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Abstract: In a recent article, we noticed that the electron density in condensed matter exhibits large
spikes close to the atomic nuclei. We showed that the peak magnitude of these spikes in the electron
densities, 3–4 orders larger than the average electron plasma density in the Sun’s core, have no
effect on the neutrino emission and absorption probabilities or on the neutrinoless double beta decay
probability. However, it was not clear if the effect of these spikes is equivalent to that of an average
constant electron density in matter. We investigated these effects by a direct integration of the coupled
Dirac equations describing the propagation of flavor neutrinos into, through, and out of the matter.
We proposed a new iteration-based algorithm for computing the neutrino survival/appearance
probability in matter, which we found to be at least 20 times faster than some direct integration
algorithms under the same accuracy. With this method, we found little evidence that these spikes
affect the standard oscillations probabilities. In addition, we show that the new algorithm can explain
the equivalence of using average electron densities instead of the spiked electron densities. The new
algorithm is further extended to the case of light sterile neutrinos.

Keywords: neutrino mass and oscillations; long- and short-baseline accelerator neutrinos; appearance
and disappearance experiments

1. Introduction

The results of the solar and atmospheric neutrino oscillation experiments were recognized by
a recent Nobel prize. The Mikheyev–Smirnov–Wolfenstein (MSW) effect is an essential component
needed for the interpretation of these neutrino oscillation experiments [1,2] (for a historical account
of neutrino oscillations in matter, see [3]). Therefore, the mixing of the neutrino mass eigenstates in
vacuum and in dense matter seem to be well established in describing the propagation of neutrinos
from source to detecting devices. These effects were mostly considered in electron plasma [4,5], such
as the Sun or supernovae, and their use is extended to condensed matter, such as the Earth crust
and inner layers [6–8]. However, to our best knowledge, the variation of the electron density inside
condensed matter has not yet been considered. A simple estimate of the electron density and neutrino
potential inside a medium-Z nucleus, such as 28Si, shows that it is more than two orders of magnitude
larger than that existing in the Sun’s core [9,10]. One could then ask if these high electron densities can
produce additional mixing of the mass eigenstates that need to be considered in the interpretation of
neutrino production and detection phenomenology.

The effect of the matter-induced neutrino potential on the neutrino mixing in matter is traditionally
analyzed using the local in-medium mass eigenstates with modified effective masses and mixings [11–13].
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This approach relies on the separation of the neutrino wavelength scale from the much larger neutrino
oscillation and matter density variation scales. In reality, there are no such local mass eigenstates in
matter (the neutrino potential is a timelike component of a vector and modifies the energy but not the
mass), but the analysis of the evolution of the vacuum mass eigenstates in finite matter medium is
complicated by the various scales involved. However, the results based on local, in-medium, mass
eigenstates seem to be valid. One of the issues related to the introduction of the fictitious in-matter
mass eigenstates is that one assumes that the neutrinos produced via weak interactions in dense
matter (e.g., in the Sun’s core) are emitted as in-matter mass eigenstates. The transition to vacuum is
usually described by the long-scale evolution of the amplitudes (for an example, see Reference [14]),
which may or may not be adiabatic. In this article, we investigate if the results of this approach
(see also Reference [9]) can be extended to the analysis of the effects of nonadiabatic transitions of
the neutrinos through condensed matter, where the electron densities near the atomic nuclei are
orders of magnitude larger than those in the Sun’s core. In our analysis, we use the evolution of the
flavor amplitudes (see Equation (11) below), thus avoiding the complicated evolution of the fictitious
in-medium mass eigenstates.

2. Neutrino Oscillations in Condensed Matter

It is now widely accepted that the flavor neutrinos participating in the weak interaction are
coherent superpositions of vacuum mass eigenstates. For the neutrino fields, the mixing reads:

ναL(x) =
Nm

∑
j=1

UαjνjL(x) , (1)

where index α indicates a flavor state (electron, muon, tau, . . .), j designates mass eigenstates (1, 2, 3,
. . ., Nm), and Uαj are elements of the vacuum neutrino mixing (PMNS) matrix. Here, the dots indicate
sterile flavors, or high mass eigenstates, with Nm being the number of mass eigenstates. If one discards
the existence of the low-mass sterile neutrinos, the coupling to the higher mass eigenstates is then very
small, and the sum over j in Equation (1) is reduced to Nm = 3. This mixing leads to violations of
the flavor number, and it is reflected in the outcome of the neutrino oscillation experiments. These
experiments are mostly analyzed in terms of neutrino states:

|ναL〉 =
3

∑
j=1

U∗αj
∣∣νjL

〉
, (2)

which are dominated by the larger components of the fields. Neutrino states are used to analyze the
matter effects, also known as Mikheyev–Smirnov–Wolfenstein effects [15]. Neutrino mixing is affected
in matter by the neutrino optical potential. The general relation between the neutrino optical potential
(in eV) and the electron density Ne (in cm−3) is:

