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Abstract: We review the recent approach to model the hadronic and nuclear matter equations of
state using the induced surface tension concept, which allows one to go far beyond the usual Van
der Waals approximation. Since the obtained equations of state, classical and quantum, are among
the most successful ones in describing the properties of low density phases of strongly interacting
matter, they set strong restrictions on the possible value of the hard-core radius of nucleons, which
is widely used in phenomenological equations of state. We summarize the latest results obtained
within this novel approach and perform a new detailed analysis of the hard-core radius of nucleons,
which follows from hadronic and nuclear matter properties. Such an analysis allows us to find the
most trustworthy range of its values: the hard-core radius of nucleons is 0.3–0.36 fm. A comparison
with the phenomenology of neutron stars implies that the hard-core radius of nucleons has to be
temperature and density dependent. Such a finding is supported when the eigenvolume of composite
particles like hadrons originates from their fermionic substructure due to the Pauli blocking effect.

Keywords: quark-hadron phase transition; excluded hadron volume; chemical freeze-out; neutron
star matter
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1. Introduction

A reliable and precise determination of major characteristics of symmetric nuclear matter is
of fundamental importance [1–5] not only for the nuclear spectroscopy and for nuclear physics of
intermediate energies, but also for nuclear astrophysics in view of possible phase transformations
which may occur in compact astrophysical objects such as neutron stars, and hypothetical hybrid
and quark stars. Such characteristics of infinite nuclear matter as the normal density n0 ' 0.16 fm−3

at zero pressure and zero temperature, its binding energy per nucleon W0 = −16 MeV, and its
incompressibility factor K0 are of great importance for various phenomenological approaches, since
these characteristics are widely used for determination of the model parameters. However, there exists
a significant uncertainty in the K0 value, since earlier estimates provide K0 ' 220− 260 MeV [6],
while the more recent ones give us K0 ' 250− 315 MeV [7]. Furthermore, such a parameter of the
nuclear matter as the hard-core radius (HCR) of nucleons RN plays an important role not only in
nuclear physics [1,3], but also in nuclear astrophysics [2,4] and in the physics of heavy ion collisions
(HIC) [8–18]. However, in the literature one can find any value of RN in the range 0.3–0.7 fm.
The problem is partly related to the fact that almost all equations of state (EoS) with the hard-core
repulsion employ the Van der Waals (VdW) approximation, which is applicable only at low particle
number densities.

Therefore, the results obtained within a novel and convenient approach which allows one to
safely go beyond the VdW approximation for any number of HCR (multicomponent case) [19–22] are
of great importance for all field of physics mentioned above. Having a single additional parameter
compared to the multicomponent VdW EoS this approach based on the induced surface tension (IST)
concept [23] enables us to describe on the same footing the data measured in HIC, to reproduce the
nuclear matter properties up to five normal nuclear densities, and to describe the mass-radius relation
of neutron stars. Since different applications of the developed equation of state provide us with a few
ranges of RN values, it is important to find the most trustworthy one. For this purpose, here we review
the main features of the IST equation of state, both classical and quantum, and consider the constraints
on RN values which follow from the proton flow. The new and significant element of this study is
a comparison of quantum virial coefficients with the S-matrix approach, which allows us to determine
the most trustworthy range of RN values. Besides, we draw some conclusions for developing the EoS
of neutron star matter.

It is appropriate to stress here that the IST approach allows one to account for the effect of
interaction of particle of finite size with a thermal medium. This is another principal difference from
the VdW equation of state, which makes the IST approach a very promising one. The point is that
composite physical objects with large spatial size (large nuclei, large clusters of molecules, heavy quark
gluon bags, etc.) should have eigensurface tension which accounts for the degeneracy of their internal
degrees of freedom [24,25]. The other parts of the surface tension coefficient are related to the induced
one by the interaction with the medium and, perhaps, the one appearing due to interference of the
eigen and induced parts. At present state of art it is unclear how to account for such an interference
effect, but, probably, the density, temperature, or pressure dependence of the radius of such composite
objects can be a good approximation for it (see a discussion below).

As it was shown in Ref. [23], the presence of the IST coefficient allows one to correctly reproduce
the low density behavior of partition function of a mixture of nuclear fragments consisting of
any number of nucleons, which is traditionally studied within the eigenvolume (or high density)
approximation in a framework of the statistical multifragmentation model [26,27]. Apparently, the same
should be true for the statistical models considering the phase transition between hadrons and quark
gluon bags [25,28,29]. Therefore, the IST concept is of great importance for a correct modeling the
quark-gluon-hadron phase transition in heavy ion collisions [16–19,30], inside the hybrid neutron
stars [31–34], and for the cosmological phase transition in the early Universe [35] (see also [36–38]
and references therein), since in all these transitions the surface tension of quark gluon bags play
a decisive role.
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The review is organized as follows. In Section 2 we recall the main equations of the hadron
resonance gas model (HRGM) [20–22] based on the concept of induced surface tension [23]. The new
results on the quantum formulation of the induced surface tension equation of state for nuclear matter
are discussed in Section 3, whereas our conclusions are summarized in Section 4.

