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Abstract: We describe 4D evaporating black holes as quantum field configurations by solving the
semi-classical Einstein equation G, = 871G (1| T),»|¢f) and quantum matter fields in a self-consistent
manner. As the matter fields, we consider N massless free scalar fields (N is large). We find a
spherically symmetric self-consistent solution of the metric g, and the state |¢). Here, g, is locally
AdS, x §2 geometry, and |i) provides <lp\Tw|1p> = <0|THV|O> + T;(,lf,]), where |0) is the ground state
of the matter fields in the metric and T}(”lf) consists of the excitation of s-waves that describe the
collapsing matter and Hawking radiation with the ingoing negative energy flow. This object is
supported by a large tangential pressure (0|T%|0) due to the vacuum fluctuation of the bound modes
with large angular momenta / > 1. This describes the interior of the black hole when the back
reaction of the evaporation is taken into account. In this picture, the black hole is a compact object
with a surface (instead of horizon) that looks like a conventional black hole from the outside and
eventually evaporates without a singularity. If we count the number of configurations {|¢)} that
satisfy the self-consistent equation, we reproduce the area law of the entropy. This tells that the
information is carried by the s-waves inside the black hole. |¢) also describes the process that the
negative ingoing energy flow created with Hawking radiation is superposed on the collapsing matter
to decrease the total energy while the total energy density remains positive. Finally, as a special case,
we consider conformal matter fields and show that the interior metric is determined by the matter
content of the theory, which leads to a new constraint to the matter contents for the black hole to
evaporate.

Keywords:  black holes; quantum gravity; black hole evaporation; self-consistent solution;
semi-classical Einstein equation; information paradox

1. Introduction

In quantum theory, black holes evaporate [1]. This property may change the definition of black
holes from the classical one. It should be determined by quantum dynamics of matter and spacetime.
By collapse of a star, an object should be formed and evaporate in a finite time. The Penrose diagram
of the space-time should have the same topology structure as the Minkowski space-time, where there
is no event horizon or singularity but may be a trapping horizon. Such an object should be the black
hole. This view is an accepted consensus in the context of quantum theory [2-27]'. In this paper, we
consider this problem in field theory and find a picture of the black hole.

First, we briefly describe our basic idea. (In Section 2, we will provide a more detailed picture).
Suppose that we throw a test spherical shell or particle into an evaporating spherically symmetric

1 Recently, astrophysical phenomena related to the quantum properties of black holes have been actively studied [28-39].
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black hole. If the black hole evaporates completely in a finite time without any singular phenomenon,
the particle should come back after evaporation. Let’s take a closer look at this process. As the particle
comes close to the Schwarzschild radius of the black hole, it becomes ultra-relativistic and behaves like
a massless particle [40]. Then, if we take into account the time-dependence of the metric due to the
back reaction of evaporation, the particle does not enter the time-dependent Schwarzschild radius but
moves along an ingoing null line just outside it [9], which will be explicitly shown below Equation (6).
After the black hole evaporates, the particle returns to the outside.

Here, one might think that this view is strange. In a conventional intuition, a collapsing
matter should enter soon the slowly decreasing Schwarzschild radius because a typical time scale
of evaporation At ~ a3/ lf, is much larger than that of collapse AT ~ a. Here, 2 = 2GM is the
Schwarzschild radius of the black hole with mass M, [, = VAG is the Planck length, t is the time
coordinate at infinity, and 7 is that of a comoving observer along the collapsing matter. However,
it doesn’t make sense to compare these two time scales, which are measured by different clocks. In the
above argument, we have considered the both time evolutions of the spacetime and particle in a
common time. We will see (around Equation (7)) that the back reaction of the evaporation plays a
non-negligible role in determining the motion of the particle at a Planck length distance from the
Schwarzschild radius.

Now, let us consider a process in which a spherical matter collapses to form a black hole. We can
focus on the motion of each of the spherical layers that compose the matter because of the spherical
symmetry. As a layer approaches the Schwarzschild radius that corresponds to the energy of itself
and the matter inside it, it moves at the speed of light. At the same time, the time-dependent
spacetime (without a horizon structure) causes particle creation [41,42] (which is so-called pre-Hawking
radiation [9,16,43,44]), and the energy begins to decrease?. Indeed, we will show in Section 2 that this
pre-Hawking radiation has the same magnitude as the usual Hawking radiation. Then, applying the
above result about the motion of the particle, we can see that the layer keeps falling just outside the
time-dependent Schwarzschild radius. As this occurs for all the layers, the entire of the collapsing
matter just shrinks to form a compact object, which is filled with the matter and radiation. Here,
it should be noted that a strong tangential pressure occurs inside to stabilize the object against the
gravitational force [9]. The pressure is consistent with 4D Weyl anomaly and so strong that the interior
is anisotropic locally (that is, the interior is not a fluid) and the dominant energy condition breaks
down [14,16,24]. Therefore, this object doesn’t contradict Buchdahl’s limit [45]. (We will explain the
origin of the pressure later).

The object has (instead of horizon) a null surface just outside the Schwarzschild radius and looks
like the classical black hole from the outside, whose spatial size is Ar ~ a. Here, the surface is the
boundary between the interior dense region and the exterior dilute region. Eventually, it evaporates in
a time At ~ a®/ l§.3 This object should be the black hole in quantum theory [9,14,16,24]. As we will
see, there is no singularity. (No trans-Planckian quantity appears if the theory has many degrees of
freedom of matter fields). Therefore, the Penrose diagram is given by Figure 1, and the spacetime
region of Ar ~ a and At ~ a/ lf, corresponds to the black hole. In this paper, we show that this story
can be realized in field theory.

Note here that it is essential for particle creation that the spacetime is time-dependent but not that the spacetime has a
horizon structure [41,42].

A small black hole with a = O(I,) should be described by some bound state in string theory and it may decay in a finite time.
Therefore, we postulate that the remaining small part disappears in a finite time which is much smaller than At ~ O( ”,’73)
P
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Hawking,
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Figure 1. The Penrose diagram of the black hole in quantum theory. The matter becomes
ultra-relativistic in the final stage of the collapse, and particle creation occurs inside it. Then, a dense
object is formed with the size Ar ~ a and evaporates in the time At ~ ‘;—23.

4

1.1. Strategy and Result

The above idea has been checked partially by a simple model [9], a phenomenological
discussion [14] and the use of conformal matter fields [24]. It also holds for charged black holes
and slowly rotating black holes [16]. Furthermore, by a thermodynamical discussion, the entropy
density inside the object is evaluated and integrated over the volume to reproduce the area law [16].
Therefore, it seems that this picture is plausible and works universally for various black holes.

However, there still remain several questions about this picture. What is the self-consistent state
|)? What configurations do the matter fields take inside? How is the large tangential pressure
produced inside? Can we reproduce the entropy area law by counting microscopic states of fields?
How does the energy of the collapsing matter decrease? These are crucial for understanding what the
black hole is and how the information of the matter comes back after evaporation.

In this paper, to answer these questions, we analyze time evolution of a 4D spherical collapsing
matter by solving the semi-classical Einstein equation

G = 871G (| Ty |9) )

in a self-consistent manner, and we find the metric g, and state |{) which represent the interior of the
black hole. Here, we treat gravity as a classical metric g,y while we describe the matter as N massless
free quantum scalar fields. (1| T;y|¢) is the renormalized expectation value of the energy-momentum
tensor operator in g, that contains the contribution from both the collapsing matter and the Hawking
radiation.

We explain our self-consistent strategy and the results. The flow chart of Figure 2 represents the
composition of this paper.

In Section 2, we first explain our basic idea in a more concrete manner by using a simple model.
We also show how the pre-Hawking radiation occurs in the time-evolution of the system. In Section 3,
we employ and generalize the model and construct a candidate metric g,,. In particular, the interior
metric is shown to be static as a result of dynamics. It can be expressed as

eAr)
B(r)

We write down two functions A(r), B(r) in terms of two phenomenological functions: one is the
intensity of Hawking radiation ¢ and the other is a function # that provides the ratio between the
radial pressure and energy density. We also show that this metric is locally AdS, x S? geometry.

ds? = ———dt* + B(r)dr* + r*dQ*. 2
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Figure 2. Flow chart of the composition of this paper.

We are interested in the black holes most likely to be formed in gravitational collapse. As shown

in Section 6, the statistical fluctuation of the mass is evaluated as AM ~ mp, where my = \/% is the
Planck mass. Therefore, from a macroscopic perspective, all black holes with mass € [M, M + m,] are
the same. We consider the set of states {|) } that represent the interior of such statistically identified
black holes.

In Section 4, we examine the potential energy of the partial waves of the scalar fields in the interior
metric. Modes with angular momenta [ > 1 are trapped inside, and they emerge in the collapsing
process even if they don’t exist at the beginning. We show that, if such bound modes are excited,

the energy increases by more than O (\’7—%) , which means that the number of excited bound modes

is at most order of O(v/N) in the set {|¢)}. Therefore, those modes can be regarded as the ground
state because O(1/N) is negligible compared to the number of total modes O(‘;—zz) (which is shown
P

in Section 6). On the other hand, s-wave modes can enter and exit the black hole and represent the
collapsing matter and Hawking radiation. Thus, the state |¢) provides

(I To ) = (0T [0) + T1Y, 3)

where |0) is the ground state in the interior metric, and Tﬂ) is the contribution from the excitations of
the s-waves.

In Section 5, we evaluate (0|T;,|0). We first solve the equation of motion of the scalar fields
in the interior metric. We calculate the regularized energy-momentum tensor (0|T}y|0)eq in the
dimensional regularization. Then, we renormalize the divergences and obtain the finite expectation
value, (0|T,y|0)}.,- This contains contributions from the finite renormalization terms (o, o),
which correspond to the renormalized coupling constants of R? and Ry, R¥

In Section 6, we combine Bekenstein’s discussion of black-hole entropy [46] and our picture of the
interior of the black hole to infer the form of TP(#/])' which is fixed by a parameter ay.

In Section 7, we solve Equation (1) by using the ingredients obtained so far: gy, (0|Tjv|0)7,;,,

in the action, respectively.

and T;Slf). We determine the self-consistent values of (c,7,dy) for a certain class of the finite
renormalization terms (g, Bp). We then check the various consistency. In particular, we see that
there is no singularity, and that the vacuum fluctuation of the bound modes with [ > 1 creates the
large tangential pressure (0|T%]0)’,,..

In Section 8, we consider the stationary black hole which has grown up adiabatically in the heat
bath. We count the number of the states {|¢)} of the s-waves inside the black hole to evaluate the
entropy, reproducing the area law. This implies that the information is carried by the s-waves.

In Section 9, to understand the mechanism by which the energy of the collapsing matter decreases,
we assume a s-wave model for simplicity to describe the outermost region of the black hole and study
the time evolution of quantum fields. We see that |i) describes the process that the negative ingoing
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energy flow created with Hawking radiation is superposed on the collapsing matter to decrease the
total energy while the total energy density remains positive.

Thus, three independently conserved energy-momenta appear in this solution: that of the bound
modes of the vacuum (0| T, |0), that of the collapsing matter, and that of the pair of the Hawking

radiation and negative energy flow, where the last two contribute to T}(ff). These three form the
self-consistent configuration of the black hole.

In Section 10, as a special case, we consider conformal matter fields and show that the parameters
(0, 1) are determined by the matter content of the theory. Interestingly, the consistency of 7 provides
a condition to the matter content. For example, the Standard Model with a right-handed neutrino
satisfies the constraint but a model without it doesn’t. Therefore, this can be regarded as a new
constraint (like the weak-gravity conjecture [47,48]) that is required in order for the black hole to
evaporate.

In Section 11, we conclude and discuss future directions. In particular, we discuss how the
information comes back after evaporation if there are interactions between the collapsing matter,
Hawking radiation, and negative energy flow.

In Appendices, we give the derivation of various key equations. In particular, we explain the
difference between our pre-Hawking radiation and the usual Hawking radiation in Appendix C.

2. Basic Idea

We explain our basic idea of the black hole more precisely [9,14,16,24], which makes the motivation
of this paper clearer. The discussion is composed of three steps. In stepl, we examine the motion of a
thin shell (with an infinitely small mass) near an evaporating black hole and anticipate what will be
formed as a result of the time evolution of a spherical collapsing matter. In step2, we study the time
evolution of the pre-Hawking radiation induced by the shell, including the effect of a small finite mass
of the shell and the radiation. In step3, we construct a simple model (multi-shell model) to realize
the prediction given in step1, and show that the pre-Hawking radiation has the same magnitude as
that of the usual Hawking radiation. We also discuss a surface pressure on the shell induced by the
pre-Hawking radiation.

2.1. Step1: Motion of a Shell Near the Evaporating Black Hole

Imagine that a spherical collapsing matter with a continuous distribution starts to collapse (see
the left of Figure 3).

time \ A time '\ A

evolution evolutio
— d
3 ¥ TN ¥ N
black hole evaporation

spherical
collapsing matter

shelll

N ;v/
— O
¥ ="\

Figure 3. Time evolution of a part of a spherical collapsing matter.

We pick up a part of it with a radius rs. When the radius comes close to the Schwarzschild radius
of the mass inside it, the entire of the part behaves light-like. Then, we can discuss the time evolution
of the part without considering the outside because the outside matter does not come in and has
no influence to the inside due to the spherical symmetry (see the center of the upper in Figure 3).
We suppose that the part becomes a black hole and evaporates eventually (see the right of the upper in
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Figure 3). Now, we consider the outermost part of the collapsing matter as a spherical thin shell (which
is located at r = ) with an infinitely small energy (see the center of the lower in Figure 3). Focusing on
the motion of the shell, it will approach the evaporating black hole consisting of the rest (see the right
of the lower in Figure 3). (Note again that the rest part is not affected by the shell and becomes the
evaporating black hole). As we show in the following, the black hole evaporates to disappear before the
shell catches up with “the horizon”, and thus the shell will never enter “the horizon”.

Because of the spherical symmetry, the gravitational field that the shell feels is determined by
the energy of itself and the matter inside it, no matter what is outside the shell. Therefore, the metric
which determines the motion of the shell near the black hole is given approximately by the outgoing
Vaidya metric [49]

ds? = — (1 — a(:l)> du? — 2dudr + r*dQ?, 4)

where u is the null coordinate that represents an outgoing radial null geodesic as u =const. M(u) =
% is the energy inside the shell at time u (including the energy of the shell itself)*. The Einstein
tensor has only Gy, = — r% and satisfies G u= 0, and therefore this metric can represent the outgoing

null energy flow with total flux | = 47tr%(Ty,)° ©. Thus, we assume that a(u) decreases according to

the Stefan—Boltzmann law of Hawking temperature Ty = #(u):
da(u) o
du — a(u)?’ ©)

Here, o is the intensity of the Hawking radiation, which is determined by dynamics of the theory.
In general, it takes the form of o = kN lf,, where k is an O(1) constant.

Suppose that the shell consists of many particles. If a particle of them comes close to a(u),
the motion is governed by the equation for an ingoing radial null geodesic,

drs(u)  rs(u) —a(u)
du — 2rs(u) ©)

no matter what mass and angular momentum the particle has’. Here, r;(u) is the radial coordinate of
the particle (or the shell).

At this point, we can see a general property of Equation (6): Once a particle starts from a position
outside r = a(u), the particle comes close to r = a(u) but does not pass it. Therefore, if a(u) decreases
to zero in a finite time, the particle will reach the center (r = 0) in a finite time and return to » — oo.
See the left of Figure 4.

Note that the radius a(u) becomes zero in a finite time (Au ~ g), and the time coordinate u
describes the outside spacetime region (r > a(u)) globally.

Note that the mass M(u) may be different from the usual Bondi energy even if we neglect the matter outside the part and
regard it as an isolated black hole. Outside the shell, there exists dilute radiation with energy density ~ TI‘%I ~ a%, where

Ty ~ I Then, the outside region may have energy ~ 1 x dmdd I \which makes the difference. In the following, however,
a g y 8y ~ 3 a g

we use the name “Bondi energy” and “ADM energy” to represent the mass we are considering.

Later, we will give a more proper definition of the energy flux. See Equation (79).

One might think that the metric (4) is not proper to describe the region near the evaporating black hole because there is
not an outgoing energy flow but an ingoing negative energy flow near the horizon in 2D models [41,50-52]. As shown in

ﬁ) < 0. We will include this contribution into the

interior of the black hole. Therefore, by using the metric (4), we describe the exterior of the black hole approximately in that

we neglect a dilute radiation around it with (—T%;) < O <ﬁ) .

Section 9, such a negative energy flow has energy density (—T%;) ~ O <

See Appendix I'in [16] for the precise derivation
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A Hawking radiation

Aulife~a3/0'

Figure 4. Motion of a particle (or a spherical shell) near the evaporating black hole. r;(u) is the position
of the particle (or the shell) and a(u) is the Schwarzschild radius decreasing as Equation (5). Left:
The black hole evaporates before the particle reaches it, and the particle comes back after evaporation.
Right: The particle cannot catch up with the Schwarzschild radius a(u) due to the back reaction of
the evaporation.

Here, we stress that we have no coordinate singularity in this analysis. First, we note that the
Vaidya metric (4) with Equation (5) is the metric around the trajectory rs(u) of the particles that
composes the outermost shell of the collapsing matter (remember the center of the lower in Figure 3).
It seems that the metric has coordinate singularity at r = a(u). However, because a(u) is assumed to
become zero in a finite time, the particle moves according to Equation (6) and stays always outside
r = a(u). In particular, when a(u) becomes zero, rs(u) is still positive. After that, rs(u) propagates
in the flat space and reaches = 0 in a finite time®. Actually, as we will see in Equation (10), rs(u) is
always apart from r = a(u) at least by the proper length ~ /NI, which is physically long if N is large
(see the discussion below Equation (11)). Of course, at the final stage of the evaporation, which exceeds
the semi-classical approximation, a curvature singularity may occur. However, the black hole at that
moment has only a few of Planck mass and should be considered as a stringy object (see also footnote
3). (We can show that, even if we used the metric (4) to describe such a final stage, rs(u) and a(u)
would never become zero at the same time. See Appendix B). Thus, the particle keeps moving outside
r = a(u) without coordinate singularity. Finally, we emphasize that, when we consider a particle that
starts to fall before the shell we have focused, the metric around the trajectory of the particle is not the
Vaidya metric with a(u). Rather, it is given by another Vaidya metric with the Schwarzschild radius of
the energy of the matter inside the shell to which the particle belongs. See the following discussion
and Section 2.3.

Let us examine more specifically where rs(u) will approach when a(u) evolves according to
Equation (5). We are interested in the difference Ar(u) = rs(u) — a(u), which is much smaller than
a(u), Ar(u) < a(u). Then, rs(u) in the denominator of Equation (6) can be replaced with a(u)
approximately, and Equation (6) becomes

dir(u)  Ar(u) da(u)'

du  2a(u) du @

The first term in the r.h.s. is negative, which is the effect of collapse, and the second one is
positive due to Equation (5), which is the effect of evaporation. The second term is negligible when
Ar(u) ~ a(u), but it becomes comparable to the first term when the particle is so close to a(u) that

8 If a were constant, the particle would keep approaching r = a for an infinite amount of time Au = co, which means the

coordinate singularity of u at 7 = a.
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2
Ar(u) ~ aé—’;) Then, the both terms are balanced so that the r.h.s of Equation (7) vanishes, and we have

Ar(u) = —2a(u) d‘;(;l) . This means that any particle moves asymptotically as
da(u) 20
rs(u) — a(u) — 2a(u)7 =a(u)+ a0 8)

and so does the shell. By solving Equation (7) explicitly, we can check that this approach occurs
exponentially in the time scale Au ~ 2a (see Appendix A).

