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Abstract: Riemann curvature invariants are important in general relativity because they encode
the geometrical properties of spacetime in a manifestly coordinate-invariant way. Fourteen such
invariants are required to characterize four-dimensional spacetime in general, and Zakhary and
Mclntosh showed that as many as seventeen can be required in certain degenerate cases. We
calculate explicit expressions for all seventeen of these Zakhary—McIntosh curvature invariants for
the Kerr-Newman metric that describes spacetime around black holes of the most general kind (those
with mass, charge, and spin), and confirm that they are related by eight algebraic conditions (dubbed
syzygies by Zakhary and McIntosh), which serve as a useful check on our results. Plots of these
invariants show richer structure than is suggested by traditional (coordinate-dependent) textbook
depictions, and may repay further investigation.
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1. Introduction

Quantities whose value is manifestly independent of coordinates are particularly useful in general
relativity [1]. Riemann or curvature invariants, formed from the Riemann tensor and derivatives of the
metric, are one example. In principle, one can construct fourteen such quantities in four-dimensional
spacetime, since the Riemann curvature tensor has twenty independent components subject to
six conditions on the metric [2]. These quantities have proved useful in, for example, classifying
metrics [3,4] and deciding whether or not they are equivalent [5,6]. They have been applied to
speed up the estimation of gravitational-wave signatures from black-hole collisions [7], to distinguish
between “gravito-electrically” versus “gravito-magnetically dominated” regions of spacetime [8-10],
to measure the mass and spin and locate the horizons of black holes [11-14], and to study perturbations
of the Kerr metric [15], Lorentzian wormbholes [16], and others [17].

More than fourteen independent curvature invariants may be required to describe certain
degenerate cases in the presence of matter [18]. Zakhary and McIntosh (ZM) reviewed this problem
and offered the first complete list of seventeen independent real curvature invariants for all possible
metric types (6 Petrov types and 15 Segre types, or 90 types in all) [19]. However, the ZM invariants
are defined in terms of spinorial quantities whose physical meaning can be obscure. Here, we apply
the ZM formalism to the Kerr—-Newman metric to obtain for the first time explicit algebraic expressions
for all seventeen invariants for black holes of the most general kind (those with mass, charge, and
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spin). Our results will be of most astrophysical interest in the case of nonzero spin and zero charge
(because all real black holes rotate, but few possess significant charge due to the preferential infall of
opposite-charged matter).

2. Preliminaries

Our starting point is the line element for Kerr-Newman spacetime [20] expressed in
Boyer-Lindquist coordinates xi=tr, 6, ¢ [21-24]

A 2 102 2 2
ds? — - (c dt — asin29d<p) + 5122 0 [(# + a2) d¢ — ca dt] + %dﬂ + p2d6? )
where
Azrz—rsr—t—az—i—ré , p25r2+a2c0526. )

Here, m is the mass of the black hole as measured at infinity, rs = 2Gm/ ¢? is its Schwarzschild radius,
a = ]/(mc) and r; = Gg*/ (47€y) where | and g are angular momentum and electric charge.

Switching to natural units where c = G = 47y = 1 and re-arranging terms, we re-express the
metric in a form more amenable to symbolic computation [25]:

12 +a? cos? 0
r2 —2mr+a% + g2’

Q00 = r? +a?cos? 0,

8 =

2 2) ain2

s o @ (2mr—g*)sin®0|
L s Ny JO7 sin” 6,

_ _a(2mr—g?)sin?0
ot = 8o = 12 + a2 cos? 6

2mr — g2

S L I

st ( r2+a2cosz(9) ®)

This metric reduces to the Kerr solution when g = 0, the Reissner—-Nordstrom solution when a = 0,
the Schwarzschild solution when 4 = g = 0, and Minkowski spacetime (in oblate spheroidal
coordinates) when m = 0 [23,26]. The angular coordinates ¢, 6 are standard spherical polar angles (0 is
the angular displacement from the black hole’s spin axis) but the Boyer-Lindquist coordinate r is not
conventional; it goes over to the usual radial distance far from the black hole, but goes to zero at the
ring singularity and —co at the center of the geometry.

