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1. Introduction

Every consistent theory of interacting higher spin fields necessarily includes an infinite number of
such fields. For this reason, it is extremely important to develop a formalism which effectively includes
an infinite number of fields into a simpler field-theoretical object. This formalism should yield correct
field equations first of all at the free level and then be promoted to an interacting theory. An elegant
geometrical approach to higher spin theories of this kind is known as the method of tensorial spaces.
This approach was first suggested by Fronsdal [1]. Its explicit dynamical realization and further
extensive developments have been carried out in [2–28].

In a certain sense, the method of tensorial spaces is reminiscent of the Kaluza–Klein theories.
In such theories, one usually considers massless field equations in higher dimensions and then,
assuming that the extra dimensions are periodic (compact), one obtains a theory in lower dimensions,
which contains fields with growing masses. In the method of tensorial (super)spaces, one also considers
theories in multi-dimensional space–times, but in this case the extra dimensions are introduced in
such a way that they generate the fields with higher spins instead of the fields with increasing masses.
A main advantage of the formulation of the higher spin theories on extended tensorial (super) spaces
is that one can combine curvatures of an infinite number of bosonic and fermionic higher spin fields
into a single “master” (or “hyper”) scalar and spinor field which propagate through the tensorial
supesrpaces (also called hyperspaces). The field equations in the tensorial spaces are invariant under
the action of Sp(2n) group, whereas the dimensions of the corresponding tensorial spaces are equal
to n(n+1)

2 . The case of four space–time dimensions D = 4 is of particular interest since the approach
of tensorial (super)spaces comprises all massless higher spin fields from zero to infinity. The free
field equations are invariant under the Sp(8) group, which contains a four dimensional conformal
group SO(2, 4) as a subgroup. In fact, the entire structure of the Sp(8) invariant formulation of the
higher spin fields is a straightforward generalization of the conformally invariant formulation of the
four-dimensional scalar and spinor fields. This allows one to use the experience and intuition gained
from the usual conformal field theories for studying the dynamics of higher spin fields on flat and AdS
backgrounds, and to construct their correlation functions.

Being intrinsically related to the unfolded formulation [29–33] of higher-spin field theory,
the hyperspace approach provides an extra and potentially powerful tool for studying higher spin
AdS/CFT correspondence (for reviews on higher-spin holography, see, e.g., [34,35]). The origin of
higher-spin holographic duality can be traced back to the work of Flato and Fronsdal [36] who showed
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that the tensor product of single-particle states of a 3D massless conformal scalar and spinor fields
(singletons) produces the tower of all single-particle representations of 4D massless fields whose
spectrum matches that of 4D higher spin gauge theories. The hyperspace formulation provides
an explicit field theoretical realization of the Flato-Fronsdal theorem in which higher spin fields are
embedded in a single scalar and spinor fields, though propagating in hyperspace. The relevance of the
unfolded and hyperspace formulation to the origin of holography has been pointed out in [33]. In this
interpretation, holographically dual theories share the same unfolded formulation in extended spaces
which contains twistor-like variables and each of these theories corresponds to a different reduction,
or “visualization”, of the same “master” theory.

In what follows, we will review main features and latest developments of the tensorial
space approach, and associated generalized conformal theories. It is mainly based on
Papers [3,8,10,13,23,24,27]. We hope that this will be a useful complement to a number of available
reviews on the higher-spin gauge theories which reflect other aspects and different approaches to
the subject

• Frame-like approach in higher-spin field theory [37–42].
• Metric-like approach [43–55].
• Review that address the both approaches [56].
• Higher-spin Holography [34,35,57,58].
• Reviews which contain both the metric-like approach and the hyperspace approach [59,60].
• A short review on the hyperspace approach [61].
• A short review that contains frame-like approach, hyperspaces and higher-spin holography [62].

The review is organized as follows. In Section 2 we introduce a general concept of flat hyperspaces.
To this end we use somewhat heuristic argument, which includes a direct generalization of the famous
twistor-like representation of a light-light momentum of a particle to higher dimensional tensorial
spaces i.e., to hyperspaces. The basic fields in this set up are one bosonic and one fermionic hyperfield,
which contain infinite sets of bosonic and fermionic field strengths of massless fields with spins
ranging from zero to infinity. Physically interesting examples are hyperspaces associated with ordinary
space–times of dimensions D = 3, 4, 6 and 10. In what follows, we will always keep in mind these
physical cases, though from the geometric perspective the tensorial spaces of any dimension have the
same properties.

We demonstrate in detail that the solutions of wave equations in hyperspace are generating
functionals for higher spin fields. These equations are nothing but a set of free conformal higher spin
equations in D = 3, 4, 6 and 10. The case of D = 3 describes only scalar and spinor fields, the case
of D = 4 comprises the all massless bosonic and fermionic higher spin fields with spins from 0 to ∞
and the cases of D = 6 and D = 10 describe infinite sets of fields whose field strengths are self-dual
multiforms. These fields carry unitary irreducible representations of the higher-dimensional conformal
group and are sometimes called “spinning singletons” [63].

We then describe a generalized conformal group Sp(2n) which contains a convention conformal
group SO(2, D) as its subgroup (for D = 3, 4, 6, 10 and n = 2, 4, 8, 16, respectively) and show how
the coordinates in hyperspace and the hyperfields transform under these generalized conformal
transformations.

In Section 3, we consider an example of curved hyperspaces which are Sp(n) group manifolds.
An interesting property of these manifolds is that they are hyperspace generalizations of AdSD spaces.
Similarly to the AdSD space which can be regarded as a coset space of the conformal group SO(2, D),
the Sp(n) group manifold is a coset space of the generalized conformal group Sp(2n). This results in
the fact that the property of the conformal flatness of the AdSD spaces (i.e., the existence of a basis in
which the AdS metric is proportional to a flat metric) is also generalized to the case of hyperspaces.
In particular, a metric on the Sp(n) group manifold is flat up to a rotation of the GL(n) group,
the property that we call “GL–flatness”.
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In Section 4, we briefly discuss how the field equations given in the previous Sections can be
obtained as a result of the quantization of (super)particle models on hyperspaces.

In Section 5, we derive the field equations on Sp(n) group manifolds. We show that the field
equations on flat hyperspaces and Sp(n) group manifolds can be transformed into each other by
performing a generalized conformal rescaling of the hyperfields. We discus plane wave solutions
on generalized AdS spaces and present a generalized conformal (i.e., Sp(2n)) transformations of the
hyperfields on the Sp(n) group manifolds. In all these considerations, the property of GL(n) flatness
plays a crucial role.

Section 6 describes a supersymmetric generalization of the construction considered in Section 2
and Section 7 deals with the supersymmetric generalization of the field theory on Sp(n) introduced in
Section 3. The generalization is straightforward but nontrivial. Instead of hyperspace, we consider
hyper-superspaces and instead of hyperfields we consider hyper-superfields. The generalized
superconformal symmetry is the OSp(1|2n) supergroup and the generalized super-AdS spaces are
OSp(1|n) supergroup manifolds. We show that all the characteristic features of the hyperspaces and
hyperfield equations are generalized to the supersymmetric case as well.

The direct analogy with usual D-dimensional CFTs suggests a possibility of considering
generalized conformal field theories in hyperspaces. Sections 8 and 9 deal with such a theory which
is based on the invariance of correlation functions under the generalized conformal group Sp(2n).
The technique used in these Sections is borrowed from usual D-dimensional CFTs and the correlation
functions are obtained via solving the generalized Ward identities in (super) hyperspaces.

In Section 8, we derive OSp(1|2n) invariant two-, three- and four-point functions for scalar
super-hyperfields. The correlation functions for component fields can be obtained by simply expanding
the results in series of the powers of Garssmann coordinates. Therefore, we shall not consider the
derivation of Sp(2n) invariant correlation functions for the component fields separately.

Finally, in Section 9, we introduce generalized conserved currents and generalized stress-tensors.
Their explicit forms and the transformation rules under Sp(2n) can be readily obtained from the free
field equations and the transformation rules of the free hyperfields.

Further, we show how one can compute Sp(2n) invariant correlation functions which involve the
basic hyperfields together with higher rank tensors such as conserved currents and the generalized
stress tensor. We show that the Sp(2n) invariance itself does not impose any restriction on the
generalized conformal dimensions of the basic hyperfields even if the conformal dimensions of the
current and stress tensor remains canonical.

However, the further requirements of the conservation of the generalized current and generalized
stress tensor fixes also the conformal dimensions of the basic hyperfields, implying that the generalized
conformal theory will not allow for nontrivial interactions.

We briefly discuss possibilities of avoiding these restrictions by considering spontaneously broken
Sp(2n) symmetry or local Sp(2n) invariance, which may lead to an interacting hyperfield theory.

Appendices contain some technical details such as conventions used in the review, a derivation of
the field equations on Sp(n) group manifolds and some useful identities.

2. Flat Hyperspace

Let us formulate the basic idea behind the introduction of tensorial space. We shall mainly
concentrate on a tensorial extension of four-dimensional Minkowski space–time. A generalization to
higher dimensional D = 6 and D = 10 spaces will be given later in this Section.

Consider a four dimensional massless scalar field. Its light-like momentum pm pm = 0,
m = 0, 1, 2, 3 can be expressed via the Cartan–Penrose (twistor) representation as a bilinear
combination of a commuting Weyl spinor λA and its complex conjugate λȦ (A, Ȧ = 1, 2)

pm = λA(σm)AȦλ̃Ȧ, or PAȦ = λAλȦ. (1)
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Obviously, since the spinors are commuting, one has λAλBεAB ≡ λAλA = 0 = λ
Ȧ

λȦ and
therefore PAȦPAȦ = 0, where the spinor indices are raised and lowered with the unit antisymmetric
tensors εAB and εAB.

In order to generalize this construction to higher dimensions note that one can equivalently
rewrite Equation (1) in terms of four-dimensional real Majorana spinors λα (α = 1, ..., 4)

pm = λαγm
αβλβ. (2)

Due to the Fierz identities

(γm)αβ(γm)γδ + (γm)αδ(γm)βγ + (γm)αγ(γm)δβ = 0 (3)

satisfied by the Dirac matrices (γm)αβ = (γm)βα one has pm pm = 0. (The four-component spinor
indices are raised and lowered by antisymmetric charge conjugation matrices Cαβ and Cαβ see
the Appendix A.) Let us note that since identities similar to (3) hold also in D = 3, 6 and 10,
the Cartan–Penrose relation (2) is valid in these dimensions as well.

Let us continue with the four-dimensional case. The momentum PAȦ is canonically conjugate to
coordinates xAȦ. One can easily solve the quantum analogue of Equation (1)(

∂

∂xAȦ
− iλAλȦ

)
Φ(x, λ) = 0 (4)

to obtain a plane wave solution for the massless scalar particle

Φ(x, λ, λ̄) = φ(λ, λ̄)eixAȦλAλȦ , (5)

or in terms of the Majorana spinors

Φ(x, λ) = φ(λ)eixmλαγm
αβ λβ

, (6)

with φ(λ) being an arbitrary spinor function.
Let us now consider the equation

Pαβ = λαλβ, (7)

which looks like a straightforward generalization of (1) and see its implications. A space–time described
by the coordinates Xαβ (conjugate to Pαβ) is now ten-dimensional, since Xαβ is a 4× 4 symmetric matrix.
A basis of symmetric matrices is formed by the four Dirac matrices γm

αβ and their six antisymmetric

products γmn
αβ = −γmn

αβ . In this basis, Xαβ has the following expansion

Xαβ =
1
2

xm(γm)
αβ +

1
4

ymn(γmn)
αβ. (8)

The analogue of the wave Equation (4) is now(
∂

∂Xαβ
− iλαλβ

)
Φ(X, λ) = 0, (9)

whose solution is
Φ(X, λ) = eiXαβλαλβ φ(λ). (10)

At this point, one might ask the question what is the meaning of Equation (9) and of the extra
coordinates ymn and λα? As we shall see, the answer is that Equation (9) is nothing else but Vasiliev’s
unfolded equations for free massless higher-spin fields in four-dimensional Minkowski space–time [29].
The wave function Φ(X, λ) depends on the coordinates xm, ymn and λα. While xm parameterize the
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conventional four-dimensional Minkowski space–time, the coordinates ymn (and/or λα) are associated
with integer and half-integer spin degrees of freedom of four-dimensional fields with spin values
ranging from zero to infinity.

2.1. Higher Spin Content of the Tensorial Space Equations

To demonstrate the above statement let us first Fourier transform the wave function (10) into a
conjugate representation with respect to the spinor variable λα considered in [4]

C(X, µ) =
∫

d4λ e−iµαλα Φ(X, λ) =
∫

d4λ e−iµαλα+iXαβλαλβ φ(λ). (11)

The function C(X, µ) obeys the equation(
∂

∂Xαβ
− i

∂2

∂µα∂µβ

)
C(X, µ) = 0. (12)

Let us expand the function C(X, µ) in series of the variables µα

C(X, µ) =
∞

∑
n=0

Cα1···αn(X) µα1 · · · µαn = b(X) + fα(X)µα + · · · . (13)

and insert this expansion into the Equation (12). Then one finds that all the components of C(X, µ)

proportional to the higher powers of µα are expressed in terms of two fields the scalar b(X) and the
spinor fα(X). As a result of (13), these fields satisfy the relations [4]

∂αβ∂γδ b(X)− ∂αγ∂βδ b(X) = 0 , (14)

∂αβ fγ(X)− ∂αγ fβ(X) = 0 . (15)

The basic fields b(X) and fα(X) depend on xm and ymn. Let us now expand these fields in series
of the tensorial coordinates ymn

b(x, y) = φ(x) + ym1n1 Fm1n1(x) + ym1n1 ym2n2 R̂m1n1,m2n2(x)
+∑∞

s=3 ym1n1 · · · ymsns R̂m1n1,··· ,msns(x) ,
(16)

f α(x, y) = ψα(x) + ym1n1 R̂α
m1n1

(x)

+∑∞
s= 5

2
ym1n1 · · · y

m
s− 1

2
n

s− 1
2 R̂α

m1n1,··· ,m
s− 1

2
n

s− 1
2

(x) . (17)

Each four-dimensional component field in this expansion is antisymmetric under the permutation
of the indices mi and ni and is symmetric with respect to the permutation of the pairs (mi, ni)

with (mj, nj). In order to answer the question about the physical meaning of these fields, let us
first consider the scalar field Equation (14). Using the expression (8) for the tensorial coordinates and
four-dimensional γ-matrix identities, one can decompose (14) as follows

∂p ∂p b(xl , ymn) = 0,
(

∂p ∂q − 4 ∂pr ∂r
q

)
b(xl , ymn) = 0, εpqrt∂pq ∂rs b(xl , ymn) = 0,

εpqrt∂q ∂rt b(xl , ymn) = 0, ∂
p

q ∂p b(xl , ymn) = 0 . (18)

where ∂p = ∂
∂xp and ∂pq = ∂

∂ypq . The meaning of Equations (18) is the following. The first equation is a
Klein-Gordon equation. The second equation implies that the trace (with respect to the 4D Minkowski
metric) of the tensor which comes with the s-th power of ymn in the expansion (14) is expressed via
the second derivative of the tensor which comes with the (s− 2)-th power of ymn. Therefore, traces
are not independent degrees of freedom and the independent tensorial fields under consideration
are effectively traceless. The third and fourth Equation in (18) imply that the tensor fields satisfy the
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four-dimensional Bianchi identities, and the last equation implies that they are co–closed. These are
equations for massless higher-spin fields written in terms of their curvatures R̂α

m1n1,··· ,m
s− 1

2
n

s− 1
2

(x).