This behavior can be understood as follows. See the right side of Figure 4. The particle approaches
the radius a(u) in the time Au ~ 2a. During this time, the radius a(u) itself is slowly shrinking as
Equation (5). Therefore, rs(u) cannot catch up with a(u) completely and is always separate from a (1)
by —2q42 = 20,

Thus, considering the time evolution of both the particle and spacetime together, we have reached
the conclusion that any particle never enters “the horizon”. Therefore, the shell (consisting of the
particles) will move according to Equation (8) just outside “the horizon”.

Because the above argument holds for any radius #; (recall the center of the upper in Figure 3),
we can imagine that the entire matter consists of many spherical thin shells. See Figure 5.

R

time

evolution

Surface at7 = a(u) + m

Figure 5. Left: The collapsing matter can be considered as consisting of many shells. Right: It evolves
20

to a dense object with a surface at r = a(u) + Ok

That is, when we focus on any part of it with radius 7; and mass 2G/ the shell (particle) at r; moves
asymptotically as r; — a; + 7 if the inner part evaporates as g -5 (see the left of Figure 5). Here,
u; is the local time just out31de the shell. If this happens in the whole part of the matter, it implies
that many shells pile up and form a dense object with the total mass M (see the right of Figure 5).
The object has, instead of a horizon, a surface as the boundary between the high-density interior and

the low-density exterior at
20

a(u)
where the total radius a( ) decreases as Equation (5). This object looks like a conventional black hole from
the out51de because 22 < a, while it is not vacuum and has an internal structure. Eventually, it evaporates

r=a(u)+

= R(a(u)), )

in Au ~ 2, and the Penrose diagram should be represented as in Figure 1. This should be the black hole
in quantum theory. In the following two steps, we will gradually describe this picture precisely.

Before going to the next step, one might wonder here if the above idea can be realized in field
theory or not. To see this point simply, we examine the distance Ar = <7 more because it is the typical
length scale in this picture. The proper length Al is evaluated as °

®  For the general spherically-symmetric metric in the (i,7) coordinate, the proper radial length is given by Al =

grr — 82 Ay 40].
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Ra) 20

M=V R@ —aa

20, (10)
where Equations (4) and (9) have been used. We here assume that N is large but finite, for example,
O(1000):

o~ N> (11)

Then, Al is larger than I, and Ar = 2 is sufficiently long in order for the effective local field theory
to be valid. In particular, the position of the surface (9) is meaningful physically. A way to show the
validity of the field theory more precisely is to construct a concrete solution by solving Equation (1)
and confirm its self-consistency. From Section 3, we will do it.

2.2. Step2: Pre-Hawking Radiation

In the step1, we have neglected the effect of the mass of the shell and considered only the Hawking
radiation from the black hole inside the shell. In this step, we will take into account the effect of the
mass and a pre-Hawking radiation.

Suppose that we add a spherical thin null shell with a small but finite energy AM to the black hole
with mass M evaporating as Equation (5) '°. From now, we will show that a pre-Hawking radiation
is induced by this shell so that the total magnitude of the pre-Hawking radiation and the Hawking
radiation from the black hole is equal to that of the Hawking radiation from a larger black hole of mass

M+ AM (up to O (%) corrections). See Figure 6.

N\ g

shell AM

magnitude of
N\ the radiatio‘% %
)

Figure 6. Statement of step 2. The total magnitude of the pre-Hawking radiation (dashed arrows) from

£

the shell of AM and the usual Hawking radiation (solid arrows) from the black hole is equal to that of
the usual Hawking radiation (solid arrows) from a larger black hole of mass M + AM.

Therefore, the total system of the black hole and the shell behaves like a larger black hole. (This
provides a more precise description of the right of the lower in Figure 3).

2.2.1. Setup

Although we will start a 4D complete analysis from Section 3, here for simplicity we consider
only s-waves of N massless scalar fields. For example, by using the conservation law with 2D Weyl
anomaly [41,50,51,53], we can evaluate the outgoing flux from the center black hole as

Nh
=471 (Tyu)) = 5. 12
J = 4 (Tu) 1927ta(u)? (12)
Comparing this to Equation (5), we see the intensity of s-wave Hawking radiation:
NI 3
%= S6n (19

10 Here, we consider the shell infinitely thin.
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We are now interested in the situation where the shell comes to the black hole as in Figure 7.

(redshifted)
Hawking radiation  pre-Hawking radiation
du Nh
shell <ﬁ> J Ton 4w
r"\ b ¥
ds? = — <1 - M) du'® — 2du'dr + r2dQ2?
a' =atla
a ~
____________ a(u
™ R, }d z <1 _—(r )) du? — 2dudr + r?dQ?
black hole e

Figure 7. The system of the shell and the evaporating black hole. The pre-Hawking radiation (dashed
arrows) is induced by the shell and added to the Hawking radiation (solid arrows) from the black hole.

Because of the spherical symmetry, the region between the black hole and the shell is still described
by the metric (4) with Equation (5) of the intensity (13) !!, while the region above the shell is expressed
by another Vaidya metric

/ /
ds? = — (1 - a(:t)) du' — 2du’dr + r*dQ>. (14)

Here, ' = 2G(M + AM) is the Schwarzschild radius of the total mass, and the time u’ is different
from u due to the mass of the shell AM.

The evolution equation of 4’ (1) is given by the energy conservation, % = —2G]J', where | =
4702 (T, ) lr>a is the total flux coming out of the total system. In general, particles are created in a
time-dependent spacetime of a collapsing matter. It is well-known that we can formulate the s-wave
approximated energy flux of the particles as [53-55]

N , Nn .,
] - ﬁ{u/ u}/ ] - ﬁ{u /u} (15)
Here, U is the outgoing null time of the flat spacetime before the collapse, and {x,y} = z—z - %%

is the Schwarzian derivative for y = y(x). (See above Equation (33) for a more explanation). Using a
formula [56]

2
) = () Lo+ (') 6

and applying Equations (12) and (13), we have

2
S h /
I=(5) 5em+ 1wtk 7

2Ga?> 161

This has a physical interpretation. See Figure 7. The first term represents the energy flux from the
black hole (12), that is redshifted due to the mass of the shell, and the second one corresponds to the
radiation induced by the shell. We call this term pre-Hawking radiation because any horizon structure

11 Here, we neglect the effect of scattering between the shell and Hawking radiation. This effect will be considered in

Section 3.2.1
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is not relevant to {u’, u}. Thus, the total of the redshifted Hawking radiation and the pre-Hawking
radiation determines time evolution of the energy % of the total system:

da’ du \? oy ,
du’__<du’> 2~ 2ol (e

which is nothing but the #/u/-component of the semi-classical Einstein equation.
To relate u and u’ each other, we use a fact that the trajectory of the shell, r = r5(u), is null from

both sides of the shell to get the connection conditions:!2
rs —a rs—a |,
du = —drs = du’. 19
2rs ! " 2rs ! (19)

This is equivalent to Equation (6) and

du'  rs—a
du rs—a'’

(20)
Now, suppose that the shell is close to a so that the relation (8) holds. Then, we can evaluate

Equation (20) as
du’ Aa \7! ala
—=1(1- ~ 1 , 21
du ( rs — a) * 205 @D

where we have used Equation (8) with ¢ replaced by 05 and assumed that Aa =2’ —a < O(9).

2.2.2. Time Evolution of the Pre-Hawking Radiation

We examine how the pre-Hawking radiation occurs by solving directly the coupled time-evolution
Equations (18) and (21). Here, we consider linearized equations for Aa.
In the linear order of Aa, from the evaluation (21), we have

b= pa o
i = 2aa (1+0(2). @
where the dot stands for the u derivative (e.g., Ad = %). Note that once the quantity is linear in Ag,

we no longer need to distinguish u derivative from 1’ derivative because of Equation (21). In order to
get Equation (22), we have used an identity for the Schwarzian derivative

, 1 /du\? 5, . du’
{wu} = —3 (d;l,) (4% —24), g(u) = log - (23)

and the fact that @ ~ a x O(%) and Aa ~ Aa x O(1), which will be checked in a self-consist
manner below.
Then, from Equations (5) (with ¢ replaced by 03), (18), (21), and (22), we obtain

du' — du' du' T du

dAa dd’  da du [ du da , _ Ma . (Aa)? osAa
(dw—l>du—12(fs{u,u}—za—émAa—i-(’)( o @ > (24)

As mentioned above, the " derivative in the Lh.s. can be replaced to u derivative, and we reach

1 1
—Ai— —Aa=0. (25)

A
it 8a2

12 Israel’s junction condition will be discussed in Section 2.3.
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This determines the time evolution of Aa(u) and how the pre-Hawking radiation is emitted.
Let us solve Equation (25) in the time scale Au ~ a, where a(u) hardly changes because of
Equation (5). Putting the ansatz Aa(u) = Ce" into Equation (25), we have

f+iv—é:Q (26)
thatis, v = — %, %. v = 411 means that the energy of the shell increases exponentially in time, which is not
accepted physically. Here, one might wonder why such an unphysical solution appears. The reason is that
Equation (18) is a higher derivative equation describing the back reaction of the radiation to be created
in the time evolution. A similar problem occurs in “Lorentz friction” (a recoil force on an accelerating
charged particle caused by electromagnetic radiation emitted by the particle), where one must choose a
physical solution by hand [40]. In the present case, therefore, we select as the physical solution

Aa(u) = Aage™ 2. (27)

This indicates that, as the pre-Hawking radiation is emitted, the energy of the shell decreases
exponentially in the time scale Au ~ 2a '3. In particular, this solution satisfies

d 1
EAQ = —ZAa. (28)

Now, we check the time evolution of a’(u). Using a’ = a + Aa, Equations (5) with o, (21),
and (28), we can evaluate

W _du (da dta
du'  dw \du du

ala s Aa
=(1= _s_==
( 205> < a? 2a)+0

_ $+% Aa+0<(fsAa)

osAa
23

2 20 a3
Os osAa
__ﬂ+0<a3). (29)
This agrees with Z—Z; =—Supto O (‘TS§” ) , which shows that Figure 6 holds as a result of the
a a
time evolution. (In the next step, we will show ZT”l; = —5% including the correction of O (‘T“—Q’Z) ).
a a

It should be noted that, on the third line of Equation (29), the amount of the Hawking radiation
reduced by the redshift is compensated by the pre-Hawking radiation'*. Therefore, the pre-Hawking
radiation plays an essential role in the evaluation (29).

2.3. Step3: A Multi-Shell Model

We have seen so far that the statement of Figure 6 works up to O(-3) corrections for any part
of the collapsing matter. Therefore, we can imagine that the collapsing matter consisting of many
shells shrinks emitting the pre-Hawing radiation from each shell in the time evolution. In this last
step, we will construct a dynamical model representing the situation and show under the s-wave

13 This time scale is consistent with the lifetime of the whole black hole, Au ~ ‘1%3, which is predicted from Equation (5).
i

2
Imagine that a black hole with a is made of O(’ILZZ) shells with Aa ~ %” as in Figure 5. Then, it takes Aty ~ 2a X ‘[’72 ~ ‘l’;
p v
for all the shells to evaporate according to Equation (27).

Note that % is much larger than 2;2* Aa, which is the difference between ;% and a‘%
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approximation that the pre-Hawking radiation is emitted with exactly as the same magnitude as
the usual Hawking radiation. Then, we see that a surface pressure is induced on each shell by the
pre-Hawking radiation and discuss its role in the time evolution.

2.3.1. Setup

We consider a spherical collapsing matter consisting of n spherical thin null shells. See Figure §,
where r; represents the position of the i-th shell.

N\} ds? =— (1 - ;) du? — 2dudr + r2d0?
N }_dsf = —(1 —%) du? — 2dugdr + r?d0?
Ti-1 I 2 A 2402
dsi, =— (1 = )dui,1 — 2du;_qdr +r*dQ
3 —— T
L&
L Q1 ~TTTm----
N
0)y— o p
10 flat Fdsz = —au? - 2dudr + r2d0?
t

Figure 8. A multi-shell model, which models the time evolution of the matter depicted by the left in Figure 5.

Here, physically, some part of the radiation emitted from a shell can be scattered by the other
shells or the gravitational potential, but we neglect the effect for simplicity. (We will introduce it in
Section 3.2.1). Then, because of spherical symmetry, for i = 1- - - n, the region just outside the i-th shell
can be described by the outgoing Vaidya metric:

ds? = — (1 — ai(:li)) dui2 — 2dudr + r?dQ)2. (30)
Here, u; is the local time, a; = 2Gm; > I, and m; is the energy inside the i-th shell (including the
contribution from the shell itself). For i = n, u, = u is the time coordinate at infinity, and a, = a =
2GM, where M is the total mass. That is, the outside is given by the metric (4), but we do not assume
Equation (5). On the other hand, the center, which is below the 1-st shell, is the flat spacetime,

ds? = —dU? — 2dUdr + r*dQY?, (31)
because of the spherical symmetry. Therefore, we can regard that
ap=0, up=U. (32)

To set the time evolution equations of a;(1;), we consider how particle creation occurs in this
time-dependent spacetime [1]. Suppose that the quantum fields start in the Minkowski vacuum state
|0) o from a distance. They come to and pass the center as the green arrow in Figure 8. Then, they will
propagate through the matter and be excited by the curve metric to create particles, which corresponds
to the pre-Hawking radiation. For example, by solving the field equation in the eikonal approximation
and using the point-splitting regularization [9,16], we can evaluate the total outgoing energy flux
observed just above the i-th shell as

Nh
Ji = 4707 M {0| Tugu 0) 1 = 3 {ui, U} (33)

fori =1,2,---,n. Therefore, we have for each i

da; _ —2GJ; = —1204{u;, U}. (34)
dui



Universe 2020, 6, 77 14 of 70

To complete the setup, we need to connect time coordinates, u, = u,u,_1,---,up = U.
Following the idea used to get the conditions (19), we have the connection conditions at » = 7;:

gy, — —2dr, = wdw-l fori=1---n. (35)

T T

ri —a;

This is equivalent to
dri(ui) _ ri(u;) —ai(u;) (36)
dul- 27’1'(1/[,‘)

and
du; ri—aiq
= = 1 + .
dui_l ri —a; ri —a;

ai —aj—1 37)

Equation (36) determines r;(u;) for a given a;(u;), and then the solution r;(u;) and Equation (37)
give the relation between {u;}. Thus, the coordinates are connected smoothly. (Israel’s junction
condition will be checked later).

2.3.2. Check of the Pre-Hawking Radiation

In order to solve the coupled Equations (34) and (35), let us take the continuum limit by AM; =
% — 0. In particular, we focus on a configuration in which the following ansatz holds:*®

dl/'ll' C
deli = _EI (38)
da; 2C
I’i:{li—zaidfu;:ﬂi—Fafi. (39)

These can be justified by the result of step 2: From the outside of the i-th shell, the system
consisting of the shell and its inside behaves like the ordinary evaporating black hole as in Equation (5),
and the shell comes close to the asymptotic position as in Equation (8).

In the following, we show that the ansatz (38) and (39) gives a solution to the coupled equations
to be solved, (34), (36), and (37). First of all, the ansatz (39) is nothing but the asymptotic solution
of Equation (36) under the assumption (38). As we will see below, there exists a C that makes
Equations (34) and (37) be satisfied.

We first solve Equation (37). By introducing

du
= log — 40
gl Og dui, ( )
we have
du
du; du;
§i —Gi—1 = log au —log du; 4
du;j_q

. 2C
rl al ”i
1 2 2
~—gc (i) - (41)

15 A more general case is discussed in [21].
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Here, on the second line, we have used Equation (37); on the third line, we have used the
ansatz (39) and assumed %57=1 < 1; and, on the last line, we have approximated 2a; ~ a; + a;_1.

{1

These approximations become exact in the continuum limit. Then, with the condition (32), we obtain

1 5

Next, we consider the time evolution Equation (34). We first note that from the definitions of the

Schwarzian derivative and ¢; (see Equation (40)), we have

1 /d&\> 242G
ZUy==-1-> . 4
{ul } 3 <dul> 3 dl/l ( 3)
On the other hand, from Equations (42) and (38), we have
dgi o 1 ) dﬂi o 1
dui a 2C “ dui - Zai ’ (44)
Therefore, we have
1
WU~ —, 45
{u;, U} 1211-2 (45)

where the higher terms in ” have been neglected for a; > I,. Using this, Equations (34), and (38),
we find C = o;. That is, the solution tells that the system inside (including) each shell evaporates
emitting the pre-Hawking radiation with the same magnitude as the usual Hawking radiation:

dlll' Og

du. —E. (46)

Note again that this is not an assumption but the result of solving the semi-classical Einstein
equation in the s-wave approximation [9,16]. Thus, we have seen in the s-wave approximation that
the collapsing matter becomes a dense object with the surface (9) and evaporates as in Figure 5.
The pre-Hawking radiation is emitted from each shell, and the sum of them comes out of the surface
of the object just like the usual Hawking radiation. In the following, we will use the term “Hawking
radiation” to mean the pre-Hawking radiation '°. (In Appendix C, we compare this pre-Hawking
radiation to the usual Hawking radiation [1]).

Here, one might wonder how the Planck-like distribution with the Hawking temperature is
obtained in this pre-Hawking radiation. Suppose that we want to evaluate the distribution of the
particles created around a time u = u,. Because a(u) changes slowly as Equation (46), we can
approximate itas a(u) ~ a, — —(u — u) (where a, = a(u)), which leads to a(u)? ~ a2 — %(u — Uy).
Using this, Equations (40) and (42) with C = 05, we have

du a2 +o (u—uy) _ 4
~ o i T () — D e, 47
d u * ( )
Note that U is the affine parameter for outgoing null modes in the initial flat space, and u is that
in the asymptotically flat region of the spacetime after the formation of the black hole. In general,
such an exponential relation between the two affine parameters plays an essential role in obtaining

16 If we want to emphasize or distinguish between the two, we explicitly say “pre-Hawking radiation”.
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the Planck-like distribution of the Hawking temperature [43,44]. In fact, the relation (47) leads to the
Planck-like distribution of the time-dependent Hawking temperature [9,16] 17

h

Tra(u) = 4ma(u)

(48)
Therefore, it is possible to discuss black-hole thermodynamics by using the pre-Hawking radiation
(without any horizon structure) and consider the entropy (see Section 8).

2.3.3. Surface Pressure Induced by the Pre-Hawking Radiation

We check the junction condition along the trajectory of each shell and study why the matter
does not collapse. When two different metrics are connected at a null hypersurface, a surface
energy-momentum tensor exists on it generically. By using the Barrabes-Israel formalism [57,58],

(i) (i)

we can calculate the surface energy density €,; and the surface pressure p,; on the i-th shell as (see
Appendix F of [16] for the derivation)

J)_ G ) T daj ( ri—a; \*dai_y (19)
2 = 87tGr2 » Pad 47G(r; — a;)? \ du; ti—ai_q) duj_q )’
Naturally, eé d) expresses the energy density of the shell with energy AM; = “52=! and area 47tr?.

Using Equations (34) and (37) and then applying the formula (16) to (U, u,u’) — (U, u;_1,u;), we can
(i)

express p,; as

(i) _ 30575 o
Pog = TEG(TS — a/)z {uz/ ul*l}/ (50)

which shows through Equation (17) that the pressure is induced by the pre-Hawking radiation
1%]1 {ui ui—1}.

Let us evaluate pgj). We start with the expression (49). Using Equations (39) with C = s and (46)
and performing a similar calculation to the evaluation (29), we obtain

() zAal (51)
P2d ™~ 167Go2’
for Aa; = a; — a;_1. Therefore, the pressure is positive and strong (even for Aa; ~ %). This means
that, as the shell contracts, the pressure works to resist the gravitational force while the pre-Hawking
radiation is dissipated.

