density of TB
facilities
Poverty
Urban extents
Locations of
protests
Locations of
violent acts
Aridity

Urban
households
Rural
households
Urban male
pop
Rural male pop
Urban female
pop
Rural female
pop
Pop growth
overall
Bac+
notifications
Bac-
notifications
EP
notifications

All-forms TB
notifications
Bac+ TB
notifications
SS+ rate
among tested
Population
density
Average
household size
Percentage
rural
population
Growth rate
(urban, rural)
Sex ratio
(urban, rural)
Log gross
national
income
Life expectancy
Expected years
of schooling
Mean years of
schooling
Human
development
index

1 x1: x2 represents factor multiplication, while x1 * x2 represents factor crossing and is equivalent to x1 + x2 + x1: x2.
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Details of variable selection strategies can be found in Table 2 and Supplementary
File S1. By and large, the modelling teams made similar choices in terms of the outcome
variable and candidate predictors, with varying choices in terms of data sources, geograph-
ical linkage and processing. All modelling teams used the raw TB prevalence provided
by the NTP without performing multiple imputation of missing data or adjustment for
non-responses. Model 1 stood out as the only model fitting cluster-level data disaggre-
gated by age and sex. Model 2 and Model 3 both fitted TB cases at cluster-level whereas
Model 4 and Model 5 fitted models at district-level. Four out of five models used TB
notification data as candidate predictors, Model 3 being the only exception. Most models
used non-TB health data as well as socio-demographic data. In addition, Model 3 used
climate (precipitation) and civil unrest (protests and violent acts) data. Model 5 was the
only model to use macroeconomic and development data (such as gross national income
and human development index). Model 2 and Model 3 were the most granular models,
including fine-scale predictor data (1 km or 5 km) for several health and socio-demographic
indicators. Model 2 performed spatial kriging of predictors to obtain granular cluster-level
predictors, with inter-survey estimates derived by linear interpolation between survey
years; whereas Model 3 extracted point estimates of predictors from gridded data sources,
when available, using the georeferenced survey cluster locations.

Final prediction models included between 7 and 10 variables (Table 2). Three out of
five models (Models 1–3) did not include routine TB data in their final selected predictive
models. While Model 3 did not include these in the list of potential covariates to start
with, both Model 1 and Model 2 did not observe a significantly strong enough correlation
between programmatic data (such as TB testing and notifications) and cluster-level TB
prevalence rate and thus did not carry them forward into the model selection step (as
has been documented elsewhere [2]). Overall, the models were fairly consistent in which
local socio-demographic risk factors were associated with TB prevalence rates: poverty,
underweight, urban extents, aridity and gender. Model 2 stands out as the only model
with interactions.

3.2. Comparison of Predictions

All model predictions and accompanying credible intervals are provided in Supple-
mentary File S2. Data quality appraisal statistics for all models are presented in Table 3,
while prediction plots (histograms, precision plots and pairwise correlations) are presented
in Supplementary Figures S1–S3.

Model 3 stands out as the model with the lowest district-wise mean and median
estimates due to the calibration with Global Burden of Disease study 2017 national esti-
mates [24] (Model 3: mean = 192/100,000, median = 162/100,000) while Model 1 stands out
as the model with the highest mean and median estimates (Model 1: mean = 754/100,000,
median = 378/100,000) (Supplementary Figure S1). Model 4 was the only model which
predicted zero prevalence for a number of districts, with the 10th percentile equal to zero.
The most complete set of predictions were provided by Model 2 (143 districts) and Model 3
(142 districts) whereas Model 1 provided estimates for 131 districts (due to linkage issues
with certain covariate data sources) and Model 4 for 94 districts (those that had complete
predictors for 2010–2011). According to the LOOCV R2 statistics, Model 3 scored the best
in terms of pseudo-accuracy, defined as a model’s ability to predict cluster level TB in
2010–2011, when comparing with the actual measured values (R2 = 0.733), followed by
Model 1 (R2 = 0.404), Model 2 (R2 = 0.320) and Model 5 (R2 = 0.115). Overall Model 2 and
Model 4 provided the narrowest confidence intervals as can be seen by the lower precision
ratios, whereas Model 3 has the widest confidence intervals. For Model 1 and Model 2,
higher prevalence estimates tended to be less precise, while for Model 4 and Model 5, lower
prevalence estimates tended to be less precise (Supplementary Figure S2). Within Model 3,
no linear relationship was observed between the mean prevalence estimate for each district
and the width of the uncertainty intervals surrounding that estimate.
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Table 3. Predictions: data quality appraisal.