In four dimensions these equations are conformally invariant. Therefore one can conclude that in the
expansion (16) the field φ(x) is a conformal scalar, Fmn(x) is the field strength of spin-1 Maxwell field,
the field R̂m1n1,m2n2(x) is a linearized Riemann tensor for spin-2 graviton, etc.

The treatment of Equation (15) which describes half-integer higher-spin fields in terms of
corresponding curvatures is completely analogous to the bosonic one (14). The independent equations
for the conformal half-integer spin fields are

γp∂p f (xl , ymn) = 0, (19)

(∂p − 2γr∂pr) f (xl , ymn) = 0 (20)

From (19)–(20) one can derive the equation

∂mn f (x, y) =
1
2

γ[m∂n] f (x, y) +
1
2
(∂mn +

1
2

εmnpq∂pqγ5) f (x, y). (21)

This equation describes the decomposition of the spinor-tensor ∂mn f into the part which
contains the D = 4 space–time derivative of f and the “physical” part which is self-dual and
gamma-traceless, i.e.,

γm(∂mn +
1
2 εmnpq∂pqγ5) f (x, y) = 0

(∂mn +
1
2 εmnpq∂pqγ5) f (xl .ymn) = 1

2 εmnrs(∂rs + 1
2 εrspq∂pqγ5) f (x, y)

(22)

Therefore, one can conclude that due to Equations (19) and (20) the field ψα(x) in the expansion (17)
is a spin- 1

2 field, the field R̂α
m1n1

(x) corresponds to the field strength of the spin- 3
2 Rarita–Schwinger

field, while the other fields are the field strengths of the half-integer conformal higher-spin fields
in D = 4.

Finally, let us define the hyperspaces associated with D = 6 and D = 10 space–time. The dynamics
of the fields will be again determined by the equation (7) with the corresponding hyperspaces and the
twistor-like variables λα defined as follows.

In D = 10 the twistor-like variable λα is a 16–component Majorana–Weyl spinor.
The gamma–matrices γ

αβ
m and γ

αβ
m1···m5 form a basis of the symmetric 16× 16 matrices, so the n = 16

tensorial manifold is parameterized by the coordinates

Xαβ =
1

16

(
xmγ

αβ
m +

1
2 · 5!

ym1 ...m5 γ
αβ
m1 ...m5

)
= Xβα , (23)

(m = 0, 1, . . . , 9 ; α, β = 1, 2, . . . , 16) ,

where xm = Xαβγm
αβ are associated with the coordinates of the D = 10 space–time, while the

anti-self-dual coordinates

ym1 ...m5 = Xαβγm1 ...m5
αβ = − 1

5!
εm1 ...m5n1 ...n5 yn1 ...n5 ,

describe spin degrees of freedom.
The corresponding field Equations are again (14) and (15) and the entire discussion repeats as

in the case of D = 4. The crucial difference is that now the expansions (16) and (17) is performed
in terms of the coordinates ym1 ...m5 . As a result one obtains a description of conformal fields whose
curvatures are self-dual with respect to each set of indexes (mini piqiri). These traceless rank 5s tensors
R[5]1···[5]s are automatically irreducible under GL(10,R) due to the self-duality property, and are
thus associated with the rectangular Young diagrams (s, s, s, s, s) which are made of five rows of



Universe 2018, 4, 7 7 of 45

equal length s (“multi-five-forms”). The field equations, which are ten-dimensional analogues of the
four-dimensional Equations (18), can be found in [13].

In D = 6 the commuting spinor λα is a symplectic Majorana–Weyl spinor. The spinor index can be
decomposed as follows α = a⊗ i (α = 1, . . . , 8; a = 1, 2, 3, 4; i = 1, 2). The tensorial space coordinates
Xαβ = Xai bj are decomposed into

Xai bj = 1
8 xm γ̃ab

m εij + 1
16·3! ymnp

I γ̃ab
mnp τ

ij
I ,

m, n, p = 0, . . . , 5 ; a, b = 1, ..., 4 ; i, j = 1, 2 ; I = 1, 2, 3
(24)

where ε12 = −ε12 = 1, and τ
ij
I (I = 1, 2, 3) provide a basis of 2× 2 symmetric matrices, They are related

to the usual SU(2)-group Pauli matrices τI ij = εjj′ σI i
j′ . The matrices γ̃ab

m (where γm
ab = 1/2 εabcdγ̃m cd)

form a complete basis of 4× 4 antisymmetric matrices with upper (lower) indices transforming under
an (anti)chiral fundamental representation of the non-compact group SU∗(4) ∼ Spin(1, 5). For the
space of 4× 4 symmetric matrices with upper (lower) indices, a basis is provided by the set of self-dual
and anti-self-dual matrices (γ̃mnp)ab and γ

mnp
ab , respectively,

(γ̃mnp)ab =
1
3!

εmnpqrsγ̃ab
qrs , γ

mnp
ab = − 1

3!
εmnpqrs(γqrs)ab . (25)

The coordinates xm = xai bj γm
ab εij are associated with D = 6 space–time, while the self-dual

coordinates
ymnp

I = xai bj γ
mnp
ab τI ij = −

1
3!

εmnpqrsyI
qrs , (26)

describe spinning degrees of freedom.
The consideration proceeds as in the D = 4 and D = 10 case. Because of the form of the tensorial

coordinates in (24) the six-dimensional analogue of the expansions (16) and (17) contains powers
of ymnp

i . Corresponding field strengths, which again describe conformal fields in six dimensions,
are self-dual with respect to each set of the indexes (mini pi). In other words, one has an infinite
number of conformally invariant (self-dual) “multi-3-form” higher-spin fields in the six-dimensional
space–time which form the (2[s] + 1)-dimensional representations of the group SO(3).

In [9,16,21] Equation (12) has been generalized to include several commuting spinor variables µpα

(p, q = 1, ..., r) (
∂

∂Xαβ
± iηpq ∂2

∂µpα∂µqβ

)
Cr
±(X, µ) = 0. (27)

where ηpq = ηqp is a nondegenerate metric. The value of r is called the “rank". As we explained above,
the free higher-spin fields in D = 4 are described by the rank-one equations in the ten-dimensional
tensorial space. The higher-spin currents are fields of rank-two r = 2. These currents obey the
equations with off-diagonal ηpq [19]. The currents J(X, µp) are bilinear in the higher-spin gauge fields
C+ and C−, which obey the rank-one equation (27) J = C+C−.

On the other hand, when considering rank-two equations the corresponding tensorial space can
be embedded in the higher-dimensional tensorial space. From the discussion above, it follows that
a natural candidate for such higher-dimensional space is the tensorial extension of D = 6 space–time.
In this way one effectively linearizes the problem since the conformal currents in four dimensions are
identified with the fields in D = 6 [21].

2.2. Four Dimensional Unfolded Higher-Spin Field Equations from the Hyperspace Field Equations

Let us rewrite, in the case of the D = 4 theory, the hyperspace relations in terms of the Weyl spinors.
The momenta (7) take the form

PAB = λAλB , PȦḂ = λȦλḂ , PAȦ = λAλȦ , (28)
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while Equation (7) splits into(
σmn

AB
∂

∂ymn + i
∂2

∂µA∂µB

)
C(x, y, µ) = 0,

(29)(
σmn

ȦḂ
∂

∂ymn − i
∂2

∂µȦ∂µḂ

)
C(x, y, µ) = 0

and (
σm

AȦ
∂

∂xm + i
∂2

∂µA∂µ̄Ȧ

)
C(x, y, µ) = 0 . (30)

Equations (29) relate the dependence of C(x, y, µ) on the coordinates ymn to its dependence on µα.
Thus, using this relation, one can regard the wave function C(xm, µα) := C(Xαβ, µα)|ymn=0 as the
fundamental field.

The expansion of C(xm, µ) in series of µA and µȦ is

C(xp, µA, µȦ) =
∞

∑
m,n=0

1
m!n!

CA1 ...Am , Ḃ1 ...Ḃn
(xp) µA1 . . . µAm µḂ1 . . . µḂn , (31)

where the reality of the wave function implies (CA1 ...Am , Ḃ1 ...Ḃn
)∗ = CB1 ...Bn , Ȧ1 ...Ȧm

, and by construction
the spin-tensors are symmetric in the indices Ai and in Ḃi.

The consistency of (30) implies the integrability conditions

∂2

∂µ[A∂xB]Ḃ
C(x, µ) = 0,

∂2

∂µ̄[Ȧ∂xḂ]B
C(x, µ) = 0 . (32)

We have thus obtained the equations of the Vasiliev’s unfolded formulation of free higher spin
fields in terms of zero–forms. In this formulation the C0,0 component (a physical scalar), CA1 ...A2s ,0 and
C0,Ȧ1,...Ȧ2s

components of the expansion (31) correspond to the physical fields, while the other fields
are auxiliary. The latter two fields are the self-dual and anti-self-dual components of the spin–s field
strength. The nontrivial equations on the dynamical fields are [38] the Klein–Gordon equation for the
spin zero scalar field ∂m∂mC0,0 = 0 and the massless equations for spin s > 0 field strengths

∂BḂCBA1 ...A2s−1(x) = 0 , ∂BḂCḂȦ1 ...Ȧ2s−1
(x) = 0 , (33)

which follow from (32). All the components of C(xm, µA, µȦ) that depend on both µA and µȦ

are auxiliary fields expressed by (30) in terms of space–time derivatives of the dynamical fields
contained in the analytic fields C(xm, µA, 0) and C(xm, 0, µȦ) and thus one arrives at the unfolded
formulation of [38].

Let us summarize what we have considered by now. To describe the dynamics of higher-spin
fields in four dimensions we have introduced extended ten-dimensional tensorial space, hyperspace,
parameterized by the coordinates Xαβ (8). The main object is a generating functional for higher-spin
fields described by C(X, µ) or by Φ(X, λ). The generating functional depends on the tensorial
coordinates Xαβ and on the commuting spinors µα or λα. The dynamics is described by the field
Equation (9) or (12). To obtain from these the higher-spin field equations in the ordinary space–time
parameterized by the coordinates xm one can use two options. In the first approach one gets rid of the
tensorial coordinates ymn and arrives at Vasiliev’s unfolded formulation in terms of the functional (31).
Alternatively, one can first get rid of the commuting spinor variables and arrive at the equations for the
bosonic (16) and fermionic (17) hyperfields. Both pictures provide the equations for the field strengths
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of the higher-spin potentials, the difference being that these field strengths are realized either as tensors
or spin-tensors.

2.3. Generalized Conformal Group Sp(2n)

Let us consider in more detail the symmetries of Equation (7) in which now the Greek indices
α, β, . . . run from 1 to an arbitrary even integer 2n. However, as we explained in the previous Section,
the physically interesting cases are associated with n = 2, 4, 8, and 16, which correspond to the number
of space–time dimensions equal to 3, 4, 6 and 10, respectively.

It turns out that Equation (7) is invariant under the transformations of the Sp(2n) group [5,8]

δλα = g β
α λβ − kαβXβγλγ, (34)

δXµν = aµν + (Xµρgρ
ν + Xνρgρ

µ)− XµρkρλXλν . (35)

The constant parameters aαβ = aβα, g α
γ and kαβ = kβα correspond to the generators of generalized

translations Pαβ, generalized Lorentz transformations and dilatations G α
β (generated by the GL(n)

algebra) and generalized conformal boosts Kαβ. The differential operator representation of these
generators have the form

Pµν = −i
∂

∂Xµν ≡ −i∂µν, (36)

Gν
µ = −2iXµρ ∂ρν (37)

and
Kµν = iXµρXνλ∂ρλ (38)

These symmetries are the hyperspace counterparts of the conventional Poincaré translations,
Lorentz rotations, dilatations and conformal boosts of Minkowski space–time. The generalized Lorentz
rotations are generated by the traceless operators Lµ

ν = Gµ
ν − 1

n δν
µ Gλ

λ, forming the SL(n)–algebra,
whereas dilatations are generated by the trace of Gµ

ν. The generators (36), (37) and (38) form the
Sp(2n) algebra which plays the role of a generalized conformal symmetry in the hyperspace

[Pµν, Pρλ] = 0, [Kµν, Kρλ] = 0, [Gν
µ, Gλ

ρ] = i(δµ
λ Gν

ρ − δ
ρ
ν Gλ

µ) ,

[Pµν, Gλ
ρ] = −i(δρ

µPνλ + δ
ρ
ν Pµλ), [Kµν, Gλ

ρ] = i(δµ
λKνρ + δν

λKµρ) , (39)

[Pµν, Kλρ] = i
4 (δ

ρ
µGν

λ + δ
ρ
ν Gµ

λ + δλ
µ Gν

ρ + δλ
ν Gµ

ρ) .

From the structure of this algebra, one can see that the flat hyperspaceMn can be realized as
a coset manifold associated with the translations P = Sp(2n)

K×⊃GL(n) where K×⊃ GL(n) is the semi–direct
product of the Abelian group generated by the generalized conformal boosts Kµν and the general
linear group.

The generators of the translations, Lorentz rotations and conformal boosts of the conventional
conformal group can be obtained from the Sp(2n) generators as projections onto the x-space,
for example pm = (γm)µνPµν, etc.

Let us note that the Sp(2n) algebra can be conveniently realized with the use of the twistor-like
variables λα and their conjugate µα

[µα, λβ] = δα
β. (40)

In the twistor representation the generators of the Sp(2n) group have the following form

Pαβ = λαλβ, G β
α = λαµβ, Kαβ = µαµβ. (41)
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Equations (14) and (15) are invariant under the Sp(2n) transformations (35), provided that the
fields transform as follows

δb(X) = −(aµν∂µν +
1
2

gµ
µ + 2gν

µXνρ∂µρ − kµν(
1
2

Xµν + XµρXνλ∂ρλ))b(X) , (42)

δ fρ(X) = −(aµν∂µν +
1
2 gµ

µ + 2gν
µXνλ∂µλ − kµν(

1
2 Xµν + XµτXνλ∂τλ)) fρ(X)+

−(gρ
ν − kλρXλν) fν(X) .

(43)

Note that these variations contain the term 1
2 (gµ

µ − kµνXµν), implying that the fields have the
canonical conformal weight 1/2. A natural generalization of these transformations to fields of a generic
conformal weight ∆ is [4]

δb(X) = −(aµν∂µν + ∆ (gµ
µ − kµνXµν) + 2gν

µXνρ∂µρ − kµνXµρXνλ∂ρλ)b(X) , (44)

δ fρ(X) = −(aµν∂µν + ∆ (gµ
µ − kµνXµν) + 2gν

µXνλ∂µλ − kµνXµτXνλ∂τλ) fρ(X)

−(gρ
ν − kλρXλν) fν(X) .

(45)

3. Hyperspace Extension of AdS Spaces

A hyperspace extension of AdSD spaces is another coset of the Sp(2n) group. Recall that the
usual AdSD space can be realized as the coset space (Here, K and D denote the generalized conformal
boosts and dilatation, respectively.) SO(2,D)

K×⊃(SO(1,D−1)×D) parameterized by the coset element ePm xm
.

The generators of the AdSD boosts Pm can be singled out from the generators of the four dimensional
conformal group SO(2, D) by taking a linear combination of the generators of the Poincaré translations
Pm and conformal boosts Km as Pm = Pm − ξ2Km, where ξ is the inverse of the AdSD radius.