2. Multicomponent Formulation of HRGM with Hard-Core Repulsion

For many years the HRGM [8–22] is successfully used to find out the parameters of chemical
freeze-out (CFO) from the hadronic yields measured experimentally in high energy nuclear collisions.
Presently, the HRGM based on the EoS with the multicomponent hard-core repulsion between
hadrons [9–13,16–22] gives the most successful description of all independent hadronic multiplicity
ratios, which have been measured in the high energy heavy ion collision experiments performed
starting from the early 70-ies (Bevalac) until present over BNL-AGS, GSI-SIS, CERN-SPS, BNL-RHIC,
to CERN-LHC in the broad range of center of mass energies

√
sNN from 2.7 to 5020 GeV. There exist

three major grounds to consider the HRGM with multicomponent hard-core repulsion as the realistic
EoS of hadronic matter at high temperatures and moderate particle number densities. Firstly, for a long
time it was well known that for temperatures below 170 MeV and moderate baryonic charge densities
(below about twice nuclear saturation density), the mixture of stable hadrons and their resonances
whose interaction is described by the quantum second virial coefficients behaves almost like a mixture
of ideal gases of stable particles which, however, includes both the hadrons and their resonances,
but with their averaged vacuum values of masses [39]. As it was demonstrated in Ref. [39], the main
physical reason for this kind of behavior is rooted in an almost complete cancellation between the
attractive and repulsive terms in the quantum second virial coefficients. Hence, the residual deviation
from the ideal gas (a weak repulsion) can be modeled by the classical second virial coefficients.

Secondly, by considering the HRGM as the hadronic matter EoS one can be sure that its pressure
will never exceed the one of the quark-gluon plasma. The latter may occur if the hadrons are treated as
the mixture of ideal gases [20,40]. It is well-known that the number of spin-isospin degeneracies of all
hadrons and their resonances with the masses up to 2.6 GeV is so large that, if one does not take into
account the hard-core repulsion between them, then at temperatures above 180 MeV their pressure
will be larger than the pressure of the quark-gluon plasma (for a comparison with the lattice QCD
results, see, for instance, Figure 8 in [20]).

Thirdly, an additional reason to regard the HRGM as hadronic matter EoS in the vicinity of CFO is
the practical one: since the hard-core repulsion is a contact interaction, the energy per particle of such
an EoS equals to the one of the ideal gas, even for the case of quantum statistics [22]. Therefore, during
the evolution of the system after CFO to the kinetic freeze-out one will not face a hard mathematical
problem [41,42] to somehow “convert” the potential energy of interacting particles into their kinetic
energy and into the masses of particles which appear due to resonance decays.

Apparently, these reasons allow one to consider the HRGM as an extension of the statistical
bootstrap model [43] for a truncated hadronic mass-volume spectrum which is augmented with the
hard-core repulsion. Because of these reasons the HRGM enables us to achieve a very good description
of the hadronic multiplicities measured in heavy ion collision experiments.

Although many valuable findings were obtained with the HRGM during last few years,
at the moment the HCR are well established for the most abundant hadrons only, i.e., for
pions (Rπ ' 0.15± 0.02 fm), for the lightest K±-mesons (RK ' 0.395 ± 0.03 fm), for nucleons
(Rp ' 0.365± 0.03 fm), and for the lightest (anti)Λ-hyperons (RΛ ' 0.085 ± 0.015 fm) [20,21].
Nevertheless, there is a confidence that in few years from now the new data of high quality which will
be measured at RHIC BNL (Brookhaven) [44], NICA JINR (Dubna) [45], and FAIR GSI (Darmstadt) [46],
will help us to find out the HCR of other measured hadrons with unprecedentedly high accuracy.
However, one should remember that the traditional multicomponent HRGM based on the VdW
approximation is not suited for such a purpose, since for N ∼ 100 different HCR, where N corresponds
to the various hadronic species produced in a collision, one has to find a solution of N transcendental
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equations. Therefore, an increase of the number of HCR to N ∼ 100 will lead to hard computational
problems for the traditional HRGM with multicomponent hard-core repulsion. To resolve this principal
problem, the new HRGM based on the IST concept [23] was recently developed in Refs. [20–22].

The IST EoS is a system of two coupled equations for the pressure p and the IST coefficient Σ

p =
N

∑
k=1

pk = T
N

∑
k=1

φk exp
[

µk
T
− 4

3
πR3

k
p
T
− 4πR2

k
Σ
T

]
, (1)

Σ =
N

∑
k=1

Σk = T
N

∑
k=1

Rkφk exp
[

µk
T
− 4

3
πR3

k
p
T
− 4πR2

kα
Σ
T

]
, (2)

µk = µBBk + µI3 I3k + µSSk , (3)

where α = 1.245, and µB, µS, µI3 are the chemical potentials of baryon number, the strangeness,
and the third projection of the isospin, respectively. Here Bk, Sk, I3k, mk, and Rk denote,
respectively, the corresponding charges, mass, and HCR of the k-th hadronic species. The sums in
Equations (1) and (2) run over all hadronic species including their antiparticles which are considered
as independent species. Therefore, pk and Σk are, respectively, the partial pressure and the partial
induced surface tension coefficient of the k-th hadronic species.