To calculate the curvature invariants for this metric, we used Mathematica [27] (For the convenience
of readers, our code is included as Supplementary Material with this article). The Christoffel symbols
and Riemann tensor are obtained as usual from l"ijk = %gil (ajglk + kg1 — a,gjk) and Rijkl = akriﬂ —
oI ik + l"c}-ll”"ok - F"jkr iol, where 9, means 9/9x* and repeated indices are summed over (Einstein
summation convention). Contracting gives the Ricci tensor R;; = Rkik J and the Ricci (or curvature)

scalar R = g/ Rjj. Indices are lowered or raised with the metric, so that the Riemann tensor in fully
covariant form, for example, is R;jy; = gioRojkl.
We need the Weyl (or conformal curvature) tensor, defined in #n = 4 dimensions by [2,23]

Ciju = Rijiu + ¢R (gikgjl - gilSjk) -3 (gikle — QitRjk — gjkRir + gleik> - 4
We also need the dual of the Weyl tensor, defined by [28]

Chii = 3EijopChy (5)



Universe 2020, 6, 22 30f9

where E;j, is the Levi-Civita tensor, defined by [23]

1

Eijm =
Vsl
~ijkl _

Here, g is the determinant of the metric so \/[g] = (r? + a® cos? 0) sin 6, and &% = —&;;; where & is
the Levi—Civita symbol (or tensor density). We note from a computer algebra point of view that there
should be no overlap between the names of variables used for physical quantities and those reserved
for tensor indices (here i, j, k, 1,0, p, u,v).

L 6)

3. Results

With the above quantities in hand, we are in a position to obtain for the first time explicit
expressions for all seventeen ZM invariants for the most general possible black holes using the
metric in Equation (3). Their definitions fall into three groups:

e Weyl invariants:

Kl if ikl
L =C;Mc,” =cMcy,
kI % if 1pil
b =—Cy"Cy" = —3E" 4 C™ Cijop,
kKl~ o if ki ij
I =C;"cy PCop” = CijuCHPC,,’,

Iy = —C;MC,, " Cop = —3CijuCHPE, " Cud . )
e Ricci invariants:
15 =R = g,'jRij,
I = R;R7 = R;ig" "Ry,
_plipkpi
Iy = R/R*R/R} . (8)
e Mixed invariants:
Iy = CiliRklei/
Lo = —Cy'R¥R/,
ij okl *
L =RR (Cgijpcpklo - Caijpc*pklo) ,
Iy = —RIRM(C}.7C® +C, P Ch)
12 0ij “pkl olj < pkl )/
_ 1 pijpkl o p *0 p
— 3}7R1]Rkl (Couvpcoi]' Pcuklv + Couvpc*oij Pcuklv
*0 0
_ C;uvpc i Pcuklv + Cguvpc i Pc*uklv) ,

_ 1 pijpkl(* 0 Pru v * *0 P ku v
117—37R]R (Couvpc ij Ckl +C0uvpc ij C ki

e

1

_ Couvpc*oi]' Pcuklv + COMUP Coij Pc*uklv) ) (9)

Note that I13 and I14 both vanish for the Kerr-Newman metric, which is of Petrov Type D and Segre
type [(11)(1,1)] [19].

In principle, computer evaluation of Equations (7)-(9) is straightforward. In practice, the challenge
is not so much computation as simplification: the resulting expressions may contain hundreds or even
thousands of terms (for example, powers of cos 0, sinf, cos 26, sin 20, etc.). These can be simplified
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in two ways. First, if working with the angular coordinate 6, one needs to specify its range (here,
0 < 0 < ) and define a “trig simplifier” that converts any symbolic expression into a function of
a single desired trigonometric function (here cos ). Alternatively, one can re-express the metric in
terms of a “rational polynomial” coordinate y = cosf so thatsin?6 = 1 — x2,d6 = dx/+/1 — x* and
Vgl = r? + a*x* [26]. The second method proves significantly faster in most cases. We obtain the
following results (each organized in the most compact available form, or by powers of 4 and a cos 0
when no simpler form is found):

L o= (1’2—0—11;120529)6 [ (1 — 4% cos?0) (#* — 141%a% cos? 0 + a* cos* 0
—~2mrg? (#* — 1022 cos? 0 + 5a* cos* 6
+q* (1 — 6r%% cos?0 + a* cos 0| ,
L — % [(3mr —2¢2) r — ma® cos? ]
x [mr (ﬂ — 34 cos? 9) q (r — a2 cos 9)}
o= (r2+agios29)9 [(mr =) 72 = (3mr — %) a? cos? 0]

X [m2 (r — 33r*a% cos? 0 + 27r%a* cos* 0 — 3a® cos 6)
—mrqz( — 44r°a® cos® 0 + 18a* cos 9)

