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Abstract: The process of resonant high-energy electron–positron pair production by an
ultrarelativistic electron colliding with the field of an X-ray pulsar is theoretically investigated.
Resonant kinematics of the process is studied in detail. Under the resonance condition,
the intermediate virtual photon in the X-ray pulsar field becomes a real particle. As a result, the initial
process of the second order in the fine structure constant effectively reduces into two successive
processes of the first order: X-ray-stimulated Compton effect and X-ray-stimulated Breit–Wheeler
process. For a high-energy initial electron all the final ultrarelativistic particles propagate in a narrow
cone along the direction of the initial electron momentum. The presence of threshold energy for the
initial electron which is of order of 100 MeV for 1-KeV-frequency field is shown. At the same time,
the energy spectrum of the final particles (two electrons and a positron) highly depends on their exit
angles and on the initial electron energy. This result significantly distinguishes the resonant process
from the non-resonant one. It is shown that the resonant differential probability significantly exceeds
the non-resonant one.

Keywords: external field QED; X-ray pulsars; high-energy particles; resonance; trident pair
production; positrons; positron abundance

PACS: 95.30.Cq; 97.10.Ld; 97.80.Jp

1. Introduction

Resonant nonlinear effects of quantum electrodynamics (QED) can be observed in strong
electromagnetic fields. To create such fields and ultrarelativistic particles special conditions are required.
These conditions can be achieved near specific space objects, such as neutron stars, pulsars, magnetars
or supernovae. It has been reported of anomalous high-energy positron abundance [1] in cosmic rays,
which are suggested to be produced by pulsars [2]. Several external field QED effects make contribution
to production of high-energy positrons. In this paper resonant ultrarelativistic electron-positron pair
production by high-energy electrons in the field of the X-ray pulsar is studied. The possibility of
production of positrons with energies discussed in [1] will be shown.

The first time is was Oleinik [3,4] (see also reviews [5,6]), who discovered the presence of
resonances in second-order external field QED processes. The resonances are related with discrete
energy spectrum of particle + external field system. Under the resonance condition intermediate photon
becomes a real particle and the process’ probability greatly increases. One more factor distinguishing
resonant processes from the non-resonant one is existence of dependencies of final particles energies
on their outgoing angles. Resonant QED processes in an external field were studied in works [7–22].
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The process of high-energy electron–positron pair production by an ultrarelativistic electron
colliding with an external field is studied in works [23–27]. In work [23] authors put special emphasis
on properties of transition amplitude and study it analytically and numerically. In work [24] authors
study the process in inhomogeneous plane-wave background fields, the probability of the process,
including the exchange part is obtained. In works [25–27] one-step and two-step contributions to the
process are studied in detail.

In contrast to the works discussed above in this paper the resonant high-energy electron-positron
pair production by an ultrarelativistic electron colliding with the field of an X-ray pulsar is theoretically
investigated. We consider ultrarelativistic particles which leads to the fact that all the final particles
in the process propagate along the direction of the initial electron. We mostly focus on resonant
kinematics of the process. We also aim to compare the differential probability of the process and the
differential probability of the non-resonant one.

2. External Field Description

QED processes in an external electromagnetic field are described in terms of classical
relativistically invariant parameters:

η =
eFλ̄

mc2 , (1)

the physical meaning of which is the ratio of the work of electromagnetic field at its wavelength to an
electron (positron) rest energy. Here e and m are the charge and the mass of an electron (positron), λ̄ is
the reduced wavelength of the field, c is the speed of light and F is the strength of the field.

Fox example, for an X-ray pulsar with ω = 1 KeV and F = 1011 V/cm parameter η takes value of
order of 10−2.

In this paper, we consider weak electromagnetic fields which are defined by the
following condition:

η � 1. (2)

We assume the field of a pulsar to be monochromatic electromagnetic circularly polarized plane
wave of the following form:

A (ϕ) =
F
ω

(
ex cos ϕ + δey sin ϕ

)
, ϕ = kx = ω (t− z) . (3)

In Equation (3) A and ω are the 4-potential and the frequency of the wave, ex and ey are
polarization 4-vectors and δ = ±1.

Further we use relativistic system of units: h̄ = c = 1.

3. Amplitude of Ultrarelativistic Electron–Positron Pair Production

The process of resonant electron–positron pair production by an electron in the field of an
X-ray pulsar can be described in terms of two Feynman diagrams as shown in Figure 1. Double
lines correspond to Volkov functions [28], the solutions of Dirac equation with monochromatic
electromagnetic plane wave potential.