Ve(eV) = ±
√

2GF Ne ≈ ±7.56× 10−14mpNe = ±1.26× 10−37Ne , (3)

where the minus–plus sign corresponds to (anti)neutrinos, GF is Fermi’s constant, and mp is the proton
mass (1.67× 10−24 g). Above, we used Equation (2.8) of [13], where the equivalent matter density
times the electron fraction Ye was replaced with mpNe. In atoms, just considering the electron density
of two electrons in the lowest 1s state of a Hydrogen-like atom (the higher s-states contribute very
little, ∝ 1/n3, n being the principal quantum number), one gets:

Ne(r) = 1030 2
π

(
Z
53

)3
e−2rZ/53 (cm−3), (4)
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where Z is the atomic number and r is the radial distance from the atomic nuclei in pm (10−12 m).
Electron Density Functional Theory (DFT) calculations [16,17] (for example, see Figure 1 of
Reference [9]) show that this approximation is very good at and near the nuclei, where the main
transition takes place. Figure 1 shows the result of a DFT calculation for the electron density in the cell
of quartz crystal, one of the most common in the Earth’s crust. The results show that 85% of the electron
density in the cell resides in the spikes (defined as larger than the average density of 0.1 atomic units),
while only 15% is located in the volume that has lower-than-average density. In addition, the values
of the electron density near the peaks are very well described by Equation (4). These high electron
densities near the nuclei are much larger than those in the Sun’s core for all atoms with an atomic
number greater than 5. As an example, for atoms with Z ≈ 53, the electron density at the nucleus is
four orders of magnitude larger than that in the Sun’s core.

Figure 1. Electron density inside a quartz (SiO2) cell obtained with DFT calculations using Quantum
Espresso code [18]. Shown is the electron density (in atomic units) in a plane through the cell that cuts
very close to three silicon nuclei (higher peaks), and two oxygen nuclei.

Therefore, it should be interesting to investigate the effects of these large electron densities on
the neutrino mixing in atomic weak interactions. To solve this problem, one needs to consider the
evolution of mixing for three (or more) neutrino mass eigenstates, which can be described by the
coupled Dirac equations:

i d
dt

ψ1

ψ2

ψ3

 =


pxαx + m1β 0 0

0 pxαx + m2β 0
0 0 pxαx + m3β

+ U†

Ve(x) + VN(x) 0 0
0 VN(x) 0
0 0 VN(x)

U


ψ1

ψ2

ψ2

 , (5)

where ψj are Dirac spinors for the (perturbed) vacuum mass eigenstates, mj are the corresponding
neutrino masses, px is the momentum in the direction of the beam, and αx and β are Dirac matrices [19].
Here, Vn is the neutral current potential generated mostly by neutrons, i.e.,

Vn(eV) ≈ ∓GF Nn/
√

2 ≈ ∓6.3× 10−38Nn , (6)

where Nn is the local neutron density in cm−3 (here and below we neglect the neutral current
contributions from protons and electrons, which cancel out in the limit of average constant densities).
The neutral current potential is the same for all three active neutrinos, and therefore can be neglected in
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the analysis of neutrino oscillations (as is the main momentum term in the underlying Dirac equations).
However, if the sterile neutrinos are present, the neutral current potential needs to be considered [20].

In Equation (5), the Dirac spinors ψj = νjφj can be viewed as components of some flavor neutrino
normalized superposition of mass eigenstates spinors:

ψα = ∑
j=1,2,3

ψj = ∑
j=1,2,3

νjφj , (7)

where α indicates the known active neutrino flavors—electron, muon, and tau. Here, we consider the
traditional approach [14] of separating the neutrino wavelength scale from the neutrino oscillation
and matter density variation scales by considering a Schroedinger-like equation for the amplitudes,
assuming that the φj spinors are free spinors.