Analogously, for the case of the hyperspace extension of the AdSD space let us consider
the generators

Pαβ = Pαβ −
ξ2

16
Kαβ, [P ,P ] ∼ M, [P , M] ∼ P , (46)

where Kαβ = CαγCβδKγδ, Mαβ stands for the symmetric part of the GL(n) transformations
Mαβ = G(α

γCγβ) ≡ 1
2 (Gα

γCγβ + Gβ
γCγα) and Cαβ = −Cβα is the Sp(n)-invariant symplectic metric.

One can see that the corresponding manifold is an Sp(n) group manifold [8] which can be realized as

a coset space Sp(2n)
K×⊃GL(n) with the coset element e(P− ξ2

16 K)αβ Xαβ
. Indeed, let us recall that Sp(n) group is

generated by n× n symmetric matrices Mαβ which form the algebra

[
Mαβ, Mγδ

]
= − iξ

2

[
Cγ(α Mβ)δ + Cδ(α Mβ)γ

]
, α, β = 1, ..., n . (47)

As a group manifold, Sp(n) is the coset [Sp(n)L × Sp(n)R]/Sp(n) which has the isometry group
Sp(n)L × Sp(n)R, the latter being the subgroup of Sp(2n) generated by

ML
αβ = Pαβ −

ξ2

16
Kαβ −

ξ

4
Mαβ MR

αβ = Pαβ −
ξ2

16
Kαβ +

ξ

4
Mαβ , (48)

as one may see from the structure of the Sp(2n) algebra (39). The generators Mαβ form the diagonal
Sp(n) subalgebra of Sp(n)L × Sp(n)R.

Let us note that, for the case of n = 4, i.e., for the case of four space–time dimensions, AdS4 space
is a coset subspace of Sp(4) ∼ SO(2, 3) of the maximal dimension. For n > 4, an AdSD space is also
a subspace of Sp(n) manifold but is no longer the maximal coset of this group.
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3.1. GL-Flatness of Sp(n) Group Manifolds

Let us describe a property of GL-flatness of the Sp(n) group manifolds which is a generalization
of the conformal flatness property of AdSD spaces. By GL-flatness we mean that, in a local coordinate
basis associated with Xαβ, the corresponding Sp(n) Cartan form Ωαβ has the form

Ωαβ = dXµνGµ
α(X)Gν

β(X) , (49)

with the matrix Gµ
α(X) being

Gµ
α(X) = δα

µ +
∞

∑
k=1

(
− ξ

4

)k
(Xk)µ

α . (50)

This expression implies that the Sp(n) Cartan form is obtained from the flat differential dXµν by
a specific GL(n) rotation of the latter.

This property can be demonstrated by showing that the Cartan forms (49) satisfy the Sp(n)-group
Maurer–Cartan equations (see [8,23], for technical details)

dΩαβ +
ξ

2
Ωαγ ∧Ωγ

β = 0 . (51)

The matrix G−1µ
α (X) inverse to (50) depends linearly on Xα

µ and has a very simple form

G−1µ
α (X) = δ

µ
α +

ξ

4
Xα

µ . (52)

Note that the possibility of representing the Cartan forms in the form (49) is a particular feature
of the Sp(n) group manifold since, in general, it is not possible to decompose the components of the
Cartan form into a “direct product" of components of some matrix Gµ

α.

3.2. An Explicit Form of the AdS4 Metric

Let us now demonstrate that, for the case of n = 4 (D = 4), the pure xm-dependent part of
the matrix Gµ

α(X) indeed generates the metric on AdS4 in a specific parameterization. To this end,
we should evaluate the expression

Ωαβ(xm) =
1
2

dxm(γm)
δσGδ

αGσ
β =

1
2

dxmea
m(γa)

αβ +
1
4

dxmωab
m (γab)

αβ, (53)

where the dependence of the matrices Xαβ on the coordinates ymn (see Equation (8)) was discarded,
i.e., Xα

β = 1
2 xn(γn)α

β. Denoting

x2 = xmxnηmn, xm = ηmnxn (54)

and, using the explicit form (50) of Gµ
α(X), one obtains

Ωαβ(x) =
1
2

dxm

[1− ( ξ
8 )

2x2]2

[
(γ`)

αβ
(
[1 + ( ξ

8 )
2x2]δ`m − 2( ξ

8 )
2ηmnxnx`

)
− ξ

4 xn(γmn)
αβ
]

. (55)

In this way, we obtain a four-dimensional space vierbein and spin-connection

ea
m =

1

[1− ( ξ
8 )

2x2]2

(
[1 + ( ξ

8 )
2x2]δa

m − 2( ξ
8 )

2xaxm

)
, (56)

ωab
m =

−2ξ

[1− ( ξ
8 )

2x2]2
δ
[a
m xb] = −

8( ξ
8 )

(1− ( ξ
8 )

2x2)2
(xaδb

m − xbδa
m) . (57)
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The corresponding metric is

gmn =
1

[1− ( ξ
8 )

2x2]4

(
[1 + ( ξ

8 )
2x2]2ηmn − 4( ξ

8 )
2xmxn

)
, (58)

It is well-known (see also Section 5.1) that the metric on AdSD can be represented as an embedding
in a flat (D + 1)-dimensional space

ds2 = ηmndymdyn − (dyD)2 , (59)

via the embedding constraint

ηmnymyn − (yD)2 = −r2 . (60)

Choosing the embedding coordinates for AdS4 to be

ym =
1 + ( ξ

8 )
2x2

[1− ( ξ
8 )

2x2]2
xm, y4 =

√√√√r2 + x2 1 + ( ξ
8 )

2x2

[1− ( ξ
8 )

2x2]2
, (61)

one readily recovers the metric (58), with the parameter ξ being related to the AdS4 radius r as follows

ξ =
2
r

. (62)

Finally, computing the Riemann tensor

Rab
mn = −32( ξ

8 )
2 1 + ( ξ

8 )
2x2

[1− ( ξ
8 )

2x2]4

(
[1 + ( ξ

8 )
2x2]δ

[a
mδ

b]
n + 4( ξ

8 )
2x[aδ

b]
[mxn]

)
, (63)

and the Ricci scalar

R = −192
(

ξ

8

)2
= −3ξ2 , (64)

one verifies that the metric (58) indeed corresponds to a space with constant negative curvature, i.e.,
the AdS4 space.

4. Particles in Hyperspaces

In this Section, we would like to explain the physical meaning of the tensorial space coordinates
as spin degrees of freedom from the perspective of the dynamics of a particle in hyperspace.

Historically, the first dynamical system in which the Fronsdal hyperspace proposal for
higher–spin fields was realized explicitly was the twistor-like superparticle model of Bandos and
Lukierski [2] which, for D = 4, possesses the generalized superconformal symmetry under OSp(1|8).
The original motivation behind this model was a geometric interpretation of commuting tensorial
charges in an extended supersymmetry algebra. Its higher–spin content was found later in [3,64]
where the quantum states of the superparticle were shown to form an infinite tower of massless
higher–spin fields, and the relation of this model to the unfolded formulation was assumed.
This relation was analyzed in detail in [4,5,8,10,13]. In addition to the relation to higher spins,
the model of Bandos and Lukierski [2] has revealed other interesting features, such as the invariance
under supersymmetry with tensorial charges (which are usually associated with brane solutions of
Superstring and M–Theory). Moreover, it has provided the first example of a dynamical BPS system
preserving more than half of the bulk supersymmetries. BPS states preserving 2n−1

2n supersymmetries
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(with n = 16 for D = 10, 11) were then shown to be building blocks of any BPS states, and this led to
a natural conjecture that they can be elementary constituents or “preons” of M–theory [65].

Let us consider the generic case of a particle moving in an Sp(2n)-invariant hyperspace M
described by the action

S[X, λ] =
∫

Eαβ (X(τ)) λα(τ) λβ(τ), (65)

where Xµν(τ) are the hyperspace coordinates of the particle. The auxiliary commuting variables λα(τ)

(α = 1, · · · , n) is a real spinor with respect to Sp(n) and a vector with respect to GL(n) (introduced
in Section 2). Finally Eαβ(X(τ)) = Eβα(X(τ)) = dXλρ(τ)Eµν

αβ(X) is the pull–back on the particle
worldline of the hyperspace vielbein. For flat hyperspace

Eαβ(X(τ)) = dτ ∂τXαβ (τ) = dXαβ (τ), (66)

and for the case of the Sp(n) group manifold

Eαβ(X(τ)) = Ωαβ(X), (67)

where Ωαβ is an Sp(n) Cartan form. The latter can be taken in the GL-flat realization as in (49).
The dynamics of particles on the OSp(N|n) supergroup manifolds was considered for N = 1
in [8,10,66] and for generic values of N in [4,5], and, as we have already mentioned, the twistor-like
superparticle in the n = 32 super-hyperspace was considered in [67] as a point-like model for BPS
preons [65], the hypothetical 31

32 -supersymmetric constituents of M-theory.
The action (65) is manifestly invariant under global GL(n) transformations and implicitly invariant

under global Sp(2n) transformations, acting linearly on λρ and non-linearly on Xρν. Thus, the model
possesses the symmetry that Fronsdal proposed as an underlying symmetry of higher–spin field theory
in the case n = 4, D = 4 [1]. To make the Sp(2n) invariance manifest, it is convenient to rewrite the
action (65) in a twistor form (for simplicity we consider the flat case (66))

S[λ, µ] =
∫

(dµα(τ) λα(τ)− µα(τ) d λα(τ)) =
∫

dZAZA , (68)

where
µα = Xαβ λβ , (69)

and
ZA = (λα, µβ) ZA = CAB ZB = (µα, −λβ), A = 1, · · · , 2n , (70)

form a linear representation of Sp(2n)

δZA = SAB ZB , SAB =

(
g β

α kαγ

aδβ −(g δ
γ )

T

)
. (71)

Hence, the bilinear form dZA ZA is manifestly Sp(2n) invariant. Note that, as it follows from the
action (68), the variables µα and λβ are canonically conjugate coordinates and momenta of the particle.
Upon quantization, they become the operators introduced in Section 2.3, Equation (40).

Using the relation (69) one can easily recover the Sp(2n) transformation (35) of Xαβ.
Applying the Hamiltonian analysis to the particle model described by (65) and (66), one finds

that the momentum conjugate to Xαβ is related to the twistor-like variable λα via the constraint

Pαβ = λαλβ . (72)

As we have already mentioned, this expression, e.g., in the case n = 4 for which Xαβ is given in (8),
is the direct analog and the generalization of the Cartan–Penrose (twistor) relation for the particle
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momentum Pm = λ̄ γm λ. A difference is that in D = 4 the Penrose twistor relation is invariant under
the phase transformation

λα → eiϕ γ5
λα, (73)

or in the two–component Weyl spinor notation λA → eiϕ λA, while Equation (72) does not possess
this symmetry. rather the symmetry of the model is Z2 (λα → − λα) subgroup of U(1) and as a result
in the model under consideration the phase component ϕ of λα is a dynamical degree of freedom.
It turns out that upon quantization it is associated with the infinite number of massless quantum states
(particles) with increasing spin (helicity). This is in contrast to the conventional twistor-like (super)
particle models with a finite number of quantum states, considered e.g., in [68–79].

To understand the physical meaning of the phase ϕ, let us notice that Equation (72) is a constraint
on possible values of the canonical momenta of the particle in the hyperspace. In the case n = 4 the
Majorana spinor λα has four independent components. One of these components can be associated
with the phase ϕ. The momentum Pm = λ̄ γm λ of the particle along the four conventional Minkowski
directions xm = 1

2 Xµν γm
µν of the hyperspace (8) is light-like. Therefore, Pm depends on three

components of λα. It does not depend on the phase ϕ of λα, since it is invariant under the phase
transformation (73). The momentum Pmn = λ̄ γmn λ of the particle along the six additional tensorial
directions ymn = 1

4 Xαβ γmn
αβ is not invariant under the phase transformations and, hence, depends on

the four components of λα. However, we have already associated three of them with the light-like
momentum Pm in D = 4. Therefore, the only independent component of the momentum Pmn is
associated with the U(1) phase ϕ of λα, and as a result the motion of the particle along the six
tensorial directions ymn is highly constrained. This means that, effectively, the particle moves in the
four-dimensional Minkowski space and along a single direction in the six additional dimensions
whose coordinate is conjugate to the compact momentum–space direction parameterized by the
periodic phase ϕ. As shown in [3,64], the coordinate conjugate to the compactified momentum ϕ takes,
upon quantization, an infinite set of integer and half-integer values associated with the helicities of
higher–spin fields. The half-integer and integer–spin states are distinguished by the discrete symmetry
Z2 (λα → − λα).

The resulting infinite tower of discrete higher–spin states can be regarded [3,64] as an alternative
to the Kaluza–Klein compactification mechanism akin to Fronsdal’s original proposal. In contrast
to the conventional Kaluza–Klein theory, in the hyperspace particle model, the compactification
occurs in momentum space and not in coordinate space. The phase ϕ in (73) can be regarded as
a compactified component of the momentum (72), while the corresponding conjugate hyperspace
coordinate is quantized and labels the discrete values of spin of fields in the effective conventional
space–time.

As we have already seen by virtue of the Fierz identity (3) the twistor particle momentum is
light-like (PmPm = 0) in D = 3, 4, 6 and 10. Therefore, in the hyperspaces corresponding to these
space–time dimensions the first–quantized particles are massless [2,3,64]. Moreover, since the model
is invariant under the generalized conformal group Sp(2n), the quantum states of this particle in
the hyperspaces containing the D = 3, 4, 6 and 10 Minkowski spaces as subspaces correspond to the
conformal higher–spin fields introduced in Section 2.

Let us conclude this section with a brief comment on the model describing a particle propagating
on the Sp(n) group manifold. Its action has the form (65), with the corresponding Cartan form given
by (67). The property of GL-flatness greatly simplifies the analysis of this case. Namely, since the
Cartan forms of the Sp(n) group manifold and the flat hyperspace are related as in Equation (49),
one can simply reduce the classical Sp(n) action to the flat one by redefining the spinor variables as
follows λα → G−1β

α (X)λβ. However, when quantizing this system we should work with variables
that appropriately describe the geometry of the Sp(n) background in which the particle propagates.
Thus upon quantization one gets Equation (92) as explained in detail in [10].
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5. Field Equations on Sp(n) Group Manifold

5.1. Scalar Field on AdSD. A Reminder

Before deriving the field equations of hyperfields on Sp(n) group manifolds, let us recollect some
well known facts about a scalar field propagating on AdSD background. In the next subsection we will
see that the form of the scalar field equation on Sp(n) and its certain solutions are somewhat similar to
those of the AdS scalar.