We can understand the origin of this pressure from a 4D field-theoretic point of view. Indeed,
the pressure appears naturally from conservation law and 4D Weyl anomaly [24]. In the following
sections, we will calculate directly the expectation value of the energy-momentum tensor and show
that the vacuum fluctuation of the bound modes with / > 1 creates the pressure.

3. Construction of the Candidate Metric

From now, we start a full 4D self-consistent discussion, and show that the basic idea works as
a solution of the Einstein Equation (1). In the present and following sections (except for Section 9),
we do not employ the s-wave approximation used in the previous section, but we consider the full 4D
dynamics of quantum fields.

17 In the usual derivation of Hawking radiation [1,41], the exponential part contains a factor like — 5 . The corresponding
part of Equation (47) has opposite sign, but indeed it gives the temperature (48) [9,16]. See also Appendix C.
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In this section, we use and generalize the multi-shell model in the previous section and construct
a candidate metric for the interior [9,14,16,24]. Note that at this stage we do not mind if the metric is
the solution of the Equation (1) or not. In Section 7, we will show that indeed it is.

3.1. The Interior Metric

We use the multi-shell model of Figure 8 and construct a candidate metric for the interior of the
object. To do that, we suppose again that in the continuum limit the ansatz

da; o 20
L =g 4+ 52
dul' alg/ rl al + ai ( )

hold for an intensity o. Then, we can use these and the condition (37) to obtain (like the calculation (41))

L

Gi=— Y (53)

Note that in the previous section we have used the s-wave approximated Einstein Equation (34)

to obtain C = o5 in Equation (46), but we are now trying to use the full 4D Einstein equation to identify
the self-consistent value of ¢ (see Section 7).

Now, the metric at a spacetime point (U, r) inside the object is obtained by considering the shell

that passes the point and evaluating the metric (30). We have atr = r;

r—a r;,—a Z 20
_ . .. -
oy T A = (54)
T ri ri T
dl/l' _ oz, ”12 2
L — 0 = ¢10 v oo, (55)

au
where Equations (52) and (53) have been used. From these, we can obtain the metric

ds® = —%du% — 2dudr + r2dQ>

2
_ _rima (AT L du 2402
= ; (du) dau Zdududr+r,d0 (56)
20 ﬁ 2 ﬁ 2 2
~ —r—zezvdu — 2esdUdr + rodQ)°.

Note that this is static although each shell is emitting the pre-Hawking radiation and shrinking
physically.
Thus, our candidate metric for the evaporating black hole is given by [9]

) —@du2 — 2dudr +r?dQY?, for R(a(u)) <r,
ds® = 9o R@w)?-2 _ R@a()?—r2 5 10 (57)
—5e 20 du® —2e io dudr +r2dQ)*, for 20 <r < R(a(u)),

under the assumption that the scattering effects are neglected. See Figure 9.
This metric is continuous at the null surface located at r = R(a(u)) = a(u) + a%—g), where the total

Schwarzschild radius a(u) decreases as Equation (5). Here, we have converted U in the metric (56) to u in
R(a(u)?

the Vaidya metric (4) by the relation dU = ¢~ 4 du, which can be obtained by Equations (40) and (53).
In the construction, we have started from the vacuum spacetime and piled up many shells. The flat
region around r = 0 with width Ar ~ /0 is extremely delayed due to the large redshift, and is still flat
because of the spherical symmetry. Around r = /20, the interior metric (60) takes the same form as
the flat metric (62). Then, for convenience, we assume that the region 0 < r < V20 is flat. Note that
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the choice of r = /20 is not essential to the following discussion because we can redefine the time
coordinate T (or U) and select another point, say, 7 = v4c.

Surface at

R(a(u)) = a(u) +2—0 ’

a(u)
ra

outgoing Vaidya

L) T I D
flat
Ar ~ 20 < U
(13
Au~— interior metric
o

Figure 9. Time evolution of the evaporating black hole.

As shown in Figure 9, this object evaporates emitting the Hawking radiation through the null
surface although the interior is static. Thus, the whole system is time-dependent.

This object has the surface at ¥ = R(a(u)), instead of a horizon. We can also check that there is no
trapped region inside. However, the redshift is exponentially large inside, and time is almost frozen in
the region deeper than the surface by Ar >> 7. Therefore, this object looks like the conventional black
hole from the outside. Note also that, because of this large redshift, only the Hawking radiation from
the outermost region comes out although the radiation is emitted from each region inside [9].

Next, let’s consider a stationary black hole. Suppose that we put the evaporating object in the
vacuum into the heat bath with temperature Ty = 4%. Then, the ingoing and outgoing radiations
balance each other, and the system becomes stationary. The object has the surface at r = R(a) for
a = const., which corresponds to a stationary black hole in the heat bath 18 Then, the outside spacetime
is described approximately by the Schwarzschild metric (instead of the Vaidya metric):

dsZ:—r_

. Ta2 4 ﬁdﬂ 42402, (58)

By defining the time coordinate T around the origin as

2

2
T = dU + Ziaewdr, (59)
we can reexpress the interior metric (56) as
20 2 2
ds? = —Te%dT? + L dr? + 2d02. (60)
r2 20

)2
Thus, by changing T to t through dT = e’% dt, we have [9]

—a 3,2 2 1 ,2102
— At —trz_iadr +r2dQ)*, for R(a) <7,
R(a)—r

ds* =
—%e* = df? + %drz +r2d0?, for 20 Sr < R(a),

(61)

which is the candidate metric for the stationary black hole. This metric is continuous at r = R(a) and
connected to the flat region around » = 0

ds? = —dT? + dr* + r*dQ)? (62)

18 We will discuss the stationary black hole more in Section 8.
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R

atr ~ 20 by the relation dT = e~ 5177)2 dt.

Note that the interior parts of both the metrics (57) and (61) are static and the same. In the
following sections, we will be interested basically in the interior region. Therefore, we will often
consider the case of a = const. and use the static metric (61).

3.2. Generalization of the Metric

The interior part of the candidate metric (61) doesn’t contain the effect of scattering which
has been mentioned above (30). Actually, the metric has -G =G, = %2 for r > 1,, which is,
through Equation (1), equivalent to —(T*;) = (T",). Here, —(T";) and (T",) are the energy density and
radial pressure, respectively. This indicates that, from a microscopic point of view, the collapsing matter
and radiation move radially in a lightlike way without scattering. In this subsection, we introduce a
phenomenological function representing the effect of the scattering and generalize the metric (61) [14].

3.2.1. Another Phenomenological Function

We first examine the energy-momentum flow in the general static metric (2). The self-consistent
energy-momentum flow must be time-reversal, which can be characterized by

—(T"ky = x(I" + (y —Dk"), —(T")1l, = x(k" + (5 —1)I*) . (63)

Here, « is a function. As we have seen that the interior of the object is very dense, we assume that
1 = n(r) is a function of O(1) which varies slowly 1. I and k are the radial outgoing and ingoing null
vectors, respectively:

1 1
l=e 29+ S0 k= e 29 — For (64)
These transform under time reversal as (I, k) — (—k, —I). Equation (63) can be rewritten as
(TFRY TRy =109 —1, (T =(T"), (65)

where T** stands for T”"kﬂkv, and so on. Furthermore, this can also be expressed in terms of the ratio
between —(T*;) and (T",):

(T"r) 2-1
= 66
=T 7 (%0
Therefore, 7 must satisfy
1<y<2 (67)

Here, the first inequality is required by the fact that, in Equation (65), # — 1 plays a role of the
ratio between two energy flows, which must be positive. The second one is needed in order for the
pressure to be positive under —(T%;) > 0.

Now, we discuss the physical meaning of 77 from a microscopic point of view. See Figure 10.

We focus on one of the null shells that make up the black hole and consider the moment
when the size is 7, which is represented by S in Figure 10. The vector P¥ = (T#k) expresses the
energy-momentum flow through the shell, which moves lightlike inward along k. If the radiated
particle is massless and propagates outward along the radial direction without scattering, P¥ should
be parallel to I¥, which means # = 1. Therefore,  — 1 represents the deviation from this ideal
situation. # — 1 can become non-zero if the massless particle is scattered in the ingoing direction
by the gravitational potential or interaction with other matters®®. This is because such a scattered

19 |dy
dr

20 If the radiated particle is massive, P¥ is timelike, and we have 5 > 1. In this paper, however, we consider massless particles
basically.

I, < 1. This point can be examined more by a phenomenological discussion [14].
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particle comes back to the surface in the time scale of O(a) according to Equation (6), and produces
an energy-momentum flow along the k direction. In this way, 7 is a phenomenological function that
depends on the detail of microscopic dynamics.

Vi
1:n—1

AT :
scattering S

(le)
null shell falling <
inside the black hole t

>
>

Figure 10. The meaning of a phenomenological function 7.

3.2.2. The Candidate Metric

We determine A(r) and B(r) by considering the ratio (66) for a given 1. Here, we assume for
simplicity that 7 is a constant satisfying the condition (67) in v/2c < r < R(a). We can expect that
the introduction of #(# 1) should not change the functional forms of A(r) and B(r) in a drastically
different way from those of the metric (60) 21 Therefore, we can put

7’2 7’2
A(r) = Cl%/ B(r) = CZ%' (68)

where C; and C; are some coefficients such that C;,C; — 1iny — 1 22,
Then, using the ratio (66) and the Einstein Equation (1), we have for r > [,

2 G, ro, A ro,A  2Cy
- = 1= ~ =—_—, 69
7 —Ch T B_1t+rologB B G (69)
thatis, C; = %Cz. Therefore, Equation (68) becomes
2 2
A(r) = Zﬁ’ B(r) = CZ%- (70)

At this stage, the intensity ¢ is arbitrary, and we can redefine it and remove C, without losing

generality to obtain
2
.

A(r) = PRt B(r) = e (71)

Thus, introducing the scattering effect by 7, the metric (61) is generalized to [14]
—a 442 24 ,29002
—Adts + dre +r7dQ)*, for R(a) <7,

dsz = R(a)?—r? > (72)
—3—‘2737 27 dt? + dr? 4 r2d0?, for V20 Sr < R(a).

This metric is again continuous at the surface atr = R(a) = a + %‘7 The center is assumed again
to be flat, which requires that # = 1 there. The flat metric (62) around r = 0 is expressed in terms of ¢
approximately as

a 2
ds2 = —e= "5 42 4 dr 4 2402, for 0<r < V20 73)

21 We can justify this expectation by a thermodynamical discussion [14].
22 In A(r) of Equation (68), we have dropped a term proportional to R(a)2, which corresponds to considering A in ds*> =

— %de + - - . This does not affect the calculation (69) because G!; = GTr.
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The metrics (72) and (73) are our candidate metric?®.

which will be determined self-consistently later.
The interior part of the metric (72) can also be applied to the evaporating black hole because the
interior is static. Therefore, the previous metric (57) is generalized to

It depends on two parameters (o, 1),

— =00 g2 2 dudy + 12402, for R(a(u)) <r,

r

ds* = _ RGa()?-r? _ Ra()?—r? (74)
—3—‘276 2 du? —2¢ 1 dudr+1?dQ?, for V20 <r < R(a(u)),

We check the form of the Einstein tensor. The interior part of the metric (72) has

1 ., 2—-51 _, ¢ 1 1
_— = — — = = —— 7
1’2/ G r 17 1’2/ G 0 G (P 20_172 7/]7’2’ ( 5)

G't =
to O(r=2) for r > I,. This means through the Einstein Equation (1) that the energy density and
pressure are positive, but the angular pressure is so large (almost Planckian) that the dominant energy
condition violates, as mentioned in Section 1.

Next, we calculate the curvatures in v20 < v < R(a):

1 2
RuRW = L 24 o4, (77)
M 2;74(72 ,730-72
RyapRM P = 1 8 4+ o). (78)

72 pPor?

This means that, if the metric is the solution of the Einstein Equation (1) and Equations (11)
and (67) are satisfied, the geometry has no singularity. Then, the Penrose diagram of the evaporating
black hole is given by Figure 1.

We here discuss Hawking radiation in this picture. We consider the total energy flux through an
ingoing null shell along k in Figure 10:

] = 4mr?(T"k)
= 471? (—B_1<Ttt> —e

_4
2

(T'0), 79)

where Equation (64) has been used, and u = %e’éat is the vector of the local time (like u; in Figure 8).
This is a generalized definition of the total flux. Applying the definition (79) to the interior of the

metric (72) (or (74)) and using Equations (1) and (75), we have | = 47rr? (—B’1 1631G Gtt) = 2(§Lr2
For the exterior part of the metric (74) for the evaporating black hole, on the other hand, we obtain
Gur = Gyy = — r% Then, we have | =~ ﬁ by using Equations (1) and (5). Thus, these agree with each
other at r = R(a) ~ a, which means that the radiation emitted from the inside goes to the outside.
Finally, we argue that the interior part of the metric (72) is AdS; x S? locally. First, we can
check that, in general, a spherically symmetric metric ds? = — f(r)dt? + h(r)dr* + r*dQ? is AdS; x S?

spacetime with ds? = i—zz(—dt2 + dz?) + r(2)?dQ? if the condition

23 We consider this metric as a first approximation metric in that we have neglected the effect of dilute radiation outside the

surface (see footnote 6) and connected the interior and exterior metrics directly at r = R(a). For a more proper description,
we would need to consider such a small effect and construct an “interpolation” metric connecting the two metrics in a
smooth manner. However, the most dominant effect of the back reaction of evaporation is incorporated into the interior of
the metric (72).
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\Vh(r) = iéa, log f(r) (80)

is satisfied®*. For the interior metric, we have h(r) = B(r) = g—(zf and d,log f(r) ~ 9,A(r) =

A(r)
Gl
is satisfied for I = /2012 around the point r we are focusing. Thus, the interior metric can be

approximated locally as AdS, x S? geometry:

T
on’

where we have neglected the contribution from B(r) of gy = for r > I,,. Then, the condition (80)

ds? ~ (20%?) 212(701162 +dz%) + P02, (81)

r(z)
2012
that for AdS, after the black hole is formed. It would be interesting to study this more in future.

where 7 = 25, This means that the local symmetry for a fluid before the matter collapses becomes

ﬁ

4. Field Configurations

We consider N massless free scalar fields

1 N
Suldsgu] = =5 1. [ &5V =88" it 52

in the candidate metrics (72) and (73) and study their configurations to find a candidate state.

This action leads to the equation of motion?®

0= Op(x) = \/%aﬂ(\/fggﬂvaﬂp). (83)

4.1. Classical Effective Potential and Bound Modes

Before going to quantum fields, we study the classical behavior of matter to see intuitively
what happens in the spacetime (72). To do that, we analyze the field Equation (83) in the classical
approximation to draw the effective potential for the partial waves of the fields.

We first consider the general static metric (2) and set

e it Afr)

¢<x>:MW¢i<r>Yzm<9,¢>, C(r)y=r*B(r) 2, (84)

where i = (w,l) and the normalization factor A; will be fixed in Section 4.2. Then, the field
Equation (83) becomes

0= 07¢;(r) + pi(r)gi(r), 5

—A(r I(! _92/C(r
0 = 80) (B0 40 = XD ), o) = VL

(86)

This Equation (85) takes the same form as the Schrodinger equation with energy E = 0 and the

potential V(r) = —pf(r). Therefore, the classically allowed region is determined by the condition
2
p;i(r) = 0.
24 Comparing g in the both metrics, we put f(r) = %, from which we have o, fdr = fZ%dz. Then, we can obtain
dr = — Wdz and see that h(r)dr? = %dz2 holds if the condition (80) is satisfied.

25 In fact, the Ricci scalar (76) is approximately — ;7%—0, which is negative and constant.

26 For simplicity, we write ¢, as ¢ in the following.
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In general, when one studies a field equation in a curved spacetime, he needs to take the curvature
effect into account, which is expressed here as the “mass term” M, the two derivative term of the
metric?. For the metrics (72) and (73), M takes?8

a for R(a) <,

"~ 43(r—a)’
M= bbb, for VIR S 7 < R(a), ®7)

0, for 0 <r < +20.

However, M should not significantly affect the purely classical motion of matter because a
classical particle equation (Hamilton—Jacobi equation) does not include derivative terms of the metric.
Therefore, in this subsection, we ignore M for a while.

Let us draw the classical effective potential pl(d) (r)? for the whole spacetime of the static black

hole with a =const. for simplicity. (This corresponds to the stationary black hole in the heat bath).
We apply the metrics (72) and (73) to the formula (86) (without M) and obtain

()2t (1) D, for R(a) <,
D=4 Ao w2~ W o /35 < ¢ < R(a), (88)

(a)?
e 2 lw? — l(lr—tl), for 0 <r <+/20.

This is continuous®. Note that the frequency w is measured at r > a.

For [ = 0, we have the left of Figure 11, which shows that the whole region is allowed classically;
s-waves can enter the inside from the outside, pass the center, and come back to the outside, which takes
an exponentially long time because of the large redshift.

(D (r)? PP (r)?

R? 12
e2ow? — —~

20

bound mode with [ > 1
continuum mode of s-wave

V2o R

Figure 11. The classical effective potential p§cz) (r)? for a given a. Left: I = 0, and Right: [ > 1.
(cl)

The region of p;"’ (r)? > 0 is allowed classically.

We refer to such modes as continuum modes in the following. For [ >> 1, on the other hand,
the classically allowed region consists of two disconnected domains as in the right of Figure 11.
The outer one indicates that such modes coming from the outside are reflected by the barrier l(l;zrl)
while the inner one shows that they are trapped inside, which we call bound modes.

Now, we discuss the behavior of each mode in the formation process of the black hole. We first
study the condition for a mode with (w, ) to enter the black hole with a from the outside. From the

potential (88), for r > a, we have pgd) (7)2 ~w? — i—i, which becomes zero at r = % This means that

27 For example, in studying cosmological particle creation, an equation of the same form as Equation (85) is used to analyze an

adiabatic calculation [41,42].
In fact, M is the same order as R inside the black hole. See Equation (76).

In particular, it is continuous at ¥ = v/20 because the center region is flat, which means that 7 = 1 for r < v/20, as we have
mentioned below the metric (72).

28
29
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the mode is reflected at the point and returns to the outside. Therefore, the condition is r = é < a that
is, | < wa. From this, we can also see that a mode with (w, !) composing i-th shell of the multi-shell
model in Figure 8 can enter inside if | < wa;. As we will see in Section 6, most such modes have the
energy fiw ~ aﬂ Then, the condition becomes | < wa; ~ 1. Thus, we conclude that only the continuum
modes of s-wave can enter the black hole from the outside.

Although modes with [ > 1 cannot enter from the outside, they emerge inside the black hole in
(e)

the formation process. To see it, we study how the potential p;"’(r)? changes for a given (w,!) as a

increases from zero. See Figure 12.

p{P(r)?

(cl)

Figure 12. Change in the potential p,“’ (r)? for a given (w, ) as a increases. Each arrow indicates the

outer zero point in each potential.

Initially, there is no mass, a = 0, so the spacetime is flat and the potential is given by the purple
line. When the mass becomes larger than 11, the allowed region appears inside, which is described by
the blue line. Then, the bound modes emerge there. As the mass increases, the potential grows up
and the allowed region is broaden (see the green and yellow lines). Then, the outer zero point (which
is depicted by the arrows) moves inward, which means that, as the mass increases, the gravitational
attraction increases, allowing the mode to overcome the centrifugal repulsion and penetrate more
inside. In this way, many bound modes emerge inside the black hole independently of the initial state.