In Equations (1) and (2) the thermal density φk of the k-th hadronic sort contains the Breit-Wigner
mass attenuation. Hence, in the Boltzmann approximation (the quantum gases are discussed in
Ref. [22]) it can be cast

φk = gkγ
|sk |
S

∞∫
MTh

k

dm
Nk(MTh

k )

Γk

(m−mk)2 + Γ2
k/4

∫ d3 p
(2π)3 exp

[
−
√

p2+m2

T

]
. (4)

Here gk is the degeneracy factor of the k-th hadronic species, γS is the strangeness suppression
factor [47], |sk| is the number of valence strange quarks and antiquarks in this hadron species, and

the quantity Nk(MTh
k ) ≡

∞∫
MTh

k

dm Γk

(m−mk)2 + Γ2
k/4

denotes a normalization factor with MTh
k being the

decay threshold mass of the k-th hadronic sort, while Γk denotes its width. It is necessary to remind
that the Breit-Wigner ansatz for the mass distribution is an approximation which holds for relatively
narrow resonances only. The formulation of the thermodynamics for unstable particles (4) in the
spirit of a Beth-Uhlenbeck EoS [48], however, holds for more general mass distributions which may
replace this ansatz. Nevertheless, such an ansatz can be rigorously derived for a mixture of hadron
resonances [49,50] from the Phi-functional approach [51], if the Phi-functional is chosen from the class
of two-loop diagrams only [52,53].

To employ the system of Equations (1)–(3) to an investigation of heavy ion collisions one has to
supplement it by the strange charge conservation condition

nS ≡
∂p

∂µS
= ∑

k
Sk nk = 0 , (5)

which provides a vanishing net strange charge. Here nk is the particle number density of hadrons of
sort k defined by the following system of equations

nk ≡
∂p
∂µk

=
1
T
· pk a22 − Σk a12

a11 a22 − a12 a21
, a11 = 1 +

4
3

π ∑
k

R3
k

pk
T

, a12 = 4π ∑
k

R2
k

pk
T

, (6)

a22 = 1 + 4πα ∑
k

R2
k

Σk
T

, a21 =
4
3

π ∑
k

R3
k

Σk
T

. (7)
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In contrast to the traditional multicomponent HRGM formulations to determine the
particle number densities {nk} one needs to solve only a system of three equations,
i.e., Equations (1), (2), and (5), irrespective of the number of different HCR in the EoS. Hence, we
believe that the IST EoS given by the system (1)–(5) is well suited for the analysis of all hadronic
multiplicities which will be measured soon at RHIC, NICA, and FAIR.

Compared to the VdW EoS, the IST EoS has another great advantage over the IST EoS, since it
is valid up to the packing fractions η ≡ ∑k

4
3 πR3

knk ' 0.2 [20–22], at which the VdW approximation
employed in the traditional HRGM [8–13] becomes completely incorrect (see a discussion below).

From the particle number density (6) of the k-th species of hadrons, one can find out their thermal
Nth

k = Vnk (V is the effective volume of CFO hyper-surface) and total multiplicity Ntot
k . The total

multiplicity Ntot
k accounts for the hadronic decays after the CFO and, hence, the ratio of total hadronic

multiplicities at CFO can be written

Ntot
k

Ntot
j

=
nk + ∑l 6=k nl Brl→k

nj + ∑l 6=j nl Brl→j
. (8)

Here Brl→k denotes the branching ratio, i.e., a probability of particle l to decay strongly into
a particle k. Further details on the actual fitting procedure of experimental hadronic multiplicities by
the HRGM can be found in [12,20].

The parameter α = 1.25 was fixed in Refs. [20,21], since this value allows us to simultaneously
reproduce the third and forth virial coefficients of the gas of classical hard spheres. Such a formulation
of the IST EoS is used to simultaneously fit 111 independent hadron yield ratios measured at AGS,
SPS, and RHIC energies. In this fit the factor γs and the chemical potentials µB and µI3 are regarded as
the free parameters and we found that the best description of these data is reached for the following
HCR of baryons Rb = 0.365± 0.03 fm, mesons Rm = 0.42± 0.04 fm, pions Rπ = 0.15± 0.02 fm, kaons
RK = 0.395± 0.03 fm, and Λ-hyperons RΛ = 0.085± 0.015 fm (new radii hereafter). These values
of the HCR generate χ2

1/dof = 57.099/50 ' 1.14 [21]. Some selected results of this fit are shown
in Figures 1 and 2.