Conformally invariant scalar on AdS4 is described by the field equation [80](
DmDm +

2
r2

)
φ(x) = 0, (74)

here Dm is the usual covariant derivative on AdS4.
Equation (74) can be written in a so-called ambient space formalism. The ambient space is

obtained by introducing one more time-like dimension and considering AdSD as a hyperboloid in this
higher dimensional space (for applications of this formalism to the description of higher-spin fields on
AdSD see for example [81–87])

ηAByAyB = −r2, ηAB = diag(−1, 1, .., 1,−1), A = 0, 1, .., D . (75)

The AdSD ambient-space generalization of (74) has the form(
∇A∇A +

2(D− 3)
r2

)
φ(y) = 0, (76)

where
∇A = θAB ∂

∂yB (77)

and

θAB = ηAB +
yAyB

r2 (78)

is a projector, since in view of the relation (75) one has

θABθBC = θAC, yAθB
A = 0, yA∇A = 0, ∇AyA = D, (79)

where the indexes A, B are raised and lowered with the metric ηAB and ηAB.
One also has the following identities

[∇A,∇B] = −yA∇B + yB∇A, [∇C∇C, yA] = 2∇A + DyA, (80)

[∇C∇C,∇A] = (2− D)∇A + 2yA∇D∇D

where we have set r2 = 1. The generators of the SO(2, D− 1) group can be expressed as

MAB = yA∇B − yB∇A. (81)

One can check that the generators (81) can also be represented as

MAB = yA∂B − yB∂A, ∂A =
∂

∂yA . (82)

To form the SO(2, D) conformal algebra we need extra generators. These generators are

M(D+1)A = ∂A + yAyB∂B + lyA (83)
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Here l is the conformal weight of a field. For the scalar l = 1.
One can derive (83) as follows. Obviously (75) is invariant under the SO(2, D − 1) rotations.

In order to realize the conformal transformations in the ambient space one adds to it one
more dimension i.e., considers D + 2 dimensional space, parameterized by the coordinates zM,
where M = 0, 1, .., D + 1. These coordinates are subject to the constraint

− (z0)
2
+ (z1)

2
+ (z2)

2
+ · · ·+ (zD−1)

2 − (zD)
2
+ (zD+1)

2
= zMzN gMN = 0 (84)

which is invariant under the group of rotations SO(2, D) with the generators

MMN = zM∂N − zN∂M. (85)

One can solve the constraint (84) by introducing

yA = r
zA

zD+1 , (86)

satisfying Equation (75).
The generators MMN (85) contain the generators MAB of the AdSD isometry group SO(2, D− 1)

and the generators M(D+1),A which extend the latter to the conformal group SO(2, D) by taking the
functions on the cone (84) to be homogeneous of degree −l

zM ∂

∂zM f (z) = −l f (z). (87)

In this way, one gets (83).
Then using the explicit realization of the generators (81), (83) as well as the commutation

relations (80) between the operators it is straightforward to check invariance of the field Equation (76)
under the conformal group SO(2, D).

5.2. Sp(n) Group-Manifold Equations

In the previous subsection we considered in detail a conformal scalar field on AdSD. As we
discussed in Section 3, the hyperspace generalization of AdS spaces are Sp(n) group manifolds.
We will now consider an Sp(n) counterpart of the conformal scalar field Equation (74).

Let us start with an Sp(n) analogue of Equation (9). To this end one should replace the flat
derivative ∂αβ with the covariant derivative on Sp(n) group manifold. The covariant derivatives ∇αβ

satisfy the Sp(n) algebra

[∇αβ,∇γδ] =
ξ

2
(Cα(γ∇δ)β + Cβ(γ∇δ)α) . (88)

Due to the GL-flatness these covariant derivatives have a simple form

∇αβ = G−1µ
α (X)G−1ν

β (X)∂µν , (89)

where G−1µ
α (X) was defined in (52). Further, one should replace the spinor product λαλβ in (8) with

an expression which like the covariant derivatives ∇αβ also satisfies the Sp(n) algebra. This can be
done by introducing new variables

Ỹα ≡ λα +
iξ
8

∂

∂λα
(90)

Obviously, the spinorial variables Yα do not commute among each other

[Ỹα, Ỹβ] =
iξ
4

Cαβ. (91)
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Using the covariant derivatives ∇αβ and the variables Yα. one can write an Sp(n) analogue of
Equation (9) as [

∇αβ −
i
2
(ỸαỸβ + ỸβYα)

]
Φ(X, λ) = 0 . (92)

Similarly, one finds an Sp(n) version of Equation (12)[
∇αβ −

i
2
(YαYβ + YβYα)

]
C(X, µ) = 0, Yα ≡

ξ

8
µα + i

∂

∂µα
. (93)

To obtain the equations for component fields one should expand, e.g. the functional C(X, µ) in
power of µα

C(X, µ) =
∞

∑
n=0

Cα1···αn(X) µα1 · · · µαn = B(X) + Fα(X)µα + · · · . (94)

Plugging this expansion into (92) one can show that similarly to the case of the flat hyperspace only
zeroth and the first components in the expansion in terms of the variables µα are independent fields
whereas the other fields are expressed in terms of derivatives of the independent ones. The independent
hyperfields B(X) and Fα(X) satisfy Equations [10]

∇α[β∇γ]δB(X) = ξ
16

(
Cα[β∇γ]δ − Cδ[γ∇β]α + 2Cβγ∇αδ

)
B(X)

+ ξ2

64

(
2CαδCβγ − Cα[βCγ]δ

)
B(X),

(95)

∇α[βFγ](X) = − ξ

4

(
Cα[γFβ](X) + 2CβγFα(X)

)
. (96)

The derivation of these equations which are Sp(n) versions of Equations (14) and (15) is
straightforward and is given in the Appendix B.

Note that if one introduce the covariant derivatives Dαβ acting on the spinors as follows (see [23]
for more details)

DαβFγ(X) = ∇αβFγ(X) +
ξ

4
Cγ(αFβ)(X) (97)

the form of Equations (95) and (96) simplifies to

Dα[βDγ]δB(X) =
ξ2

82

(
2CαδCβγ − Cα[βCγ]δ

)
B(X), (98)

Dα[βFγ](X) = 0 . (99)

We see that Equation (98) reminds that of the AdS scalar field (74), especially when we contract
its indices.

5.2.1. Connection between the Fields in Flat Hyperspaces and Sp(n) Group Manifolds

One can check [23] using the equations

∂µνG−1αβ(X) =
ξ

8
(δα

µδ
β
ν + δ

β
µδα

ν ) , (100)

and
∂µν(det G(X))k =

ξk
8
(det G(X))k(Gµν(X) + Gνµ(X)) , (101)

that the fields B(X) and Fα(X) satisfying Equations (95) and (96) are related to the fields b(X) and
fµ(X) satisfying the flat hyperspace Equations (14) and (15) as follows

B(X) = (det G(X))−
1
2 b(X) , (102)
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Fα(X) = (det G(X))−
1
2 G−1

α
µ(X) fµ(X). (103)

These relations are similar to the relations between the conformally invariant scalar and spinor
equations in the conventional flat and AdS spaces and reduce to them in the case of n = 2, D = 3.

5.2.2. Plane Wave Solutions

Equations (92) and (93) can be solved to obtain “plane-wave” solutions. Let us consider the case
of the Sp(4) group manifold. One can check that Equations (92) and (93) have the following solutions

Φ(X, λ) =
∫

d4µ
√

det G−1(X) eiXαβ(λα+
ξ
8 µα)(λβ+

ξ
8 µβ)+iλαµα

ϕ(µ) , (104)

C(X, µ) =
∫

d4λ
√

det G−1(X) eiXαβ(λα+
ξ
8 µα)(λβ+

ξ
8 µβ)−iλαµα

ϕ(λ) . (105)

These solutions describe plane-wave-like fields in the GL–flat parameterization of the metric [10].
They can be compared with the plane-wave solutions for the higher-spin curvatures on AdS4 given
in [8,88]. The latter can be found by solving the AdS4 deformation of the field Equations (33)

DMṀCA1,...,An+2s ,Ȧ,...,Ȧn
(x) =

eAȦ
MṀCA1,...,An+2s ,A,Ȧ,...,Ȧn Ȧ(x)− n(n + 2s)eMṀ,{AȦCA2,...,An+2s ,Ȧ,...,Ȧn

(x)
(106)

where DMṀ is a covariant derivative on AdS4 and eAȦ
MṀ are the corresponding vierbeins in the Weyl

spinor representation. The physical higher-spin curvatures satisfy the equations

eMṀ
AȦ DMṀCA1,...,A2s(x) = 0 (107)

whereas the auxiliary fields are expressed via derivatives of the physical fields with the help of
Equation (106). Choosing the AdS4 metric in the conformally flat form

eAȦ
MṀ = e

ρ(x)
2 δA

MδȦ
Ṁ, ρ(x) = ln

4

(1− ( x
r )

2)
2 (108)

one can find the plane wave solutions of Equation (107)

CA1,...,A2s(x) =
∂

∂µA1
...

∂

∂µA2s
C(x, µ, µ)|µ=µ=0 (109)

with
C(x, µ, µ) =

∫
d2λd2λΦ(λ, λ)·

exp
(

i(µAµȦ + λAλȦ)xAȦ − ρ(x)
2 +

(
1−

( x
r
)2
) 1

2
(µAλA + µȦλȦ)

)
.

(110)

Comparing (110) with (105), one can see that the latter is a direct generalization of the AdS4

plane-wave solution to the case of the Sp(4) group manifold.
As a simplest example of this construction let us note that the conformal scalar on AdS4 discussed

in Section 5.1 admits a plane-wave solution [8] of the form

φ(x) =
∫

d2λd2λe ixAȦλAλȦ−
1
2 ρ(x)φ0(λ, λ) (111)

which can be checked substituting the expression (111) into the field Equation (74).



Universe 2018, 4, 7 19 of 45

5.3. Sp(2n) Transformations of the Fields

Using the relation between the fields of weight ∆ = 1
2 on flat hyperspace and on Sp(n) group

manifold (102) we have the following relation between the Sp(2n) transformations of the weight- 1
2

fields on Sp(n) and in flat hyperspace

δB(X) = (det G(X))−
1
2 δb(X) , (112)

δFα(X) = (det G(X))−
1
2 G−1µ

α (X) δ fµ(X) . (113)

Note that in the above expressions the matrix Gα
µ(X) is not varied since it is form-invariant, i.e.,

G(X′) has the same form as G(X).
Then, the Sp(n)-variations of B(X) and Fα(X) have the following form [23]

δB(X) = −(aαβDαβ +
1
2 (gα

α − kαβXαβ) + 2gβ
αXβγDαγ

−kαβXαγXβδDγδ)B(X) ,
(114)

δFσ(X) = −(aαβDαβ +
1
2
(gα

α − kαβXαβ) + 2gβ
αXβγDαγ

−kαβXαγXβδDγδ)Fσ(X)− (gσ
β − kσαXαβ)Fβ(X),

where the derivative Dαβ is defined as

Dαβ = ∂αβ +
ξ

16
(Gαβ(X) + Gβα(X)) . (115)

Using

∂µνGρ
σ(X) =

ξ

8
(Gρµ(X)Gν

σ(X) + Gρν(X)Gµ
σ(X)) , (116)

one can check that these derivatives commute with each other [Dαβ,Dγδ] = 0 just as in the flat case.
Let us note that the relation between the flat and Sp(n) hyperfields of an arbitrary weight ∆ and

the form of the corresponding Sp(2n) transformations require additional study since for this one should
know the form of Sp(2n)-invariant equations satisfied by these fields, which is still an open problem.

6. Supersymmetry

In this Section, we present a supersymmetric generalization of the Sp(2n) invariant systems.
We will mainly follow [24].

6.1. Flat Hyper-Superspace and Its Symmetries

The concept of hyperspaces, hyperfields and of the corresponding field equations can be
generalized to construct supersymmetric OSp(1|2n) invariant systems and the corresponding
infinite-dimensional higher-spin supermultiplets. In this section we shall describe this generalization
in detail.

The flat hyper–superspace (see e.g., [3,4,12]) is parameterized by n(n+1)
2 bosonic matrix

coordinates Xµν = Xνµ and n real Grassmann–odd “spinor” coordinates θµ (µ = 1, · · · , n).
The supersymmetry variation

δθµ = εµ, δXµν = −iε(µθν) , (117)

leaves invariant the Volkov-Akulov-type one-form

Πµν = dXµν + iθ(µdθν) . (118)
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The supersymmetry transformations form a generalized super–translation algebra

{Qµ, Qν} = 2Pµν, [Qµ, Pνρ] = 0 , [Pµν, Pρλ] = 0 , (119)

with Pµν generating translations along Xµν.
The realization of Pµν and Qµ as differential operators is given by

Pµν = −i
∂

∂Xµν ≡ −i∂µν , Qµ = ∂µ − iθν∂νµ , ∂µ ≡
∂

∂θµ , (120)

The algebra (119) is invariant under rigid GL(n) transformations

Q′µ = gµ
ν Qν , P′µν = gµ

ρ gν
λ Pρλ, (121)

generated by

Gµ
ν = −2i(Xνρ +

i
2

θνθρ)∂ρµ − iθν Qµ , (122)

which act on Pµν and Qµ as follows

[Pµν, Gλ
ρ] = −i(δρ

µPνλ + δ
ρ
ν Pµλ) , [Qµ, Gν

ρ] = −iδρ
µ Qν , (123)

and close into the gl(n) algebra as in (39)

[Gν
µ, Gλ

ρ] = i(δµ
λ Gν

ρ − δ
ρ
ν Gλ

µ) . (124)

The algebra (119), (123) and (124) is the hyperspace counterpart of the conventional
super–Poincaré algebra enlarged by dilatations. That this is so can be most easily seen by taking
n = 2 (i.e., µ = 1, 2), in which case this algebra is recognized as the D = 3 super–Poincaré algebra
with Gµ

ν − 1
2 δν

µ Gρ
ρ = Mm(γm)µ

ν (m = 0, 1, 2) generating the SL(2, R) ∼ SO(1, 2) Lorentz rotations
and D = 1

2 Gρ
ρ being the dilatation generator. Note that the factor 1

2 in the definition of the dilatation
generator is required in order to have the canonical scaling of the momentum generator Pµν with
weight 1 and the supercharge Qµ with weight 1

2 , as follows from Equation (123).
This algebra may be further extended to the OSp(1|2n) algebra, generating generalized

superconformal transformations of the flat hyper–superspace, by adding the additional set of
supersymmetry generators

Sµ = −(Xµν +
i
2

θµθν)Qν , (125)

and the generalized conformal boosts

Kµν = i(Xµρ +
i
2

θµθρ)(Xνλ +
i
2

θνθλ)∂ρλ − iθ(µSν) . (126)

The generators Sµ and Kµν form a superalgebra similar to (119)

{Sµ, Sν} = −2Kµν, [Sµ, Kνρ] = 0 , [Kµν, Kρλ] = 0 , (127)

while the non-zero (anti)commutators of Sµ and Kµν with Qµ, Pµν and Gµ
ν read

{Qµ, Sν} = −Gµ
ν , [Sµ, Pνρ] = iδµ

(ν
Qρ),

[Qµ, Kνρ] = −iδ(νµ Sρ) , [Sµ, Gν
ρ] = iδµ

ν Sρ .
(128)

Let us note that in the case n = 4, in which the physical space–time is four-dimensional
the generalized superconformal group OSp(1|8) contains the D = 4 conformal symmetry group
SO(2, 4) ∼ SU(2, 2) as a subgroup, but not the superconformal group SU(2, 2|1). The reason being that,
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although OSp(1|8) and SU(2, 2|1) contain the same number of (eight) generators, the anticommutators
of the former close on the generators of the whole Sp(8), while those of the latter only close on
an U(2, 2) subgroup of Sp(8), and the same supersymmetry generators cannot satisfy the different
anti-commutation relations simultaneously. In fact, the minimal OSp–supergroup containing SU(2, 2|1)
as a subgroup is OSp(2|8).