Figure 1. Feynman diagrams of resonant electron-positron pair production by an electron in the field
of the X-ray pulsar. (a)—channel “a”; (b)—channel “b”. Double lines correspond to Volkov functions.
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The amplitude of the process can by written by means of standard Feynman rules:

S = ie2
∫

d4x1d4x2Ψp− (x2) γνΨ−p+ (x2) Dµν (x2 − x1)Ψp f (x1) γµΨpi (x1)−
(

p f ←→ p−
)

. (4)

Here pi, f = (Ei, f , pi, f ) is the 4-momentum of initial and final electrons, p± = (E±, p±) is the
4-momentum of positron and electron of pair and

Ψp (x) =
[

1 +
e

2 (kp)
k̂Â (ϕ1)

]
up√
2E

eiSp(x). (5)

is the Volkov function of an electron (positron). Ψp denotes Dirac adjoint of Ψp and −p+ stands to
underline that positron Volkov function can formally be obtained from the electron one by change of
the sign of 4-momentum, up is free Dirac bispinor.

In Equation (5)

Sp (x) = −px−
∫ ϕ

ϕ0

e
(kp)

[(
pA
(

ϕ′
))
− e

2
A2 (ϕ′

)]
dϕ′ (6)

is the classical action of an electron in the field of a monochromatic electromagnetic plane wave [29].
After integrations in Equation (4) the amplitude of the process in case of weak (see Equation (2)

circularly polarized wave takes the form of

S =
∞

∑
l=−∞

Sl , (7)

where Sl are partial amplitudes, corresponding to l photons of the external field absorbed in the process
and given by the following expression:

Sl =16π5e2 e−id∗√
EiE f E−E+

∞

∑
l2=1

δ(4)
(

pi − p f − p+ − p− + lk
)

(p+ + p− − l2k)2 ×

×
[
up−Hµ;−l2 v−p+

] [
up f H′µ−(l−l2)

upi

]
−
(

p f ←→ p−
) , (8)

where d∗ is an independent of the summation index phase.
Here

Hµ
l2
= γµLl2

(
γp+p− , χp+p−

)
+ bµ
−Ll2−1

(
γp+p− , χp+p−

)
+ bµ

+Ll2+1
(
γp+p− , χp+p−

)
H′µl1

= γ′µLl1

(
γpi p f , χpi p f

)
+ b′µ−Ll1−1

(
γpi p f , χpi p f

)
+ b′µ+Ll1+1

(
γpi p f , χpi p f

) (9)

where

bµ
± = η

[
m

4 (kp+)
γµ k̂ε̂± −

m
4 (kp−)

ε̂± k̂γµ

]
, b′µ± = −η

 m
4 (kpi)

γµ k̂ε̂± +
m

4
(

kp f

) ε̂± k̂γµ

 (10)

and in case of circular polarization special functions L take the following form:

Ll (γ, χ) = e−ilχ Jl (γ) .. (11)
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The L-functions have arguments of the following form:

γpp′ = −ηm
√
−Q2

pp′ , tgχpp′ =

(
Qpp′ ey

)
(

Qpp′ ex

) , (12)

where

Qpp′ =
p

(kp)
− p′

(kp′)
. (13)

In Equations (12) and (13) 4-momenta p, p’ take values (pi, p f ) or (p+, p−).
In Equation (8), index l2 has a meaning of number of photons, absorbed in the second vertex.

It should be noted that in weak fields processes with absorption of huge number of photons are strongly
suppressed and starting from Equation (9) we are considering one photon absorption processes only
(l1 = l2 = 1). Poles of the amplitude Equation (7) correspond to Oleinik resonances.

4. Resonant Kinematics of Ultrarelativistic Electron–Positron Pair Production

Under the resonance condition the process effectively reduces into two successive processes:
X-ray-stimulated Compton effect and X-ray-stimulated Breit–Wheeler process (see Figure 2).

Figure 2. Feynman diagram of resonant electron-positron pair production by an electron in the field of
an X-ray pulsar for channel “a”. It is shown that under the resonance condition, the process is effectively
reduced into two successive processes: X-ray-stimulated Compton effect and X-ray-stimulated
Breit–Wheeler process.

It should be noted that channel “b” is obtained from channel “a” by change of indices(
p f ←→ p−

)
. Hence, it is sufficient to only consider kinematics of the channel “a”.