Figure 1. Deviations of theoretically predicted hadronic yield ratios from experimental values in units
of experimental error σ are shown for the center of mass collision energies

√
sNN = 8.8 GeV and

√
sNN = 130 GeV. Dashed lines correspond to the induced surface tension (IST) equations of state

(EoS) fit, while the solid lines correspond to the original hadron resonance gas model (HRGM) fit [12].
For a comparison the results obtained by the HRGM1 with a single hard-core radius Rall = 0.3 fm for
all hadrons are also shown (for more details see text).



Universe 2019, 5, 63 6 of 16

Figure 2. The fit results obtained by the IST EoS:
√

sNN dependence of K+/π+ (left panel) and Λ/π−

(right panel) ratios. For more than a decade these ratios were the most problematic one to reproduce by
the HRGM.

The found HCR were fixed and then used to fit 11 independent hadron yield ratios measured
by the ALICE Collaboration (for details see [20,21]) with a single fitting parameter, namely the CFO
temperature, since all the chemical potentials were set to zero, while the factor γs was set to 1. The fit
quality χ2

2/dof ' 8.92/10 ' 0.89 of the ALICE data is similar to the one found for the combined
fit of the AGS, SPS, and RHIC data (see Figure 3). Therefore, the combined quality of the AGS,
SPS, RHIC, and ALICE data description achieved by the IST EoS [21] is χ2

tot/dof ' 66.02/60 ' 1.1,
which corresponds to the probability p ' 0.723 of χ2 distribution with 60 degrees of freedom.

Figure 3. The results obtained by the IST EOS on fitting the ALICE data with the new hard-core radius
(HCR) found in [20] from fitting the AGS, SPS, and RHIC data. The found chemical freeze-out (CFO)
temperature is TCFO ' 148± 7 MeV. The fit quality is χ2/dof ' 8.92/10 ' 0.89. The upper panel
shows the fit of the ratios, while the lower panel shows the deviation between data and theory in units
of estimated error.

In order to show the importance of the multicomponent hard-core repulsion in Figure 1 the
obtained results are compared to the HRGM with a single HCR of hadrons Rall = 0.3 fm (HRGM1
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hereafter). The HRGM1 employs the quantum statistics for all hadrons and, hence, it is similar to
the model of Ref. [8]. The main differences with Refs. [8,14] are: the HRGM1 includes the widths of
all hadronic resonances for all temperatures and it is used not to fit all hadronic ratios, but only the
independent ones. Such a comparison with the multicomponent versions of HRGM is necessary in
order to illustrate the disadvantages of the one component case compared to the multicomponent
formulation. The fit quality obtained by the HRGM1 for AGS, SPS, and RHIC energies is χ2

1/dof =
75.134/54 ' 1.39 [21], which is essentially worse compared to the IST results. For this case the value
of common HCR was not fitted and, hence, the number of degrees of freedom for HRGM1 is 54.
Using the HRGM1 to fit the ALICE data we obtained the fit quality χ2

2/do f ' 12.4/10 ' 1.24 [21].
Hence, the quality of the combined fit for all energies with the HRGM1 is χ2

tot/dof ' 87.53/64 ' 1.37,
i.e., it is worse than the one found for the multicomponent IST EoS. The latter value corresponds to
the probability p ' 0.974 of χ2 distribution with 64 degrees of freedom.

These results clearly demonstrate that additional 3 or 4 HCR can, indeed, essentially improve
the quality of the fit of more than hundred independent hadron multiplicity ratios and, hence,
such an improvement provides a high confidence in the extracted parameters of CFO. Apparently,
this is also a strong argument in favor of RN = 0.365± 0.03 fm found by the IST EoS. Moreover,
from the left panel of Figure 1 one can see that the proton to negative pion ratio (short dashed line
with the deviation value about 1.4) cannot be described within the HRGM1, while it is well described
within either of the HRGM multicomponent formulations. From both panels of this figure one can see
that the ratios involving negative kaons and (anti)Λ are also not well described by the HRGM1.

3. Nuclear Matter IST EoS and Proton Flow Constraint

Now we turn to a discussion the quantum version of the IST EoS used to model the nuclear
liquid-gas phase transition. The model pressure p is a solution of the system (RN is the HCR
on nucleons)

p = pid(T, νp)− pint
(
nid(T, νp)

)
, (9)

Σ = RN pid(T, νΣ) , (10)

where the grand canonical pressure pid(T, ν) and particle number density nid(T, ν) = ∂pid
∂ ν of

noninteracting point-like fermions are given by the expressions [54]

pid = TgN

∫ d3 p
(2π)3 ln

[
1 + exp

(
ν−
√

p2+m2

T

)]
, nid = gN

∫ d3 p
(2π)3

[
exp

(√
p2+m2−ν

T

)
+ 1
]−1

. (11)

Here the system temperature is T, mN = 940 MeV is the nucleon mass and the nucleon degeneracy
factor is gN = 4.