The vector of 3 flavor amplitudes is denoted as ν f =
(
νe, νµ, ντ

)T , and then the Schroedinger-like
evolution equation for the flavor amplitudes in matter reads:

i
∂ν f

∂t
= (H0 + V) ν f , (8)

where H0 = Udiag
(
m2

1/(2P), m2
3/(2P), m2

3/(2P)
)

U†, V = diag (Ve + Vn, Vn, Vn), ma are the masses
of the vacuum mass eigenstates, and P = |~p| is the magnitude of momentum (P ≈ E for relativistic
neutrinos). The general requirement for the validity of the above evolution equation is that the neutrino
wavelength be smaller than the length over which there is a significant change of the optical potential
created by a varying electron density [13,14]:

λ�| V(x)/ (dV/dx) | . (9)

In the case of the potential created by the atomic electron density, Equations (3) and (4), this
condition reads:

2π
h̄c
Pc
� 53000

2Z
(in f m), (10)

which is satisfied for neutrino energies larger than 1 MeV, and for all atomic numbers larger than that
of oxygen.

In constant electron density, Equation (8) is usually solved by diagonalizing the in-matter
Hamiltonian, H = H0 + Ve, assuming that the solution describes in-matter mass eigenstates that
have in-matter mixing matrices and masses, and using these effective masses and mixings in the
standard vacuum oscillation formulae [14]. We will call this the eigenvalues method. In this approach,
Equation (4) suggests that the electron density inside the atomic nucleus is much larger than that in
the Sun’s core and, therefore, the (anti)neutrinos are emitted in the (lower)higher mass eigenstates.
Solutions to this problem for one single atom were discussed in Reference [9]. Here, we are interested to
see if there are any effects of the electron density “spikes” around the atomic nuclei in bulk condensed
matter. For that, we integrate Equation (8), which we rewrite in dimensionless form:

i
d
ds

νe

νµ

ντ

 =

U

0 0 0
0 α 0
0 0 γ

U† +

A(s) 0 0
0 0 0
0 0 0



νe

νµ

ντ

 ≡ H(s)

νe

νµ

ντ

 . (11)

Here, s is the normalized propagation length, s = x/su, su is the unit length defined as su =

(2Eh̄c)/|∆m2
31c4|, α = ∆m2

21/|∆m2
31|, γ = ∆m2

31/|∆m2
31|, and A(s) = 2EVe(x)/|∆m2

31|. The mass
differences ∆m2

ij were taken from Reference [21], and γ = ±1 in Equation (11) takes into account the

normal(inverted) mass ordering, ∆m2
31 > 0(∆m2

31 < 0). In the calculation, we use a number N of
density spikes, entering A(s) via Ve(x). Shown in Figure 2 are different density profiles: Gaussians in
blue, exponential in red, and a combination of the two of them in black. Each density profile represents
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the electron density near an atomic nucleus multiplied by twice the proton mass. Given that the
Gaussians are normalized to unity, an additional normalization factor ρN was used to recover the flat
average density of matter ρ:

ρN = ρ s/N , (12)

where, for an easier comparison with solar density, we used the local equivalence between the average
electron density 〈Ne〉 and average mass density ρ:

ρ = mp 〈Ne〉 /Ye ≈ 2mp 〈Ne〉 . (13)

We use a similar relation for ρN related to the normalization of the Gaussian spikes in the electron
density. The number of intervals N can be chosen appropriately to describe the large peak values
of the Gaussians.

To integrate Equation (8), we used the ZVODE routine from the SciPy ODE package, which
implements a complex version of the VODE algorithm [22]. Given that the electron density spikes are
extremely narrow, we tried different widths for the density profiles shown in Figure 2. In an attempt to
get good accuracy of the solution, we divided the width of each density spike by about 100 integration
steps, and required for each step an absolute tolerance of 10−10 from ZVODE routine.
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Figure 2. Profile of the electron density spikes used in the calculations multiplied by the proton mass,
for comparison to equivalent matter density, Yeρequiv(s) = Ne(s)mp. The horizontal axis represents
a small window in the dimensionless parameter s (see text after Equation (11)).