6.2. Scalar Superfields and Their OSp(1|2n)-Invariant Equations of Motion

Let us now consider a superfield Φ(X, θ) transforming as a scalar under the super–translations (120)

δΦ(X, θ) = −(εαQα + iaµνPµν)Φ(X, θ) . (129)

To construct equations of motion for Φ(X, θ) which are invariant under (129) and comprise the
equations of motion of an infinite tower of integer and half-integer higher-spin fields with respect to
conventional space–time, we introduce the spinorial covariant derivatives

Dµ = ∂µ + iθν∂νµ , {Dµ, Dν} = 2i∂µν , (130)

which (anti)commute with Qµ and Pµν.
The Φ–superfield equations then take the form [12]

D[µDν]Φ(X, θ) = 0 , (131)

As was shown in [12], these superfield equations imply that all the components of Φ(X, θ) except
for the first and the second one in the θµ-expansion of Φ(X, θ) should vanish

Φ(X, θ) = b(X) + iθµ fµ(X) + iθµθν Aµν(X) + · · · , (132)

(i.e., Aµ1 ...νk = 0 for k > 1) while the scalar and spinor fields b(X) and fµ(X) satisfy Equations (14) and
(15).

The superfield Equations (131) are invariant under the generalized superconformal OSp(1|2n)
symmetry, provided that Φ(X, θ) transforms as a scalar superfield with the “canonical” generalized
scaling weight 1

2 , i.e.,

δΦ(X, θ) = −(εµ Qµ + ξµ Sµ + iaµν Pµν + ikµν Kµν + igµ
ν Gν

µ)Φ(X, θ)

− 1
2

(
gµ

µ − kµν(Xµν + i
2 θµθν) + ξµ θµ

)
Φ(X, θ) ,

(133)

where the factor 1
2 in the second line is the generalized conformal weight and εµ, ξµ, aµν, kµν and gµ

ν

are the rigid parameters of the OSp(1|2n) transformations.
Scalar superfields with anomalous generalized conformal dimension ∆ transform under

OSp(1|2n) as

δΦ(X, θ) = −(εµ Qµ + ξµ Sµ + iaµν Pµν + ikµν Kµν + igµ
ν Gν

µ)Φ(X, θ)

−∆
(

gµ
µ − kµν(Xµν + i

2 θµθν) + ξµ θµ
)

Φ(X, θ) .
(134)

It is instructive to demonstrate how the generalized conformal dimension ∆, which is defined
to be the same for all values of n in OSp(1|2n), is related to the conventional conformal weight of
scalar superfields in various space–time dimensions. As we have already mentioned in Section 6.1,
the dilatation operator should be identified with D = 1

2 Gµ
µ. Therefore, considering a GL(n)

transformation (134) with the parameter gµ
ν

δΦ(X, θ) = −igµ
ν Gν

µΦ(X, θ),
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the part of the transformation corresponding to the dilatation reads

δDΦ(X, θ) = − i
n

gµ
µ Gν

νΦ(X, θ) = −2i
n

gµ
µDΦ(X, θ) = −ig̃DΦ(X, θ) , (135)

where g̃ = 2
n gµ

µ is the genuine dilatation parameter. From (134), it then follows that the conventional
conformal weight ∆D of the scalar superfield is related to the generalized one ∆ via

∆D =
n
2

∆ , D =
n
2
+ 2. (136)

In the n = 2 case corresponding to the N = 1, D = 3 scalar superfield theory the two definitions
of the conformal dimension coincide, whereas in the case n = 4 describing conformal higher-spin
fields in D = 4 one finds ∆4 = 2∆. Relation (136) indeed provides the correct conformal dimensions of
scalar superfields (and consequently of their components) in the corresponding space–time dimensions.
For instance, when ∆ = 1

2 , in D = 3 one finds 1
2 as the canonical conformal dimension of the scalar

superfield, while in the cases D = 4 and D = 6 (n = 8) it is found to be equal to one and two,
respectively. For convenience, we shall henceforth associate the scaling properties of the fields to the
universal D– and n–independent generalized conformal weight ∆.

6.3. Infinite-Dimensional Higher-Spin Representation of N = 1, D = 4 Supersymmetry

Using the example of n = 4 (D = 4) we will now show that in four space–time dimensions,
the fields of integer and half-integer spin s = 0, 1

2 , 1, · · · , ∞ encoded in b(X) and fµ(X) (see Section 2.1)
form an irreducible infinite-dimensional supermultiplet with respect to the supersymmetry
transformations generated by the generalized super–Poincaré algebra (119). The hyperfields b(X)

and fµ(X), satisfying (14) and (15), transform under the supertranslations (129) as follows

δb(X) = −iεµ fµ(X) , δ fµ(X) = −εν ∂νµ b(X) . (137)

and their expansion in terms of the ymn coordinates is given in (16) and (17).
The fact that the higher– spin fields should form an infinite-dimensional representation of the

generalized N = 1, D = 4 supersymmetry (119) is prompted by the observation that the spectrum of
bosonic fields contains a single real scalar field φ(x), which alone cannot have a fermionic superpartner,
while each field with s > 0 has two helicities ±s. Indeed, from (137), we obtain an infinite entangled
chain of supersymmetry transformations for the D = 4 fields

δφ(x) = −iεµ ψµ(x),

δψµ(x) = εν(γm
νµ ∂mφ(x) + γmn

νµ Fmn(x)),

δFmn(x) = −iεµ

(
Rµ mn(x)− 1

2
∂[m(γn]ψ)µ(x)

)
, (138)

δRµ mn(x) =
1
2

∂[m(γn]δψ(x))µ −
1
2

εν γ
p
νµ ∂pFmn(x)

−εν γ
pq
νµ

(
Rpq,mn(x)− 1

2
∂qηp[m∂n]φ(x)

)
,

and so on.
The algebraic reason behind the appearance of the infinite-dimensional supermultiplet of the

D = 4 higher–spin fields is related to the following fact. In the n = 4, D = 4 case the superalgebra (119)
takes the following form

{Qµ, Qν} = (γm)µνPm + (γmn)µνZmn , (139)

where Pm is the momentum along the four-dimensional space–time and Zmn = −Znm are the tensorial
charges associated with the momenta along the extra coordinates ymn.
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On the other hand, the conventional N = 1, D = 4 super–Poincaré algebra is

{Qµ, Qν} = (γm)µνPm . (140)

Though both algebras have the same number of the supercharges Qµ, their anti-commutator closes
on different sets of bosonic generators. Thus, the super–Poincaré algebra (140) is not a subalgebra
of (139). Hence the representations of (139) do not split into (finite-dimensional) representations of
the standard super–Poincaré algebra. In this sense the supersymmetric higher–spin systems under
consideration differ from most of supersymmetric models of finite-dimensional super–Poincaré or
AdS higher–spin supermultiplets considered in the literature (see e.g., [40,46,89–112]).

7. Hyperspace Extension of Supersymmetric AdS Spaces

In Section 3 we have seen that the hyperspace extension of AdS spaces are Sp(n) group
manifolds. In this section we consider their minimal supersymmetric extension, namely OSp(1|n)
supergroup manifolds.

The OSp(1|n) superalgebra is formed by n anti-commuting supercharges Qα and n(n+1)
2

generators Mαβ = Mβα of Sp(n)

{Qα,Qβ} = 2Mαβ , [Qα, Mβγ] =
iξ
2 Cα(βQγ),

[Mαβ, Mγδ] = − iξ
2 (Cγ(α Mβ)δ + Cδ(α Mβ)γ) , (141)

The OSp(1|n) algebra (141) is recognized as a subalgebra of OSp(1|2n) (see the Section 6.1) with
the identifications

Qα = (Qα +
ξ

4
Sα), Mαβ = Pαβ −

ξ2

16
Kαβ −

ξ

4
G(αβ) . (142)

The OSp(1|n) manifold is parameterized by the coordinates (Xµν, θµ) and its geometry is
described by the Cartan forms

Ω = O−1dO(X, θ) = −iΩαβ Mαβ + iEαQα , (143)

where O(X, θ) is an OSp(1|n) supergroup element. The Cartan forms satisfy the Maurer–Cartan
equations associated with the OSp(1|n) superalgebra (141)

dΩαβ +
ξ

2
Ωαγ ∧Ωγ

β = −iEα ∧ Eβ, dEα +
ξ

2
Eγ ∧Ωγ

α = 0 , (144)

with the external differential acting from the right.

7.1. GL Flatness of OSp(1|n) Group Manifolds

There is a supersymmetric generalization of the GL(n) flatness property of Sp(n) group manifolds
to the case of OSp(1|n) supergroup manifolds [8]. In particular, the Maurer–Cartan Equations (144)
are solved by the following forms

Ωαβ = dXµνGµ
αGν

β(X) +
i
2
(ΘαDΘβ + ΘβDΘα) = Πµν Gµ

α Gν
β(X, Θ), (145)

Eα = P(Θ2)DΘα −ΘαDP(Θ2) (146)

where Θ is related to θ as follows

θα = ΘβG−1α
β P−1(Θ2), Θ2 = ΘαΘα, P2(Θ2) = 1 +

iξ
8

Θ2 , (147)
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while the covariant derivative
DΘα = dΘα +

ξ

4
Θβ ωβ

α(X) , (148)

contains the Cartan form of the Sp(n) group manifold

ωαβ(X) = dXµνGµ
α(X)Gν

β(X), (149)

and
Gα

β(X, Θ) = Gα
β(X)− iξ

8
(Θα − 2Gα

γ(X)Θγ)Θβ, (150)

where Gα
β(X) is given in (50). The inverse matrix of (150) is

G−1β
α (X, Θ) = G−1β

α (X)− iξ
8 (Θ

δG−1
δα (X)) (Θδ G−1β

δ (X))P−2(Θ2)

= G−1β
α (X)− iξ

8 θα θβ = δ
β
α + ξ

4 (Xα
β − i

2 θα θβ)
(151)

with G−1β
α (X) given in (52).

7.2. Field Equations on OSp(1|n) Supergroup Manifold

The scalar superfield equation on OSp(1|n) has the form [12](
∇[α∇β] −

iξ
8

Cαβ

)
ΦOSp(X, θ) = 0 , (152)

where the Grassmann–odd covariant derivatives ∇α and their bosonic counterparts ∇αβ satisfy the
OSp(1|n) superalgebra similar to (141), namely

{∇α,∇β} = 2i∇αβ (153)

[∇γ,∇αβ] =
ξ

2
Cγ(α∇β), (154)

[∇αβ,∇γδ] =
ξ

2
(Cα(γ∇δ)β + Cβ(γ∇δ)α) . (155)

while the OSp(1|n) covariant derivatives are obtained from the flat superspace ones by the following
GL transformations

∇α = G−1 µ
α (X, Θ) Dµ ,

∇αβ = G−1 µ
α (X, Θ) G−1ν

β (X, Θ)
(

∂µν + 2iD(µ ln
(
(det G(X))

1
2 P−1(Θ2)

)
Dν)

)
.

(156)

Connection between Superfields on Flat Hyper-Superspace and on OSp(1|n) Supergroup Manifolds

Using the relations given in Appendix C one can show that the superfield ΦOSp(X, θ)

satisfying (152) is related to the superfield Φ(X, θ) satisfying the flat superspace Equation (131) by the
super–Weyl transformation

ΦOSp(1|n)(X, θ) = (detG(X, Θ))−
1
2 Φ f lat(X, θ)

= (det G(X))−
1
2 P(Θ2)Φ f lat(X, θ),

(157)

Substituting (132) into (157) and using the definition (147), together with the fact that on the mass
shell all higher components in (132) vanish, we find

ΦOSp(n)(X, θ) = (det G(X))−
1
2 b(X)

+Θα(det G(X))−
1
2 G−1µ

α (X) fµ(X) + O(Θ2, b(X)),
(158)
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where the first two terms are the fields

B(X) = (det G(X))−
1
2 b(X), Fα(X) = (det G(X))−

1
2 G−1µ

α (X) fµ(X) (159)

propagating on the Sp(n) group manifold, and O(Θ2, b(X)) stands for higher order terms in Θ2

which only depend on b(X). The fields (159) satisfy the equations of motion on Sp(n) group
manifolds (95)–(96). Note that in these equations the covariant derivatives are restricted to the
bosonic group manifold Sp(n), i.e., ∇αβ = G−1 µ

α (X) G−1 ν
β (X) ∂µν.

7.3. OSp(1|2n) Transformations of Superfields

Since the flat superspace field equation is invariant under the generalized superconformal
OSp(1|2n) transformations (133), the above relation leads us to conclude that also the OSp(1|n)
superspace Equations (152) are invariant under the OSp(1|2n) transformations, under which the
superfield ΦOSp(X, θ) varies as follows

δΦOSp(X, θ) = −(εµ Qµ + ξµ Sµ + iaµν Pµν + ikµν Kµν + igµ
ν Gν

µ)ΦOSp(X, θ)

− 1
2

(
gµ

µ − kµν(Xµν + i
2 θµθν) + ξµ θµ

)
ΦOSp(X, θ) .

(160)

Here,

Pµν = −iDµν = −i(∂µν +
ξ

8
G(µν)(X, Θ)) , (161)

and
Qµ = Qµ −

iξ
8

ΘµP(Θ) . (162)

Using the relations given in the Appendix C one may check that the operators (161) and (162)
obey the flat hyperspace supersymmetry algebra

[Pµν,Pρσ] = 0, {Qµ,Qν} = −2Pµν, [Pµν,Qρ] = 0 . (163)

The other generators of the OSp(1|2n) are

Sµ = −(Xµν +
i
2

θµθν)Qν , Gµ
ν = −2i(Xνρ +

i
2

θνθρ)Dρµ − iθν Qµ , (164)

and
Kµν = i(Xµρ +

i
2

θµθρ)(Xνλ +
i
2

θνθλ)Dρλ − iθ(µSν) . (165)

Taking into account the commutation relations (163) we see that the operators Qµ,Sµ,Pµν,Gµ
ν

and Kµν obey the same OSp(1|2n) algebra as the operators Qµ, Sµ, Pµν, Gµ
ν and Kµν considered in the

Section 6.1.

8. Generalized CFT. Part I. Correlation Functions in OSp(1|2n)-Invariant Models

In the previous sections, we have described the generalized conformal group Sp(2n) and
generalized conformal supergroup OSp(1|2n). We introduced the fundamental fields and superfields
and showed how they transform under generalized conformal transformations.

In this Section we shall construct two-, three- and four-point correlation functions of these
fields, by requiring the Sp(2n) symmetry of the correlators, i.e., by solving the corresponding Ward
identities. In other words we will follow the conventional approach adopted in multidimensional
CFTs (see e.g., [113]). In particular, we will consider OSp(1|2n) invariant correlation functions from
which the Sp(2n) invariant correlation functions can be recovered as components of the expansions
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of the former in series of the Grassman coordinates θµ. Sp(2n)-invariant correlation functions in the
tensorial spaces have been studied in [11,23,24,27] and in the unfolded formulation in [114].

8.1. Two-Point Functions

Let us denote the two-point correlation function by

W(Z1, Z2) = 〈Φ(X1, θ1)Φ(X2, θ2)〉 . (166)

The invariance under supersymmetry transformation generated by the operators Q,
Equation (120), requires that

εµ

(
∂

∂θ
µ
1
− iθν

1
∂

∂Xµν
1

+
∂

∂θ
µ
2
− iθν

2
∂

∂Xµν
2

)
W(Z1, Z2) = 0 , (167)

which implies
〈Φ(X1, θ1)Φ(X2, θ2)〉 = W(det|Z12|), (168)

where
Zµν

12 = Xµν
1 − Xµν

2 −
i
2

θ
µ
1 θν

2 −
i
2

θν
1 θ

µ
2 (169)

is the interval between two points in hyper–superspace which is invariant under the rigid
supersymmetry transformations (117).

