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Abstract: We review recent works on the possibility for eternal existence of thin-shell wormholes on
Einstein and Einstein–Gauss–Bonnet gravity. We introduce thin-shell wormholes that are categorized
into a class of traversable wormhole solutions. After that, we discuss stable thin-shell wormholes with
negative-tension branes in Reissner–Nordström–(anti) de Sitter spacetimes in d-dimensional Einstein
gravity. Imposing Z2 symmetry, we construct and classify traversable static thin-shell wormholes
in spherical, planar and hyperbolic symmetries. It is found that the spherical wormholes are stable
against spherically symmetric perturbations. It is also found that some classes of wormholes in planar
and hyperbolic symmetries with a negative cosmological constant are stable against perturbations
preserving symmetries. In most cases, stable wormholes are found with the appropriate combination
of an electric charge and a negative cosmological constant. However, as special cases, there are
stable wormholes even with a vanishing cosmological constant in spherical symmetry and with a
vanishing electric charge in hyperbolic symmetry. Subsequently, the existence and dynamical stability
of traversable thin-shell wormholes with electrically neutral negative-tension branes is discussed
in Einstein–Gauss–Bonnet theory of gravitation. We consider radial perturbations against the shell
for the solutions, which have the Z2 symmetry. The effect of the Gauss–Bonnet term on the stability
depends on the spacetime symmetry.
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1. Introduction

Wormholes are spacetime structures which connect two different universes or even two points of
one universe. Wormholes have fascinated people for a long time and many sci-fi movies and novels
are based on them. One may be surprised to know that wormholes are indeed a subject of theoretical
physics. Unlike black holes, wormholes are hypothetical objects in a real world. However, theoretical
physicists have pursued such peculiar objects and revealed many properties of them because the
consequences of wormhole physics are appealing: they enable instant travels between two distinct
points and even the realization of time travel [1].

To understand what a wormhole is, it is better to follow the history of wormholes first.
Interestingly, an insight into a wormhole shares the same year of discovery as the first black
hole. In 1916, Schwarzschild found his famous black hole solution of the Einstein equations,
the Schwarzschild black hole. In 1916, Flamm found that the Schwarzschild metric has a hidden
tunnel structure which connects two asymptotically flat spaces; he developed what is now called the
embedding diagram [2]. Almost twenty years after Flamm’s work, Einstein and Rosen published
their famous paper about the “Einstein–Rosen bridge” which is the Schwarzschild spacetime that
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can be interpreted as a solution joining the two same Schwarzschild geometries at their horizons [3].
The bridge acts as a spacetime tunnel since it connects two asymptotically flat regions.

The outline of this article is following: Section 1 is the introduction, where wormhole properties are
reviewed. In Section 2, we show the construction and linear stability against perturbations preserving
symmetries of thin-shell wormholes. In Section 3, we mention that there are many generalizations of
the thin-shell wormhole by Poisson and Visser. In this section, we review some of its generalizations.
In Section 4, we concentrate on pure tension wormholes in Einstein gravity. This part is based on the
work of [4]. We introduce wormholes with a negative-tension brane and we analyze the existence
of static solutions, stability and horizon avoidance in spherical, planar and hyperbolic symmetries.
In Section 5, we treat pure tension wormholes in Einstein–Gauss–Bonnet gravity. This part is on
the work of [5]. At first, assuming that the shell is made of tension together with a perfect fluid,
we derive the equation of motion for the shell and review the basic properties of the static shell After
that, we show that the shell has a negative energy density and hence the weak energy condition is
violated. (However, the negative-tension brane still satisfies the null energy condition.) Next, we study
the existence and instability of static spherically symmetric thin-shell wormholes. The signature
of the metric is taken as diag(−,+,+, · · · ,+,+), and Greek indices run over all spacetime indices.
In this section, the d-dimensional gravitational constant Gd is retained. Section 6 is dedicated to
the conclusion.

1.1. Einstein–Rosen Bridge

The Einstein–Rosen bridge is unstable since the throat pinches off quickly. To understand this
mechanism, let us see the dynamics of the bridge to understand the reason of the pinch off.