Model 1 Model 2 Model 3 Model 4 Model 5

Summary statistics 1

Min = 104
Max = 7425
Mean = 754

Median = 378

Min = 276
Max = 2050
Mean = 508

Median = 430

Min = 51
Max = 456

Mean = 192
Median = 162

Min = 0
Max = 1000
Mean = 362

Median = 382

Min = 44
Max = 906

Mean = 366
Median = 289

Completenes 2 131 143 142 94 139

Pseudo-accuracy by
LOOCV for 2010 3 R2 = 0.404 R2 = 0.320 R2 = 0.733 4 R2 = 0.115

Cross-validation 5

Model 2: r = −0.0882
Model 3: r = 0.2305

Model 4: r = −0.0041
Model 5: r = 0.0001

Model 1: r = −0.0882
Model 3: r = 0.4029
Model 4: r = 0.2492
Model 5: r = 0.1495

Model 1: r = 0.2305
Model 2: r = 0.4029
Model 4: r = 0.2402
Model 5: r = 0.1583

Model 1: r = −0.0041
Model 2: r = 0.2492
Model 3: r = 0.2402
Model 5: r = 0.0778

Model 1: r = 0.0001
Model 2: r = 0.1495
Model 3: r = 0.1583
Model 4: r = 0.0778

Precision 6 Ratio = 2.69 Ratio = 0.78 Ratio = 5.30 Ratio = 0.63 Ratio = 2.06

Credibility score 7

Rater 1: 3
Rater 2: 4
Rater 3: 3
Rater 4: 5

Mean score = 3.75

Rater 1: 5
Rater 2: 3
Rater 3: 3
Rater 4: 5

Mean score = 4

Rater 1: 7
Rater 2: 7
Rater 3: 7
Rater 4: 6

Mean score = 6.75

Rater 1: 4
Rater 2: 4
Rater 3: 3
Rater 4: 5

Mean score = 4

Rater 1: 7
Rater 2: 8
Rater 3: 6
Rater 4: 6

Mean score = 6.75

1 Prevalence per 100,000 inhabitants. 2 Out of 143 districts. The difference between 136 and 143 is accounted for by
districts in contested areas of Pakistan: 1 district in India-administered Kashmir, 1 district in Pakistan-administered
Kashmir, 3 districts in the Federally Administered Tribal Area (FATA) and 2 districts in Balochistan. 3 LOOCV
comparing final model estimates for 2010–2011 with actual prevalence survey cluster-level estimates for 2010–2011.
This could not be calculated for Model 4 as LOOCV metrics are not practical for SAE-LM models (computationally
too intensive) and were not produced by Model 5. 4 When performing cross validation, Model 3 excluded each
cluster from the original survey; this meant that for cluster observations that were originally geo-matched to
admin3 units and then resampled to multiple admin4 centroids, all down-sampled points corresponding to a
single survey observation were excluded from a single out-of-sample run. 5 Pairwise correlations of district level
central estimates of TB prevalence predictions (Pearson’s correlation coefficient). 6 Ratio = [(upper limit of 95%
credible interval) − (lower limit of 95% credible interval)]/(prevalence estimate). 7 Four TB experts from the
Pakistan National TB control Programme were asked to grade models from 1–10 based on how credible they
deemed the model estimates.