We next require the invariance of the correlator under the S-supersymmetry (125)

ξµ

[
(Xµν

1 +
i
2

θ
µ
1 θν

1)

(
∂

∂θν
1
− iθρ

1
∂

∂Xνρ
1

)
+ (Xµν

2 +
i
2

θ
µ
2 θν

2)

(
∂

∂θν
2
− iθρ

2
∂

∂Xνρ
2

)]
·

W(det|Z12|) (170)

+ξµ

(
i
2

θ
µ
1 +

i
2

θ
µ
2

)
W(det|Z12|) = 0 ,

which is solved by

W(det|Z12|) = c2(det|Z12|)−
1
2 ⇒ 〈Φ(X1, θ1)Φ(X2, θ2)〉 = c2(det|Z12|)−

1
2 . (171)

The two-point function (171) reproduces the correlators of the component bosonic and fermionic
hyperfields b(X) and fµ(X) after the expansion of the former in powers of the Grassmann coordinates

θ
(µ
1 θ

ν)
2 . Since on the mass shell the superfield (132) has only two non-zero components, all terms in the

θ-expansion of the two-point function (171), starting from the ones quadratic in θ
(µ
1 θ

ν)
2 , should vanish.

This is indeed the case, as a consequence of the field equations.
To see this, let us recall that in the separated points the two-point function of the bosonic hyperfield

of weight 1
2 satisfies the free field equation. Therefore for X1

αβ 6= X2
αβ one has (when the two points

coincide, one can define an analog of the Dirac delta-function in the tensorial spaces, see [5] for the
relevant discussion)

(∂1
µν∂1

ρσ − ∂1
µρ∂1

νσ)〈b(X1)b(X2)〉 = (∂1
µν∂1

ρσ − ∂1
µρ∂1

νσ)(det|X12|)−
1
2 = 0 . (172)

Similarly, for X1
αβ 6= X2

αβ the fermionic two-point function satisfies the free field equation for the
fermionic hyperfield. Written in terms of the superfields, these equations are encoded in the superfield
equation (for Z12 6= 0)

(D1
µD1

ν − D1
νD1

µ)〈Φ(X1, θ1)Φ(X2, θ2)〉 = (D1
µD1

ν − D1
νD1

µ)(det|Z12|)−
1
2 = 0. (173)



Universe 2018, 4, 7 27 of 45

Expanding the two-point function (det|Z12|)−
1
2 in powers of the Grassmann variables

(det|Z12|)−
1
2 = (det|X12|)−

1
2

−i∂αβ(det|X12|)−
1
2 θ

(α
1 θ

β)
2 −

1
2 ∂γδ∂αβ(det|X12|)−

1
2 θ

(α
1 θ

β)
2 θ

(γ
1 θ

δ)
2 + . . . ,

(174)

one may see that the terms in the expansion starting from (θ
(µ
1 θ

ν)
2 )2 vanish due to the free field

Equation (172). From Equations (171) and (174) and from the explicit form of the superfield (132),
one may immediately reproduce the correlation functions for the component fields [11]

〈b(X1)b(X2)〉 = c2(det|X12|)−
1
2 , (175)

〈 fµ(X1) fν(X2)〉 =
ic2

2
(X12)

−1
µν (det|X12|)−

1
2 . (176)

The two-point functions on the OSp(1|n) manifold may now be obtained from (171) via the
rescaling (157), which relates the superfields in flat superspace and on the OSp(1|n) group manifold

〈ΦOSp(X1, θ1)ΦOSp(X2, θ2)〉 =
(det G(X1))

− 1
2 P(Θ2

1)(det G(X2))
− 1

2 P(Θ2
2)〈Φ(X1, θ1)Φ(X2, θ2)〉 .

(177)

Finally, as in the D = 3 case, one may derive the superconformally invariant two-point function
for superfields carrying an arbitrary generalized conformal weight ∆, which on flat hyper superspace
has the form

〈Φ∆1(X1, θ1)Φ
∆2(X2, θ2)〉 = c2(det|Z12|)−∆ , ∆1 = ∆2 = ∆ . (178)

8.2. Three-Point Functions

The three-point functions for the superfields with arbitrary generalized conformal dimensions
∆i, (i = 1, 2, 3)

W(Z1, Z2, Z3) = 〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 , (179)

may be computed in a way similar to the two-point functions using the superconformal Ward
identities. The invariance under Q–supersymmetry implies that they depend on the superinvariant
intervals Zij, i.e.,

〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 = W(Z12, Z23, Z31) , (180)

where
Zµν

ij = Xµν
i − Xµν

j −
i
2
(θ

µ
i θν

j + θν
i θ

µ
j ) , i, j = 1, 2, 3 . (181)

Invariance under S–supersymmetry then fixes the form of the function W to be

〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 (182)

= c3(det Z12)
− 1

2 (∆1+∆2−∆3)(det Z23)
− 1

2 (∆2+∆3−∆1)(det Z31)
− 1

2 (∆3+∆1−∆2) .

Let us note that the three-point function is not annihilated by the operator entering the free
equations of motion (131) for generic values of the generalized conformal dimensions, including the
case in which the values of all the generalized conformal dimensions are canonical

(D1
µD1

ν − D1
νD1

µ)〈Φ(X1, θ1), Φ(X2, θ2), Φ(X2, θ2)〉
= c3(D1

µD1
ν − D1

νD1
µ)
(
(det|Z12|)−

1
4 (det|Z23|)−

1
4 (det|Z31|)−

1
4

)
6= 0 .

(183)

Again, the three-point functions on the supergroup manifold OSp(1|n) can be obtained via the
Weyl rescaling (157), as in the case of the two-point functions (177)
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〈ΦOSp(X1, θ1)ΦOSp(X2, θ2)ΦOSp(X3, θ3)〉
= (det G(X1))

− 1
2 P(Θ2

1)(det G(X2))
− 1

2 P(Θ2
2)(det G(X3))

− 1
2 P(Θ2

3)·
〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 .

(184)

8.3. Four-Point Functions

Finally, let us consider, first in flat hyper superspace, the correlation function of four real scalar
superfields with arbitrary generalized conformal dimensions, ∆i (i = 1, 2, 3, 4)

W(Z1, Z2, Z3) = 〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)Φ(X4, θ4)〉 . (185)

Invariance under Q–supersymmetry again implies that the correlation function depends only
on the superinvariant intervals Zµν

ij (181). Following the analogy with conventional conformal field
theory we find

W(X1, X2, X3, X4) = c4 ∏
ij,i<j

1

(det |Zij|)kij
W̃
(
z, z′

)
, (186)

with W being an arbitrary function of the cross-ratios

z = det
(
|Z12||Z34|
|Z13||Z24|

)
, z′ = det

(
|Z12||Z34|
|Z23||Z14|

)
, (187)

subject to the crossing symmetry constraints

W̃(z, z′) = W̃
(

1
z

,
z′

z

)
= W̃

(
z
z′

,
1
z′

)
. (188)

Furthermore, the kij’s are constrained by the invariance of the four-point function under the
S–supersymmetry to satisfy

∑
j 6=i

kij = ∆i . (189)

Similar to the case of two- and three-point functions, the four-point function of the scalar
superfields on OSp(1|n) can be obtained from (186) via the Weyl re-scaling (157).

8.4. An Example. N = 1 D = 3 Superconformal Models

As we mentioned earlier, the case of D = 3 is the simplest example of “hyperspace” which
in this case coincides with the three-dimensional space time itself, and the fundamental fields are
just the scalar b(x) and the two-component spinor fα(x). All known results for three-dimensional
(super)conformal theories are reproduced from the above generic formulas restricted to the case of
n = 2 and D = 3, as we will show on the example of N = 1 D = 3 superconformal two– and
three-point functions.

The superconformally invariant two- and three-point correlation functions of the N = 1, D = 3
scalar supermultiplet model have been constructed in [115].

Let us use the spinor–tensor representation for the description of the three-dimensional space–time
coordinates

xαβ = xβα = xm(γm)
αβ, (190)

where now α, β = 1, 2 are D = 3 spinorial indices and m = 0, 1, 2 is the vectorial one. Since (190)
provides a representation of the symmetric 2× 2 matrices xαβ, no extra coordinates, like ymn, are present
and, hence, no higher-spin fields.

The inverse matrix of (190), x−1
αβ

xαβ x−1
βγ = δ

γ
α , (191)
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takes the simple form

x−1
αβ = − 1

xmxm
xn(γn)αβ = − 1

x2 xαβ . (192)

We may now consider a real scalar superfield in D = 3

Φ(x, θ) = φ(x) + iθα fα(x) + θαθαF(x) , (193)

with φ(x) being a physical scalar, fα(x) a physical fermion and F(x) an auxiliary field.
If (193) satisfies the free equation of motion (131), which in the D = 3 case reduces to

DαDαΦ(x, θ) = 0 . (194)

This equation implies that on the mass shell the auxiliary field F(x) vanishes, the scalar field φ(x)
satisfies the massless Klein–Gordon equation and fα(x) satisfies the massless Dirac equation. The field
Equation (194) is superconformally invariant if the superfield Φ(x, θ) has the canonical conformal
weight ∆ = 1

2 .
Let us consider a superconformal transformation of (193). The Poincaré supersymmetry

transformations of Φ are

δΦ(x, θ) = εα

(
∂

∂θα
− iθβ ∂

∂xαβ

)
Φ(x, θ) = εαQαΦ(x, θ) . (195)

They encode the supersymmetry transformations of the component fields

δφ(x) = iεα fα(x) , (196)

δ fα(x) = −2iεαF(x)− εβ∂αβφ(x) , (197)

δF(x) =
1
2

εα∂αβ f β(x) , (198)

where we have made use of the identity

θαθβ =
1
2

Cαβ(θγθγ) . (199)

Under conformal supersymmetry, Φ(x, θ) transforms as follows

δΦ(x, θ) = ξα(xαβ +
i
2

θαθβ)QβΦ(x, θ)− i(ξαθα)∆Φ(x, θ) , (200)

where ∆ is the conformal weight of the superfield. The superconformal transformations of the
component fields are

δφ(x) = iξα xαβ fβ(x), (201)

δ fα(x) = −2iξβ xβ
αF(x) + ξβ xβγ ∂γαφ(x) + ξα∆φ(x), (202)

δF(x) =
1
2

ξα xαβ∂βγ f γ(x)− 1
2

ξα

(
1
2
− ∆

)
f α(x). (203)

The conformal weights of φ, fα and F are ∆, ∆ + 1
2 and ∆ + 1, respectively.

As we have already seen, the two-point function for a superfield of an arbitrary noncannonical
dimension has the form (178). Expanding the expression on the right hand side of (178) in powers of θ,
we obtain

(det|z12|)−∆ = (det|x12|)−∆ − i∂αβ(det|x12|)−∆ θ
(α
1 θ

β)
2

− 1
2 ∂γδ∂αβ(det|x12|)−∆ θ

(α
1 θ

β)
2 θ

(γ
1 θ

δ)
2 .

(204)
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Using the identities
∂αβ(det|x|)−∆ = −∆ x−1

αβ det|x|−∆ , (205)

and

∂αβ∂γδ(det|x|)−∆ = ∆
(

∆ x−1
αβ x−1

γδ +
1
2

x−1
αγ x−1

βδ +
1
2

x−1
βγ x−1

αδ

)
(det|x|)−∆ , (206)

one may rewrite the expression (204) as

(det |z12|)−∆ = (det |x12|)−∆
(

1− i∆
xm

12(γm)αβ

x2
12

θα
1 θ

β
2 −

(2∆−1)∆
4

1
x2

12
θ2

1θ2
2

)
.

(207)

Thus, from Equation (204) or (207), one may immediately read off the expressions for the
correlation functions of the component fields of the superfield (193)

〈φ(x1)φ(x2)〉 = c2(det|x12|)−
1
2 , (208)

〈 fα(x1) fβ(x2)〉 = −ic2∂αβ(det|x12|)−
1
2 , (209)

〈φ(x1) fα(x2)〉 = 0 , 〈F(x1)φ(x2)〉 = 0 , 〈F(x1) fα(x2)〉 = 0 , (210)

〈F(x1)F(x2)〉 = −
c2

8
∂αβ∂αβ(det|x|)−∆ . (211)

Let us note that when the superfield Φ(x, θ) has the canonical conformal dimension ∆ = 1
2 , due to

the identity

CαγCβδ∂1
αβ∂1

γδ(det|x12|)−
1
2 = −1

2
ηmn ∂

∂xm
1

∂

∂xn
1
(det|x12|)−

1
2 , (212)

the last term in (204) is proportional to the δ–function if one moves to the Euclidean signature. Then,
one has for the two-point function for the auxiliary field

〈F(x1)F(x2)〉 = −
π

4
c2δ(3)(x1 − x2). (213)

Note that the correlation functions of the auxiliary field F with the physical fields and with itself
(for xm

1 6= xm
2 ) vanish.

On the other hand, if the conformal weight of the superfield (193) is anomalous, i.e., ∆ 6= 1
2 ,

the correlators of the auxiliary field with the physical ones still vanish (in agreement with the fact that
their conformal weights are different), but the 〈FF〉 correlator is

〈F(x1)F(x2)〉 = −c2
(2∆−1)∆

4
1

x2
12
(det |x12|)−∆

= −c2
(2∆−1)∆

4 (det |x12|)−∆−1.
(214)

This situation may correspond to an interacting quantum N = 1 superconformal field
theory [116], where the auxiliary field is non-zero, and fields acquire anomalous dimensions due
to quantum corrections.

The consideration of three-point functions is analogous. Using the expression for the three-point
function (182) and expanding it in series of the θ

µ
i variables, we get for the component fields whose

labels of scaling dimension we skip for simplicity

〈φ(x1)φ(x2)φ(x3)〉 = c3(det |x12|)−k1(det |x23|)−k2(det |x31|)−k3 , (215)

〈 fα(x1) fβ(x2)φ(x3)〉
= −ic3

k1xm
12(γm)αβ

x2
12

(det |x12|)−k1(det |x23|)−k2(det |x31|)−k3

= −ic3k1xm
12(γm)αβ(det |x12|)−k1−1(det |x23|)−k2(det |x31|)−k3 ,

(216)
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〈 fα(x1)F(x2) fβ(x3)〉
= c3

k1k2
2x2

12x2
23
(γm)α

δ(γn)δβ(xm
12)(xn

23)(det |x12|)−k1(det |x23|)−k2(det |x31|)−k3

= c3
k1k2

2 (γm)α
δ(γn)δβ(xm

12)(xn
23)(det |x12|)−k1−1(det |x23|)−k2−1(det |x31|)−k3 ,

(217)

〈F(x1)F(x2)φ(x3)〉 = −
c3

8
∂m∂m((det |x12|)−k1)(det |x23|)−k2(det |x31|)−k3 . (218)

The remaining three-point functions containing an odd number of fermions, as well as
the correlator 〈Fφφ〉, vanish. Note that, dimensional arguments would allow for a non-zero
〈Fφφ〉 correlator, but supersymmetry forces it to vanish. The correlator 〈F(x1)F(x2)F(x3)〉 is zero
as well, since it is proportional to (γmγnγp)xm

12xn
23xp

31 = 2iεmnpxm
12xn

23xp
31 = 0.