The term −pint in Equation (9) represents the mean-field contribution to the pressure generated
by an attraction between the nucleons. Clearly, the repulsive scattering channels are also present in
nuclear matter. However, at densities below nmax ' 0.8 fm−3, which is the maximal density of the
flow constraint [55], the repulsion is suppressed, since at these particle number densities the mean

nucleon separation is larger than rmin =
(

3
4πnmax

)1/3
' 0.7 fm. But at such distances the microscopic

nucleon-nucleon potential is attractive [56], whereas the remaining repulsive interaction can be safely
accounted by the particle hard-core repulsion.

The quantity Σ in Equation (10) is a one-component analog of the IST coefficient of Equation (2)
first introduced in Ref. [23] in order to distinguish it from the eigensurface tension of ordinary nuclei.
Here it is appropriate to explain that the IST appears because the virial expansion of the pressure
includes the terms which are proportional not only to the eigenvolume V0 = 4π

3 R3
N , but also to the

eigensurface S0 = 4πR2
N of a particle with the HCR RN [23]. This surface term contribution is just
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accounted by the IST coefficient Σ. The meaning of Σ as the surface tension coefficient can be easily
seen from the effective chemical potentials which are related to the baryonic chemical potential µ as

νp = µ− pV0 − ΣS0 + U
(
nid(T, νp)

)
, (12)

νΣ = µ− pV0 − αΣS0 + U0 . (13)

Here Σ is conjugated to S0, while the attractive mean-field potentials are denoted as U
(
nid(T, νp)

)
and U0 = const. From these expressions one can conclude that the effects of hard-core repulsion
are only partly accounted by the eigenvolume of particles, while the rest is determined by their
eigensurface and the IST coefficient Σ (for more details see [23]). Note that the presence of the pressure
of point-like particles pid in Equations (9) and (10) is a typical feature of EoSs formulated in the Grand
Canonical Ensemble.

The system (9)–(13) is a concrete realization of the quantum model suggested in [22].
The self-consistency condition

pint(n) = n U(n)−
∫ n

0
dn′U(n′) (14)

relates the interaction pressure pint
(
nid(T, νp)

)
and the corresponding mean-field potential

U
(
nid(T, νp)

)
, and it guarantees the fulfillment of all thermodynamic identities [22] for the quantum

IST (QIST) EoS.
It is necessary to stress that substituting the constant potential U0

(
nid(T, νΣ)

)
= const into

the consistency condition (14), one automatically finds that the corresponding mean-field pressure
should vanish, i.e., p̃int

(
nid(T, νΣ)

)
= 0. Note also that different density dependences of the attractive

mean-field potentials U
(
nid) and U0 simply reflect the different origins of their forces. Thus, U

(
nid)

is generated by the bulk part of interaction, while U0 is related to the surface part. The meaning
of U0 potential can be better understood after the non-relativistic expansion of the nucleon energy√

m2 + p2 ' m + p2

2m staying in the momentum distribution function of Equation (11): U0 lowers the
nucleon mass to the value m−U0, which is similar to the relativistic mean-field approach. The particle
number density can be found from the usual thermodynamic identity

nN =
∂p
∂µ

=
nid(T, νp)

1 + V0 nid(T, νp) +
3 V0 nid(T,νΣ)

1+3(α−1)V0 nid(T,νΣ)

. (15)

To be specific the power form of the mean-field potential [54] motivated by Ref. [57]

U(nN) = C2
dnκ

N ⇒ pint(nN) =
κ

κ + 1
C2

dnκ+1
N , (16)

is used. Here the mean-field contribution to the pressure pint(nN) is found from the consistency
condition (14). This is one of the simplest choices of the mean-field potential which includes two
parameters C2

d and κ only. It corresponds to the well-known polytropic form of the EoS, where κ is
related to the adiabatic index and C2

d is a constant of proportionality. Since the parameter α is fixed
already (see preceding section), the other two parameters of the QIST model are the hard-core radius
RN and the constant potential U0.

The QIST EoS with four adjustable parameters is able to simultaneously reproduce the main
properties of symmetric nuclear matter, i.e., a vanishing pressure pN = 0 at zero temperature T = 0
and the normal nuclear particle number density n0 = 0.16 fm−3 and the value of its binding energy
per nucleon W0 = εN

nN
−m = −16 MeV (where εN is the energy density). Hence, the baryonic chemical

potential of nucleons is µ = 923 MeV. The QIST EoS with the attraction term (16) was normalized
to these properties of nuclear matter ground state and, simultaneously, it was fitted [54] to obey the
proton flow constraint [55]. The region in the pressure-density plane deduced from flow observables
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has become an easy-to-use standard to constrain the behavior of phenomenological T = 0 EoS at
supersaturation densities. See, e.g., Ref. [58] for its usage in the context of compact star astrophysics.
Although at a given value of particle number density the allowed range of pressure values of symmetric
nuclear matter is rather wide, it is not easy to obey it and to simultaneously achieve the available range
range of the incompressibility constant K0, since they anti-correlate with each other.