The results in Figure 3 show a significant difference between the solution of the integration
method using the spiked density profile (in black) and the “exact” eigenvalues solution corresponding
to the equivalent flat electron density (in dark green). As one can see from the figure, there is little effect
at 1300 km that corresponds to the Deep Underground Neutrino Experiment (DUNE)/Long-Baseline
Neutrino Facility (LBNF) experiment baseline, but it would have been significant for 7330 km, which
is the distance between Fermilab and Gran Sasso or that from CERN to Sanford lab in South Dakota.
However, when increasing the accuracy in the ZVODE routine to 10−12, the difference between the
two curves in Figure 3 disappeared. This situation emphasized once again the danger of relying
solely on numerical analysis. In addition, the needed accuracy of 10−12 being close to the numerical
round-off error for double precision further emphasizes the difficulty of the numerical problem.
We also extensively checked this aspect using Julia’s Differential Equations package, which has a much
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richer set of routines that can integrate stiff and nonstiff systems of complex differential equations,
and the behavior was similar to that we experience with ZVODE.

Therefore, we tried using a more direct analysis to understand this result, which will be presented
in the next section.
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Figure 3. Calculated Pνµ→νe for a baseline of 7330 km and muon neutrino energy of 0.5 GeV. The green
line is given by a constant matter density approach (ρ = 3.8 g/cm3). The black line was obtained by
integrating Equation (8), with a precision of 10−10/step using an equivalent spiked electron density,
and it is shown to be incorrect (see text for details), while the green curve is the correct result.

3. The Iterations Algorithm

Previous work on neutrino oscillation probabilities in matter includes perturbative expansions [20,23–25].
The most used approach is to diagonalize the Hamiltonian in matter, and use perturbation theory to
identify main contributing terms. In the process, one uses the S-matrix approach for the propagation
of the amplitudes. For example, for Equation (11), the corresponding S-matrix is given by:

S(s) = Te−i
∫ s

0 H(s′)ds′ , (14)

where the T operator in front of the exponential indicates an ordered position-dependence of the
integrals when the matrix exponential is expanded (similar to the time-ordered product). The S-matrix
can be used to calculate the probability of measuring neutrino flavor α at distance s assuming that
flavor β was emitted at s = 0 [23]:

Pβ→α =
∣∣Sαβ(s)

∣∣2 . (15)

In the case of constant electron density, A(s) in Equation (11) does not depend on the integration
variable s, and one can use the diagonalization methods and/or perturbative expansions [20,23–25].
Alternatively, one can directly integrate Equation (11).

Here, we propose using the matrix solution to Equation (11) in a different way: we divide the
s interval in N small pieces ∆si (for example, equally spaced ∆si = s/N), for which we consider the
H(si) Hamiltonian to be constant:

H(s) ≡ UD1U† + D2(s) , (16)
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where the diagonal matrices D1 and D2 can be identified by comparing with Equation (11). The solution
to Equation (11) can be written as:

S(s) =
N

∏
i=1

S(∆si) . (17)

Given that the ∆si are small, one can show that the matrices S(∆si) can be approximated by:

S(∆si) = e−i∆si D2(si)Ue−i∆si D1U† . (18)

Moreover, given that matrices D1 and D2 are diagonal, then:

e−i∆si D2(si) =

e−i∆si Ā(si) 0 0
0 1 0
0 0 1

 ≡ UA(si) , (19)

and:

e−i∆si D1 =

1 0 0
0 e−i∆siα 0
0 0 e−i∆siγ

 ≡ U f , (20)

where Ā(si) is calculated with the average electron density in the interval (si, si + ∆si).
Using Equations (17)–(20), one can iteratively find the S-matrix and the associated probabilities of
Equation (15). We will call this approach the iterations method. In the proof of Equation (18), one needs
the transformations forth and back between the flavor amplitudes and the mass eigenstates amplitudes:

να = ∑
i

Uαiνi ; νi = ∑
α

(
U†
)

iα
να . (21)