Moreover, from the above expressions we see that superconformal symmetry does not fix the
values of the scaling dimensions ∆i. This indicates that quantum operators may acquire anomalous
dimensions and the quantum N = 1, D = 3 superconformal theory of scalar superfields can be
non-trivial, in agreement e.g., with the results of [116].

If the value of ∆ were restricted by superconformal symmetry to its canonical value and no
anomalous dimensions were allowed (for all the operators which are not protected by supersymmetry)
one would conclude that the conformal fixed point is that of the free theory. This is the case, for instance,
for the N = 1, D = 4 Wess-Zumino model in which the chirality of N = 1 matter multiplets and
their three-point functions restricts the scaling dimensions of the chiral scalar supermultiplets to be
canonical. This implies that in the conformal fixed point the coupling constant is zero, i.e., the theory
is free [117,118].

9. Generalized CFT. Part II

In this Section, we shall continue our consideration of the generalized CFT based on the
symmetries of the generalized conformal group Sp(2n). We shall mainly follow [27].

9.1. Conserved Currents

In Section 2, we introduced the bosonic and fermionic fields in hyperspace which play the role of
the scalar and fermionic fields in ordinary conformal field theory. In order to continue the analogy
with CFTs let us consider the fields bA

∆ (X) and f A
µ∆(X) where now A = 1, ...N is an index of an internal

O(N) group (not to be confused with the Weyl spinor indices of the previous Sections) and ∆ are
corresponding generalized conformal weights.

The two point functions of these fields are similar to those obtained in the previous section, with
an obvious generalization including the “color” indexes

〈bA
∆1
(X1), bB

∆2
(X2)〉 = cbb(det|X12|)−∆ δAB, (219)

〈 f A
α(∆1)

(X1), f B
β(∆2)

(X2)〉 = c f f (det|X12|)−∆(X12)
−1
αβ δAB, (220)

where ∆1 = ∆2 = ∆, and (X12)αβ = (X1)αβ − (X2)αβ.
Having introduced global O(N) symmetry, one can construct bosonic and fermionic biliniears

JAB
µν (X) = bA(X)∂µνbB(X)− bB(X)∂µνbA(X), (221)

JAB
µν (X) = f A

µ (X) f B
ν (X) + f A

ν (X) f B
µ (X). (222)

These bilinears correspond to conserved O(N) currents. Indeed one can check that the
currents (221) and (222) satisfy the generalized conservation conditions (first introduced in [6])

∂µν JAB
αβ (X)− ∂µα JAB

νβ (X)− ∂βν JAB
αµ (X) + ∂βα JAB

νµ (X) = 0 (223)

provided that the fields bA(X) and f A
µ (X) satisfy the free equations of motion (14) and (15).
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Knowing the Sp(2n) transformations (42) and (43) of the fields bA(X) and f A
µ (X) and using

Equations (221) and (222), one can derive the Sp(2n) transformations of the conserved currents

δa JAB
µν (X) = −aαβ∂αβ JAB

µν (X) (224)

δg JAB
µν (X) = −

(
gα

α + 2gα
βXαγ∂βγ

)
JAB
µν (X)− 2g(µ

ρ JAB
ρν)(X) (225)

δk JAB
µν (X) = (kαβXαβ + kαβXαγXβδ∂γδ)JAB

µν (X) + 2k(µαXαβ JAB
βν)(X) (226)

From this transformation laws i.e, from the coefficients in front of the terms gα
α and kαβXαβ one

can conclude that the generalized conformal dimension ∆J of the currents (221) and (222) is equal to 1.
The same conclusion can be reached from the fact that (221) and (222) correspond to free currents and
the generalized conformal dimension of the fields b(X) and fµ(X) is equal to 1

2 . Using the general
expression (136), one can see that the generalized conformal dimension is related to the usual scaling
dimension as follows. Recall (see Section 2.3) that SL(n) subalgebra of GL(n) algebra is parameterized
by lµν = gµ

ν − 1
n δν

µgρ
ρ. Let us rewrite Equation (225) as

δg JAB
µν (X) = −

(
n + 2

n
gα

α + 2gα
βXαγ∂βγ

)
JAB
µν (X)− 2l(µ

ρ JAB
ρν)(X) (227)

and define a weight ∆1 as follows

∆1 = 1 +
2
n

. (228)

Then using the relations (136) one can see that

∆D,1 = D− 1 (229)

which is the canonical conformal weight of a spin-1 field.

9.2. Stress Tensor

Since we are considering a generalized CFT it is natural to define a generalized stress tensor,
which contains a usual CFT stress tensor when projected to the x-subspace. Taking

T̃µν,ρσ(X) = (∂µνb(X))(∂ρσb(X))− 1
3

b(X)(∂µν∂ρσb(X)) (230)

and
T̃µν,ρσ(X) = fρ(X)∂µν fσ(X) (231)

we define the generalized stress tensor as a symmetrized combination

Tµν,ρσ(X) = T̃µν,ρσ(X) + T̃µρ,νσ(X) + T̃µσ,νρ(X) (232)

The reason of taking the expression (232) as a definition for the generalized stress tensor instead
of (230) and (231) is that (232) transforms properly under the Sp(2n) transformations

δaTµνρσ(X) = −aαβ∂αβTµν,ρσ(X), (233)

δgTµνρσ(X) = −(gα
α + 2gαβXαγ∂βγ)Tµνρσ(X)

−gµ
αTανρσ(X)− ...− gσ

αTµνρα(X),
(234)

δkTµνρσ(X) = (kαβXαβ + kαβXαγXβδ∂γδ)Tµνρσ(X)

+kµαXαβTβνρσ(X) + ... + kσαXαβTµνρβ(X).
(235)
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The transformations above are again derived using the transformations for the free fields (42)
and (43) and the explicit form of the stress energy tensor (232). Again, using (136), one can see that the
generalized conformal dimension of the stress tensor is ∆T = 1, whereas the conformal dimension ∆2

(analogous to the expression (228) for s = 1 current) is

∆2 = 1 +
4
n

(236)

and the canonical spin-2 field weight is
∆D,2 = D

in compliance with the general formula ∆D,s = D + s− 2.
Like the conserved current JAB

µν , the stress energy tensor satisfies the generalized conservation
conditions

∂µνTαβγδ(X)− ∂µαTνβγδ(X)− ∂βνTαµγδ(X) + ∂βαTνµγδ(X) = 0 (237)

provided the fields satisfy the free equations of motion (14) and (15).

9.3. Higher Spin Conserved Currents

By analogy with Jαβ(X) and Tαβγδ(X) one can introduce [6] higher-spin conserved currents
Tα1 ...α2s(X) (2s = 1, 2, 3, . . .) which transform under Sp(2n) as follows

δaTα1 ...α2s(X) = −aµν∂µνTα1 ...α2s(X), (238)

δgTα1 ...α2s(X) = −(∆s gµ
µ + 2gν

µXνρ∂µρ)Tα1 ...α2s(X)

−2sl(α1
µTα2 ...α2s)µ

(X),
(239)

δkTα1 ...α2s(X) = (kµνXµν + kµνXµρXνλ∂ρλ)Tα1 ...α2s(X)

+4kµ(α1
XµνTα2 ...α2s)ν

(X),
(240)

where
∆s = 1 +

2s
n

. (241)

Again, using the relations (136), one can see that

∆D,s = D + s− 2 (242)

which is a conventional expression for a canonical conformal weight for a field with spin s.
The higher spin currents obey Sp(2n) conservation conditions [6]

∂µνTαβγ(2s−2)(X)− ∂µαTνβγ(2s−2)(X)− ∂βνTαµγ(2s−2)(X) + ∂αβTµνγ(2s−2)(X) = 0. (243)

9.4. Two-Point Correlation Functions of the Currents

We have already considered two-point functions for scalar and spinorial hyperfields (219) and (220).
Using these expressions as well as the expressions for the generalized conserved currents (221)
and (222), it is straightforward to compute the two-point functions of two currents

〈JAB
αβ (X1), JCD

µν (X2)〉 = CJ J(det |X12|)−1(P12)αβ,µν(δ
ACδBD − δADδBC). (244)

Here, we introduced an Sp(2n)-invariant tensor structure (When checking the invariance under
the generalized conformal boosts notice that the first pair of the indices of (P12)αβ,γδ gets rotated with
the matrix kασXσδ

1 and the second pair gets rotated with kµσXσδ
2 ) (which we call P–structure)

(Pab)αβ,µν = (X−1
ab )µα(X−1

ab )νβ + (X−1
ab )να(X−1

ab )µβ (245)
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a, b = 1, 2 and a 6= b. which will be one of the building blocks for higher point correlation functions
as well.

One more building block for the correlation functions is (X12)
−1
αβ which is Sp(2n) invariant when

considered as a bilocal tensor

δtot(X−1
12 )αβ = −(X−1

12 )αγ(δX1 − δX2)
γδ(X−1

12 )δβ

+ 2g(α
γ(X−1

12 )β)γkαγXγδ
1 (X−1

12 )δβ − (X−1
12 )αδXδγ

2 kγβ = 0 .

Similarly, for the two stress tensors one finds

〈Tαβγδ(X1), Tµνρσ(X2)〉 = CTT
1

det |X12|
(
(P12)αβ,µν(P12)γδ,ρσ + symm.

)
, (246)

where the total symmetrization of the both sets of indices (αβγδ) and (µνρσ) is assumed.
It is instructive to recall the similar expressions for two-point functions in the usual CFT

〈T(l)
µ1,...,µn(x1), T(l)

ν1,...,νn(x2)〉 = cTT
gµ1ν1(x12)...gµnνn(x12)

(x12)l − traces (247)

with
gµν = δµν −

xµxν

x2 . (248)

Obviously, the Sp(2n)-invariant structure (P12)αβ,γδ is a generalization of gµν. Notice also that
the expressions for two-point functions (244)–(246) can be obtained from solving generalized Ward
identities, as it has been done for the case of scalar and spinor hyperfields. The generalized Ward
identity for an n-point function

〈Φ∆(1)

α1 ...αr1
(X1) . . . Φ∆(k)

β1 ...βrk
(Xk)〉 ≡ Gα1 ...αr1 ,...,β1 ...βrk

(X1, . . . , Xk) . (249)

is as follows

∑k
i=1

[
∆i(gµ

µ − kµνXµν
i ) + δXµν

i
∂

∂Xµν
i

]
Gα1 ...αr1 ,...,β1 ...βrk

(X1, . . . , Xk)

+∑1
j=1(gαj

µj − kαjνX
νµj
1 ) Gµ1 ...µj ...µr1 ,...,β1 ...βrk

(X1, . . . , Xk) + · · · (250)

+∑rk
j=1(gβ j

µj − kβ jνX
νµj
k ) Gα1 ...αrk ,...,µ1 ...µj ...µrk

(X1, . . . , Xk) = 0 ,

It is straightforward to check that the two-point functions solve Equations (250).

9.5. Three Point Functions: bbb and f f b

Three-point functions for three scalars and for two fermions and a scalar (computed firstly in [11])
have been given in Section 8.2 in the supersymmetric form and as a particular example for D = 3
were given in Section 8.4. The only difference with the case without supersymmetry is that the overall
constants in front of the non-supersymmetric ones are independent of each other

〈b∆1(X1)b∆2(X2)b∆3(X3)〉 = Cbbb (det |X12|)−k3 (det |X23|)−k1 (det |X13|)−k2 , (251)

〈 fα(X1) fβ(X2)b(X3)〉 = c f f b (X−1
12 )αβ(det |X12|)−k3 (det |X23|)−k1 (det |X13|)−k2 . (252)

ka =
1
2
(∆(a+1) + ∆(a+2) − ∆(a)), cycl. (a = 1, 2, 3). (253)
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9.6. Three-Point Functions with J and T

Now, we would like to consider three-point functions which include the generalized conserved
current JAB

αβ (X) and generalized stress tensor Tαβγδ(X). These can give us an answer whether
an interacting generalized conformal field theory based on Sp(2n) symmetry exists. As we shall
see below, the answer to this question is negative.

Our strategy is as follows. As we have seen the generalized conformal weighs of JAB
αβ (X) and

Tαβγδ(X) are equal to one, ∆J = ∆T = 1. If we assume that the corresponding symmetries are not
broken by interactions, then the values of ∆J and ∆T will remain the same. Therefore, we would like
to construct Sp(2n)-invariant three- and higher-order correlation functions which include JAB

αβ (X),
Tαβγδ(X) and other operators O and see if the conservation conditions (223) and (237) along with
Sp(2n) invariance allow for the operators O to have anomalous dimensions. We will find that this is
unfortunately not the case for n > 2.

First let us introduce one more Sp(2n)-invariant tensor structure (which we call Q–structure)

(Qc
ab)αβ = (X−1

ac )αβ − (X−1
bc )αβ, a, b, c = 1, 2, 3 (254)

This structure, along with (245) and

(pab)αβ = (Xαβ
a − Xαβ

b )−1, a, b = 1, 2, a 6= b. (255)

is a building block for all the Sp(2n)-invariant correlation functions. In other words, the most general
multi-point function can be written as a sum over all possible polynomials of a required rank of the
three structures pab = X−1

ab , Pab and Qc
ab times a pre-factor

〈Φ...Φ〉 = G(pab, Pab, Qc
ab|Xab). (256)

Following this prescription one can immediately write the simplest three-point function of two
scalars (with generalized conformal dimensions ∆1 = ∆2 = ∆) and a conserved current (with ∆J = 1)

〈b∆1(X1)b∆2(X2)Jαβ(X3)〉 =
= CbbJ(det |X12|)−k3(det |X13|)−k2(det |X23|)−k1(Q3

12)αβ,
(257)

and a three-point function of the two scalars (with ∆1 = ∆2 = ∆) and the stress tensor (with ∆T = 1)

〈b(X1)b(X2)Tαβγδ(X3)〉 = CbbT(det |X12|)−k3(det |X13|)−k2×
(det |X23|)−k1((Q3

12)αβ(Q3
12)γδ + (Q3

12)αγ(Q3
12)βδ + (Q3

12)αδ(Q3
12)βγ),

(258)

where ka are restricted according to (253). One can see that Sp(2n) invariance alone does not impose
any requirement on the generalized conformal dimension ∆ of the scalar field.

The next step is to require the conservation of the current JAB
αβ (X) and the stress tensor Tαβγδ(X)

according to Equations (223) and (237). This implies

k1 = k2 =
1
2

, and any k3 . (259)

Therefore, in this case, no restriction on generalized conformal dimension of the scalar field
appears i.e., anomalous dimension and therefore interactions are allowed. At this, the current and the
stress tensor remain conserved, and their dimensions remain canonical ∆J = ∆T = 1.
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The next nontrivial example is a three point-function of two conserved currents and one scalar
operator O(X) of dimension ∆. From the Sp(2n)-invariance condition we have

〈Jµν(X1)O(X2)Jαβ(X3)〉 = (det |X12|)−
∆
2 (det |X13|)−

2−∆
2 (det |X23|)−

∆
2

×
(
A[(Q3

12)αβ(Q1
23)µν] + B(P13)µν,αβ

) (260)

where A and B are some constants. Again, one can see that Sp(2n) symmetry alone does not impose
any restriction on the generalized conformal dimension of O(X).