In the present analysis we consider a few values of parameter κ = 0.1, 0.15, 0.2, 0.25. For each
value of parameter κ the two curves in the nN − p plane were found in such a way that the upper
curve is located not above the upper branch of the flow constraint, while the lower curve is located
not below the lower branch of this constraint. The details are clear from two panels of Figure 4.
Notice that this is a highly nontrivial result for an EoS with only four adjustable parameters, since to
parametrize the proton flow constraint alone one needs at least 8 independent points. For a comparison
we mention that in Ref. [5] it is shown that only 104 of relativistic mean-field EoS out of 263 analyzed
in there are able to obey the proton flow constraint [55], despite the fact that they have 10 or even more
adjustable parameters.

Figure 4. Density dependence of the system pressure is shown for several sets of parameters which are
specified in the legend of each panel. See Table 1 for more details. The dashed area corresponds to the
proton flow constraint of Ref. [55].

Table 1. Several sets of parameters which simultaneously reproduce the properties of normal nuclear
matter (p = 0 and n = n0 = 0.16 fm−3 at µ = 923 MeV, see text for details) and obey the proton flow
constraint on the nuclear matter equations of state (EoS) along with incompressibility factor K0 and
parameters of critical endpoint (CEP). RN , C2

d , U0, and κ are the adjustable parameters of quantum
induced surface tension (QIST) EoS.

κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.25

RN [fm] 0.28 0.42 0.35 0.48 0.41 0.50 0.47 0.52
C2

d [MeV· fm3κ] 284.98 325.06 206.05 229.57 168.15 179.67 146.97 152.00
U0 [MeV] 567.32 501.65 343.93 312.83 231.42 217.76 162.03 157.41
K0 [MeV] 306.09 465.13 272.55 405.97 242.56 322.80 217.16 256.44

However, as was demonstrated in Ref. [58], the lower bound of the proton flow constraint would
correspond to a sequence of neutron stars with a maximum mass of only ∼ 1 M� and thus would
not fulfill the constraint from the observed mass of 2.01± 0.04 M� for pulsar PSR J0348+432 [59].
In Ref. [58] it was also shown that an equation of state which should fulfill the maximum mass
constraint should follow the upper bound of the flow constraint. As a guideline may serve the
ab-initio EoS DBHF from Ref. [58], which is soft enough to explain kaon production data in heavy-ion
collisions at SIS energies but at the same time even exceeds the upper limit of the flow constraint
at higher densities n > 0.5 fm−3 and yields a maximum mass larger than 2.3 M�, thus being even
stiffer than required by the observed mass of pulsar PSR J0348+432 [59]. It has been shown recently
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in Ref. [60] that the IST EoS in the parametrization optimized for explaining particle yields from
heavy-ion collisions is in accordance with the phenomenology of neutron stars, i.e., at T = 0.

Since for κ ≥ 0.33 a good description of the proton flow constraint cannot be achieved [54], those
values for the parameter κ were not considered. The reason for such a behavior is that for κ ≥ 0.33 the
attractive pressure pint(nN) is growing with density so fast that the pressure of point-like nucleons
pid has to grow even faster to obey the proton flow constraint. However, both functions nonlinearly
depend on the particle number density and, hence, if the resulting pressure obeys the flow constraint
at low densities, it cannot obey it at the high ones, and vice versa. On the other hand, the values of
parameter κ below 0.1 were not considered either since they correspond to unrealistically large values
of the incompressibility constant K0 ≡ 9 ∂p

∂nN

∣∣
T=0, nN=n0

. As one can find from Table 1 for κ = 0.1,
the minimal value of the incompressibility constant K0 is about 306 MeV, while for κ < 0.1 it is even
larger.

From Table 1 one can see that the range of RN is still wide, i.e., RN ∈ [0.28; 0.52] fm. The QIST
EoS, however, allows one to obtain an essentially narrower range of the nucleon HCR RN . Indeed,
if one requires that this EoS should be applicable at the maximal value of particle number density
nmax ' 0.8 fm−3 of the proton flow constraint, then such a condition can be written as

4
3

πR3
Nnmax ≤ ηmax . (17)

Here the range of the QIST EoS applicability is given by the maximal packing fraction ηmax of the
model. Assuming that the maximal packing fraction of the QIST EoS is ηmax = 0.2, i.e., it is similar
to the Boltzmann version of the IST EoS [20,21], one gets the following inequality on the nucleon
hard-core radius RN ≤ 0.4 fm and, hence, one finally obtains 0.28 fm ≤ RN ≤ 0.4 fm.