Henceforth we denote 4-momentum of intermediate photon as q0.
Let us consider the initial and final electrons and the particles of the electron-positron pair to

be ultrarelativistic:
Ei, f � m, E± � m. (14)

In this case all the final particles (the two electrons and positron) propagate in a narrow cone
along the direction of 3-momentum of the initial electron. The cone axis is far away from the direction
of propagation of the X-ray wave. If this condition is not satisfied, the Oleinik resonances are gone.
According to this the angles subject to the following conditions:

θi, f = 6
(

pi, f , k
)
∼ 1, θ± = 6

(
p±, k

)
∼ 1 (15)
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θ f i = 6
(

p f , pi

)
� 1, θ±i = 6

(
p±, pi

)
� 1. (16)

Starting from the 4-momentum conservation law in the first vertex

pi + k = p f + q0 (17)

and using the conditions Equations (14)–(16) and the resonance condition

q2
0 = 0 (18)

we get the equation for the energy of final electron:(
1 + 4εi + 4ε2

i δ2
f i

)
x2

f − 2 (1 + 2εi) x f + 1 = 0. (19)

Here

x f =
E f

Ei
, εi =

Ei
ωthr

, δ f i =
ωthrθ f i

2m
, ωthr =

m2

ω sin2 θi
2

. (20)

In Equation (20) ωthr is the threshold energy for the intermediate photon (see Equation (33)).
From Equation (19) we obtain the resonant angle:

δ2
res =

− (1 + 4εi) x2
f + 2 (1 + 2εi) x f − 1

4ε2
i x2

f
, (21)

which is accomplished under strict resonance. In fact, there is zero probability to achieve strict
resonance and real value of parameter δ f i slightly differs from the one in Equation (21).

Solutions of Equation (19) give us dependence of the final electron energy on the parameter δ f i,
proportional to its outgoing angle:

x f =
1 + 2εi ± 2εi

√
1− δ2

f i

1 + 4εi + 4ε2
i δ2

f i
, δ2

f i ≤ 1. (22)

From Equation (22), one can see that the parameter δ f i takes values from closed interval [0, 1].
Moreover, for each value of δ f i the final electron’s energy x f can take one of two possible values.

There, however, exists one particular. From consideration of 4-momentum conservation law in
the second vertex one can find that X-ray-stimulated Breit–Wheeler process only goes if intermediate
photon energy is greater than its threshold value ωthr (see Equation (20)), which is of order of 100 MeV
for x-radiation with ω ∼ 1 KeV . This imposes a restriction on initial electron energy: it has to be
greater than threshold energy εthr, which exceeds the threshold energy of the intermediate photon:

εthr =
1 +
√

2
2

(23)

and also a restriction on final electron energy:

x f ≤ 1− 1
εi

. (24)

With the presence of restriction Equations (24) there appears one more characteristic value of
energy of the initial electron:

ε∗ =
1 +
√

3
2

, (25)
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which has the next meaning (see Figure 3a, εi = ε∗): as long as initial electron energy is less than ε∗
final electron energy can only take one (low) value, otherwise, for large enough values of parameter
δ f i, the final electron energy can take one of two possible values.

Subject to this comment, final electron energy dependence on δ f i takes the form as shown
in Figure 3.
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Figure 3. (a) The energy of the final electron as a function of parameter δ2
f i for different values of energy

of the initial electron from the closed interval εi ∈ [εthr, ε∗]. (b) The energy of final electron as a function
of parameter δ2

f i for different values of energy of the initial electron satisfying the condition εi > ε∗.

Let us now show how the threshold energy ωthr Equation (20) for X-ray-stimulated Breit–Wheeler
process appears.

Starting from 4-momentum conservation law in the second vertex:

q0 + k = p− + p+ (26)

and using the conditions Equations (14)–(16) and (18) we get the equation for the energy of the positron:(
εi + ε2

i δ2
0+x0

)
x2
+ − εix0x+ +

x0

4
= 0, (27)

where
x0 =

E0

Ei
, x+ =

E+

Ei
, (28)

δ0+ =
ωthrθ0+

2m
, θ0+ = 6

(
p0, p+

)
� 1 (29)

and p0 = (E0, p0) is the 4-momentum of the intermediate photon.
The discriminant of Equation (27) is

D0 = ε2
i x2

0 − x0

(
εi + ε2

i δ2
0+x0

)
. (30)

The condition of existence of solutions of Equation (27) is the following:

D0 ≥ 0, (31)

which leads to
x0 ≥

1
εi
(
1− δ2

0+
) . (32)
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Thus, with definitions of εi Equation (20) and x0 Equation (28), the minimal value which
intermediate photon energy can take is

E0 = ωthr. (33)

Let us now consider kinematics of electron and positron of pair. We, again, start from 4-momentum
conservation law in the second vertex Equation (26).