Overall there was very high heterogeneity in model predictions as can be seen from
the five maps (Figure 2). Model 2 and Model 3 both present a more smoothed surface,
which most likely reflects the high granularity of their approach as well as the spatially
auto-correlated error structure used in the models. They are also the two most highly
correlated estimates, by Pearson’s correlation coefficient, albeit weakly (r = 0.4029). Overall,
Model 3 appears to be the most ‘average’ model, as it shares most similarities with other
models (average pairwise correlations in district level central estimates of TB prevalence
predictions) as can be seen in Table 3 and Figure 2 and Supplementary Figure S3. Model 3
and Model 5 obtained the highest average score (6.75) in the TB expert grading (Table 3).
The average intra-class correlation coefficient between models was 0.92, indicating high
clustering of grades within models (92% of the total variation in grades is between models)
and thus high agreement between raters.

3.3. Identification of Districts with Most Under-Reporting

The maps displaying the ratio of 2018 new and relapse TB Notification rate over the
predicted prevalence (Figure 3) provide information on areas with most under-reporting
according to the model predictions. Areas consistently rated in the lowest notification rate
to prevalence ratio quantile across all models include districts in Gilgit Baltistan in the north
of the country (Ghizer and Ghanche districts); Khyber-Pakhtunkhwa in the north-west
(Mohmand, Northern Waziristan, Southern Waziristan and Kurram) and Balochistan in
the south-west (Kachhi, Musa Khel, Chagai, Kalat, Dera Bugti, Gwadar, Haranti and Lehri)
(Supplementary Table S3).
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4. Discussion

The TB hackathon provided five sub-national TB burden models that could be com-
pared both in terms of their methodology and outputs. In doing so, the hackathon provided
an opportunity to explore the utility of state-of-the-art modelling approaches to produce
consistent TB prevalence predictions. It also proved useful to identify data sources which
can be used to estimate TB prevalence at small spatial scales. The heterogeneity in model
predictions shows that models based on a cross-sectional cluster-based prevalence surveys
are limited in their ability to generate granular predictions into the future—even if they are
complemented with other longitudinal and spatially disaggregated data sources. Indeed,
model output comparisons highlighted the limited consensus between the different model
outputs, and in the absence of an empirical ground truth against which to compare model
predictions, it remains unclear which—and if any—predictive models produced reliable
estimates. Nevertheless, we were able to identify a number of districts with consistently
low notification to prevalence ratios across most models which could be prioritised for case
finding activities.

Models 1–3 represent the more traditional statistical and epidemiological approach
to TB modelling using a binomial logistic regression model. Although the predictions
varied substantially across these three models, they shared a number of features. For
instance, since these models were fitted using a logit link function, they could not generate
estimates exactly equal to zero, and generally predicted values higher than the data in
cases where prevalence estimates from the data are zero or relatively low. Furthermore,
in Models 1 and 2, overall larger point estimates were associated with wider uncertainty.
Models 4–5 changed the modelling perspective towards modern computational power and
abundance of data. To the best of our knowledge, there are very few applications of Small
Area Estimation and Latent Markov modelling (SAE-LM, Model 4) [25] and none on health
data so far, and similarly there are limited examples of Bayesian Artificial Neural Network
(ANN, Model 5) in health [26–28]. The main strength of these models lies in their flexibility,
as there is no imposed function to link the outcome and predictors. This broadens options
to the entire class of parametric probability distributions for the outcome. Both analytical
and practical advantages follow. For instance, Model 4 was the only model able to estimate
low district-level prevalence estimates and even zero. In contrast to Models 1 and 2, in
Models 4 and 5 lower point estimates were associated with wider uncertainty.

Although we were not able to provide one set of validated estimates for sub-national
TB planning, the NTP still found a number of practical applications for the hackathon
models. The Pakistan NTP used Models 2 and 3 as a basis for sample size calculations for
the upcoming TB prevalence survey (planned in 2022), given that they had both scored the
highest as per the metrics presented in Table 3. Model 5, on the other hand, was used as
a starting point to prioritise TB chest camps, a project the modellers became involved in
shortly after participating in the hackathon. Chest camp data (including numbers of people
screened, symptomatic, tested and positive) are now captured digitally in the field and are
analysed in real-time. Incoming data are used to continuously update Model 5 predictions
to provide ever more validated and accurate TB prevalence data at local level for the
following decision making rounds on the location of chest-camps. Similarly, the NTP plans
to use the hackathon models to operationalise other case-finding activities in their 2021–
2023 National Strategic plan. In addition to chest camps, these include establishing sputum
transportation mechanisms at primary health care levels, and engaging private providers
in the diagnosis and treatment of TB. The hackathon data may be used, in combination
with notification data, to understand the effectiveness of these interventions and further
validate the accuracy of hackathon outputs.