The condition for small ∆si used in Equation (18) suggests that one needs a large number of
iterations to obtain good accuracy. Our numerical implementation indicates that even 10–15 factors in
Equation (17) would provide a 0.1% accuracy when compared with the “exact” eigenvalues method.
Figure 4 shows the difference between the iterations method described above when only 15 iterations
are used, and the exact eigenvalues method solution. Increasing N to 150 reduces the absolute difference
to less than 10−5.
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Figure 4. Absolute difference between the probability of electron neutrino appearance calculated with
the iteration method described in the text and the “exact” eigenvalues method. A constant matter
density of 2.8 g/cm3 and a muon neutrino beam of 0.5 GeV was used.
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The iterations method described above works as well for smoothly varying average electron
(matter) densities. Figure 5 shows the results of the above method (red curve) compared with the
solution obtained by directly integrating Equation (8) for a varying density through the Earth’s crust
for the DUNE/LBNF experiment, similar to that described in Reference [26] (blue curve). The electron
neutrino appearance probability is calculated for a muon neutrino beam of 0.8 GeV. The two curves
are overlapping if the artificial 0.005 shift to the red curve is removed (the estimated error used for
both algorithms is about 10−5).
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Figure 5. Comparison of the electron neutrino appearance probability, calculated with the iteration
method described in the text, and the direct integration method for smoothly varying electron (matter)
density (see text for details). The two curves are artificially separated by 0.005 for a better view.
A muon neutrino beam of 0.8 GeV was used in the calculations.

The iterations algorithm is very efficient, while in almost all cases one can use a equally spaced grid
(∆si = const), and the product of the matrices UU f U† in Equation (18) can be precalculated. Therefore,
the right-hand side of Equation (18) can be easily calculated at any iteration step in Equation (17)
by multiplying each raw of the precalculated matrix with the corresponding diagonal element in
UA(si) (Equation (19)). One can conclude that the algorithm is very simple and efficient, features that
become even more important when it is extended to the light sterile neutrino(s) case (see Section 5).
In addition, it is faster than a direct integration method for the case of varying matter densities: in
a comparison with the integration algorithm used in Reference [26] (see Reference [19] in [26]) for
the same matter density profile used in Figure 5, we observed a factor of 20 less iterations needed,
equivalent to a speedup of about 20, under the same accuracy. A simple way of understanding this
improvement relative to the direct integration of Equation (11) is that Equation (18) includes some
partial integration information through the exponential factors in the diagonal matrices UA(si) and U f .

4. The Connection to the Integration Method

The iterations algorithm described above can also be used to understand the results of Section 2.
To see that, one can consider the electron density in condensed matter composed of N spikes clustered
around the atomic nuclei. One can further approximate the spikes with Dirac delta functions, which
are normalized to unity and multiplied by the constant given in Equation (12). Then, when integrating
Equation (8) on each ∆si segment, one can (i) transform the flavor amplitudes into mass-eigenstate
amplitudes with U† (for example, see Equation (21)), (ii) freely propagate the mass-eigenstate
amplitudes using Um, (iii) transform the mass-eigenstate amplitudes into flavor amplitudes with
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U, and (iv) integrate Equation (8) over the Dirac delta spikes. For the last step, one can assume that in
the vicinity of a Dirac delta spike only the term proportional with A(s) in Equation (8) survives:

i
dνe(s)

ds
= A(s)νe(s) . (22)

Given that the Dirac delta function norm in Equation (12) is proportionate to ρ (s/N) = ρ∆si,
then A(s) = ∆si Ā(si)δ(s) in the interval ∆si, and the solution to the above equation becomes:

νe(sa) = e−i∆si Ā(si)νe(sb) , (23)

where sb ≈ sa are the s coordinates before and after the delta spike in the (si, si + ∆si) interval,
and Ā(si) is calculated with the average electron density of Equation (13). Therefore, the result of
integrating the full vector of amplitudes over the Dirac delta spikes is:νe(sa)

νµ(sa)

ντ(sa)

 =

e−i∆si Ā(si) 0 0
0 1 0
0 0 1


νe(sb)

νµ(sb)

ντ(sb)

 ≡ U f

νe(sb)

νµ(sb)

ντ(sb)

 . (24)

Putting together all the steps of the algorithm described above, one gets for the S-matrix factors
entering Equation (17):

S(∆si) = UA(si)UU f U† , (25)

which is the same as in Equation (18) with the definitions (19)–(20) for UA and U f . This completes the
proof that justifies the use of an average electron density, rather than its large variation around
the atomic nuclei. For smooth changes of the average electron density one can use a typical
coarse-graining argument.