The quantum virial expansion developed in [22] both for the quantum VdW and QIST EoS allows
us to obtain even a narrower range of values which is consistent with the S-matrix approach [61] to the
EoS of the gas of nucleons at temperatures above 100 MeV [62,63]. For an extended discussion see also
Ref. [64]. In particular, the quantum second virial coefficient aS

2 (T) of a nucleon gas as obtained from
realistic S-matrix approach provides approximately the following inequalities [63,64]

0.5 fm3 ≤ aS
2 (T) ≤ 1.25 fm3 for 100 MeV ≤ T ≤ 170 MeV . (18)

These inequalities correspond to the conditions 0.31 fm ≤ RN ≤ 0.42 fm, if one uses the classical
definition of the HCR. It is interesting that these inequalities are similar to the ones found above for
the QIST EoS. Using the results of Ref. [22] the second aIST

2 and third aIST
3 virial coefficients for the

repulsive part of the QIST EoS for nucleons can be cast as

aIST
2 = 4V0 + a(0)2 , aIST

3 ' [16− 18(α− 1)]V2
0 + 5V0a(0)2 + a(0)3 , (19)

where the second a(0)2 and the third a(0)3 virial coefficients of a point-like hadron which in the
non-relativistic approximation for fermions can be written as

a(0)2 ' ±2−
5
2 ωh ' ±0.177ωh , a(0)3 ' 2

[
2−4 − 3−

5
2

]
ω2

h ' −3.4 · 10−3ω2
h , ωh =

1
gh

[
2πh̄2

Tmh

] 3
2

, (20)

where mh is the hadron mass, gh is its degeneracy, and the upper (lower) sign corresponds to baryons
(mesons). Introducing an effective second virial coefficient of nucleons aeff

2N(nN) ≡ aIST
2 + nN aIST

3 which
depends on particle number density of nucleons nN and assuming that the nucleonic contribution to
the HRGM is given by the repulsive part of the QIST EoS (9), one can use the effective second virial
coefficient aeff

2N(nN) to constrain the values of HCR further. Our analysis shows that for the nucleon
densities below nN ' 3n0 = 0.48 fm−3 the fourth and higher virial coefficients are not important and,



Universe 2019, 5, 63 11 of 16

hence, we can require that up to this nucleon density the coefficient aeff
2N(nN) obeys the constraint (18).

This leads to the follows range of RN values: RN ∈ [0.275; 0.36] fm. In other words, for such a range of
values of the nucleonic HCR not only the second, but also the third virial coefficient of nucleons will
provide the fulfillment of the constraint (18).

At first glance this result may look surprising, since one does not see any important role of
the quantum third virial coefficient. A close inspection shows that due to the small value of the
coefficient which enters the expression for a(0)3 , the quantum effects are important at temperatures

below 20 MeV, while at T ≥ 100 MeV the coefficients a(0)3 and a(0)2 are rather small, since ωN(T =

100 MeV) ' 1 fm3 and it is a decreasing function of T. A simple analysis shows that for nucleons
a(0)2 (T = 32 MeV) ' 1 fm3, while for T = 50 MeV one finds a(0)2 (T = 50 MeV) ' 0.5 fm3 and this
coefficient decreases fast with temperature.

As a result at T ≥ 100 MeV the values of the coefficients aIST
2 and aIST

3 are defined by the HCR
of nucleons and the parameter α. Moreover, this is a generic result for all hadrons and hadronic
resonances heavier than kaons. For baryons this is evident, since the nucleons are the lightest among
them. For kaons and heavier mesons (ω, ρ etc) the coefficient a(0)3 remains very small at T ≥ 50 MeV,

while the value of the coefficient |a(0)2 | for such mesons can be a bit larger than for nucleons. However,

the coefficient a(0)2 for mesons is negative and, hence, it simply compensates the larger value of the
classical excluded volume (with hard-core radius Rm = 0.42± 0.04 fm) of such mesons found within
the HRGM [20–22]. These findings on the second and third virial coefficient of hadrons heavier
than kaons are in line with the results of Ref. [39]. Moreover, they explain the reason of why the
classical second virial coefficient is sufficient for the HRGM at all collision energies. Indeed, for CFO
temperatures in the range between 50 and 100 MeV the particle number density of all mesons is almost
negligible, while for all baryons it does not exceeds 0.075 fm−3 (see Figure 3 in [19]). Hence, in this
range of CFO temperatures the hard-core corrections are negligible. On the other hand, for CFO
temperatures above 100 MeV and below 170 MeV the quantum effects are small not only for kaons and
heavier mesons as we discussed above, but for all mesons [9,10]. Thus, at CFO the classical formulation
of HRGM is rather accurate.

However, when the QIST EoS is required to simultaneously fulfill the gravitational mass-radius
relation of neutron stars and the proton flow constraint, one finds somewhat larger values of the
HCR of nucleons, namely RN ∈ [0.42; 0.47] fm [60]. Note that within the recent excluded nucleon
volume generalization of the relativistic meanfield model “DD2” by Typel [65] even larger values of
the HCR of nucleons were used in the description of neutron star phenomenology such as mass-radius
relations [66], moment of inertia [67], tidal deformabilities [67,68], and cooling [69]. The “DD2 p40”
EoS used in these works would correspond to a nucleon HCR of RN = 0.62 fm which is at the
very limit of what is compatible with the recent constraint on the compactness of neutron stars
stemming from the gravitational wave signal measured for the inspiral phase of the neutron star
merger GW170817 [70]. These results indicate that the repulsive core of the nucleon-nucleon interaction
depends on the properties of the medium since the description of static neutron star properties at
zero temperature require a stiffer EoS than the one which is successfully reproducing the hadronic
multiplicities measured in HIC. What is the physical reason for such a difference?