However, imposing the current conservation condition (223), one gets

A = B, and ∆ = 1 , (261)

that is the dimension of the operator O(X) is fixed (Since the canonical dimension of the field b(X)

is equal to 1
2 it is natural to assume that the operator O(X) is a composite one O(X) = b2(X).)

by the current conservation condition. Let us note that from the point of view of the x-space the
current JAB

αβ (X) contains higher spin currents as a result of its expansion in series of y coordinates.
Therefore, this result is in accordance with the theorem of [119] stating that the conformal field theories
which contain conserved higher-spin currents should be free.

Let us note, however, that in the simplest case of n = 2, i.e., D = 3 CFTs with the Sp(4) conformal
group the two conditions (261) are reduced to one (see [27] for technical details)

A(D− 1− ∆)−B∆ = 0 . (262)

This means that the conformal dimension ∆ of the operator O(X) remains undetermined, and
hence this analysis does not ban the existence of interacting D = 3 CFTs, as is well known.

9.7. General Case

Let us now discuss the general structure of the three-point correlators of conserved currents which
are symmetric tensors of rank r = 2 s with s being an integer “spin”. To this end, it is convenient to
hide the tensor indices away by contracting them with auxiliary variables λα

a , where a refers to the
point of the operator insertion:

(pab)αβ ⇒ pab = (X−1
ab )αβ λα

a λ
β
b no summation over a, b . (263)

(Pbc)αβ,γδ ⇒ Pab = 2pab pba = (Pab)αβ,γδ λα
a λ

β
a λ

γ
b λδ

b no summation over a, b , (264)

(Qa
bc)αβ ⇒ Qa

bc = (Qa
bc)αβ λα

a λ
β
a no summation over a . (265)

For instance, the correlator of two scalar operators O of the same dimension ∆ with a conserved
current of an integer spin-s obeying (243) is

〈O(X1)O(X2)Js(X3)〉 = C(det |X12|)−
2−∆

2 (det |X13|)−
1
2 (det |X23|)−

1
2 (Q3

12)
s . (266)

The current conservation condition leads to the same result as for the case of s = 1, 2, i.e.,
k1 = k2 = 1

2 , which means that the dimensions of the scalar operators are arbitrary.
However, if we consider a three-point function of a scalar operator and two conserved currents

Js(X) = Jα1 ...α2s(X)λα1 · · · λα2s (267)
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of ranks 2s1 and 2s2 with s ≥ 1, we will again find that, up to an overall factor, all the free parameters
in the correlator are fixed. For example,

〈J3(X1)J1(X2)O(X3)〉 = C
(Q1

23)
3Q2

13 − 3(Q1
23)

2P12(
det |X12|det |X13|det |X23|

)1/2 . (268)

From the discussion above, one can conclude that in order to describe the Sp(2n)-invariant
three-point functions, we can borrow the generating functions of 3-point correlators of free symmetric
higher-spin fields in conventional conformal theories [114,120–123] simply because the Sp(2n) group
contains the corresponding conformal group SO(2, D) as a subgroup, or, in other words, the correlators
in the free CFTs can be covariantly embedded into the Sp(2n) invariant correlators. For example,
a generating function of the three-point functions of currents built out of free scalars b(X) is

〈J(X1)J(X2)J(X3)〉 =
cos(p12) cos(p13) cos(p23) exp

(
1
2 [Q

1
23 + Q2

13 + Q3
12]
)

(det |X12|det |X23|det |X13|)1/2 . (269)

It contains the operators Js(X), s = 0, 1, 2, ... and the correlator 〈Js1 Js2 Js3〉 is obtained as the coefficient
in front of (λ1)

2s1(λ2)
2s2(λ3)

2s3 .
The generating function obtained from the currents built out of the free fermions fα(X) is

〈J(X1)J(X2)J(X3)〉 =
sin(p12) sin(p13) sin(p23) exp

(
1
2 [Q

1
23 + Q2

13 + Q3
12]
)

(det |X12|det |X23|det |X13|)1/2 . (270)

The generating function of multi-point correlators can be found in [114,122–125].
The above expressions deal with the bosonic symmetric tensor currents of even rank.

The generating function which produces three-point correlators involving two fermionic currents of
odd ranks is similar, see e.g., [119].

As a further development of this subject, it would be of interest to carry out the study of other
aspects of the Sp(2n)-invariant higher-spin systems, in particular, to explore their links to recent results
on conformal higher-spin theories in AdSD backgrounds (see e.g., [126–130]) and to Sp(2n)-invariant
unfolded higher-spin structures discussed in [131].

9.8. Breaking Sp(2n) Symmetry

As it follows from the discussion above, to have an interacting generalized conformal field theory
based on Sp(2n) symmetry, one has to break this symmetry down to a subgroup. Obviously, to still
use Sp(2n) symmetry as a symmetry of the theory, it should be broken spontaneously rather then
explicitly. On the other hand, the question whether a symmetry is broken spontaneously or explicitly
could be simpler to address if one had the corresponding Lagrangian, which would produce the field
Equations (14) and (15) (and/or their possible nonlinear or massive deformations). Unfortunately,
such a Lagrangian is still lacking.

In this respect, let us mention that the issue of breaking Sp(8) symmetry via current interactions in
the unfolded formulation has been addressed in [26]. In particular, analyzing the system of equations

DC(x, µ, µ) = F(ω, J(x, µ, µ)), D2 J(x, µ, µ) = 0, (271)

where D = d + ω is a spin connection, J is a current which is billinear in the higher-spin functional C
and D2 is the corresponding kinetic operator (see the discussion around the Equation (27)), the authors
showed that the Sp(8) symmetry is broken to the four-dimensional conformal group SO(2, 4).
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In the hyperspace framework, one may try to approach this problem as follows. First, one should
construct a nonlinear deformation of Equations (14) and (15)

∂αβ∂γδ b(X)− ∂αγ∂βδ b(X) = Fb(b, f , A) , (272)

∂αβ fγ(X)− ∂αγ fβ(X) = Ff (b, f , A) . (273)

with some unknown functions Fb(b, f , A) and Ff (b, f , A). It is natural to expect that these functions
depend also on higher-spin potentials A, in addition to the higher-spin curvatures contained in the
hyperfields b(X) and fµ(X). Note that, in the unfolded description of the Sp(8)-invariant system,
higher-spin gauge potentials were introduced, at the linearized level, in [16]. As a necessary step
forward, one should understand whether and how the Equations (272) may result from a (non-linear)
generalization of the construction of [16].

The right hand sides of the Equation (272) should be chosen under the requirement that the
analysis of the Equations (272) and (273), similar to the one carried out for the free equations in
Section 2.1 leads to a physically meaningful nonlinear equations in the x–space. This is an interesting
open problem for a future study.

10. Conclusions

The idea to formulate higher-spin theories in an extended (super) space, where extra coordinates
generate higher spins (by analogy with the Kaluza–Klein theories where compact extra dimensions
generate “higher masses”) seems to be very attractive, especially taking into account a level of
complexity of higher-spin theories formulated in an ordinary space–time.

The underlying symmetry of this formulation is the Sp(2n) group, which contains the
corresponding D-dimensional conformal group as a subgroup. This allows one to borrow, for the
analysis of the Sp(2n)-invariant systems, an intuition and techniques from conventional Conformal
Field Theories.

To summarize, the reviewed appraoch generalizes familiar concepts to higher-dimensional
tensorial spaces and the correspondence looks schematically as follows

• Space–time coordinates xm are extended to tensorial coordinates Xαβ.
• Cartan–Penrose relation PAȦ = λAλȦ gets extended to the hyperspace twistor-like relation

Pαβ = λαλβ which determines free dynamics of fields in the tensorial space with the momentum
Pαβ conjugate to Xαβ.

• AdSD space is extended to the Sp(n) group manifold.
• Conformal scalar φ(x) and conformal spinor ψµ(x) become the “hyperscalar” b(X) and the

“hyperspinor” fµ(X).
• D-dimensional conformal group SO(2, D) is extended to the Sp(2n) group which underlies the

Generalized Conformal Field Theory of the fields b(X) and fµ(X).

We have shown that the hyperspace approach describes (in D = 3, 4, 6 and 10) free dynamics of an
infinite set of massless conformal higher-spin fields in an elegant compact form. An important
and non-trivial problem is to find a non-linear generalization of this formulation which would
correspond to an interacting higher-spin theory. This problem has been addressed by several authors.
As we have seen, it is related to the necessity to break the Sp(2n) symmetry in an appropriate
way. Attempts to construct such a generalization in the framework of hyperspace supergravity
and a non-linear realization of the OSp(1|8) supergroup were undertaken, respectively, in [12,14].
Obstacles encountered in these papers may be related to the fact that their constructions utilized only
higher-spin field strengths but did not include couplings to higher-spin gauge potentials, while the
consistent formulation of nonlinear equations of massless higher-spin fields contains both [37–39].
Therefore, to successfully address the problem of interactions it is important to incorporate higher-spin
potentials in the hyperspace approach, e.g., by further elaborating on the construction of [16].
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Another issue, which can be related to the previous one, is a question of consistent breaking Sp(2n)
symmetry. The manifestation of this breaking was observed e.g. in higher-spin current interactions [26].
As we have seen in Section 9, when considering generalized CFT based on global Sp(2n) invariance
(see [27]), the requirement of generalized current conservation turns out to be too strong to allow for
the basic hyperfields to have anomalous conformal dimensions and again points at the necessity to
(spontaneously) break Sp(2n) invariance.

Theories with spontaneously broken Sp(2n) symmetry might be also useful for studying massive
higher-spin fields in hyperspaces. A consideration of theories with local Sp(n) invariance i.e., some sort
of generalized gravity is yet another interesting and widely unexplored area.

Finally, let us mention that field Equations (14) and (15) for the fields in hyperspaces remind (a part
of) weak section conditions of exceptional field theories (see [132] for a review and references). This
similarity can be relevant for higher-spin extensions of these theories, provided the section conditions
can be properly relaxed (see e.g., [133,134] for a discussion of this point). It would be interesting to
further elaborate on this issue, as a connection to the E11 framework [18].
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Appendix A. Conventions

The γ–matrices satisfy the following anti-commutation relations

(γm)α
δ(γ

n)δ
β + (γn)α

δ(γ
m)δ

β = 2ηmnδα
β , (A1)

where m, n and other Latin letters are space–time vector indices, and α, β and other Greek letters
label spinorial indices. Throughout the paper “(, )” denotes symmetrization and “[, ]” denotes
antisymmetrization with weight one. The symplectic matrix Cαβ = −Cβα is used to relate upper
and lower spinorial indexes as follows

µα = Cαβµβ, µα = −Cαβµβ, CαγCγβ = −δα
β . (A2)

The differentiation by hypercoordinates Xαβ is as follows

dXαβ

dXγδ
≡ ∂αβXγδ =

1
2
(δα

γδ
β
δ + δ

β
γδα

δ ) , (A3)

∂µνX−1
αβ = −1

2
(X−1

µα X−1
νβ + X−1

µβ X−1
να ) (A4)

and
∂µν(det X) = X−1

µν (det X) (A5)

where
X−1

µν Xνα = δα
µ. (A6)

Let us note that the product of an even number of Xαβ matrices is antisymmetric in spinorial
indexes, whereas the product of an odd number of Xαβ is a symmetric matrix. For example,

XαγXγ
β = −XβγXγ

α, Xα
γXγ

δXδβ = +Xβ
δXδ

γXγα, etc. (A7)



Universe 2018, 4, 7 40 of 45

Appendix B. Derivation of the field Equations on Sp(n)

Let us evaluate the operator Y(αYβ) in (93):

1
2
(YαYβ + YβYα) ≡ Y(αYβ) = ( ξ

8 )
2µαµβ +

iξ
8

(
µα

∂
∂µβ + µβ

∂
∂µα

)
− ∂

∂µα
∂

∂µβ . (A8)

Appendix B.1. Fermionic Equation

Consider Equation (93). Substituting into it the expansion (94) one gets for the term linear in µα

∇αβFγ(X) µγ +
ξ

8
(CγαFβ(X) + CγβFα(X)) µγ = 0 (A9)

The second term comes from − i
2 (YαYβ + YαYβ) acting on Fγµγ. From this equation, one gets (96).

Appendix B.2. Bosonic Equation

Equation (93) to the zeroth order in µα becomes:

∇αβB(X) = iY(αYβ) · 1
2 Bγδ(X)µγµδ . (A10)

Obviously, only the double µ-derivative in Y(αYβ) will contribute to this order. Thus, we have:

∇αβB(X) = −i ∂
∂µα

∂
∂µβ · 1

2 B(γδ)(X)µγµδ (A11)

Therefore,

∇αβB(X) = −i B(αβ)(X) , (A12)

Which indicates that all the higher order components in the expansion (94) are expressed in terms
of B(X) and Fα(X).

To zeroth order in µα, we compute:

(∇αβ − iY(αYβ))(∇γδ − iY(γYδ))
[

B(X) + 1
2 Bρσ(X)µρµσ + 1

4! Bρστλ(X)µρµσµτµλ + . . .
]
= 0 . (A13)

0 =∇αβ∇γδB(X) + (CαγCβδ + CβγCαδ)B(X) + ( ξ
8 )

2B(αβγδ)(X)

+ i( ξ
8 )
[
CαγB(βδ)(X) + CαδB(βγ)(X) + CβγB(αδ)(X) + CβδB(αγ)(X)

]
(A14)

+ i
[
∇γδB(αβ)(X) +∇αβB(γδ)(X)

]
.

Now, using (A12), this becomes:

0 =∇αβ∇γδB(X) + ( ξ
8 )

2(CαγCβδ + CβγCαδ)B(X) + B(αβγδ)(X)

− ξ
8

[
Cαγ∇βδ + Cαδ∇βγ + Cβγ∇αδ + Cβδ∇αγ

]
B(X) (A15)

−
[
∇γδ∇αβ +∇αβ∇γδ

]
B(X) .

Using the algebra (155) for the covariant derivatives ∇αβ, we can write:

∇γδ∇αβB(X) =( ξ
8 )

2(CαγCβδ + CβγCαδ)B(X) + B(αβγδ)(X)− 1
2 [∇αβ,∇γδ]B(X) . (A16)
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From this equation, we obtain the bosonic Equation (95). Let us note that exchange of indexes as
α↔ γ and β↔ δ :

∇αβ∇γδB(X) =( ξ
8 )

2(CαγCβδ + CβγCαδ)B(X) + B(αβγδ)(X) + 1
2 [∇αβ,∇γδ]B(X) . (A17)

and subtraction of (A16) and (A17) leads to an identity.

Appendix C. Some Identities for Supercoordinates on OSp(1|n) Group Manifold

The supercoordinates on OSp(1|n) group manifold obey some useful relations in particular

θαGα
β = ΘβP(Θ2), θα = ΘβG−1α

β P(Θ2) , (A18)

QβΘα = P−1(Θ2)

(
Gβ

α +
iξ
8

ΘβΘα +
iξ
8

Gβ
σΘσΘα +

(
iξ
8

)2
Θ2ΘβΘα

)
, (A19)

(QβΘα)Θα = P(Θ2)

(
Gβ

σ +
iξ
8

ΘβΘσ

)
Θσ, (A20)

∂αβΘγ =
ξ

4
Θ(αGβ)

δ(δγ
δ +

iξ
8

ΘδΘγ) , (A21)

DβGα
γ =

iξ
4

P(Θ2) (Θα − 2Gα
ρΘρ)Gβ

γ (A22)

∂αβGγ
δ =

ξ

4
Gγ(α Gβ)

δ , (A23)

and
QαGµν = − iξ

4
P(Θ2)ΘνGµα . (A24)
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