+q4( — 14r%a® cos? 0 + a* cos 9)}

L, = (”23_6;(:);926)9 [<3mr—2q2) r — ma* cos? 9}
X [mz (3r — 27r*a? cos? 0 + 33r%a* cos* 0 — a® cos 9)
—2mrg <3r — 18r?a* cos® 0 + 11a* cos 9)

+q4( — 10724 cos® 6 + 3a* cos 9)}

Irh = I; =0,
R
(r2 4 a2 cos? 0)*
- 4
(r2 4 a2 cos? 0)°
Iy = ——16q4 [(mr — 2) — (Smr — 2) a? cos? 9}
’ (r2 + a2 cos? §)’ 1 I '
1644
Lo = _—16q7acos [<3mr — 2q2) r — ma* cos’ 9} ,
(r2 4 a2 cos? 0)”
4 4
Iy = e 62 1 5 6)10 [mz (1’2 — 42 cos? 9) (r4 — 147%a? cos? 0 + a* cos* 8)
r< +a-cos

—2mrg? (r4 — 10r%a? cos® 0 + 5a* cos* 9)
+q* (r — 6r°a® cos? 0 + a* cos 9)]

I = 128q4a cos 6 [(3mr — 2q2) r — ma® cos® 9]

(r2 4 a2 cos? 0)'°
X [(mr — qz) 2 — (3mr — qz) a2 cos? 9] ,
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4q4 2\2 292 2

Iis = m [(mrq) + m“a“cos“ 0| ,
4 r 2
Ly = B fq 29)11 (mr— qz) + m?a? cos? 6]
r“ + a<cos L
X :(mr — qz) T (er - qz) a? cos? 9} ,

4 i

Ly = 8q"acos 6 )11 <3mr — 2q2> r — ma* cos’ 6}

(r> 4+ a% cos? 0

i 2
X (mr - q2> + m?*a® cos® 9] . (10)

These quantities represent a coordinate-invariant description of spacetime curvature around the most
general possible black holes that is complete in the sense defined by Zakhary and McIntosh [19]. They
do not seem to have been given before, apart from a derivation of the Kretschmann scalar [25] and
a study of the Weyl invariants I; and I, [29]. Related expressions for an earlier set of invariants due to
Carminati and McLenaghan [18] have been explored using GRTensor [30]. Other aspects of invariants
have been discussed using specially designed software [31], and a general review of the application of
symbolic computing to problems in general relativity was given by MacCallum [32].

The thirteen nonzero invariants in Equation (10) are not all algebraically independent, as the
choice of a specific metric uses up additional degrees of freedom. In fact, the Kerr-Newman metric has
enough symmetries that only five of the ZM invariants (apart from the Ricci scalar Is = R) are actually
independent [19]. A minimally independent set of ZM invariants for black holes with mass, charge,
and spin can be formed by the Weyl invariants I, I, the Ricci invariant I, and the mixed invariants
Iy, I1p. (This number drops to two in the case of uncharged—i.e., astrophysical—black holes described
by the Kerr metric, for which I, I; alone are sufficient.) All five quantities are plotted in Figure 1.

Figure 1. (a) The Weyl invariants I; (yellow) and I, (blue); and (b) the Ricci invariant I (yellow) and

mixed invariants Iy (blue) and I;g (green), all plotted as a function the Boyer-Lindquist coordinates r
and 6 for a black hole of mass m = 1, angular momentum per unit mass 2 = 0.6 and charge g = 0.8.

The ZM invariants for Kerr-Newman black holes are therefore related by 13 — 5 = 8 independent
algebraic equations, which we obtain explicitly below. A subset of ZM invariants can also be related to
the Kretschmann scalar K = RijklRifkl [25]. In four dimensions, this relationship reads [8]

K=1+2lg— 1. (11)

This equation provides one check of our results.



Universe 2020, 6, 22 60f9

More generally, proportionality relations between the curvature invariants have been dubbed
“syzygies” by Zakhary and McIntosh, who defined the following needed quantities [19]:

I=6hL+il , J=5L+il,
K=I+ilg, , L=15L;+il;,
M, = I15, , My = 1+ ilh7 . (12)

(Note that K here is not related to the Kretschmann invariant K.)

Using Equation (10), we are able to confirm the existence of syzygies similar to those proposed by
Zakhary and McIntosh for metrics of Petrov Type D. However, our proportionality constants differ
somewhat from theirs. Specifically, we find for the Kerr-Newman metric that

P = 12]?,
= 4k,
3L = IK?,
16IM; = KK,
3072I2M3 = IK*K?, (13)

where an overbar denotes the complex conjugate, and where

48(m(r +iacos6) — g2)?
(r+iacos6)?(r —iacos6)®”’
96(m(r +iacos @) — g%)°

I = (r+iacos6)3(r —iacos6)?’