Finally, we note that, if the curvature term M is considered in the formula (86), the bound
mode of s-wave can also emerge inside the black hole. In fact, for 20 < r < R(a), we have

2 2
Poyi—olr=R(a) = Ré‘f) (Rg;) w? — 8(717) This means that the s-waves with w < O(ﬁ) are trapped
inside r = R(a). See Figure 13. Thus, the s-wave in the interior metric can be in a continuum mode as

in the left of Figure 11 or in a bound mode as in Figure 13.

pi(r) ?

bound mode of s-wave

\/20 R

Figure 13. The effective potential p,,j—o(r)? for w < O(%) Bound modes of s-wave can emerge
due to the curvature M. pw/l:O(r)z has a gap at r = R(a) because M (87) is not continuous there.
See footnote 23.
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4.2. WKB Approximation

We now consider quantum fields and try to solve the field Equation (83) by WKB method®. In the
interior of the metric (72), the leading WKB solution is given, through Equations (84), (85) and (86),
by [59]3!

¢(x) = Y (aiu;(x) + afuf (x)), (89)
i
(0 =M [ i) + 00 6,9). )
u;(x cos r'pi(r") +6,]Y; ¢
Here, A(r) = r2;§$”)2, B(r) = %, i = (a,1,m), and 6; is a phase factor, where « labels the

frequencies for each I and m. For the bound modes, the frequencies are quantized, w; = w;; (n € Z),
and are approximately given by>?

27tn = ]{drpnl —2/ dr\/ Be Aw 2 — l(l:;l) —M), 91)
Tl

where p,,(r) vanishes at r = 7}, 7. The normalization is fixed as (see Appendix D)

_ R fawn
M_\/; on (92)

On the other hand, the s-waves have continuum modes (as in the left of Figure 11), which we will
discuss more in Section 6.
We also have the commutation relation

[p(t,x), 7(t,y)] = in6®(x — ) (93)

and
[a;,a]] = 6, (94)

where 71(t, x) is the momentum conjugate to ¢(,x) (Syr = [ dtLy):

JdLy
(8t¢(t x

The ground state |0) for all modes {u;} in the interior metric is characterized by

n(t,x) = —/-88"¢. (95)

a;]0) = 0. (96)

4.3. A Candidate State

We show that the bound modes are in the ground state while the continuum modes of s-wave are
in an excited state. If |¢) is the ground state for the bound modes {u;}cp, it satisfies

a;lp) =0 fori € B, 97)

30 Note again that the field Equation (85) takes the same form as the Schrédinger equation with energy E = 0 and the potential

V(r) = —p?(r). Therefore, in order to solve the Equation (85), we can use the same technique as the WKB approximation in
quantum mechanics. We just mean it by the term “WKB method (or approximation)”.

Note again that we are writing ¢, just by ¢, and u;(x) depends on the kind of fields.

Tt does not appear in the Lh.s. of the condition (91) because p; is not momentum but wave number.

31
32
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where B stands for the set of the bound modes. From Figure 12, the condition (97) is independent of
the initial state of the system because the bound modes emerge in the region disconnected from the
outside.

In general, the ADM energy M inside radius r in a spherically-symmetric spacetime is given by [40]

.
M= 47'(/ dr'r">(—Tt), (98)
0

where

-2 Sy Y 1 wp
= i = L (3uu(1090(x) ~ 30 (P Rutupals) ) . ©9)
Then, we can define the ADM-energy increase (AM); of the first-excited state of the i-th bound
H N i — 4t
mode (of a component of fields {¢a},;), |i;¢) = a]|¢), by

Ty (x)

(aM); =4 [ (gl = Thlisg) - (] = Tly)), (100

where |1p) satisfies the condition (97) and the integration interval is the allowed region of the bound
mode u;. This is finite because the UV divergence is subtracted by the second term. We estimate the
order of this by using the WKB approximation.

We first check the condition for the bound mode to exist, which is determined by the quantization
condition (91). That is, the quantum number of the i-th bound mode must be at least greater than 1:

)2 g2 R(a)?

r i A R(a ; 2
1< mn= /l drp; ~ /l drBe 2w; = e %1 w; [ dr%e o = e 4 w;Ky\/0, (101)
T re ;

Ti
where we have considered only the most dominant term of Equation (86) in the WKB approximation

+ 2
and evaluated the integration as f:l dr%e_m = Ky/o with a constant K = O(1)%. Therefore,

the frequency must satisfy
R(a)?

X (102)

1 _
w; 2 ——e
ZNK\/E

Similarly, we can calculate from Equation (A20)

ow?

-1 —1
. i 2,—A i 2 . R(a)?
L =21 / drB ¢ ~ 271w / drBe~? — Y (103)
on . rlf Pi . rlf K\/E

Next, we see ¢ = Y (—iwj) (aju; — a}ru;‘) from Equations (89) and (90). Using Equations (94) and
(97), we can see easily (i; |¢?|i; ) = 2w?|u;|? + (p|¢?|). We check the form

N
Ty =~ 3 (~8"93+ 87 (0rpa)? + 8% (Guga)? + 8 (39 )?) (104
a=1

_ 2
33 The function %e 417 js like a Gaussian with width ~ 1/, and the integration has the dimension of the length. Therefore,

f 2
we can have j:i drg—;ef‘(ﬂi‘* = 0(y/0)
i
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Then, we evaluate

. . I(1+1
(gl = Thliz ) = (9] = T'elp) = (—g”w? rgrpe D p )) i
—A 1
o I owi 2Be "l — g (105)
~ 872 on A 11
2B-1p% \/B (Bewalz _ (;;1) _ 877120>

2
~ h 0w; A
872r2 on !

Here, on the first line, we have applied 0, only to cos f drp; in u;(x); on the second line, we have
used the WKB solution (90), cos? f drp; = % and |Yy,, |2 ~ ﬁ ; and, on the last line, we have picked up
only the most dominant terms because we are interested in the order estimation.

Thus, we estimate the energy increase (100) as

hoow? (1 2 R

(AM); ~ dr%e 207]

E on rl._
h dw? R(a)?

- 27 a L K/\/EEW
T on
K' R@?

~ hfe 1w

/
> K 1

R RTE (106)

Here, on the first line, we have used the evaluation (105); on the second line, we have expressed
+ 2
fr:_" dr%[m = K'\/o with K’ = O(1); on the third line, we have employed Equation (103); and on

the last line, we have applied the condition (102). That is, we have®*

Mp
(AM); 2 O (W) : (107)

Here, as we will see in Section 6, the statistical fluctuation of the mass of the black hole is
(@) (mp). Thus, the result (107) means that when the number of excited bound modes exceeds O(\/N ),
the excitation energy becomes larger than O (m1,,), and the object becomes different from the black hole.
Therefore, we can regard that the bound modes are in the ground state because O(\/N ) is negligible
compared to the number of total modes, which is on the order of O(%) (see Section 6).

On the other hand, the continuum modes of s-wave are not restricted by the condition (102)
because they are not trapped inside. Therefore, those modes can enter and exit the black hole as an
excitation that represents the collapsing matter and Hawking radiation. Thus, the candidate state |¢)
is a state in which the bound modes are in the ground state and the s-waves are excited, leading to the
energy-momentum tensor (3). (In Section 6, we will characterize |¢) more specifically).

5. Energy-Momentum Tensor in the Ground State |0)

In this section, we evaluate (0|T},|0) of Equation (3), where |0) is the ground state (96). The plan
is as follows. In Section 5.1, we first study how the WKB approximation breaks down and solve
the field equation in a different perturbation technique to obtain the leading solution of the bound
modes. In Section 5.2, we check the general procedure of the renormalization for the dimensional

3% In this sense, the spectrum of the black hole is quantized and gapped.
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regularization. In Section 5.3, we evaluate the leading value of the renormalized energy-momentum
tensor (0| T, |0):(691). In Section 5.4, we study the subleading value (0[T}, |0>;2}1)
5.1. Solutions of the Bound Modes

We construct the solutions of the bound modes in the interior, which will be used in Section 5.3.

5.1.1. Breakdown of the WKB Approximation

We first examine the validity of the WKB approximation in Section 4.2. If we want to evaluate
the energy-momentum tensor at a point » = rj inside the object, we need u;(x) at r = ry with various
values of i = (w, 1, m). Then, the proper frequency @& and the proper angular momentum L at r = rq
are physically important:3®

2 2 2
“= (aj()) = Lemia?, L= 1), (108)
—&tt(ro

In terms of these, the formula (86) is expressed as

2 4 2.2 2
e o (rY s (e Ly
pi(r) o [(r()) e TG <L+ 217r3> sor? \ ) |- (109)

From this, we have p;(rg)?> = % [GJZ — <Z + 2’717%) - 8‘71’]2] . This means that the WKB
approximation is good at r = ry for @ > L because the semi-classical treatment is valid for a
large wave number: p;(rg) > 1 [59]. On the other hand, the approximation is bad for @? ~ Lir=rg
becomes the turning point. Although the WKB approach has a potential to reproduce the UV-divergent
structure of the energy-momentum tensor properly, it cannot determine the finite values without O(1)
errors®.

For later analysis, we investigate more precisely how the approximation breaks down. In oder
for the WKB analysis to be valid, the wave length A;(r) = 1/p;(r) must change slowly [59]. We pick
up only the first term of Equation (109) because the exponential factor changes most drastically as a

function of r. We then evaluate at r = ryp — Ar

d\; V203 P11 1 _nal
th ~ ZLJ%E w ~ e 2 A (110)
r r=ro—Ar /i w r=ro—Ar V 20'77 w

where the derivative has applied only to the exponential. If Ar = 0, the approximation at r = r is
good for @ >> 1/+/oy? and bad for @ ~ 1/+/cy?, which is consistent with the fact that the curvature
radius is ~ \/W from the Ricci scalar (76). The evaluation (110) tells more: even when & ~ 1/ W,
the approximation is good at r = rg — Ar if r = ry — Ar is inside the turning point r = g so that

% < 1is satisfied, that is,>”
r=ro—Ar

2y 1w

10 g&)\/Zmﬂ T

Ar > (111)

35
36

Here, we have dropped R(a) in A(r), which will not affect the followings.

Note that in Section 4.3 we have used the WKB approximation only to evaluate the order of (AM); in the range where the
approximation is good.

37 Note that /o ~ /NI, which is near the Planck scale, and the proper frequency should be smaller than it: @ < 1/ /o2

Therefore, log(1/&+/on?) > 0.
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5.1.2. A Perturbative Method and the Leading Exact Solution

The finite values of the energy-momentum tensor are important for our self-consistent discussion.
We here develop a new perturbation method to solve exactly the field Equation (85) in the interior
of the metric (72). Suppose that we want to determine ¢;(r) at a point » = ry. Motivated by the

evaluation (111), we set
o

r=ry—X, x:(9<) (112)

ro

and expand the potential (109) as

2 4 2 2

2 10 x oy x5 = 1 1 X

. = - 1— — o1 201 —|L+— ] ——(1- =
pilr)" =5, [( r0> ewte” 2 & ( + 2}7%) So77? ( fo) }

i 2
I (Bt LY (B P B L LX) o
~ 2 [(e 1" @0* — L 8(7'772) + < (70 + 2017) e @ 272 + prem +0(ry %) (113)

=P (x)+sPMV(x)+- -,

where @ and L are considered as O(1), and s is an expansion parameter. Pi(o)

of O(r3), and Pl.(l) (x) is the subleading one of O(1). Note here that ¢ cannot be expanded because
its exponent is O(1).

Now, we can determine ¢;(r) around r = r( by the perturbative expansion with respect to 1/73.
We put it as

(x) is the leading potential

9i(r) = ¢ (x) + 59V (x) +--- . (114)

Combing this and Equation (113), then the field Equation (85) becomes

@2+ P (x) + sPV (x) + ) (90 (x) + 59V (x) ) = 0. (115)

i
This gives an iterative equation:

@+ P2 ()" (x) = 0, (116)
@2+ P ()" () = P (x) 9!V (x), (117)

(0)
i
Let us solve the leading Equation (116). We can convert from x to

By construction, ¢;’(x) is the leading exact solution in this perturbative expansion.

&= 2an2c§eﬁx (118)

and rewrite the Equation (116) as

2
(52562 + 5;6 +¢7 - Az) 9" (&) =0, (119)

A= /2020 + i. (120)

This is the Bessel equation, whose solutions are Bessel functions J4 (&) and J_4(¢). Using the
boundary condition that the mode is bounded, we can choose J4 (&) properly. Considering the

where
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evaluation (111) and the region where the WKB solution (90) is valid, we can fix the normalization.
See Appendix E. Thus, we obtain the leading solution

76 = [T A ). (121)

Substituting this and the normalization (92) for the formula (84), the leading bound-mode
functions in the interior of the metric (72) without R(a) (which will not affect the following analysis)

I 9 nl —iw -2

Note again that ¢ depends on w,; and A on /.

are given by

The subleading solution (pl(l) (x) can be determined from the subleading Equation (117) and the
leading solution (121), for example, by the Green-function method. We leave it as a future task.

Finally, we make a comment on the origin of the leading potential Pl-(o) (x). We can also focus a
region around r = rp and use the AdS; X S% metric (81) to show that the field Equation (83) becomes
the Bessel equation. In this sense, the local AdS, x S? structure makes the Equation (83) solvable. More
generally, the condition (80) is the origin.

5.2. Dimensional Regularization and Renormalization

In general, when one considers composite operators such as T, (x), he needs to regularize
them. We use the dimensional regularization technique, which has an advantage that it is covariant;
thus, it is the UV-divergent part. Before going to the explicit evaluation of (0| Tw(x) |0)ren, we here
give the general discussion about the dimensional regularization and renormalization of the
energy-momentum tensor.

The bare action of our theory on a d-dimensional spacetime is

1Y 1
Sal¢PBa, &Buv] = /ddx\/ —$B (— Y 8k 0upBadvB. + ———Rp
v 2 = 167Gy
+a5R% + BsRpu Ry + 78ReuapRE "), (123)

where the index B expresses the bare quantities.
First, we don’t consider quantization of gravity, and the quantum scalar fields are free. Therefore,
the bare fields are the same as the renormalized ones:

$Ba = Pa, §Buv = Suv- (124)

Next, we introduce a renormalization point 7i. Because there is no mass in the theory,
the renormalization of the Newton constant does not appear. Therefore, by dimensional analysis,

we can put
€

1 _ ¢
—_— == 12
Gg G’ (125)
where d = 4 + ¢, and G is the 4D physical Newton constant, which is independent of . Gp agrees with
G in e — 0. On the other hand, ap, B, and p need to be renormalized. In the limit e — 0, they take
the form

AN AN AN
€ € €
“B = (11527‘[26 MH)) P Pp =1 ( 2880m2e ‘B(y)> P IB=H (28807T2€ WH)) - (120)
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Here, we choose the counter terms with % as those which are required to renormalize the
UV-divergent part of the effective action of N massless free scalar fields by the minimal subtraction
scheme [41,42,60]. a(u), B(1), and y(u) are the renormalized coupling constants at a renormalization
point 7.

Then, the equation of motion for g, 5‘5;—,5:0, is given by

_ hN
AN AN

Here, T, is the regularized energy-momentum tensor operator, which is formally given by
Equation (99) with Sy, replaced by the d-dimensional matter action Sg””"r of the bare action (123).
The other tensors are proportional to the identity operator, which are given by

1 1
Hu = o [ 45/ gR? =~ R + 2R,y — 2V, ViR + 28,0 0R, (128)
1
1 1
= — 38 RagR + 2Ry s R + DRy + 58 OR — ViR, (129)

1 1)
Jiw = g g | AV 8RR

1
=—3 SuvRapys R + 2R 15y Ry™PT + 4R 0y g R — 4R Ry™ + 400Ryy — 2V, VR, (130)

From this, we can obtain the precise expression of the Einstein Equation (1):
Gy = 871G (v Ty |lp>;en' (131)

Here, we have defined

(@I T ren = (@1 Tuw [)ren (1) — 2(a () Hyuw + B (1) Ky + v (1) Juv), (132)

where the 4D renormalized energy-momentum tensor at energy scale 71y is

hN 5
<1P|TWW>ren(V) = V_E<‘P|TMVW>reg T 1240772 <2Hyv — Ky + ]pw) . (133)

This is finite in the limit € — 0, as we will see explicitly below.

The second term in the r.h.s. of the definition (132) is a finite renormalization which plays a role
in choosing the theory. The point is that the p-dependence of the renormalized coupling constants
a(p), B(u), v(u) must be chosen so that the bare coupling constants ap, B, v are independent of .
From the formulae (126), the condition ddlﬁ)ggﬂ;f = 0 provides diﬁ%g(’f) = — 11@12\]7#
the same procedure for the other couplings. From these, we obtain

in e — 0. We can do

hN 2 hN 2 hN 2
2y . H 2y _ H 2y _ _ H

Here, ap and By fix a 4D theory at energy scale 71y while we have chosen 7y = 0 because of the
4D Gauss—Bonnet theorem. We will see later that the renormalized energy-momentum tensor (132)
with the coupling constants (134) is independent of p, which is consistent with the Lh.s. of the Einstein
Equation (131).
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5.3. Leading Terms of the Energy-Momentum Tensor

Now, we evaluate the leading value of the renormalized energy-momentum tensor (132) for |0),
(0[ Ty |O>;£91). Generically, the continuum modes of s-wave also appear in the mode expansion of a
field ¢(x). However, as we will see in Section 5.3.2, the leading value (0T} |0>£S§ becomes O(1) by
integrating both w and /, which means that the sum of such s-wave modes (integration only over w)
can contribute to at most O(r~2). Therefore, in this subsection, we keep only the bound modes (122)

in the expansion of the leading solution of ¢(x).

5.3.1. Fields in the Dimensional Regularization

To use dimensional regularization, we consider the (4 + €)-dimensional spacetime manifold
M x R€, where M is our 4D physical spacetime and RR€ is e-dimensional flat spacetime [61]. That is,
we take
220 gl D 0?4 Y (dy)? 135
= —— a1 _
ds™ = ——ze@ndt" + o—dr” +r +a:21(y>. (135)

In this metric, the leading bound mode function (122) becomes

[ng [oww iy -2 elky
ul@)(t,r,e,cp,y“): 2;3)\/;6 Watte S”VIA(C)Ylm(9/¢)W- (136)

The plane wave part ¢’*¥ makes a shift M — M + k2 in the formula (86), and the definition of
the label A changes from Equation (120) to

= 1
A= \/2(7172(L +k2) + T (137)
In terms of the mode function (136), we express the leading solution of ¢(x) as

¢(x) = Y (au® (x) + aful”" (x)), (138)

i
where ) ; =3, [ d°k and a; satisfies the condition (96).