From Equation (26) using the conditions Equations (14)–(16) and (18) one can get the equation for
the energy of the positron of pair.(

1 + 4ε2
i δ2

+i −
1
x f
− 4ε2

i δ2
f+x f + 8εi

)
x2
+ − 4εi

(
1− x f

)
x+ +

(
1− x f

)
= 0. (34)

Here
θ f+ = 6

(
p f , p+

)
� 1, (35)

δ2
+i =

ω2
thrθ2

+i
4m2 , δ2

f+ =
ω2

thrθ2
f+

4m2 (36)

and parameter δ2
f+ should be treated as follows:

δ2
f+ = δ2

f i + δ2
+i − 2δ f iδ+i cos

(
ϕ f i − ϕ+i

)
. (37)

In Equation (34) x f is not an independent variable but it stands for the right-hand side of
the Equation (22).

The discriminant of Equation (34) is

D = 16ε2
i

(
1− x f

)2
− 4

(
1− x f

)(
1 + 4ε2

i δ2
+i −

1
x f
− 4ε2

i δ2
f+x f + 8εi

)
. (38)

The solutions of Equation (34) are

x+ =
4εi

(
1− x f

)
±
√

D

2
(

1 + 4ε2
i δ2

+i −
1
x f
− 4ε2

i δ2
f+x f + 8εi

) . (39)

From energy conservation law
x− ≈ 1− x f − x+ (40)

one can obtain the energy of the electron of the pair:

x− = 1− x f −
4εi

(
1− x f

)
±
√

D

2
(

1 + 4ε2
i δ2

+i −
1
x f
− 4ε2

i δ2
f+x f + 8εi

) . (41)

In spite it seeming there are only two possible values for the energies of the particle pair, there are
actually four: two for each value of the final electron energy x f (see Figure 4b,c). However, for small
values of initial electron energy or for small values of parameter δ f i only one possible value of x f is
available which leads to only two possible values of pair particles energies (see Figure 4a).

From Figure 4a–c we can sequentially follow the evolution of dependencies of the positron
Equation (39) and the electron Equation (41) energies as functions of parameter δ+i as initial electron
energy increases from εi = ε∗ in Figure 4a to εi = 4 in Figure 4c. When the initial electron energy is low
(Figure 4a) particles of the pair cannot propagate at either large or small angles, i.e., there exist closed
interval

[
δmin
+i , δmax

+i
]
, where δmin

+i 6= 0 . Moreover, in this case only two possible values of energies
of the particles are available for each angle δ+i. In Figure 4b, with a little increase in initial electron
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energy, there appears a possibility for the particles of the pair to propagate along the direction of initial
electron 3-momentum (δ+i = 0) and also there all the four possible values of energies are available for
some values of δ+i , whose appearance is linked with the existence of a second (high) value of the final
electron energy x f . In Figure 4c the dependencies considered take the form similar to what we have
seen in Figure 3a,b for the final electron energy x f .
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Figure 4. (a) Energies of the positron (red) and the electron (blue) of pair as functions of parameter
δ+i for initial electron energy εi = ε∗, parameter δ f i = 0.97, the final electron energy x f (0.97) ≈ 0.23
and azimuthal angles difference cos (ϕ f i − ϕ+i) = −0.9. (b) The positron (red) and the electron (blue)
energies as functions of parameter δ+i for low final electron energy x f (0.97;−) ≈ 0.21 and the positron
(green) and the electron (cyan) energies as functions of parameter δ+i for high final electron energy
x f (0.97;+) ≈ 0.31 for initial electron energy εi = 1.5, parameter δ f i = 0.97, and azimuthal angle
difference cos (ϕ f i − ϕ+i) = −0.9. (c) The positron (red) and the electron (blue) energies as functions
of parameter δ+i for low final electron energy x f (0.97;−) ≈ 0.09 and the positron (green) and electron
(cyan) energies as functions of parameter δ+i for high final electron energy x f (0.97;+) ≈ 0.14 for initial
electron energy εi = 4, parameter δ f i = 0.97, and azimuthal angles difference cos (ϕ f i − ϕ+i) = −0.9.