5. The Case of Light Sterile Neutrinos

Recent short-baseline neutrino oscillations investigation [27] seems to confirm older suspicions
that one or more sterile neutrinos may be present. A vigorous short-baseline neutrino program to settle
this issue is underway at Fermilab [28]. Therefore, we consider extending our algorithm for neutrino
oscillations in varying electron density by including the effect of sterile neutrinos. Here, we consider
one sterile neutrino and a fourth mass eigenstate with a mass of about 1 eV. Then, in all above equations,
a new sterile flavor with its amplitude νs needs to be included, and the 3× 3 PMNS mixing matrix U3

should be extended to four rows and four columns (the extension to more sterile neutrino and mass
eigenstates is straightforward). One could find compact formulae for the 4× 4 matrix elements [20,29],
but to avoid typos in the lengthy equations and given that we are mainly interested in numerical
calculations, we can obtain the 4-dimensional U3+1 matrix using six 4× 4 rotations:

U ≡ U3+1 = U34 (θ34, δ34)U24 (θ24, δ24)U14 (θ14, δ14)U23 (θ23, δ23)U13 (θ13, 0)U12 (θ12, 0) . (26)

Here, θij are the mixing angles and δij are the CP-violating phases. The Uij(θij, δij) are 4× 4
matrices that represent rotations in two direction, ij, such that the Uii and Ujj matrix elements are
cos(θij) and the Uij matrix elements are sin(θij)e

−iδij (the Uji matrix elements being its complex
conjugate). Then, Equations (11) and (15)–(20) can be extended using:

D1 =


0 0 0 0
0 α 0 0
0 0 γ 0
0 0 0 κ

 , D2(s) =


A(s) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 B(s)

 . (27)
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Here, κ = ∆m41/|∆m31| and B(s) = −2EVn(x)/|∆m2
31|, where Vn(x) given in Equation (6) is

proportional with the neutron density in nuclei. Given that the neutron density inside a nucleus is
orders of magnitude larger than the electron density at the nucleus, the spikes in B(s) are much larger
than those in A(s). For example, in typical atoms in the Earth’s, the maximum electron-induced optical
potential is about 10−7 eV, while the neutron-induced optical potential is about 5 eV. In addition,
the slope of the neutron density in nuclei is much steeper, and the validity of the extension of
Equation (11) can only be justified for neutrino energies above 1.5 GeV (see Equation (9)). For those
energies, the algorithm of Section 3 can be easily extended using the definitions (26) and (27). Extending
the analysis of Section 4, one can conclude that the use of average density in the A(s) and B(s) terms
entering Equation (27) is granted. Then, the average scaled potentials, Ā(s) and B̄(s), are similar in
magnitude, and the U f and UA(si) matrices in the S-matrix Equation (25) become:

U f =


1 0 0 0
0 e−i∆siα 0 0
0 0 e−i∆siγ 0
0 0 0 e−i∆siκ

 , UA(si) =


e−i∆si Ā(si) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 e−i∆si B̄(si)

 . (28)

Using matrices (26) and (28) in the iterations algorithm formula, Equation (25), can be used to
calculate the S-matrix and the transition probability.

For neutrino energies lower than 1.5 GeV, the 4× 4 extension of Equation (5) needs to be used.
In that case, the widely different mass scales would make the analysis intractable. However, if one
artificially increases the mass and the potential scales close to the neutrino energy scale, one can directly
integrate the 4× 4 extension of Equation (5). A preliminary numerical analysis suggests that using
average macroscopic electron and neutron densities provides the same oscillation probabilities as using
the spiked densities. Alternatively, one can consider the S-matrix for the 4× 4 extension of Equation (5)
and treat the neutron density spikes around the atomic nuclei as in Section 4 above. This analysis will
be reported separately.

Finally, the extension of our algorithm to more light sterile neutrinos, e.g., 3 + 2, is simple and
straightforward. One only needs to calculate the U3+2 mixing matrix by extending the definition given
in Equation (26), and to extend the D1, D2, U f , and UA matrices, Equations (27) and (28), by adding
the appropriate diagonal matrix elements.

6. Conclusions

In conclusion, we analyzed the effect of the large electron density variations around the atomic
nuclei on the neutrino oscillation probabilities in condensed matter. This analysis is relevant for the
DUNE/LBNF experiment. In Section 2, we attempted to fully integrate the evolution equation for
the neutrino amplitudes by considering the large variation of the electron density near the atomic
nuclei and therefore that of the neutrino potential. We found that the numerical integration under
these conditions could be treacherous, and could lead to erroneous results.