5.3.2. Renormalized Energy-Momentum Tensor

From the leading solution (138), we can obtain the leading values of the regularized

energy-momentum tensor (see Appendix F for the detailed calculation)®®:
1 0
o=t el | Y e 099
-1 1
where the components are in the order of (¢,7,0, ¢) and
HE(0| T [0)\0) = %0257402 ﬁ + % <7+log W) + c} . (140)

3 Note that we don’t impose the Einstein Equation (131) here.
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Here, v is Euler’s constant and c is the non-trivial finite value for |0):
c = 0.055868. (141)

Note here that, as shown in Appendix F, this leading value of O(1) is obtained as a result of the
integration over w and [, and the 4D dynamics is important.
Next, we can check that the poles % of Equation (139) are cancelled by the counter terms in

Equation (133), and (0|T#, |0>£SB, () is indeed finite. Here, we have used the explicit form of Hyy, K,y
and [y for the interior part of the metric (72):

1 0
1 1 1 —4
HY, = — - —4
Y 2pto? -1 +773(7r2 2 O,
-1 2
1 -1
1 1 1 -3 L
_ 1 142
Y 4o -1 +173(71'2 2 +00™), (142)
-1 2
1 —4
1 1 1 -8
M= o o).
I 217402 -1 +173171f2 6 +00™)
-1 6

Finally, we use the definition (132) with the running coupling constants (134) to obtain the
renormalized energy-momentum tensor with a finite renormalization:

1 0
1(0) _ 1 E 10y () 0 hN
<0’THV‘O>ren - _1 <0|T t|0>ren + 1 W/ (143)
-1 1
where
EN 1 96072
THioYO) — Y 1y 1 _ 2 . 144
<0| t|0>V€Vl 19207.[2;740.2 ¢+ +log 3271_1120_‘”% AN ( &0 + :30) ( )

Here, the y-dependence disappears. In Section 7, we will see that #p and By should be tuned
properly in order to have a self-consistent solution of the form of Equation (72).
The point is that the leading value of the trace is fixed independently of («o, Bo):

hN

10) _
(O[T*4|0)ren = 9607240

(145)

We can see that this comes from the UV-divergent structure and is essentially the 4D Weyl
anomaly [41,42,62] although the matter fields are not conformal. The value (145) was obtained by first
renormalizing the divergences and then taking the trace. We can reverse the order to see clearly how

the value appears. If we first take the trace of (0|T}, |0>§S§, we have, through Equations (99), (A72),
(A78), and (A83),

(OITF,[0)\) = N(0|gHa,pa, — 1 (4 + €)' 3,93, p0)0)

~N(1+5) (018" ()2 + 87 (3:9)2 + 8% (369)2 + g7 (3ph)? + X1 (30 9)2|0) 00 (146)
= N (1+5) (0" (3)? + " (3r)? + (—2 + €)g" (3r)? — €5 (319)?|0) 0%

=0



Universe 2020, 6, 77 34 of 70

before taking the limit € — 0. However, the trace of the counter terms in the definition (133) makes a
non-trivial contribution:

hN 5
( Hl Kﬂy+]ﬂy>

- 14407%€
hN - 5 2 —4
= o 5 (2R ,x,gR"‘5+RaﬁwR“5W) + 04
AN 1 2 (5 4
= 5602 (;7402 o (311 - 1)) +0>r™, (147)

where we have used Equations (76), (77), (78) and

€ € €
HYy = —2R +(6+26)0R, Ky = —ZRygR™ + (2+ E) OR, (148)
T, = —%RymﬁRW”‘ﬁ +200R, (149)
OR = O(r ). (150)

Here, the last equation has been evaluated by using the interior of the metric (72). The first term
of Equation (147) agrees with the value (145)%.

5.4. Sub-Leading Terms of the Energy-Momentum Tensor

The sub-leading bound-mode solution qol(l) (x) of Equation (117), which we have not found yet,
determines the subleading value y~¢(0[ Ty, |0>£3§ completely?. In this subsection, we instead use the

conservation law to show that (0T}, |0>:§}1) is expressed in terms of two parameters.
In the interior part of the metric (72), the conservation law V, T#, = 0 is expressed as

2
0=20T,+dlog\/—gu(~TH+T",)+ T(T’Y—T%)
4 1
=0T, + zTa(_Ttt + ') + —(T' + Ty —2T%), (151)
where T#, is assumed to be static and spherically symmetric: T#, (r) and T = T %L
Hyy, Kyy, and ], are conserved, and their explicit forms are given by Equation (142), which /are
negative power polynomials in 72 starting from a constant. In addition, the leading value (0| T*, |0>r£91)
is constant. Motivated by these facts, we can set the ansatz as

a b c
<0|th‘0>;en :a0+?§+"' ’ <O|Trr|0>;'en :b0+r%+"' 7 <0|T99|0>;'en :C0+r%+"' . (152)
Then, we substitute this into Equation (151) and solve it for each order of r to get

—m + by a—by  —ay+ by
by = = 4+ — = + e 1
0 ap, C€o ap 417 ;01 2 417 ’ ( 53)

In fact, the leading value (143) satisfies the first one of Equation (153).

3 Because a(y), B(1t), 7(p) don’t have the poles ., the finite renormalization terms in the definition (132) make OR = O(r~*)
and don’t contribute here.

The continuum modes of s-wave may contribute to this.

Equation (151) corresponds to the Tolman-Oppenheimer—Volkoff equation without T", = T%.

40
41
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From the definition (132), we put

e A S £y () N hN w2 2B
OT"[0)ren = [‘u (0T t‘0>reg - 48072n30r%e 960723012 log e + o2 (154)
= B0n2yBor2 L T P2
where we have used Equations (134) and (142). This means
h - 2
a N 2bo (155)

- 480n21730a1 * nic’

By construction, a7 should be a p-independent finite number of O(1), as we have seen in the
leading value (144). We suppose that such a a7 is given. By using Equations (143), (144), the second
one of (153), and (155), we can obtain

1
OIT" |0yt =% = L (a1 + 450 (co — ag))
_ hN ~ 960772
T 4807253072 (al + )’11\77r Pot1 (156)

2

Finally, we write the subleading value of the trace part (0|T*, |O>/r(611) as

hN

n(1) _ =~
<O|TVM|0>,CH = Wﬁ,

(157)
where T is a finite value independent of the finite renormalization in the definition (132) because of
Equation (142). We suppose that such a 7j is obtained. This together with Equations (154) and (156)
determines (0|T%]0) L(e}) .

Thus, we can express all the components of (0|T*,|0)",, to O(r~2) in terms of (a1, 7).

6. Contribution of S-Wave Excitations to the Energy-Momentum Tensor

In this section, we first consider the generic configuration of excitations of the continuum modes
of s-wave from a statistical point of view and characterize the candidate state |) more. Then, we
study the excitation energy in the interior of the black hole and find the energy density —TW)*,. From
¥)
v

this and the conservation law, we infer T}(t of Equation (3).

6.1. Fluctuation of Mass of the Black Hole

We consider the black holes with mass M = 5 that are most likely to be formed statistically.
Such black holes are created in the most generic manner. When making a black hole in several
operations, the more energy given per operation, the more specific and less generic the black hole
formed is. Therefore, the most generic black hole should be created by using a collection of quanta with
as small energy as possible. According to Bekenstein’s idea [46], in order for a wave to enter the black
hole, the wavelength A must be smaller than a: A < a. This means that the energy of the wave, € ~ %,
must satisfy € 2 % As discussed in Section 4.1, only continuum modes of s-wave can play a role in the
black-hole formation. Therefore, a quantum required is such a s-wave with the minimum energy,

~ —, 1
e~ - (158)
Suppose that we form a black hole of size a by injecting such quanta many times. Because the
wavelength of each quantum is almost the same as the size a’ of the black hole at each stage (A ~ '),
the wave enters the black hole with a probability of 1/2 and is bounced back with a probability of
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1/2. Here, we model the formation as a stochastic process according to binomial distribution. Then,
the average number of trials N is given by dividing M = 5% by the energy ~ % that can enter at
one time:

a 1 a2
~ — —_— 1
N TR a™ B (159)
Therefore, the statistical fluctuation of mass M is evaluated as [63]
M
AM ~ —= ~ my. (160)

VN

This means that all the black holes with mass € [M, M + m,] are not statistically distinguished,
and they are considered as the same macroscopically.

In this way, our candidate state |¢) is one of the states {|i)} that represent microscopically
different continuum s-wave configurations and have the energy-momentum tensor in the form of
Equation (3). The number of those states reproduces the area law of the entropy, as shown in Section 8.

6.2. S-Wave Excitation inside the Black Hole and T(¥)t,

To determine the functional form of T(¥)!;(r), we consider how the s-wave excitations used to
form the black hole are distributed in the interior part of the metric (72). First, suppose that an s-wave
having a proper wavelength A;,.,; is excited at a certain point r inside the black hole. It has the proper
energy €ocal ~ /\L Here, the local Hamiltonian is given by AHo., = 47tr2Al TW)TT where Al is the

local*
proper length of a width Ar around r, T}%) is the energy-momentum tensor from the contribution of

the excitation, and 7 is the proper time of the local inertial frame at r. Therefore, by considering the
number of fields N, we can set AHj,.;; = N€joeq and Al = Ay, and obtain

h
TWT % (161)
drr Alocal
Here, TW)™" = —T(#)7_ holds because we have g™* = —1 in the local inertial frame. Furthermore,
in the static metric (72), we have T¥)7, = TW)!, Thus, we reach
Nh
—TWt, < — (162)
drr /\local

Using this and the formula (98), the ADM-mass contribution from this excitation can be expressed
as

(AM)W) = 47 Ar(—=TW)) /N

Ar

2
local

nye (163)

r/\local

~

Here, on the first line, we have divided it by N because the s-wave is an excitation of one kind of

field and Tﬁ) contains all the contribution from N kinds of fields; and on the last line, we have used

Alocal = Dl = \/QrrAr = \/%Ar for the interior of the metric (72). According to the formation process



Universe 2020, 6, 77 37 of 70

in the previous subsection, each s-wave excitation corresponds to the ADM energy (158)*2. Therefore,
the condition (AM)¥) ~ I indicates

)\local ~ ﬁ/ (164)
and then the energy density (162) becomes
—TWt, o 1 (165)
4rtGr2’

where we have used ¢ ~ N l,z,. This should be the self-consistent form. In Section 9, we will discuss
how to obtain this functional form from the field equation.

We here discuss the entropy from this point of view. We consider a unit with width Al ~ Aj,q ~
/0 inside the black hole. It contains N waves with € ~ % because the proper wavelength (164)

corresponds to Ar = AL ~ ¢ and the ADM mass of the unit is evaluated from the energy density

Ve
(165) as 4mtr?Ar(=TW)) ~ & ~ Ni_ Therefore, the entropy per proper radial length, s, can be

N VN
SNEN?, (166)

evaluated as

which means that O(v/N) bits of information are contained per proper length. On the other hand,
the proper length of the interior of the black hole is evaluated from the metric (72) as

R(a) a2
lop = / driJ e (1) ~ ) 167
BH = | /& (7) Nor (167)

which is much longer than a. Thus, the entropy is evaluated as

N a2 42

6.3. The Form of TP(,f)

Using the form of T®)t, (165) and the conservation law inside the black hole (151), we express all

the components of T,Slf) in terms of a single parameter ay. First, by the same reason as (0|T*,(0)},,,

we can set the ansatz for TW)¥, as Equation (152):

(¥) ¥ ()

a . c
T(‘/’>tt=aé¢)+:—2+~-,T(‘/’),:bélp)+r—2+-~,T(¢)99:C(()lp)+;—2+~~. (169)

Putting this into the conservation law (151), we can obtain (like Equation (153))

LA B a0 ) )

1
= 1
, € + yrre , (170)

(¥)

ol =al?) +

:ao

b(()lp) — a(()‘/’) e

Now, Equation (165) shows that T(¥)t, is at most order of O(r~2), which means a(()lp) = 0. The first

one of Equation (170) indicates b(()lp) = aéw)

= 0. Next, as seen in Section 5.3.2, the leading order
(0|TH, |0>§§,1/ appears as a result of the integration over (w, ). Therefore, T(¥)*,, which represents the

contribution of the s-wave excitation, should be smaller than O(1). This requires C(()LP) =0, and then

42 One might wonder that bound modes of s-waves with w ~ O(%) also contribute to this excitation as discussed in Figure 13.
As shown in Section 4.3, however, such modes cannot be excited inside the black hole, and only the continuum modes of
s-wave are responsible for the energy density (165).
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the second one of Equation (170) leads to bgl’b) = agw)

O(r~2), which can be expressed as

1 dxyo , dx,mo -
10— o) (4 2T) 4 0079, 70, =l (5 + 20 ) + 0079,

T = V) (r2 + 4Kf’7‘7> +O(r70). (171)

. Thus, all the components are at most order of

Here, k¢, &, kg are the O(1) ratios between terms of r~2 and r—* which are determined by dynamics

of the s-waves including the contribution from the negative energy flow (see Section 9).

Then, the third one of Equation (170) determines CE#’) as

CE#’) = agq])(—xt + Kp). (172)

Thus, all the components of O(r~2) are expressed in terms of the parameter aglp) under a given

K¢, Kr). Note that a(lp) corresponds to the square of the amplitude of the classical field that represents
1 P q P p

the collapsing matter and radiation. For a later convenience, we represent a(w>

parameter ay as

in terms of a O(1)

p) AN
N Bonzyie {173)
In Section 7, we will determine ay, by the self-consistent Equation (131).

7. Self-Consistent Solution

We have obtained all the ingredients for the self-consistent analysis: the candidate metric (72),
which is written in terms of (¢, 7), the energy-momentum tensor for the ground state (143), (154)
and (157), which depend on («g, Bo), and the energy-momentum tensor for the s-wave excitation
contribution (171), which is controlled by ay. In this section, we solve the Einstein Equation (131)
and determine the self-consistent values of (¢, 7, dy) for a certain class of (g, Bg). We then examine
the consistency.

7.1. Self-Consistent Values of (¢, 1,dy) for a Class of (o, Bo)

First, we examine the trace part of the Einstein Equation (131), G#,, = 8w G((0[|T#},]0)},, + T(‘/’)Vy ),
to O(r~2). It is obtained from Equations (76), (145), (157), and (171) (with Equations (172) and (173)) as

1 2 hN 1 4 _ hN
_ 2 _g1G "N 51— 174
n2c 12 i <9607‘[2 {17402 + n3or? Tl} + 240712173(772 ap(1— e+ K’)) (174)
Equating the terms of O(1) on the both sides, we have ”T =8nG W’ that is,
Nl% 175
12072 (175)

This is indeed proportional to NI, which is consistent with the assumption we have put just
below Equation (5). In addition, # appears in the denominator, and o with 7 > 1 is smaller than that
with 7 = 1, which is consistent with the meaning of 7 in Figure 10. Then, the terms of O(r~2) in
Equation (174) together with the result (175) bring —r% = % [Ti + ay(1 — x¢ + %, )], which means

n= —2’?1 — Zﬁw(l — Kt + Kr). (176)
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Next, we construct G'; = 87G((0|T*|0).,, + TW)) to O(r~2). From Equations (75), (144), (154),
and (171) (with (173)), we have

1 N 1 960772
o =87G [ |2 1 - 2
2o (19207#;7402 Crrtlog e A TRy
hN 9607
S . 177
T 802por {”ﬁ”lﬁ HN ﬁOD 77

First, the terms of O(1) are balanced on the both sides if ay and B¢ are tuned such that

hN 1
2 =—7 2c+log —— | . 178
%+ Po 960712 <7+ ctlog 327'(172@1%) (178)
Then, the terms of O(r~2) lead together with the intensity (175) to
= o (@ a4 250 B (179)
n= 17Ty AN Fo )

Note that the rr-component and 66-component of the Einstein equation hold automatically
because of the conservation law and the trace equation.
Now, using Equations (176) and (179), we can determine

~ ~ 2
T+ (=14 K —xr) (al + %ﬁo)
n=-2 , (180)
Kt — Ky

~ ~ 9 2
G (ﬂl + %075[30)

Kt — Ky

(181)

ay =

Here, By should be chosen so that the condition (67) is satisfied. Note that  is actually constant,
as we have assumed in Section 3.2.2.

Thus, we have determined the self-consistent values of (¢, 7, dy) in terms of (a1, Ty, k¢, k) that
can be fixed in principle by dynamics (see Equations (154), (157) and (171) for their definitions).
Therefore, the interior of the metric (72) and the state |¢p) are the self-consistent solution of the Einstein
Equation (1). Note that this is a non-perturbative solution w.r.t. /i because we cannot take i — 0 in the
solution metric (72) with the values (175) and (180).

7.2. Consistency Check

First, we check the curvature R. From Equations (76), (77), (78), and (175), we can evaluate

1

R~ —
2/
N2

(182)

which is smaller than the Planck scale if N is large, Equation (11)*3. Thus, no singularity exists inside
the black hole** and the Penrose diagram is actually given by Figure 1. Note that this result is so robust
because (175) is not affected by the values of (g, Bo)-

4 Seee. g., [64,65] for a Planckian-energy scale correction to the geometry.
4 Geee. g., [66] for another semi-classical resolution of singularity.
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Second, we study the energy density. From Equations (144), (154), (171) (with (173)), (180) and

(181), we have
1
— I ) ren = 55720 (183)

to which both (0| T*;|0)%,, and T¥); contribute. Integrating this over the volume in the formula (98),
we can reproduce the total energy M. We also see from the definition of the energy flux (79) that
the energy density (183) also leads to the Hawking radiation consistently. Therefore, both the bound
modes and s-waves play a role in the energy inside the black hole.

Third, we discuss the tangential pressure. The self-consistent solution has

_ 15
(T 9)en = (O] 0)AY + O(r2) =

= +0(r?), (184)
2GNI2

which can be checked by Equations (143), (171), (175), and (178). From this, we can see that this
near-Planckian pressure comes from the vacuum fluctuation of the bound modes in the ground state.
The origin is the same as the 4D Weyl anomaly because the value (184) comes from the second term of
Equation (143), which appears from the pole % as shown in Equation (A86). Indeed, twice that of the
pressure (184) is equal to the trace (145). Therefore, the pressure is very robust in that it is independent
of the state. Note also that this large pressure supports the object against the strong gravity, which
can be seen by noting that in the conservation law (151) T% and 9, log /=g are balanced for the
self-consistent solution.

This large tangential pressure associated with the anomaly should be universal for any kind of
matter fields. In the previous work [24], only conformal matter fields were considered, and the 4D
Weyl anomaly was used to obtain the self-consistent solution with the large tangential pressure. In the
present work, however, we reach the same picture of the black hole without using the conformal
property, which means that the assumption of conformal matter is not essential. It is related to the
fact that any matter behaves as ultra-relativistic near the black hole, as we have discussed around
Equation (6). Therefore, our picture of the black hole should work for any kinds of matter fields.
Even for a massive field, it should if the mass is smaller than O(m,).

The surface pressure pgg (49) also comes from this tangential pressure. When a shell in Figure 8
approaches so that Equation (8) is satisfied, the interior metric becomes Equation (72) and the shell
itself forms a new surface, whose position is represented by the point R in Figure 11. Then, the vacuum
fluctuation of the bound modes which reach the point R produces the tangential pressure (184),
which corresponds to the continuum version of pgg. Note that the mode that makes the pressure is
different from the mode that constitutes the shell while the surface pressure (49) has been obtained by
a geometrical analysis. Therefore, the two modes are combined to form the consistent picture.

Finally, we discuss the finite renormalization. In this solution, there are no quantities with
dimension other than ¢. The value (175) implies that the renormalization point 7119 should be chosen

near the Planck scale: 1
2

Moy ~ Nil%' (185)

Then, the condition (178) means that 2ay + By ~ O(1)Nh. On the other hand, the solution (180)
together with the condition (67) indicate that Bp ~ O(1)Nh. Therefore, we have

wg, Po ~ O(1)Nh. (186)

From this and the curvature (182), we can see that all four of the terms of gravity in the bare action
(123) are ~ O(ﬁ) Therefore, the R?, RaﬁR"‘ﬁ, RaﬁwR“ﬁVV terms cannot be much larger than the R
Z

term, which means that the three terms would not change the picture of the black hole drastically even
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if we consider them from the beginning®. Thus, our argument based on the Einstein-Hilbert term is
self-consistent.

As we have seen, the coupling constants «y and ¢ should be related by Equation (178). However,
there is a possible way to relax it. Instead of the interior metric (72), we consider B(r) = C;7*7¢ and

A(r) = C2r2+%, where  is a small number. Because this ansatz satisfies the condition (80), we can
solve the wave Equation (83) locally as discussed in the end of Section 5.1.2. Then, we can evaluate
the renormalized energy-momentum tensor (0|T#,|0)},,, which should contain {-dependent terms.
Therefore, we should be able to choose { so that the terms satisfy the Einstein Equation (131) for a
given value of («g, Bo). It would be exciting to find another class of solutions in this direction.