We show here how this tunnel structure is recognized. The Schwarzschild metric is written in the
spherical coordinates (t, r, θ, φ) as

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2), (1)

where M is a constant mass parameter. Suppose we take a constant time slice, t = const. Since the
spacetime is spherically symmetric, we can take the equator slice, θ = π/2, without loss of generality.
Then, the metric reduces to

ds2|t=const.,θ=π/2 =

(
1− 2M

r

)−1
dr2 + r2dφ2. (2)

Equation (2) has an axial symmetry: φ → φ+const. The metric or the line element can be
expressed as a two-dimensional surface in a three-dimensional flat space; ds2 at t = const and θ = π/2
is embedded into the three dimensional Euclidean space R3. In R3, the infinitesimal distance dΣ2 with
the cylindrical coordinates (ρ, ψ, z) (ρ: distance from the z axis, ψ: angle around the z axis) is given by

dΣ2 = dρ2 + ρ2dψ2 + dz2. (3)

A surface in a flat space can be described as z = z(ρ, ψ) in the cylindrical coordinates. Since the
coordinates r and φ are functions of ρ and ψ, we must have relation between (ρ, ψ, z) and (r, φ) to
identify the equation of the surface, i.e., ρ = ρ(r, φ), ψ = ψ(r, φ), z = z(r, φ). Since the metric (2) is
axially symmetric, which suggests ψ = φ and ρ = ρ(r), the surface function becomes the function of r,
z = z(r). Summarizing the above, we find

ρ = ρ(r), ψ = φ, z = z(r). (4)
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Substituting (4) into (3), then comparing this metric and (2), we get the relations(
dz
dr

)2
+

(
dρ

dr

)2
=

(
1− 2M

r

)−1
, ρ2 = r2. (5)

The simultaneous equations reduces to a single differential equation and is easy to integrate;(
dz
dr

)2
=

2M
r− 2M

⇒ z = ±2
√

2M(r− 2M). (6)

A plot for (6) is shown in Figure 1 below, in the assumption M > 0. One finds that two
asymptotically flat regions (dz/dr → 0 as r → ∞) are connected by the neck z = 0. Due to the
shape of a neck, we call it a throat.

Figure 1. (Left) The plot of (6). (Right) The surface is obtained by rotating the function around z axis
in the φ direction. The narrowest surface z = 0 corresponds to r = 2M.

At this stage, one may ask a question such as “if we live in an asymptotically flat region, namely,
in the upper space of Figure 1, what does the other region correspond to? Can we pass through the
throat and go to this other region?”. A clear answer to this question, is produced in the paper by
Fuller and Wheeler [6]. They revealed the dynamical properties of the throat and also showed that no
traveller can safely pass through the throat to go to the other region. We will show the dynamics of the
throat by the following this argument.

The Kruskal diagram of the Schwarzschild spacetime is given by Figure 2. Here, v is a timelike
coordinate while u is a spacelike coordinate. Regions I and III represent the outside of the black hole
which corresponds to the region of r > 2M in the Schwarzschild coordinates. Region II is the inside
of the black hole, r < 2M, while Region IV is the white hole, that is considered as a time-reversal of
the black hole. The straight lines v = ±u correspond to r = 2M, the event horizon of the spacetime.
The dashed bold lines are the curvature singularity (r = 0). Straight lines between v = +u and v = −u
are t = const., while hyperbolas are r = const. surfaces.

Figure 2. Kruskal diagram.
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Here, we take a particular spacelike slice for the diagram as

γ =
v√

4 + u2
, γ = const. (7)

which becomes v = u, as u→ ±∞. We draw γ = const. surfaces of (7) in Figure 3 as gray curves ((a)
to (h)). As one can see, γ plays the role of time here; when γ increases, the surface (7) moves in the
direction of increasing v. Since the surface (7) is spacelike, it moves in the time direction. In this figure,
the red dotted straight line describes a null geodesic α released from Region IV, while the blue one is a
null geodesic β released from Region III. The throat cannot stay static and its dynamics is as described
in Figure 4. The process occurs in the order of (a) to (h):

(a) Photons α and β initially are in the lower sheet. They go to the center r = 0. The values u = −2.67
and u = −2.08 correspond to r = 2M and r = 0, respectively. The vertical bold line is the
curvature singularity r = 0. At this moment, the singularity is in between two quasi-Euclidean
spaces.