]I =

16g*(g* — m(r +iacos))
K — T . 7

(r+iacos0)>(r —iacos6)”
L - 64q*(q* — m(r +iacos0)?

(r+iacos)6(r —iacos )10’

M — 4g*((mr — ¢*)% + m2a® cos? 0)
v (12 + a2 cos2 0)8 ’

M, — 8q*(mr — g> — ima cos ) (m(r + ia cos 0) — g2)? w
2 (r +iacos8)?(r — iacos0)11 :

We stress that the syzygies in Equation (13) provide a rigorous cross-check of the expressions we
have obtained in Equation (10). That these equations provide exactly eight constraints can be seen by
expanding and equating real and imaginary parts of Equation (13), whereupon

L(}-35) = 12(3-1),
LB —15) = 243y,
2 = 4,
3(I, — I§,) = KL(I§—13) — 2Lk,
6Inly = DL(I§—I) +2hIIy,
16lgl;s = I5+13,
30721%(1126 ~I;) = L(B+ 1120)2 ’
614415 Iichy; = DL(I5 + If)* . (15)

These equations may be readily used to check our main results in Equation (10).
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4. Discussion

The plots in Figure 1 show that the geometry of spacetime inside charged and rotating black holes
is far from simple. Curvature is particularly extreme near the ring singularity atr = 0,6 = /2, and is
negative over significant regions of the phase space, as discussed by several workers [29,33]. This is
interesting since the Weyl tensor encodes the degrees of freedom corresponding to a free gravitational
field [34]. The fluctuations themselves have been attributed to conflicting contributions from the
gravito-electric and gravito-magnetic components of this field, the latter generated by the black hole’s
rotation [8,10,35].

Plots in the full r, § phase space are rich in information, but can be hard to reconcile intuitively
with more conventional representations of the interior structure of rotating black holes such as that
shown in Figure 2a [22]. Here, the axis of rotation is marked with a vertical line. The ring is the
singularity. The inner shell (located at r = m + v/m? — 4a?) is the horizon, while the outer shell is the
static limit. This diagram, by contrast with the plots in Figure 1, suggests that spacetime curvature
inside the black hole is constant and positive. Both inferences are incorrect.

R
W2

Figure 2. (a) A typical textbook representation of the interior structure of a rotating black hole. We
argue that such coordinate-dependent depictions can be misleading, and should be supplemented by
illustrations involving invariants. (b) The magnitude of the Weyl invariant I; in ordinary spherical
coordinates (¢, 8), plotted for several values of the Boyer-Lindquist radial coordinate r.

In Figure 2b, we “unpack” one of the ZM invariants, I, and plot the logarithm of its magnitude in
standard spherical polar coordinates 6, ¢ for several values of r. This figure is meant to be illustrative,
as a contrast with Figure 2a, and does not cover the entire phase space (for example, only positive
values of r are shown). Nevertheless, we feel it has considerable pedagogical value. The contours
plotted here are surfaces of constant r. Thus, one can see at a glance, for example, that I; becomes
extremely large near the equatorial plane close to the ring singularity (i.e., for small * = 0.1 or 0.2).
As one gets farther from the singularity (r = 0.3,0.4, ...) the magnitude of I; is no longer so large near
the equatorial plane, but its shape as a function of polar angle becomes increasingly complex. This
behavior is in stark contrast to that suggested by the traditional textbook representation in Figure 2a.
Both kinds of figures have their uses, but the one on the right conveys a truth that the one on the
left cannot. The traditional view misleads because it is not based on invariant quantities; it is simply
a figure drawn in a particular coordinate system (Boyer-Lindquist). It is wrong in precisely the same
way that the size of Greenland is wrong on a Mercator projection map of the world. Just as it is
impossible to draw a map of the Earth realistically on a flat sheet of paper, it is impossible to portray
the interior of a black hole realistically—unless what is shown is invariant.
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Black holes are fascinating objects, not just for their inherent geometrical properties but because
they reverse the usual course of scientific discovery. Usually, we observe first, and use mathematics
later on to organize and explain what we have observed. However, the interior of the black
hole is, by definition, the one place we will never be able to observe. Here, we can explore only
through mathematics. Visualization, and hopefully deeper physical understanding, will follow later.
The expressions obtained here for the ZM invariants are perhaps a first step in this process.
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