We suggest as an answer to this question that inasmuch as the excluded volume is due to
Pauli blocking, the nucleonic excluded volume (and thus the nucleon radii) shall be as temperature
dependent as the quark Pauli blocking effect is. The relationship between Pauli blocking and excluded
volume is known from the fact that the hard-sphere model of molecular interactions is based on the
electron exchange interaction among atoms (see, e.g., Ebeling et al. [71]) which is captured, e.g., in the
Carnahan-Starling EoS [72]. Note that the IST approach is reproducing the Carnahan-Starling EoS for
not too large packing fractions [21]. It is found that the Pauli blocking effect decreases with increasing
temperature, see for instance Equation (6) of [71]. A recent application to the equation of state for
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warm dense plasmas can be found in [73] where the effect of ionization potential depression accessible
in high-pressure experiments is discussed.

Detailed parametrizations of the Pauli shift for nuclear clusters are found in [74] with the similar
trend. The temperature-, density-, and momentum-dependence of the Pauli blocking depends
on the generic form of bound state wave functions and results could thus be taken over from
atomic to hadronic systems. Therefore it is plausible that the phenomenological radii for hadrons at
high temperatures are smaller than those required for compact star properties at zero temperature.
The repulsive Pauli blocking effect between composite particles is especially pronounced at low
temperatures, in the regime of quantum degeneracy.

In Ref. [75] it has been demonstrated that the repulsive part of effective density-dependent
nucleon-nucleon interactions of the Skyrme type (e.g., the one by Vautherin and Brink [76]) can be
reproduced by the quark exchange interaction between nucleons. Recently the relation between quark
Pauli blocking excluded volume effects in the nuclear EoS have been revisited and the effects of chiral
symmetry restoration in the quark sector have been studied [77]. A comparison to the relativistic
mean field approach DD2 with excluded volume [65] allowed to extract a density-dependent excluded
volume and thus a radius parameter at T = 0 in the range of 0.45–0.70 fm.

Note that the QIST model offers a simple way to make a stiffer EoS at higher pressures or densities.
Actually, as it was mentioned in the first paper on IST EoS [23], the parameter α may, in principle, be
a function which depends on the system pressure. Therefore, it would be interesting to generalize
the QIST EoS and to include into it the pressure or density dependence of the parameter α and/or
of the HCR of nucleons. Then having more adjustable parameters and adding more astrophysical
constraints as, e.g., for an upper limit on the maximum mass as well as lower and upper bounds
on the neutron star radius from the binary neutron star merger, one could aim at a best possible
description including the proton flow constraint and to find a realistic functional dependence of α and
RN on density and temperature. In this respect we would like to mention the possibility to model the
excluded nucleon volume in a density and temperature dependent way, even changing the sign so
that also attractive interactions are accessible. In this form, Typels excluded volume model [65] has
been used to obtain an equation of state and phase diagram with a second critical endpoint (CEP)
beyond the gas-liquid one [30]. This could be used to mimic effects of the nuclear-to-quark matter
phase transition in the QCD phase diagram. Within the IST approach the IST coefficient Σ stands for
attraction effects and therefore the interplay of attraction and repulsion as captured in the (medium
dependent) parameters α and RN , respectively, could eventually lead to similar behaviour and a second
CEP in the phase diagram.

4. Conclusions

In this review we thoroughly discussed the IST approach to model the EoS of hadronic and
nuclear matter and analyzed different constraints on the HCR of nucleons. The most successful
formulation of the HRGM gives RN ' 0.365± 0.03 fm, while the QIST EoS of nuclear matter leads to
RN ' 0.34± 0.06 fm. At the same time, a comparison of quantum virial coefficients with the S-matrix
approach gives RN ' 0.32± 0.04 fm. Therefore, the most probable range of HCR of nucleons which
is consistent with different constraints following from the hadronic and nuclear matter properties is
RN ∈ [0.3; 0.36] fm. Since applications of the QIST EoS to the description of neutron star properties
require somewhat larger HCR of nucleons [60], we conclude that the QIST EoS for neutron stars should
be improved further, especially by improving the model for the interaction between nucleons at high
particle number densities typical for the neutron stars core. The generalized QIST EoS which considers
the density and temperature dependence of the parameters α and RN may provide a very effective
way to solve this problem.
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31. Logoteta, D.; Providenĉia, C.; Vidana, I. Formation of hybrid stars from metastable hadronic stars. Phys. Rev. C

2013, 88, 055802. [CrossRef]
32. Bombaci, I.; Logoteta, D.; Vidana, I.; Providenĉia, C. Quark matter nucleation in neutron stars and
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