Analysis of discriminant Equation (38) gives us a surface in
(

εi, δ f i, cos (ϕ f i − ϕ+i)
)

-parametric
space which separates the region in this space where the process is kinematically allowed from the
region where the process in kinematically forbidden. The regions are shown in Figure 5a for high
value of the final electron energy and Figure 5b for the low one. From Equation (38) it also could be
obtained that the parameter δ+i takes values from the closed interval [0, 1] for low values of the final
electron energy and from the closed interval [0,

√
2] for high values of the final electron energy.

Figure 5. Surface (red) in
(

εi, δ f i, cos (ϕ f i − ϕ+i)
)

-parametric space which separates the region in this
space where the process is kinematically allowed from the region where the process in kinematically
forbidden for high (a) and low (b) values of the final electron energy. Blue planes correspond to
cos (ϕ f i − ϕ+i) = ±1 and the green one to cos (ϕ f i − ϕ+i) = 0.
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5. Resonant Kinematics of Ultrarelativistic Electron-Positron Pair Production by High-Energy
Electrons in the Field of an X-ray Pulsar for High Initial Electron Energy

Let us consider the case of 100-GeV-energy initial electrons, which are required to obtain
100-GeV-energy positrons discussed in [1]. This corresponds to the condition

εi = 1000� 1. (42)

According to Equation (42) final electron energy Equation (22) simplifies to

x f =
1
2

1±
√

1− δ2
f i

1 + εiδ
2
f i

(43)

and the positron energy Equation (39) simplifies to

x+ =
1

1 + εiδ
2
+i

(44)

for both low and high final electron energies and two more values of the positron energy are vary low,
so we are not considering them. The energy of the electron in the pair could be obtained with the use
of the energy conservation law Equation (40).

From Figure 6 we can see that the energy of the positron of pair takes its maximal value, which is
of order of the energy of the initial electron, when the positron propagates along the initial electron
3-momentum direction.

1 
 

  

 

   

 

 
 

Figure 6. Positron energy as function of parameter δ+i for initial electron energy εi = 1000.

6. Differential Probability (Per Unit Time) of Resonant Ultrarelativistic Electron-Positron Pair
Production by High-Energy Electrons in the Field of an X-ray Pulsar

Differential probability (per unit time) of the process is defined as follows:

dw =
1

(2π)9 |S|
2d3 p f d3 p−d3 p+, (45)

where the amplitude S is defined by Equation (7).
Henceforth we will only consider differential probability for channel “a” as far as the one for the

channel “b” can be obtained by change of indices (p f ←→ p−) and we are not interested in interference
terms in this paper.
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The differential probability for channel “a” after summing and averaging over the final and initial
state particles’ polarizations, respectively, takes the following form:

dw =
α2η4

32π3
E3

i
E f E−E+

G
VCUBW∣∣∣∣(pi − p f + k

)2
∣∣∣∣2

δ(4)
(

pi − p f − p− − p+ + 2k
)

d3 p f d3 p−d3 p+. (46)

In Equation (46) G is some function of 4-momenta, whose magnitude is of order of ∼1, VC is
the function defining the probability (per unit time) of X-ray-stimulated Compton effect and UBW
is the function defining the probability (per unit time) of X-ray-stimulated Breit–Wheeler process.
These functions are of order of ∼1 and of the following form:

VC =
1

(1 + v)2

[
2 +

v2

1 + v
− 4v

v1

(
1− v

v1

)]
, (47)

UBW =
1

u
√

u(u− 1)

[
2u− 1 +

2u
u1

(
1− u

u1

)]
(48)

where v, v1, u, u1 are kinematic invariants:

u =
((kp+) + (kp−))

2

4(kp+)(kp−)
=

(x− + x+)
2

4x−x+
, u1 =

(kp+) + (kp−)
2m2 = εi(x− + x+) (49)

v =
(kpi) + (kp f )

(kp f )
=

1 + x f

x f
, v1 =

2(kpi)

m2 = 4εi. (50)

Under the resonance condition the denominator in Equation (46) turns to zero. To eliminate this
resonance infinity the Breit–Wigner procedure is applied—an imaginary term, corresponding to finite
lifetime of initial electron, should be added to its energy:

Ei −→ E′i = Ei − iΓ. (51)

After applying substitution Equation (51) the denominator turns to

∣∣∣∣(pi − p f + k
)2
∣∣∣∣2 = 4E2

i (1− x f )
2

(
4m4ε4

i x2
f

E2
i (1− x f )2

[
δ2

f i − δ2
res

]2
+ Γ2

)
(52)

where Γ = 1
2 WC and WC is the total probability (per unit time) of X-ray-stimulated Compton effect.