(b) Both photons go to the center. A throat is going to appear.
(c) The throat just opened. The circumference of the throat is smaller than 4πM.
(d) The maximal throat, 2πr = 4πM. The photon α has passed though the throat.
(e) The throat is shrinking. Both photons have passed though the throat.
(f) The moment of the throat closing. In this stage, both photons are still in the upper sheet, while the

photon β approaches the central singularity.
(g) Photon β is just caught. Then, β disappears in the singularity and stops existing.
(h) Photon α keeps escaping to the null infinity of the upper sheet.

Figure 3. The red dotted line is the geodesic of photon α from Region IV, while the blue one is that of
photon β from Region III. After passing through the anti horizon v = −u, photon α goes to Region I
and never across the event horizon v = u. The geodesic of photon β must terminate at the singularity
r = 0 in a finite time in Region II.

Although we have used a specific spacelike slice (7) to show the dynamical feature of the bridge,
this dynamics does not change as long as the slice is spacelike.
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Figure 4. The dynamics of the throat and the motion of photons. A throat emerges instantaneously
and connects two asymptotically flat space-sheets. After that, it expands and then starts to contract.
Finally, it pinches off the connection between the two space-sheets.

From the above, we conclude that, although a timelike traveller might go to the upper space in
just a finite time, it cannot come back to the lower space. Hence, the Schwarzschild solution provides
one-way travel. One can speculate that a two-way travel needs a Penrose diagram such as Figure 5.
Apparently, this diagram shows that a timelike worldline can cross the throat again and again without
hitting any singularities. The introduction of such a two-way tunnel spacetime is explained in the
next subsection.

Figure 5. A Penrose diagram for a two-way traversable spacetime. The center vertical line describes
a wormhole throat which connects the left and the right regions. From the above picture, a timelike
traveller clearly can pass through the throat to go to the other region and also come back to the
original region.

1.2. Wormhole Properties in Brief

It was Morris and Thorne who established modern wormhole physics. In this subsection,
we follow their approach to understand what properties wormholes should have. They pioneered
qualitative study for static and spherically symmetric spacetimes which have “two-way“ traversable
wormholes [7]. Since they knew what kinds of geometries describe tunnel structures, they deduced
the metric which has such a geometry. Then, substituting the metric into the Einstein equation,
they recovered the matter properties and its distribution. Here, we begin with a brief overview of
their discussion.
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A convenient choice of coordinates to describe static and spherically symmetric wormhole
spacetimes is

ds2 = −e2Φ(r)dt2 +

(
1− b(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (8)

where Φ and b are both functions of r. To simplify calculations, we introduce an orthonormal basis of
reference frame of the static observers:

eµ

t̂ ∂µ = e−Φ∂t, eµ
r̂ ∂µ =

√
1− b

r
∂r, eµ

θ̂
∂µ =

1
r

∂θ , eµ

φ̂
∂µ =

1
r sin θ

∂φ. (9)

In this basis, the metric takes the Minkowskian form: gµ̂ν̂ = gαβeα
µ̂eβ

ν̂ = ηµν. Then, the non-zero
components of the Einstein tensor yield

Gt̂t̂ =
r′

b2 , Gr̂r̂ = 2
(

1− b
r

)
Φ′

b2 , (10)

Gθ̂θ̂ = Gφ̂φ̂ =

(
1− b

r

)(
Φ′′ −Φ′

b′r− b
2r(r− b)

+ (Φ′)2 +
Φ′

r
− b′r− b

2r2(r− b)

)
, (11)

where ′ := d/dr. Since the geometry is both static and spherically symmetric, the vacuum equation
must be the Schwarzschild black hole (Birkhoff’s theorem), a non-traversable wormhole. Thus, if we
want to build a wormhole spacetime, we must handle spacetimes with a specific form of stress–energy
tensors. As the Einstein tensor takes a diagonal form, the corresponding non-zero stress–energy tensor
must also be diagonal. In the orthonormal basis, we can then give each component of the stress–energy
tensor the physical interpretation as Tt̂t̂ = ρ(r), Tr̂r̂ = −τ(r), Tθ̂θ̂ = Tφ̂φ̂ = p(r), where ρ is the energy
density, that static observers measure, τ is the radial tension that they measure in the radial direction
(negative of the radial pressure) and p is the pressure that they measure in the lateral direction.