In Section 3 of the manuscript, we proposed a new iterative solution to the neutrino amplitudes
evolution equation, which proves to be very fast, reliable, and applicable to either constant matter
density or slowly varying matter density (assuming average electron densities). We also showed that
this algorithm is simple, efficient, very easy to implement, and it is faster (needs less iterations) by
a factor of about 20 than the direct integration algorithm.

In addition, we showed in Section 4 that one can obtain the same iterations method solution,
by assuming that the spikes in the electron density around the atomic nuclei can be approximated by
Dirac delta functions. Our solution thus justifies the use of average electron densities for matter effects
in neutrino oscillation probabilities.

Furthermore, in Section 5, we showed that the new algorithm can be extended to the case where
one or more light sterile neutrinos exist. We also showed that for some neutrino energy range relevant
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for long baseline experimentsm, the neutral current optical potential can be calculated with an average
neutron density, rather than the spiked neutron density around the atomic nuclei.
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LBNF Long-Baseline Neutrino Facility
MSW Mikheyev-Smirnov-Wolfenstein
ODE Ordinary Differential Equations
PMNS Pontecorvo–Maki–Nakagawa–Sakata
SciPy Scientific Python
(Z)VODE (Complex)Variable-coefficient Ordinary Differential Equation

References

1. Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369. [CrossRef]
2. Mikheyev, S.P.; Smirnov, A.Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar

Neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913.
3. Smirnov, A.Y. The Mikheyev-Smirnov-Wolfenstein (MSW) Effect. arXiv 2019, arXiv:1901.11473.
4. Haxton, W.C. Adiabatic Conversion of Solar Neutrino. Phys. Rev. Lett. 1986, 57, 1275. [CrossRef] [PubMed]
5. Parke, S.J. Nonadiabatic Level Crossing in Resonant Neutrino Oscillations. Phys. Rev. Lett. 1986, 57, 1275.

[CrossRef] [PubMed]
6. Lisi, E.; Montanino, D. Earth regeneration effect in solar neutrino oscillations: An analytic approach.

Phys. Rev. D 1997, 56, 1792. [CrossRef]
7. Blennow, M.; Ohlsson, T.; Snellman, H. Day-night effect in solar neutrino oscillations with three flavors.

Phys. Rev. D 2004, 69, 073006. [CrossRef]
8. Long, H.W.; Li, Y.F.; Giunti, C. Day-night asymmetries in active-sterile solar neutrino oscillations. J. High

Energy Phys. 2013, 2013, 56. [CrossRef]
9. Horoi, M. On the MSW neutrino mixing effects in atomic weak interactions and double beta decays.

arXiv 2020, arXiv:1803.06332, to appear in EPJA .
10. Horoi, M. Neutrinoless Double Beta Decay of Atomic Nuclei. AIP Proc. 2019, 2165, 020012. [CrossRef]
11. Giunti, C.; Kim, C.W. Fundamentals of Neutrino Physics and Astrophysics; Oxford University Press: Oxford,

UK, 2007.
12. Mannheim, P.D. Derivation of the formalism for neutrino matter oscillations from the neutrino relativistic

field equations. Phys. Rev. D 1988, 37, 1935. [CrossRef] [PubMed]
13. Giunti, C.; Kim, C.W.; Lee, U.W.; Lam, W.P. Majoron decay of neutrinos in matter. Phys. Rev. D 1992, 45, 1557.

[CrossRef]
14. Gonzales-Garcia, M.C.; Nir, Y. Neutrino masses and mixing: Evidence and implications. Rev. Mod. Phys.

2003, 75, 345. [CrossRef]
15. Smirnov, A.Y. Solar neutrinos: Oscillations or no-oscillations. arXiv 2016, arXiv:1609.02386.

http://www.aflow.org
http://dx.doi.org/10.1103/PhysRevD.17.2369
http://dx.doi.org/10.1103/PhysRevLett.57.1271
http://www.ncbi.nlm.nih.gov/pubmed/10033401
http://dx.doi.org/10.1103/PhysRevLett.57.1275
http://www.ncbi.nlm.nih.gov/pubmed/10033402
http://dx.doi.org/10.1103/PhysRevD.56.1792
http://dx.doi.org/10.1103/PhysRevD.69.073006
http://dx.doi.org/10.1007/JHEP08(2013)056
http://arxiv.org/abs/1803.06332
http://dx.doi.org/10.1063/1.5130973
http://dx.doi.org/10.1103/PhysRevD.37.1935
http://www.ncbi.nlm.nih.gov/pubmed/9958887
http://dx.doi.org/10.1103/PhysRevD.45.1557
http://dx.doi.org/10.1103/RevModPhys.75.345