One of the hackathon challenges was the combination of a spatial decomposition
problem (from a national to district level estimates of TB) combined with a temporal fore-
cast (projecting from 2010–2011 to 2018). While this was necessary to provide relevant
information to NTP decision makers, it also added two layers of complexity for the mod-
ellers, each with their own theoretical and practical challenges. Spatial decomposition of
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survey data has known challenges, further compounded by the fact that TB is a rare and
unevenly scattered attribute [1]. As a result, all models’ predictive power suffered from
the following limitations: (1) data sparsity as a result of a limited number of clusters to
base district-prevalence estimates (the 2010–2011 prevalence survey collected data from
95 [21] out of over 530 tehsils in the whole country [23]); (2) a small number of detected
prevalent cases with over-dispersion in the distribution of clusters by case count (the mean
number of bacteriologically positive cases was 3.3 per cluster with a standard deviation
of 2.7 and 13/95 clusters with zero positive cases); and (3) extrapolation to areas where
covariate data values fall outside the range observed in surveyed districts (the 95 survey
clusters are in 68 unique districts whereas predictions were made for up to 136 districts).
Moreover, both spatial and temporal forecasting rely on the strong assumption that the
relationships observed in measured clusters and years (in our case 2010–2011) between
TB estimates and covariates remain unchanged in non-measured clusters and future years
(2018). However, there may be many violations to this assumption (migration patterns,
consistency of quality of laboratory over time, lower TB bacteriology rate due to longer
transport times, delays in transport, delays in testing, etc.).

The hackathon modellers also faced a number of more practical challenges. First
of all, it is important to acknowledge that modellers were given a short turnaround and
developed the models with limited human resources. Second, they faced a number of
difficulties of working with the prevalence survey raw data, with limited information on
data management steps (including imputation) needed beyond what was described in the
survey report and scientific publication [20,21]. However, TB survey data are recognized
as difficult to analyse, as there always are missing data and patterns of missingness are
often associated with the outcome of interest (prevalence). WHO provides ample guid-
ance on strategies to deal with these issues [29], but the specific choices of the Pakistan
TB prevalence survey analysts were not available to the hackathon modellers. This un-
derscores the importance of implementing TB prevalence surveys with transparent and
reproducible procedures for data management and data analyses as recommended by
most good epidemiological practice guidelines, including recently developed guidelines
specifically for global health [30]. All underlying programming code and data for the
hackathon models are available on an open access Zenodo repository (see Data Availability
Statement). We invite interested modellers to access the code and data to improve on our
estimates—either with methodological advancements or by including new high-quality
predictors of TB prevalence.

5. Conclusions

The TB hackathon provided a unique opportunity to compare different TB subnational
prediction models, including novel modelling techniques which had never been applied
in this domain before. The technical difficulty of the hackathon assignment highlighted
the known challenges of satisfying stakeholder information needs (most recent district-
wise estimates) while attempting to fit complex statistical methodologies (subnational
decomposition and temporal forecast). The large heterogeneity between the various outputs
serves as an important note of caution for the future production and use of granular
predictive models of TB based on cross-sectional cluster-based prevalence survey data.
Nevertheless, by soliciting and contrasting different methodologies for this challenging
problem, the hackathon was successful in providing examples of a range of applications
for modellers interested in further developing or refining their approaches to subnational
disease modelling. Moreover, the NTP’s use and plans for these outputs shows that,
limitations notwithstanding, they are valued by decision makers and planners.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/tropicalmed7010013/s1, Table S1: Additional model specifications,
by model; Table S2: Model predictions, by district and model; Table S3: Notification to prevalence, by
district and model; Figure S1: Histograms of model predictions, by model; Figure S2: Precision vs.
point estimate, by model; Figure S3: Pairwise correlations between model predictions.

https://www.mdpi.com/article/10.3390/tropicalmed7010013/s1
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