The Einstein equations Gµ̂ν̂ = 8πTµ̂ν̂ give the following non-trivial equations for ρ, τ and p:

ρ =
b′

8πr2 , τ =
1

8πr2

(
b
r
− 2(r− b)Φ′

)
, p =

r
2
(
(ρ− τ)Φ′ − τ′

)
− τ. (12)

One may solve the above equations to get the form of b and Φ by imposing a specific component
choice for Tµ̂ν̂, i.e., a specific form of ρ, τ and p. An alternative way to solve them is that one imposes
an equation of state as τ = τ(ρ) and p = p(ρ), and then one solves for (12).

1.2.1. Embedding Wormholes and Asymptotic Flatness

The surface b = r actually describes the throat. The reason for this is obvious from the embedding
operation. We can play the same game in Section 1.1 to get the embedding of the metric (8).
Going through the same process in Section 1.1, we obtain a differential equation for z;

dz
dr

= ±
(

r
b(r)
− 1
)− 1

2
. (13)

This differential equation can now be integrated if b(r) is determined. Thus, b is called the shape
function. Obviously, (13) diverges when b = r =: r0. Since the schematic picture of (13) is similar to
Figure 1, one finds that the sphere with radius of r0 describes the throat (Figure 6). We denote the
throat, b = r = r0, as the minimum surface. As mentioned, at the throat, dz/dr = ∞. Morris and
Thorne further imposed the asymptotically flatness condition which means dz/dr → 0 as r → ∞.
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Figure 6. The embedding of the Morris–Thorne type metric. In general, wormholes do not have a
mirror symmetry (such as the Einstein–Rosen bridge) as long as the flaring out condition is satisfied.

1.2.2. Flaring-Out Condition

In Section 1.2.1, we show that (13) diverges at the throat. In other words, the inverse function of
z = z(r), i.e., r = r(z) satisfies

dr
dz

∣∣∣∣
r0

= ±
(

r0

b(r0)
− 1
) 1

2
= 0. (14)

For a spacetime to be a wormhole, there must be a throat that flares out. The flaring-out
condition states

d2r
d2z

=
b− rb′

2b2 > 0 (15)

at and near the throat.

1.2.3. Absence of the Horizon

For the wormhole to be traversable, there must be no horizons in a spacetime. By using the
function Φ in the metric (8), it states

Φ(r)is finite everywhere. (16)

1.2.4. Magnitude of the Tension at the Throat

The shape function b gives restrictions on ρ, τ and p through Equation (12). A critical restriction is
at the throat, b = r = r0. Then, (r− b)Φ′ → 0. Reviving c and G, this yields the huge tension;

τ(r0) =
c4

8πGr2
0
∼ 5× 1041 dyn

cm2

(
10m

r0

)2
, (17)

if r0 is not too large.

1.2.5. Exotic Matter

Besides some of the peculiar features about wormholes noted above, the most difficult thing to
digest in wormhole physics is the necessity of exotic matters that can violate energy conditions.
In general relativity, Morris–Thorne’s static spherically symmetric traversable wormholes need
stress–energy tensors that violate energy conditions at and near the throat. To see what happens to
the relation between the tension τ and energy density ρ near the throat, we introduce a dimensionless
function ξ as

ξ :=
τ − ρ

|ρ| =
1
|b′|

(
b
r
− 2(r− b)Φ′ − b′

)
. (18)
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Since (15) and (r− b)Φ′ → 0 is satisfied around the throat, ξ reduces to

ξ|r∼r0 '
2b2

r|b′|
d2r
d2z

> 0⇔ τ > ρ (19)

at and near the throat. We call the matter which has property τ > ρ as an exotic matter because the
conventional matter satisfies the null energy condition, Tµνkµkν ≥ 0⇔ τ ≤ ρ.