Universe 2020, 6, 16 12 of 12

16. Rata, I.; Shvartsburg, A.A.; Horoi, M.; Frauenheim, T.; Siu, K.W.M.; Jackson, K.A. Single-Parent Evolution
Algorithm and the Optimization of Si Clusters. Phys. Rev. Lett. 2000, 85. [CrossRef] [PubMed]

17. Jackson, K.A.; Horoi, M.; Chaudhuri, I.; Frauenheim, T.; Shvartsburg, A.A. Unraveling the Shape
Transformation in Silicon Clusters. Phys. Rev. Lett. 2004, 93, 013401. [CrossRef]

18. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.;
Cococcioni, M.; Dabo, I.; Corso, A.D.; et al; QUANTUM ESPRESSO: A modular and open-source software
project for quantum simulations of materials. J. Phys. Condens. Mater. 2009, 21, 395502. [CrossRef]

19. Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Perseus Books: New York, NY, USA, 1995.
20. Parke, J.P.; Zhang, X. Compact perturbative expressions for oscillations with sterile neutrinos in matter.

arXiv 2019, arXiv:1905.01356 .
21. Esteban, I.; Gonzalez-Garcia, M.C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of

three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass
ordering. J. High Energy Phys. 2019, 2019, 106. [CrossRef]

22. Brown, P.N.; Byrne, G.D.; Hindmarsh, A.C. VODE: A Variable Coefficient ODE Solver. SIAM J. Sci. Stat. Comput.
1989, 10, 1038. [CrossRef]

23. Minakata, H.; Parke, S.J. Simple and Compact Expressions for Neutrino Oscillation Probabilities in Matter.
J. High Energy Phys. 2016, 1, 180. [CrossRef]

24. Denton, P.B.; Minakata, H.; Parke, S.J. Compact perturbative expressions for neutrino oscillations in matter.
J. High Energy Phys. 2016, 6, 51. [CrossRef]

25. Denton, P.B.; Parke, S.J.; Zhang, X. Rotations versus perturbative expansions for calculating neutrino
oscillation probabilities in matter. Phys. Rev. D 2018, 98, 033001. [CrossRef]

26. Roe, B. Matter density versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and
comparison of oscillations with variable and constant density. Phys. Rev. D 2017, 95, 113004. [CrossRef]

27. Aguilar-Arevalo, A.A.; Brown, B.C.; Bugel, L.; Cheng, G.; Conrad, J.M.; Cooper, R.L.; Dharmapalan, R.;
Diaz, A.; Djurcic, Z.; Finley, D.A.; et al. [MiniBooNE Collaboration]. Significant Excess of Electronlike
Events in the MiniBooNE Short-Baseline Neutrino Experiment. Phys. Rev. Lett. 2018, 121, 221801. [CrossRef]
[PubMed]

28. Machado, P.A.N.; Palamara, O.; Schmitz, D.W. The Short-Baseline Neutrino Program at Fermilab. Annu. Rev.
Nucl. Part. Sci. 2019, 66, 363. [CrossRef]

29. Yue, B.B.; Li, W.; Ling, J.J.; Xu, F.R. A new analytical approximation for a light sterile neutrino oscillation in
matter. arXiv 2019, arXiv:1906.03781.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevLett.85.546
http://www.ncbi.nlm.nih.gov/pubmed/10991336
http://dx.doi.org/10.1103/PhysRevLett.93.013401
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://arxiv.org/abs/1905.01356
http://dx.doi.org/10.1007/JHEP01(2019)106
http://dx.doi.org/10.1137/0910062
http://dx.doi.org/10.1007/JHEP01(2016)180
http://dx.doi.org/10.1007/JHEP06(2016)051
http://dx.doi.org/10.1103/PhysRevD.98.033001
http://dx.doi.org/10.1103/PhysRevD.95.113004
http://dx.doi.org/10.1103/PhysRevLett.121.221801
http://www.ncbi.nlm.nih.gov/pubmed/30547637
http://dx.doi.org/10.1146/annurev-nucl-101917-020949
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Neutrino Oscillations in Condensed Matter
	The Iterations Algorithm
	The Connection to the Integration Method
	The Case of Light Sterile Neutrinos
	Conclusions
	References