8. Black Hole Entropy

We count the number of states of the s-waves inside the black hole to evaluate the entropy more
quantitatively than the discussion in Section 6.2.

8.1. Adiabatic Formation in the Heat Bath

Let us consider the adiabatic formation of the black hole in the heat bath [14]. Specifically,
suppose that we grow a small black hole to a large one very slowly by changing the temperature and
size of the heat bath properly*®. Then, we obtain the stationary black hole, whose metric is given by
Equation (72) with 4 =const., and consider it as consisting of excitations of the s-wave continuum
modes, as discussed in Section 6.

This black hole is not in equilibrium in an exact sense [16]. Let us see the above formation process
from a microscopic view. See Figure 14.

AT T

3 S-wave Hawking
/ radiation
{  Thes-wave
*,_radiation is falling. 1

r

balance
=stationary

22

The s-wave radiation
is frozen in time t.

t

Figure 14. Stationary black hole in the heat bath.

At a stage where the black hole has the radius 4’, s-wave ingoing radiation from the bath comes
to the black hole, balancing s-wave Hawking radiation of Ty = % with the s-wave intensity o (13).
The ingoing radiation approaches

20
r=a+ a—f (187)
as we have shown (8). Then, the local temperature that the radiation feels there is

h
h
Tocal = —22— ~—— (188)

{_d 47t\/20,"
r r:u’Jrz%

45 Such terms may change each numerical coefficient up to O(1), but they will not make a significant change to the basic

picture.

46 We can discuss the relaxation time, which is estimated as Equation (239). See section 2-E of [16].
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h
VNI,

radiations pile up and cover the radiation. Then, it is redshifted exponentially, almost frozen in time ¢,
and suspends there. From the local point of view, however, the radiation keeps falling with the initial
information. Therefore, the black hole is not in equilibrium in the usual sense. Rather, the ingoing radiation
from the bath and the Hawking radiation are just balanced, and therefore the system is stationary.

This property allows us to use the temperature (188) as the local temperature at each radius r
inside the black hole. Because of the exponentially large redshift, the outgoing Hawking radiation
there is frozen in time t. Even if we wait for an exceptionally long time which is longer than the lifetime
of the universe, the Hawking radiation of this temperature (188) will not go outside to exchange energy
with the radiation from the heat bath. This indicates that Tolman’s law [63] doesn’t hold inside the
black hole?”. As we will see below, this is consistent with the area law of the entropy.

which is near the Planck temperature ~ because of Equation (13). After this, the subsequent

8.2. Micro-Counting of the S-Wave States

We count the number of possibilities of these s-wave configurations to find the entropy density §(r)
per radius r inside the black hole. First, we evaluate the number An(r) of the s-waves with frequency
< w in the width Ar near the surface when the black hole of a’ is formed. In the semi-classical

approximation [59], using the condition (91) for| =0, M =0, A =0,and B = #, we can evaluate
for N kinds of fields 48
N 1 w N r
An(r) = —Ar ~— WATY. (189)
T /1 . u?/ /1 . a?/ 7T /205
Here, v = = = —~“— is the blueshifted frequency when approaching the surface, and we

V=8t 1_a

1 a ~ r

have approximated \/ﬁ N o N g hear the position (187). Thus, the number of modes for

[@, @+ A®@] is given by

dinr) o5 - NI Aiar = D(@,r)a@br. (190)
dw T /205

Next, we review the entropy of a harmonic oscillator with frequency w in the heat bath of

temperature 1 [63]. The canonical distribution is given by e ? ('ati)hew 7 (B)~!, where
Z() = Tre P+ 1)1 — o gink (;hﬁw) . (191)

Therefore, the entropy is evaluated as

d _

5= 55 (-8 g 2(p)) = g(hpw), (192)

where we have defined a function

X —
gs(x) = 1 log(1—e™™). (193)
2_2
47 1f we apply Tolman’s law to the interior metric (72) naively, the local temperature would be Ty, (r) ~ eR‘W ﬁ, which is
P

exponentially large (for r < R — %) compared to the Planck scale. This is not allowed physically.
The s-waves are trapped in the heat bath with a finite size, and we can use approximately the condition (91) to count the
quantum number 1 [67].

48
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From the formulae (190) and (192), we obtain the entropy density:

1) = 5 [ d&D@, )3 Proca@), (199

with 1/B1ocar = Tiocar (188). The reason of the factor % is that, because of the time-freezing effect,
only ingoing modes carry the information, and the integration only over ingoing direction momenta
should be performed. This can be evaluated as

8(r) = ELL/ dxgs(x)
27 V20, hﬁlocal 0

N r 1 2

T
T 27 /20, 4mt\/205 3
_ Nr
480,
2
=" (195)

where on the third line we have used the intensity (13)*°. Integrating this over the interior reproduces
the area law:

R(a) nR(a)?>  ra® A
S*/o rs(r) = " = T+ O(1) % g, (196)

where R(a)? = (a+ 27”)2 =a?+40+ 4;%2 and A = 4ma® have been used®. This implies that the
information is stored inside the black hole as excitations of the s-waves.

9. Mechanism of Energy Decrease of the Collapsing Matter

In this section, we examine how the energy of the collapsing matter decreases and discuss how
T(¥)k,, Equation (171), is obtained by dynamics. The point is to consider the contribution from the
vacuum fluctuation of s-waves.

9.1. Setup

Suppose that a classical matter collapses to the black hole which is described by the self-consistent
metric. To analyze the time evolution of this matter, we can focus just on the part of the matter
around the surface, since the deeper region is frozen in time due to the exponentially large redshift.
We consider the matter as consisting of many shells like the multi-shell model of Figure 8 and study
the energy of the outermost shell along = r, (1) = rs(u) as in Figure 15.

We use the Vaidya metric (4) in the (#,v) coordinate to describe the outside region:

ds? = — (1 — a(:t)) du® — 2dudr + r*dQ>?

= —e?0) dudy + r(u,0)2d0?, (197)

49

i = - _ 300 _ 2nva0 ., JN
From this, we can evaluate the entropy per the proper length Al = ,/g,Ar = \/%Ar ass(r) = Ver = T,
which is consistent with the entropy per proper radial length (166) and a thermodynamical discussion [16]. Therefore, it is
consistent to assume that the temperature (188) is kept at each r inside the black hole.

50" See [68] for another approach to the black-hole entropy from the interior region.
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where a(u) follows Equation (5) and each function is given by

/ du é?} , Our(u,v) :—W, Opr(u,v) = %eq’(’“’). (198)

We label the outermost shell by v, so that its location is given by rs(u) = r(u, vs).

Vaidya I
X metric_

i
1
1
— 4T

,

|0),, '

ds? = —dU? — 2dUdr + r?d0?

Figure 15. Collapsing matter in the outermost region and energy flow Ty, Typ. The shell is described
as the outermost shell of the multi-shell model of Figure 8.

9.2. 5-Wave Model of Quantum Fields

Thus far, we have considered the collapsing matter as an excitation of s-waves, and we have also
seen that only s-waves can enter and exit the black hole. Therefore, in order to study quantum fields
propagating in this time-dependent background spacetime, we can use the s-wave approximation to
analyze N massless free scalar fields as we have done in Section 2°!. In this subsection, we explain the
general setup [41,56].

We consider s-waves of N kinds of scalar fields, ¢, = ¢,(x'), in a spherically symmetric metric,
where x' is the 2D part of the coordinate. The 4D action can be reduced to the 2D one:

1N
S = -5 Zl/d‘*x\/—ggway%am
a=

1 XN .
—5 247T/d2x2d\/ —8247°89ia0;a
a=1

Q

1N .
5 ¥ [ i/ =gaig 000, (199)
a=1

where 7 is the areal radius, and the derivative 9; is applied only to ¢(x') as the approximation. Here,
we have defined the 2D field as

Qg = VAT g (200)
The 2D energy momentum tensor is given by
—2 ) N 1 il
=__< °2 _ DD, — —0i0t ] DDy
U/~ 824 081 u:Z‘i (al(b‘za]cbﬂ > 8ii8 0;r®,9; q’u) , (201)

which is related to the 4D energy-momentum tensor T;; through the definition (200) as

T ~ ATy, (202)

51 Even s-waves can have a tangential pressure, but the largest tangential pressure of O(1) in our picture comes from the

bound modes with / > 1 as we have seen in Section 7. Therefore, we can expect that the tangential pressure from s-waves
does not make a significantly important effect.
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Classically, this 2D part is traceless, Tii = 0. However, the 2D Weyl anomaly contributes to the

trace part [41,56]:
Nh

ii=_—R 2
T = 24 2dr ( 03)
where R, is the 2D Ricci scalar.
We here consider a 2D metric of the form d52 = —e‘l’(” ) dudv. Then, the 2D action (199) becomes
S = Z - f Adudvd, P,0,P,, and the equation of motlon =0is
0,0,P, = 0. (204)

Each component of the energy-momentum tensor is given from Equations (201) and (203) by

N N Nh
T = Y000, Too = Y (00Pa), Tuo = — 51 -0udo = 270000, (205)

a=1 a=1

where we have used Ry; = 4e~%9,,d,¢. The conservation law Véz 0T = 0 is given by

0o Tyu + eq)au(eiq)'fuv) =0, (206)
0y Typ + €99, (e ?1) = 0. (207)

In the following, we consider T;; as the expectation value with respect to a state |¢¢). The
information of |¢p) is introduced as a boundary condition of ;.

9.3. Hawking Radiation

Now, let us find 7, in our setup of Figure 15. Initially, (41 = —o0), and there is only the collapsing
(0)

matter with T’ (v). Therefore, 7, appears as a result of dynamics of the quantum fields.
First, we can use the third one of Equation (205) to express the conservation law (206) as 0,7y, +

270y (82 -3 (aug0)2> = 0. From this, we obtain

0
T =7 ((0u9)* — 2039) + 7l (). (208)
Next, we determine TLS,)( ) by the boundary condition given above Equation (33). That is,
the quantum fields have started in the Minkowski vacuum state |0) s from a distance (see the left of
Figure 15)%2. This corresponds to the condition that T&O&(U) = 0, where U is the outgoing null time in
the flat region around r = 0. In general, in order for T, to transform covariantly under u — U(u),

this holomorphic term must change as [55,56]

2
(0) _[du (0) Nh
Tl (1) = (du > T (U) + 71671{7’[’ ust. (209)
Thus, Equation (208) becomes

T = 7 ((ug)? —~29) + ¢ {u uy. (210)

52 Note that this vacuum is different from the ground state |0) in the interior metric (96).
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The shell we are now considering corresponds to the outermost one in the multi-shell model of
Section 2.3.2. Therefore, we can use the result (53), that is,

_.odu  a(u)?
(’,’zlogﬂ—— i (211)

Calculating the first two terms of the formula (210) from Equation (198) and evaluating {u, U}
with the relation (211) in the same way as in deriving Equation (45) from Equation (42), then the
formula (210) becomes

AN [a*  4a a\  4a AN (1 4a
R Ty [r4 = (1 a ?) * ﬂ] T 1927 <az N {12> ’ @12

where the last two terms come from T, (u) = L {u, U}. This formula can be applied to any point
outside the black hole.

At r > a, this becomes
rs>a BN

ToA 213
1927142 213)

Tuu

which is consistent through the relation (202) with Equation (46) 53,

On the other hand, T, vanishes near the surface atr = a + 270:

r%a+%‘7

Tyy —— 0, (214)

which is consistent with the literature [41,50,51,53].

Thus, the Hawking radiation of the s-waves is created at r ~ (1 + k)a (k = O(1)) and emits the
energy of the system. As we will see in the next subsection, a negative ingoing energy flow with the
same magnitude as the outgoing one (213) is induced near r = a + %7‘7, and the energy inside v = a + 27‘7
decreases as g—z = —%. This fact justifies the use of the Vaidya metric in studying the motion of a

i — 20
particle near r = a + 7.

9.4. Ingoing Negative Energy Flow Near the Surface

In turn, we determine the ingoing energy flow T,, by using the conservation law (207).
From Equation (198), we have 9,0,¢ = r%az,r = 2“76‘/’, which gives 7, = 'yr%eq’ through the third
of Equation (205). From this and Equation (198), we can express the conservation law (207) as

0y Ty = —e%dy (’y%) = 32%824’. Therefore, we obtain the general expression

e 55”3)4%‘?(‘7'”) + 70 (2). (215)

(0)

Let us focus Ty, at v ~ vs. Then, the boundary term 7, (v) represents the energy of the outermost

(cl)

shell that comes from a distance at # = —oco. The shell is classical, and the configuration ®, ’(v) is
an ingoing solution of the field Equation (204) so that 7 (v) =YN,; (az,cbéd) (v))? is non-zero only

around v ~ vs and zero otherwise. We then put this classical ingoing energy flow as an idealization

70 (v) = Wé(v — v5), (216)

53 We can also show the flux J’ (17) in this general framework. By replacing u and U with #” and u in Equation (209) respectively,

- — 2O iy = () O Nb g ©) (1)) is o . i
wehave J' = Ty lrsa = T, (W) = (5 ) Tud (4) + 555 {', u}, where 1,/ () is given by the value (213). This provides

u
the flux ' (17).
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where W is a positive constant. This indicates that the energy of the matter is kept along a line of
v = Us.
Now, suppose that this shell comes close tor = a + <2 ata time u = u,. Then, we can evaluate

log = r”()u)”* for u < uy,
U, vs) A : (217)
olus) log 2 s+ a(u)°—a; )2 , for u, Su,
and obtain for u 2 u,
N Nh
Tvv(u/ Us) ~ —W + W5(v - Us) "U*)USI (218)

where a, = a(u,) (see Appendix G for the derivation). The first negative term has the same absolute
value as the outgoing energy flux at infinity (213) [41,50]. In addition, we can check that the 4D energy
density of this negative part is on the order of O(a~2) (see Equation (226)).

The mechanism for reducing the energy of the system is as follows (see Figure 15). First, the

collapsing matter comes with the positive ingoing energy ngv) As it approaches the black hole, the

negative energy flow is created from the vacuum fluctuation of the s-waves and superposed on the
matter. At the same time, the same amount of the positive energy flow is emitted to infinity. Thus,
the negative energy cancels the positive energy of the matter locally, and the energy of the system
decreases. We can also see how this occurs in the interior metric (see section 5 of [14] and section 4-E
of [16]) %4

9.5. Configuration of S-Wave and TWH,

Here, by considering the above mechanics of the energy decrease, we discuss how to obtain
—TWt, ~ %2 in Equation (171) directly from dynamics of fields.

We first point out that the energy of the outermost shell in the multi-shell model decreases
exponentially in the time Au ~ 2a [16] (see the right of Figure 15). This is the same statement as
Equation (27) (or Equation (28)) in Figure 7. Here, note that in Figure 7 and Figure 15, the roles of (u,4)
and (u’,a’) are reversed! Therefore, by almost the same calculation as the evaluation (29), we have in
the case of Figure 15

(%) _da_didd
du sel f —consistent du  du du

Os | rs—a 0Os
a?  rs—a'a?

)

|

|
>
S

(219)

This is the self-consistent time evolution of the energy of the matter that has come from the outside
and become a part of the evaporating black hole.

The behavior (219) can be understood as a combination of the increase of the energy of the classical
matter and the decrease of the energy by the negative energy flow:

(‘m“> = (‘m) —2GA] = ~ha—tha=—Lag, (220)
du sel f —consistent du classical 2a a 2a

5 Seee.g., [52,69-71] for attempts to construct a metric with vacuum energy.
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where the first and second terms are the classical and quantum contributions, respectively. We explain
these terms below.

First, it is natural that, when we throw a particle to the evaporating black hole, the energy of the
particle itself increases if we don’t consider any quantum effect. This is because when viewed from a
distant, the approaching particle is pulled by the gravitational force of the “escaping” surface of the
black hole and thus gains the extra kinetic energy just like gravity assist for spacecraft. In fact, we can
consider the contribution only from the ingoing energy TZES) (v) (216) of the classical shell and evaluate
the Bondi mass as (see Appendix H)>

u(u)zfu%

(AM)ctassical =€~ 47 W, (221)

from which we have the classical evolution of the mass

(dA“> __eda LA, (222)
du classical 20 du 2a
where we have used Equation (5). This gives the first term in Equation (220).

Second, we evaluate the contribution of the negative energy flow that directly reduces the energy
of the shell. As we have seen in the previous subsections, the amount of the negative energy flow near
the black hole is the same as that of the positive energy flow going out. Thus, the contribution we
should take is equal to the difference AJ between the energy flows 1, and 7,/ exiting the systems
with mass - and %, respectively (see the right of Figure 15). More precisely, it is given by

du' \?
A = (Tuu - (du) Tu’u’)

where we have considered the two redshift factors in order to translate 7,/ in terms of u. This can be

, (223)

r=00

evaluated as

2
AJ Nh (rs—a) Nh

T 192722 \rs—d' ) 19274
Nh 1 a 1 Aa
N~ (- (1= ZAa) S (14222
1927 <a2 ( o a) a2 < t23 )>
Nl,% Aa
~ 2G -9 oa
1
= — Aa. 224
2Ga 4 (224)

Here, on the first line, Equation (213) has been applied to both 1, and 7,7,/ because the relation
(211) holds for both u and u’; on the second line, Equation (8) has been used; and on the last line,
the intensity (13) has been considered. This provides the second term of Equation (220).

Now, we discuss the energy density. As shown in Appendix H, the energy density corresponding

to the mass (221) is given by

W _2-a
—e W §(v—u), (225)

_T(cl)u ~
“ Ao

55 This exponential increase of the classical energy also appears in the interior metric. The excitation part of the energy density

(105) takes the same form as the energy density of the outermost shell (225). This is natural because taking the continuum
limit of the multi-shell model has led to the interior metric.
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while the energy density corresponding to the negative energy flow in Equation (218) is evaluated as

(vac)u 1 r2a}

-T T v LA (226)
where we express these in the (u,7) coordinate of the metric (197)%. These are not consistent with
~TW* ~ L in Equation (171).

However, the above observation (220) implies that there should be a way to include the effect of
the negative energy flow in solving the field equation of the s-wave. Such an analysis could be similar
to “Lorentz friction”. While the radiation is emitted directly from the particle in the case of the Lorentz
friction, the negative energy flow in our case is induced through the change of the metric by the motion
of the shell. In this sense, these might be qualitatively different. It should be useful to consider from a
field-theoretic point of view the discussion of Section 2.2, which determines the time-evolution of both
the spacetime and the energy and motion of the shell. Then, we should be able to obtain the proper
functional form T, ~ ,17r and the form of T(¥)#, (171) will be determined together with «, x;, s
We will consider this problem in future (see also the end of Section 11).

10. Conformal Matter Fields
As a special case, we consider conformal fields as the matter fields in the Einstein Equation (1)%7.
In the previous work [24], we have investigated this case and constructed the self-consistent metric.

Here, we perform further analysis to completely determine (c, 77).

10.1. Self-Consistent Values of (o, 1) for Conformal Matter Fields

The key equation is the trace part of the Einstein Equation (1). The trace of the energy-momentum
tensor is given by the 4D Weyl anomaly, independently of the state |¢) [41,42,62]:

G”y = 8ntGh (wa — ﬂwg + bwDR) , (227)
with
1
_ o __ 9 2 — 0 2
F = CupysC™1° = Rypys R — 2R, sR™ + 3R G= RupysR*P7 — 4R R + R?, (228)

where Cyg,4 is the Weyl curvature and G is the Gauss-Bonnet density. The coefficients cyy and ayy are
fixed only by the matter content of the action, as we will give explicitly below, while by also depends
on the finite renormalization.