WC is given [30] by the following expression:

WC =
e2m2

32πEi
η2W ′, (53)

where

W ′ =

[(
1− 4

v1
− 8

v2
1

)
ln (1 + v1) +

1
2
+

8
v1
− 1

2(1 + v1)2

]
. (54)

Finally, after the integration with δ-function, the differential probability (per unit time) of resonant
electron–positron pair production by an electron in the field of an X-ray pulsar is given as follows:

dwa =
α2η4

32π3
m4E3

i
ω4

thr

x f x−
x+(1− x f )2 G

VCUBW

B2
i f

[
δ2

f i − δ2
res

]2
+ Γ2

dx f dδ2
f idδ2

+idϕ f idϕ+i, (55)
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where

Bi f =
2m2ε2

i x f

Ei(1− x f )
. (56)

Equation (55) reaches its maximum value under the resonance condition when δ f i → δres. In this
case it takes the following form:

dwmax
a =

128
πα2η4

[
α2η4 E5

i
ω4

thr

x f x−
x+(1− x f )2 G

VCUBW
W ′2

]
dx f dδ2

f idδ2
+idϕ f idϕ+i. (57)

Away from resonance, when
∣∣∣δ2

f i − δ2
res

∣∣∣ � Γ
Bi f

, expression in square brackets in Equation (57)
defines the order of differential probability (per unit time) of the non-resonant process, which is
proportional to α2 as far as it is the process of the second order in fine structure constant and to η4 for
each of fermion lines.

Denoting the differential probability (per unit time) of the non-resonant process as dwnonres
a from

Equation (57) we can write

dwmax
a ∼ 128

πα2η4 dwnonres
a . (58)

From Equation (58) we can estimate resonant differential probability (per unit time) compared
with the non-resonant one. The result of this estimation is that the resonant differential probability
exceeds the non-resonant one by 14 orders of magnitude for η = 0.01, which corresponds to ω = 1
KeV and F = 1011 V/cm.

It should be underlined that the differential probability (per unit time) estimate we provide
corresponds to its maximal value. In fact, the real X-ray pulsar field is inhomogeneous in space
and time which leads to resonance width to be much greater than radiation width. Due to this,
the value of resonance differential probability (per unit time) of the process becomes several orders of
magnitude smaller.

7. Conclusions

The process of resonant ultrarelativistic electron-positron pair production by high-energy electrons
in the field of an X-ray pulsar has several features. All the final particles propagate in a narrow cone
along the direction of the initial electron 3-momentum. Because of the X-ray-stimulated Breit–Wheeler
process, which occurs in the second vertex, having threshold energy the whole process considered has
threshold energy Equation (23). For x-radiation of pulsars with ω = 1 KeV the threshold energy is of
order of 100 MeV, which is three orders less than the same value for optical lasers with radiation with
frequencies of order of 1 eV. This fact makes it easier for the discussed process to occur in the presence
of pulsar radiation rather than in the field of optical lasers.

The thing that dramatically distinguishes the resonant process from the non-resonant one is the
presence of Oleinik resonances, whose existence is connected with a discrete spectrum of particle +
external field system. Due to them, there exists strong dependence of energies of final particles on
their outgoing angles (see Equations (22), (39) and (41)). As shown in Figures 3 and 4 there are several
possible values of energies of all the final particles for each value of their outgoing angles and up to
four values of pair particle energies for certain outgoing angles (see Figure 4b,c).

We analyzed the conditions under which the process is kinematically allowed. Corresponding
regions are shown in Figure 5a,b. Restrictions on outgoing angles were also found.

To explain anomalous positron abundance in the 100-GeV region reported in [1] high energy
initial electrons were considered. It is shown that such positrons may occur at low outgoing angles
(see Figure 6).

Under the resonance condition, an intermediate photon becomes a real particle which leads to
resonance infinity in the differential probability. To eliminate this infinity, the Breit–Wigner procedure
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is applied. The differential probability (per unit time) of resonant process is estimated. It exceeds
the differential probability (per unit time) of the non-resonant process by 14 orders of magnitude for
parameter η = 0.01, which can be obtained near pulsars with ω = 1 KeV and F = 1011 V/cm.
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