We can use the interior metric (72) because the multi-shell model is independent of the matter
content. Using Equations (76), (77), (78), and (150), the self-consistent Equation (227) becomes

1 2 ) 1 4 1 1 4
7o~ = [~ (o0 (5 05) —ew) o0

to O(r~2). Note that byy does not contribute here because of (JR = O(r~*) from Equation (150).
Equating the terms of O(1) on the both sides, we reach [14,24]

B 87Tlr2]CW

o= (230)

56 Equation (226) shows that the order of the negative energy density from the vacuum is O(a~2) in the outermost region,
which is consistent with a general result [52].
57 There are various studies that examine 4D black holes using conformal fields. See, e.g., [53,72].
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which is similar to the value (175). Next, comparing the terms of O(r~2) and using the result (230), we

can obtain easily
~1
aw 1
U] (CW 6> , (231)

which is a new result . Note here that this result is not influenced by a finite renormalization because
H#, KEy = (9(1”4) from Equations (148) and (150). Thus, the interior metric has been determined
completely only by the matter content, independently of the state and the theory of gravity.

10.2. A New Constraint to the Matter Content
We discuss the meaning of the result (231). First, the explicit values of cyy and ayy are given by

1 1

= (N5 +6Np+ 12N = (Ng+11N; + 62N 232
W = Jop07 (Ns + 0N +12Nv), aw = g75575 (Ns + 1LNE + 62Ny), 232

where Ng, N, and Ny are respectively the numbers of scalars, spin-1 Dirac fermions and vectors in
the theory [62]%°. Using this, the result (231) can be expressed as

__ Ns+6Ng+ 12Ny

= . 233
T=°Ns ¥ 16N; + 112Ny 233)
For example, we can see
6 scalar,
n= % Dirac ferminon, (234)
19—4 vector.

The consistency condition of 7 is given by Equation (67): 1 < # < 2. The lower limit has come
from the positive definiteness of the ratio of the scattered part of the radiation as in Figure 10, while the
upper limit has been derived by the positive definiteness of the radial pressure in Equation (66) .
None of the above examples meet the condition.

Let’s examine whether various theories satisfy the condition (67). The first one is the Standard
Model with right-handed neutrino®. It has Ng = 4, Nr = 24, and Ny = 12, and then the

formula (233) becomes
_ 438 1.012 (235)
T= 33~
which satisfies the condition (67). On the other hand, if we remove right-handed neutrino, Ny = 24

changes to Np = 24 — % x 3, and then the formula (233) gives

4
n= % ~ 0.994, (236)

which is outside the condition (67). This result suggests that the right-handed neutrino should exist.

% If a perturbation changes B(r) as B(r) — % + b, where b is a constant of O(1), b would appear as terms of O(r2) in

Equation (229), and 7 would contain b. This change corresponds to a shift r — r + k%, (k = O(1)), and it should be
the leading perturbation for an expansion w.r.t » > [,. (Note that such a constant shift of A(r) could be removed by
redefining a time coordinate). However, we can use a thermodynamical discussion to identify B(r) = 2~ with the accuracy

2
of Ar=0 (%’) [14]. Therefore, we can compare the both sides of Equation (229) properly to O( r’z).

% The graviton effect should be included here, but we ignore it because there seems no available result that satisfies the

consistency condition of the trace anomaly [41,73-75].
_ R~
If we relax the condition of 77 more, at least 7 must be non-negative: # > 0. If 7 < 0, the redshift g;; = — %’e 2 would
make no sense.
Here, we assume that the Standard Model is a kind of conformal field theory and study what happens to the formula (233).

60

61
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Next, we consider N' = 4 supersymmetric theory. In this case, we have Ng = 6, Np = 2,
and Ny = 1, and the formula (233) leads to

which satisfies the condition (67). Instead, if we apply the formula (233) to N/ = 1 supersymmetric
theory with vector-multiplet, which has Ng = 0, N = %, Ny =1, we get

n= Z = 0.75, (238)
which does not meet the condition (67).

In this way, the condition (67) with the formula (233), which is a result of the self-consistent
solution of the evaporating black hole, can provide a constraint to the matter content and classify
effective field theories. The weak-gravity conjecture tells that black holes should evaporate without
global symmetry charge [47,48]. Therefore, Equations (67) and (233) may play a similar role®?. It would
be exciting to study phenomenology using them.

11. Discussion and Conclusions

In this paper, we have solved time evolution of the collapsing matter taking the full dynamics of
the 4D quantum matter fields into account in the semi-classical Einstein equation. Then, we found
the self-consistent metric g, and state |). This solution tells that the black hole is a compact dense
object which has the surface (instead of horizon) and evaporates without a singularity®3. It consists of
three parts. One is the vacuum fluctuation of the bound modes in the ground state, which produces
the large tangential pressure supporting the object. Another one is the excitation of the s-waves
composing the collapsing matter, which carries the information responsible for the area law of the
entropy. The other one is the excitation of the s-waves producing the pair of the outgoing Hawking
radiation and the ingoing negative energy flow, which decreases the energy of the matter. These three
energy-momentum flows are conserved independently if there is no interaction among them.

Now, we would like to ask: How is the information |¢) of the collapsing matter reflected in the
Hawking radiation and recovered in this picture? There are two remarkable points to answer this.
One point is interaction between the outgoing Hawking radiation and the ingoing collapsing matter.
As described in the basic idea of Section 2 and below Equation (183), the Hawking radiation is emitted
outwards from each region inside the black hole. Then, the collapsing matter may collide with the
outgoing radiation coming from below, go outwards, and exit from the black hole together with the
information. See Figure 16.

Because the energy scale there is near the Planck scale (from Equations (182), (185), and (188)),
some string-theory effect may be relevant and any kind of matter may interact with the radiation
universally ®*. Actually, we can describe this idea by a classical ¢*-model and evaluate the scattering
time scale as .

At ~ alog Wlp' (239)

62
63

See section 3D of [16] for a discussion on the non-conservation of baryon number in our picture.

Even if we consider the evaporating black hole as a closed trapped region, which is the conventional model, e.g., [7], the
collapsing matter is below the timelike trapping horizon just by a proper Planckian distance [76,77]. This is similar to our
picture in that the matter is above the would-be horizon by the Planckian distance (10). These imply that such a conventional
model is eventually very close to ours.

The introduction of interaction is natural from a thermodynamic point of view: black holes are thermodynamical objects
[78], and thermal equilibrium is reached by interaction [63]. In addition, higher-dimensional matter terms in effective action
may induce scattering that occurs with a high probability inside the black hole [79].
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where A is the dimensionless coupling constant (see Section 3 of [16]). Then, the scattering is an elastic
collision in the radial direction, and the two particles swap their momenta (the right of Figure 16).
Therefore, we expect that the energy distribution of the coming-back matter follows the Planck

distribution of Ty = #(t) with a small correction that depends on the initial state.

- N W)
r 4 P¥ N matter

= ‘x = p*
B4 i"/ t\_*\,»vacuum/
T Tadigtion  Tesauve
t e energy flow :

Figure 16. Time evolution of the evaporating black hole with interaction. The matter with the
information |¢) and energy-momentum p* comes and is scattered with a certain probability by the
radiation with energy-momentum g*. Then, the ingoing radiation should approach to a vacuum state
through interaction with the negative energy flow.

This scattering process is stochastic. If an outgoing matter in the deep region goes out while the
other remains inside, the matter would collide many times before going out, so the probability is very
small. Therefore, the information returns in order from the surface region during the evaporation as if
one peels off an onion® (left of Figure 16).

The other point is the role of the negative energy induced by the vacuum. If the black hole
evaporates and the information comes out by the above mechanism, the state along an ingoing line
should approach a vacuum state (see the right of Figure 16). When the negative energy is superposed
on the matter and decreases the energy, interaction between them should play a role in this evolution
of the state. This point may be related to the problem of finding the correct configuration of the
s-waves discussed in Section 9.5. We will study this scenario in future.
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Appendix A. Motion of a Particle near the Evaporating Black Hole

For a self-contained discussion, we review the derivation of the asymptotic behavior (8) [9,14,16,24].
Equation (7) can be solved exactly by coefficient change method. The general solution is given by

1

_[u du’ 1 u d _ u/d " .
Ar(u) = Coe fuo " 2a(u’) —|—/ du/ <_da(ul)> e fl‘ u 2a(u ),
up u

where Cj is an integration constant. The typical time scale of this equation is O(a) from the exponent,

while that of a(u) is O(a3/c) from Equation (5). Therefore, a(u) and d%—(;’) can be considered as

constants in the time scale of O(a), and the second term can be evaluated as

65 If there is no interaction, the earlier the matter parts start to go inward, the sooner they return. This is the reverse order of

the case of Figure 16.
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1
/u du’ (_da(u’)) ¢ i " e
)

du
da O da _utug
~ — a(u) — —Q 1— 2a(u) Y,
quw) [ e 2 wa(u)(1—e 7))
Therefore, we have
_u-ug du _u-ug
Ar(u) ~ Coe W) — Z—du (w)a(u)(1—e 2W),

and obtain through Equation (5)

(AT)

which is the behavior (8)%0:7.

Appendix B. Behavior of 75 in the Limita — 0

In this Appendix, we assume the Vaidya metric (4) with Equation (5) to study the behavior

of rs(u) at the moment when a(u) vanishes®®

Combining Equations (5) and (6), we obtain

. Here, r5(u) follows the equation of motion (6).

dr a(rs—a
ki 7( S )_ (A2)
da 207
This provides the relation of r; and a. Note that time evolution is in the direction in which
a decreases. Here, we focus on the integral curves that start from points satisfying rs ~ a > I,
See Figure Al.

75 (a)

a

Figure Al. Integral curves of Equation (A2) that start from points satisfying rs ~ a > I,.
As Equation (A2) shows, their slopes are positive for 7s > a and become zero at a = 0. They are
attracted by an asymptotic curve 3 (a). We can check this easily by a numerical analysis.

66
67

By a numerical method, we can also solve Equation (6) exactly and show the result (8). See Appendix B in [16].

The above analysis is based on the classical motion of particles. We can also show that this result is valid even if we treat
them quantum mechanically. See section 2-B and Appendix A in [16].

Note again that such a final stage of the evaporation is beyond the semi-classical approximation and should be investigated
more properly, say, by string theory.

68
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The curves are attracted by an asymptotic curve r; (a), which is the curve starting from r; ~ a — co
(red curve in Figure A1). By numerical calculation, we can check that

rs(a = 0) ~ 2.33\/c (A3)

for various initial values. This means that, when a becomes zero, s is not zero.

In Figure A1, the blue curves are of interest to us. We are now considering a particle of those
which compose the outermost part (shell) of the collapsing matter. Therefore, the particle comes from
the ouside of r = a(u), which the blue curves describe. On the other hand, the green curves are not
physical. They start from points on rs = a and would correspond to particles coming from the inside
of r = a(u) although the metric (4) can be applied only to the region of r > a(u).

Let us construct approximately the asymptotic curve r}(a). In the stage where a > /0, the
solution (A1) means that particles near a(u) approach to, in the time scale Au ~ 2a

ri(a) =a-+ %7(7 for a > V20. (A4)

Here, for simplicity, the lower limit value v/2¢ has been taken as one giving the minimum value
of a + 27‘7: ri(v/20) = 2v/20. On the other hand, when a2 — 0, we can approximate Equation (A2) as

drs a2

TS (A5)

where we have taken s — a & r; in the numerator of Equation (A2) for rf(a = 0) > 0. Then, we obtain
B 5
r;‘(a):6—0+§\/2(7 for 0 <a < V20, (A6)

where the integration constant has been chosen s.t. this is connected to the curve (A4) atr = v20. Thus,
Equations (A4) and (A6) give approximately the asymptotic curve r; (a). Actually, from Equation (A6),
we have
Ha=0)= g\/ﬁ ~ 2.361/0, (A7)
which is close to the value (A3).

Based on this result, we can describe the picture around the final stage of the evaporation in a
lightlike coordinate (1, v). See Figure A2.

Figure A2. The final stage of the evaporation in a lightlike coordinate (1, v).

The trajectory rs(u) is drawn with a constant v line. The Schwarzschild radius a(u) moves
spacelike because from Equations (4) and (5), dsz\r:u(u) = —2adu® = i—gduz > 0. When a(u) becomes
zero, 1s(u) is still positive by the value (A3). After that, rs(u) propagates in the flat space and reaches
r = 0. Thus, we conclude that in the metric (4) rs(1) and a(u) do not become zero at the same time.
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Appendix C. The Radiation in our Model and the Usual Hawking Radiation

We reconsider how to obtain the pre-Hawking radiation in the s-wave approximation model,
which has been given by Section 2.3, and then discuss the difference from the usual Hawking radiation
[1].

Let’s recall that the formula of the energy flux for particle creation is given by

BN [ (dE\* % . du
]%n<(du> _zduz)' Czlogﬁr (A8)

which comes from Equations (33) and (43).
In our model, we have from the relation (42) and C = oy

a(u)?

¢(u) = , (A9)

B 40,

where a(u) satisfies Equation (5) with ¢ replaced by o5. This makes the formula (A8) into

N

= 192742 (A10)

J

at the leading order in %” <L
On the other hand, in the case of the usual Hawking radiation [1], the relation, U o e~ ﬁ, between
the Kruskal coordinate U and the Eddington—Finkelstein coordinate u is used to derive the radiation

for a =const.??. Then, we have
u

lu)=—5, (A11)
which also leads to Equation (A10)79,

Although the both cases give the same value of the energy flux |, the property of ¢ is quite
different. Equation (A9) is controlled only by a and does not depend explicitly on u. Therefore, we
can add a shell with Aa to the black hole and derive the pre-Hawking radiation (A10) with a replaced
by a’ = a + Aa in the recursive manner of Section 2.3. On the other hand, Equation (A11) depends
explicitly on u, and such a recursive argument does not work.

The physical picture of particle creation is also different. First, we consider the radiation in our
model. Imagine that an outgoing null geodesic starts from the flat region around r = 0, passes through
the dense object, and comes out of the surface, as the green arrow in Figure 8. It takes an exponentially
long time due to the large redshift of the interior metric (72). At each stage where the line passes each
shell, the pre-Hawking radiation is induced and added to compensate the reduction by the redshift
(recall the discussion below Equation (29)). The sum of the radiations is emitted from the object and
the system evaporates. The point is that there is no trans-Planckian physics anywhere if N is large,
Equation (11).

Next, we recall how the usual Hawking radiation occurs [1]. Quantum fields start in |0)»; and
pass the center and the collapsing matter, which is not so dense. Then, because of Equation (A11),
the fields that propagate exponentially close to the horizon are excited to create particles as the radiation.
In this process, modes with exponentially short wavelength are involved, which is a trans-Planckian
problem [80-82].

% Note that this U is the same as that of the flat space before the collapse, and we can identify Equation (A11).
70" Note that other approaches to a pre-Hawking radiation (e.g., [43,44]) use almost the same derivation as this.
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Appendix D. Normalization Factor \;

We derive the normalization (92) for the bound modes. This can be obtained from the relation (93):

[p(t,7,0,9), 7(t,r",60,¢")] = ihd(r —1")3(6 — 0")3(p — ¢'). (A12)

First, Equations (89) and (95) give
=i/~ gttZw, aiui(x) —aluf(x)), (A13)
and then the relation (A12) is equivalent through Equation (94) to
— /88" Y wi(ui(t,r,0,¢)u; (t,7',60',¢") + uf(t,7,6,p)u;(t,r',6',¢")) = ho(r —1")5(60 — 6")6(¢ — ¢'). (A14)

This is satisfied if we find {#;(x)} s.t.

h _
T\ s e
Zu (t,r,0,¢)i; (t,1,0',¢") = 6(r —1")5(0 — 0")d(¢p — ¢'). (A16)
We here note that Equation (A16) is equivalent to
b = (1) = [ drdodgi. (A17)

We use Equation (A15) and the leading WKB solution (84) with ¢;(r) = \/1? cos ["dr'(p; + 6;)

to have

Za)l _A
-7

=N

1 / b
cos[ [ dr'pi(r') + 6;]e "“i'/sin 0Yy,,. (A18)

Vri(r) ’ !

Therefore, the normalization condition is given by

= (m,

2 / drB%e~ — cos (/ dar’ (p; + 6; >/d0d<psm9|Y1m|

2wj 2/" 2,-A 1
= YN [ e A~ x 2,
h/\[’.r; rB%e pixz

(A19)

where we have used [ d0d¢sin6Y},,Y}, , = 6}y6yy and replaced cos? [ drp; to the average % because
the WKB approximation is good for a high frequency. Now, we take derivative of the condition (91)
with respect to n, use the property p;(r;") = 0, and obtain

-1
d 2 r: 2,—A
Yot _ o / ' B . (A20)
on i Pul

Thus, Equations (A19) and (A20) provide the normalization (92).
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Appendix E. Derivation of the Leading Solution gogo) (&)

1

We here derive the leading solution (121). First, two Bessel functions J4 (&), J_4(&) satisfy
Equation (119). Because we are now interested in the bound modes, the solution should vanish

as r —rg = —x — co. From the definition (118), this corresponds to ¢ — 0, in which ] 4 (¢) behaves as
Jra(§) S5 g4, (A21)

Because A is positive, we can find

o'V (&) = kTa(2). (A22)

Next, we fix the normalization k. The evaluation (111) means that the WKB approximation
becomes better as r — rg = —x — —oo, which corresponds through Equation (118) to ¢ — co. Then,
the leading behavior of J4(¢) is

Ja(@ £ ,/n% cos (¢ - %(1 +24)) = /#We‘%*cos ( 2onReT — 2(1 +2A)> , (A23)

where Equation (118) has been used. In the WKB solution (90), on the other hand, we have for x — oo
2 (0) o 2 75 — 2700 X

pi(r)” = P (x) = —=e%" @, dr pi(r dx e o o = 2om2@e%,  (A24)

where we have considered a region of x where the WKB solution almost agrees with the leading exact
solution. Therefore, the WKB solution behaves for x — oo as

T A/ T T
\/% cos </ dr'p;(r') + 91-) = %6_470'7)‘ cos < ZUT]Z(ZMﬁX — 01-) : (A25)
pilr 0

Comparing the two expressions (A23) and (A25) in Equation (A22), we obtain

k=" g, = T (1424). (A26)
1o 4

Appendix F. Evaluation of the Leading Values of the Regularized Energy-Momentum Tensor

We derive Equation (139). We first summarize the results about the leading solution:

/ d°k(a )+ afu@ (x)), (A27)

p) ey
O)(t 70,4, /Flﬂ / CUnl e iwnit ™ 8017 Ja(@) Y1 (0, ¢) —— 2n)2’ (A28)

where

2
~ 1 _J0 (- - 1o _ o ~ l(l + 1)
AE\/ZU2L+k2 + =, E=4/20 202 0 r), O=——e Wi, L= .
*(L+k)+4, ¢ 1 T 7
Here, according to the discussion at the beginning of Section 5.3, we include only the bound
modes. a; and a;-r satisfy

(A29)

[a;,a]] = &, (A30)
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and the vacuum state |0) satisfies
4;]0) = 0. (A31)

The metric is
€

2 2‘72’—2 2 r? 2 2512 a2
ds = e 71 dt +Edr +r7dQ + ) (dy")*. (A32)

a=1

From these, we can make easily the formulae we are using below. We have atr = rq

(0) 2 h an Q. 2 Y 2 A
|uz’ (70)| - 21’%(27‘()‘9 on ]A( z) | 1m| s ( 33)
where we have used "0
& 2on2@; = yroe” Wiw; = Q. (A34)

Next, we take the derivative of Equation (A28) with respect to r:

©,n_ T (0, 9¢9Ja(5) 1 (o
= e T e T @
_ 2ro (Ja1(8) (0)
=y 1+ 5 (e ) =

where we have used the second one of Equation (A29) and a formula of Bessel function:

d

140 = Ja1(0) - A1) (A36)

¢

Therefore, we have

ol =4 (22 ) (3 4) + 0410 0 2

4o Ja ()
- h 20); P 1 ' ' ‘ 2
- WW‘YM KZ - A) Ja(Q) +QiJa1(Q)| - (A37)

Appendix F.1. Evaluation of <O|g”(8t4>)2|0>£2

Now, we can have

(01" (31210} gl r=ry = 8" (r0) O] L_(—icws) (au®) — atuf™") Y (—icoy) (aju® — atuf™") o)
t )

2 2
"0 2y 21, (0 2
=50 ;wi [ (ro)|
h 20):
=————— [ d%% 10?2 Y, |2 (oF 2, A38
40-;727%(27-[)e/ ; o z%‘ lm‘ IA( z) ( )

where in the second line we have used Equations (A30) and (A31) and in the third line Equations (A33)
and (A34). In evaluating the leading contribution, we can neglect the correction from the
Euler-Maclaurin formulain },,; ,, 7! and use

00); ) 20+1 1 o TR
anlm/d(), IZ|Y1m| :\; = NE/d(l):E/dL. (A39)
m

2

)

7L This correction and the subleading solution ¢; ’ contribute to the subleading value (0|g" (d:¢)* |O>£€1g)
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Then, we have
0 h -
<0|gtt(at¢)2|0>£e§|r:ro = —W/dek/dQQZ/dL]A(Q)Z

- _ / dK / 1002 / dYJA(Q)?,  (A40)
32yt 2(717 )2 (2m)€

where we have introduced
Y =20%%L, K® = /2052kK". (A41)

Instead of considering directly the index A, which is the first of Equation (A29), we can insert

the identity
1:/dA5<,/Y+K2+i—A> (A42)

n
08" (9¢)210) \oulr—ry = — :
018" O P10 = g s

dA [ d°K [ dQO? [ dY]4(0)%6 Y+1<2+1—A , (A43)
faa faex fanct | ((rosi-a)

This integration is performed to the extent that the square root is not negative.
K-integration: We first perform the K-integration as

d°K 1 s e 1
il 24 - - e—1 24 -
/(27()5(5( Y+ K24 A) (Zne/ dKK 5<1/Y+K + A)

and consider

A
—— | dKKT1Z§(K - K
(4n)6/2r (5) / Ko ( 0)
-2
2 1 Ea
= A(AT-C Y Ad4
A (4-5Y) (A
where S¢ = %Eﬂ) is the area of a e-dimensional unit sphere, and Ko = A? — % -Y.
2
Y-integration: We next integrate it over Y as
2_1
A2-1/4 1 %_1 1 s Ac—y 1 1 %
/ dY(A2—4—Y> :—e(A2—4—Y> :e(A2—4> . (A45)
0 2 0 2

We have discarded the contribution from the top of the integral because in the dimensional
regularization we drop 0¢ and co€ by choosing € properly. Then, Equation (A43) becomes

h
167to?n* (87w77 )Ir(1+4§

(01" (219 )210)16}] =1 = — [ aadon(0, 4), (Ad6)

h(Q,A) = A (A2 — i) 02 4(Q)2 (A47)
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QO-integration: To evaluate the Q-integration of h;(Q), A), we introduce a damping factor
e~*2 (s > 0), integrate it, and then expand the result around s = 0:

o0 A 1\2 1 1\ 21! 16
Qe (0, A) = — (A2 - = — (A2 - = —1+log —
/0 40e " h (0, 4) 7ts? ( 4) Y ( 4 g

1 ) 1 §+1
+E <A — 4) (HA—Z—HA+% —2Hya_3) + O(s). (A48)
Here, H,, is Harmonic number:
n
1
= - A49
Hn Z k/ ( )

which has useful formulae:

Hy=H,;+ Y, i (A50)
k=n—I+1
1
Hy, = E(Hx + fo%) + log 2. (A51)
Using these properly, we can rewrite
1 » 1 » 1 1
HA*Z_HA+%_2H2A*3:A27% —2(A _1)HA7%+1_(A —ZL) og4|. (A52)

Note here that any term of the form A x (polynomial in A?) can be dropped by choosing € properly
in the A-integration. Therefore, we can drop the first line of Equation (A48) and the second and third
terms of the rh.s. in Equation (A52) and have in the limits — 0

(A53)

Nl—

Z 4O (Q, A 1A A? 1 H%H
[ aom@a) = —ga (4 1) Th,

A-integration: Next, we consider the A-integration. Using the integral representation of
Harmonic number

1— x4
Hy= | d Ab4
A / Ty (A54)
we have
dAdOR(Q, A L[ daa (a2 -1 " H
/ WO, 4) = —52 1/2 ( _4> A-3
1 e 1\ 1 xA
=—— dAA [ A2 -2 / ax———
27 J1/2 ( 4) 0 1
1 1, x~1 g 1\ "2
== AA [ A% — = A
2n/odx1—x/; a < 4) *
—i/ld SRR )( logx) 3 $Ksue [~ logx (A55)
T T 2um & $e\T2798%)-
Here, on the third line, we have discarded the term proportional to a polynomial in A and K(x)
is the modified Bessel function of the second kind. Introducing y = f% log x, we have
F 3 e
dAdQh (Q), A , A
/ ((24) = / ysmhy Kspe () (A56)

which is difficult to evaluate analytically.
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Numerical evaluation: From Equations (A46) and (A56), we thus obtain the expression for an
energy scale fiy

(08 (3190)%10)\ % |r—ro

N\m

3
2

h r(2
o 1670254 (8ton2u2) 2T (1 4 €/2) 47-52 / ysmhy %(y)

= [ dyfe(w). (A57)

Let us evaluate this numerically. Because the integration diverges around y = 0, we divide it into
the pole part and the finite one. We first expand f(y) around y = 0:

fey) = my >+ ay > hazy T+ Oy ), (A58)
where
L B T _2V2m L 5
aq 3\/:4-0(6), a; = E+O(€)' a3 = —¢ 180\@( 29 + 24+ 24log2)e + O(e).
(A59)
Here, we have
1

/ dyy "= —, (AGO)

where we have discarded the contribution from the bottom of the integral. This means that n = 1
provides a pole —1/e€. Therefore, we obtain the pole part:

-1 h 32 — (7 +log(32monp?))

e A61
%0 = Cetty e 9607202nte 1920720254 +0le), (A61)

which also includes the finite contribution from ! in the range 0 <y < 1.
Next, we consider the finite part in the range 0 < y < 1. The contributions from y~> and y > are

given by
3h
v = Celj ——— = (A62)
“1-5-¢€|.,, 10247202y*
h
vy = Celpg———— =————. (A63)
T1-3—€|. 512720254
Subtracting the divergent part, we can evaluate numerically
! - - _1, _ 0.000282257h
03 = Ce=0 | dy(fe=o(y) —my > —agy > —azy™') = T 2nE (A64)

These vy, v1, V2, v3 determine the value from 0 < y <1 although vy diverges.
On the other hand, all the contribution from the range 1 < y < oo is evaluated numerically as

0.001749537

A
202t (A65)

Uy = Cezo/l dyfe:O(y) - -
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Thus, we obtain

<O|gtt(a ‘P) |0) reg‘r o = qu

_ h 11 N
= Geon2onyt ¢ T a7 Hlos(B2mont ) ) de|, (AG6)

with
¢ = 0.055868. (A67)

Note that 1 =€(0|g" (9:¢)? |0>£§§ |r=r, has become O(1) as a result of the integration over w and I.

Appendix F.2. Evaluation of (0|g"" (3,¢)? \O>r5g

We next go to the evaluation of the r-derivative.

(018" (3:¢)210) D |r=r,

=) 9% (r0) P
4(7,7272 20)¢ / Z Z\Ylm\2 K - A) Ja(Qy) + Qi]A—l(Qi):|2

= L /deK/dQ/dy/dAs \/m_A
327yt (20n%)2 (27)€ 4

K; - A) Ja(Q) + Q]Al(Q)} 2~ (A68)

Here, on the third line, we have used Equation (A37) and, on the fourth line, we have taken the
same procedure as in the previous subsection. We can do the same calculation for K and Y as in the
evaluations (A44) and (A45) and obtain

rr 21\ (0) — _ h
O™ @ 10Nt =~ e e e [ aadon(, 4), (A69)
€/2 2
o, =-a(2-1) " |(-4)n@+ona@) . @

—sQ)

Using e~%*, we can perform the ()-integration and expand it around s = 0 again:

dQe ", (Q), A)
0

A 1\ A 1\!*2 s2
SR e N 7C N S e
752 ( 4) in < 4) °g<4>
1
4

o4 ) 5 2 3 2
7 A(A _ ) m(—7—22A+44A — 847 +2(=3+24)(—1+44%)H, ;)
274 1 % 1
+,

7T
A ([, 1\''2
__ A) Hy )l (A71)
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where we have dropped the two terms in the second line and the first one on the fourth line, which are
polynomials in A, and used the formula (A50) to change from H , 5 to H,_ 1 Note that this is the
same as Equation (A53), which means

(018" (3:)210) 1e8lr=ro = (013" (31)2 0}egl (A72)

Appendix F.3. Evaluation of $(0|g% (9¢)? + g4’¢(8¢¢)2|0)£8§

We do almost the same calculation again:

1
5 (018™ (09) + 877 (2p9)210) g1y

1 0 0
=5 1 (8" 100u” 12 + g7 2,u" 2
1

1-I14+1), (0
L P
i 0

h 30 i
= [ d LN 1Y, PLT A (Q))?
41,(2)(27.[)5/ ; o %' lm‘ ]A( 1)
h - I 1
— _ dA/deK/dQ/dYY 026 (\JY+K2+- —A
64rto2nt (20n2)2 (2m)€ / Ja(@) 4
h . ) ) 1 %—1
— _ /dAA /dQ]A(Q) dyy (A2— > _vy (A73)
32mt?n*(8mon?) 2T (§) - . 4

where we have used Equation (A33), introduced the same variables and performed the K-integration
(A44). Now, we integrate it over Y as

A%2-1/4 1 %—1 € 1 ]+% 1 1 1+%
dyy (A2 — > —Y =B(2,-)(A%2-= = (A2-= . (A74
/o < 4 ) (2)( 4) §(1+6)( 4 (A74)

Thus, we have

1,0 60 2 21 (0) h

{0 ) +¢%(0 0)realrmr,s = — _ dAdQhy(Q), A), (A75

20187 Qo)+ 87 (0@ O0reglr=ro 167102774(8710172)21"(1+§)/ oA A7
he(Q, A) = L (et v (Q)? (A76)

—sQ)

We again perform the ()-integration with ¢e™** and expand it around s = 0:

00 A 1\'*2 s
—sQ _ 2 _ = 2
/0 a0 Ohp(0,4) = 5 <A 4) (Hy y+1og3)
%

e\ A 1\
_ (1 — E) = (AZ— 4) Hy oy, (A77)

where we have dropped the second term, which is a polynomial in A, and considered ¢ < 1.
Comparing this with the expression (A53), we conclude

(01" (309) + 87 (99 210) =1y = — (1= 3 ) (01" (211012311 (A78)

NI~
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(01(2y2)2(0)'%)

Appendix F.4. Evaluation of } _,
(0[(yagp)? |0>£§§ is also important:

In the dimensional regularization, }

(O] Y (3ys)?10) D | r—ro
a=1

€
=Y 3 kak?[ul” P2
i a=1
h 0Q);
= [ d%K? EN T Y 2T 4 (€4)?
27%(2715/ ; on ZI "] ()
- _ /dA/deKKZ/dQ/dY]A slyyrrestoa
327024 ( 2017 )2 (27)¢ 4

%
- dAA/dQ 2/dY<A2——Y) ) A79
16702n%( 87'[017 (5) / Ja(@) 4 (679)

where we have performed a similar integration to Equation (A44). The Y-integration is done as

S

2

A2-1/4 , 1 5 1 , 1 L1]AP-1/4 1 L, 1) 5t
/O dY(A4Y> :l+§(A4Y> :1+§(A4> . (A80)
0
Then, we have
€ 5 (O) h .

01 Y (3y09)210) Y], = — _ /dAth 0, A), A81

{ IFZl( v 9)?10) reglr=rq TEr— T y(Q,A) (A81)
h(O,A) = —— _a(az-1 %] (Q)? (A82)

PSR T (1+8) 4 AT

Comparing this to the expression (A76), we find hy, = €hgy, which means through Equation (A78)
e(0lg" (31210 3 r—ry- (A83)

(018% (909)2 + 879 (9p$)210) % r—ro

N| —

(0] Y (3y29)2(0) Rl r=ry = €

a=1

Appendix E5. Evaluation of (0T |0) 4
Combing the results we have obtained so far, we can evaluate each component of (0|T*[0)eq

Because each free field ¢, (x) gives the same contribution, we can just multiply N to obtain through

— Y (39)2(0)%)

a=1

the expression (99)
N (015 (2u9)? — g (0:¢)? — 8 (899)2 8% (9p9)?

(O[T 0)%) =
(018" (e9)? — & () +2(1 — €/2)g" () + €8 (91)?10) \on

(A84)

N\Z N\

= N(0[g" (21)[0}1eg,
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where we have used the results (A72), (A78), and (A83). Similarly, we calculate

N
(0I77,10)j2g = 5 (018" (3:9)” — 8" (3:9)? — 8" (969)” — % (39)” Z( v d)?10)1cg

= §<0lg“(at¢)2 — 8" (019)” +2(1 - €/2)" (319)? + 5" (319)*]0)seg
= N{0[g" (3:9)?[0}yeg- (A85)

Again, we have

NI~

N €
O1T% + T*4[0)feg = 50 — " @19)* — 5" g 997012
N

= (0 = 8" (0r)* — 8" (19)* + 3" (81)*[0) 3
= (-1+3) N<0|g“<at¢>2|o>$8g. (A86)

This average value gives (0|T% |0>reg (0]T?4 |0>reg because of the spherical symmetry. Note here
that § picks up the contribution from the pole 1 of N(0|g" (9:¢)? |0 reg, which is completely determined
by the UV structure. In this sense, the term is anomalous.

Thus, these and the evaluation (A66) provide Equation (139).

Appendix G. Derivation of T,,(u, v5)

We show the first term of the ingoing energy flow (218). First, we derive Equation (217).
For simplicity, we assume that for u < u,, the shell falls approximately in the static Schwarzschild
metric with the initial mass 5¢. This is motlvated by the fact that the time scale in which the shell
approaches from, say, v = 2a to r=a + 2 is Au ~ a while the time scale in which the energy of the

system changes significantly is Au ~ 7. Then, we can evaluate for u < u,

—00 27’5<ﬂ)
wo 1
~ —ﬂo o dum
/rs(u) 1
=aq r
0 Joo Srs(rs — ag)
_ rs(u) — ag
log T OB (A87)

where in the third line we have changed the variable from i to 75 by using the second of Equation (198)
with ag.

Now, suppose that the black hole starts to evaporate from u ~ 1, which means that ag ~ a(u.) =
a,. Similarly, we can calculate for u 2 u,

p(u,v5) = — /_u; dﬁz:s((?)z _ /.u dii a(i)
1 1
2r(i1) / du2a(

Us
~ —ao/ dlxl

/-rs(u*) p 1 N /ﬂ(t{) p a
=a rg—— a—
0 ) 7s(rs — ag) a(u) 20

a(u)? — a2
40 7

2
~ log a—;’ + (A88)
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where we have used rs(u) = a(u) + %‘7) and in the second term of the third line we have changed the

variable from # to a by using Equation (5).
Using these, we consider for u 2 1,

/ dii-~ f‘ wﬂ—/ dit- ? “%+/Jm ? PO) = Iy + I, (A89)
(i, vs) ()4 (@)*

I; can be evaluated from Equation (A87) as
/ - 1~ <rs(ﬁ)~—a*>2
()% rs(if)

(u*) 1 _
= —2(,1* / d?’sjrs s
) r s

S

_ 2ay B aﬁ
Brs(ue)3  2rs(us)*
1

~—, A90
622 (A90)

where we have used again the second of Equation (198) and rs(u+) ~ a.. From Equation (A88), I,

becomes

u 1 20\ 2 a@2-a?

L~ dil— <(27> e
a*
20’ 2 H(”) —1 az a%
<2> / da—e 2
as a(u*) oa
L (2 /(“)daeg(a o)
oa, \ a2 7

%;<i>_o@%) (A91)

where we have used Equation (5) again. This is negligible compared to I;.
Thus, we reach the first term of Equation (218):

2¢(i1,vs) r~ Nnh
7/ 00 1927a(u)2” (A92)

Here, we have replaced w1th e )2 because they are almost the same for a small mass of the

outermost shell.

Appendix H. Classical and Quantum Contributions to Energy Density — T,
We derive Equations (221), (225), and (226). Before this, we note that, in general, the Bondi mass is
defined as the energy inside r on a u-constant surface [57], which is expressed in the (u, ) coordinate

of the metric (197) as
r _
M= 47'(/ dr'y?(—T"). (A93)
0, u=const.

Here, the suffix i stands for the u-component in the (u, r) coordinate of the metric (197). Then,
we express T"; in terms of the (1, v) coordinate. From dii = du and dr = (g—{l) du + (a’) dv in the

metric (197), we have the coordinate transformation between (i, +) and (1, v):

du = dii, dv=2e"7 (dr + ;r_:w)da) ) (A94)
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where we have used Equation (198). We calculate

“T oxmom - °
_ Tuu + e—(pr — aTuU
— 2e7 Ty, — 2¢20] ~ o (A95)
(0)
Let us construct Equation (221). For the classical shell part (216), we have only ngf,l) = ;”T”rz =
%(5(0 — vg) and obtain
i) = L (20 =) (v — v5) (A96)
1 g TV o).
From this, we evaluate , for rg = r(u,vg) > rs = r(u, vs) where vg > vs,
ro -
AM = 4n/ drr(— T )
0,ii=const.
4 or _
— 4 d 0 2 _Tu(cl)_
7-[/700 U<av>ur( u)
00 1 —
:/ dvfe"’ZWe_zq’mé(v—vs)
—00 2 r
_ s =) —plun)py
s
20 ai e_a(uﬁ—ai
T a(u)?20
a(u)zfagf
~e 4w W, (A97)

which is Equation (221). Here, on the fifth line, we have used the part for u 2 u, of Equation (217) and
re &2 a+ 27‘7; and, on the last one, we have made an approximation a(u) ~ a., since the difference does
not contribute to the time evolution, compared to the exponential factor.

Then, we check the energy density (225). We can use Equation (217) to evaluate the classical
contribution (A96) for u = u, as

_ oW [ a? 2 a2—a} 20
l ~ - _
_T(C )uﬂ ~ e <%> e~ 2 P 5(2} vs)
W -
~—e T §(v—us), (A98)

4o

where we have used a ~ r approximately.
Finally, we derive the energy density (226) induced by the vacuum near the surface for u 2 u,.
We first evaluate

1
Tb(lzaC) = m’fuv
1 —AN
= T2 2a O1%0?
N e (A99)

T, T S
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where we have used Equations (198) and (205). Putting this and the first term of Equation (218) into
the formula (A95), we have

2
_ s o, _ N )\ 220 —hN 1
" 967Ta* 20 a2 1927142 47142
AN 22 —hAN 1
= —— 4+ e 20 oG yr——
967Tat 192710 47ta
1 a3
N e Al
87Ga2" ' (A100)

where we have used o = 05 (13) and kept only the second term as the leading. This gives the energy
density (226) because of a ~ r.
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