1.2.6. Other Properties

Morris and Thorne required some additional conditions on traversable wormholes, tidal forces
and a time to pass through wormholes. We do not explain these conditions here since we think that the
conditions mentioned above (Sections 1.2.2–1.2.5) are the primary problems for wormholes. We refer
the reader to the work of [7] for the details of tidal forces and time to pass through wormholes.

1.3. Simple Exact Solutions and Their Stability

If we somehow solved all of the difficulties about wormhole properties discussed above, there is
still an important problem, i.e., the stability of wormhole spacetimes. Given a spacetime, its stability
analysis against gravitational/matter perturbations is a problem with critical importance in the sense
that only stable spacetimes may exist in the “real world”.

During few decades, after the paper by Einstein and Rosen, several exact solutions to the Einstein
equations have been found and they have tunnel structures as described above [8–10]. These types
of spacetimes are assumed to have a massless scalar field with the opposite sign of its kinetic term
to the sign of the Einstein-Hilbert term in the Lagrangian. We often call such a scalar field a ghost or
phantom scalar field. We refer to the simplest exact wormhole solution as the Ellis solution (or the
Ellis–Bronnikov solution).

Although wormhole solutions have been known for decades, their stability analysis had not been
conducted until quite recently. The first stability analysis was by [11]. In this paper, it is shown that the
Ellis wormhole is stable against gravitational perturbations in a restricted class which do not change
the throat radius. Subsequently, Shinkai and Hayward showed that the Ellis wormhole is unstable
against either a normal and a phantom gaussian pulse of massless scalar field [12]. When a normal
(ghost) pulse is injected into the throat, the throat must shrink (inflate). Gonzalez et al. also proved
that the Ellis wormhole is unstable against linear and non-linear spherically symmetric perturbations
in which the throat is not fixed [13,14]. They showed that a charged generalization of the wormhole is
also unstable [15]. This unstable feature is invariant in the higher dimensional generalization of the
Ellis spacetime [16].

2. Thin-Shell Wormholes

As mentioned in Section 1.2, Morris and Thorne pioneered qualitative study for static spherically
symmetric wormholes.

Another class of traversable wormholes was found by Visser. This class of wormholes can be
obtained by a “cut-and-paste” procedure [17–19] and such structures are called thin-shell wormholes.
Poisson and Visser first presented stability analysis for spherical perturbations around such thin-shell
wormholes and found that there are stable configurations according to the equation of state of an
exotic matter residing on the throat [20]. The work of Poisson and Visser has been extended in
different directions: charged thin-shell wormholes [21,22], thin-shell wormholes constructed by
a couple of Schwarzschild spacetimes of different masses [23] and thin-shell wormhole with a
cosmological constant [24]. Thin-shell wormholes in cylindrically symmetric spacetimes have also
been studied [25–30]. Garcia et al. published a paper about stability for generic static and spherically
symmetric thin-shell wormholes [31]. Dias and Lemos studied stability in higher dimensional Einstein
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gravity [32]. Thin-shell wormholes can also be constructed in extended gravity models [33–35]
(see [36–46] for recent progress on thin-shell wormhole and its applications).

These wormhole models are easy to construct, which certainly have a wormhole structure.
Thin-shell spacetimes have no differentiability for its metric at their throat, i.e., they are only C0,
contrary to smooth wormhole models such as the Ellis wormhole, which are smooth (C∞) at their
throat. Although thin-shell wormholes are not smooth, they indeed have qualitatively common
features with smooth wormholes. Hence, investigating the properties of thin-shell wormholes may
prompt deeper understanding for the properties of generic wormholes.

In this section, we show the construction and linear stability against perturbations preserving
symmetries of thin-shell wormholes.

2.1. Junction Conditions

To construct thin-shell wormholes, we first review junction conditions. Let us consider a
hypersurface Σ in a spacetime. Σ divides the spacetime into two parts, the one side is M+ with
coordinates xα

+ and the metric gαβ
+ while the other side isM− with coordinates xα

− and the metric gαβ
− .

Junction conditions are capable of joiningM+ andM− at Σ, so that gαβ
± respect the Einstein equations.

We define the extrinsic curvatures as

Kab := nµ;βeµ
a eβ

b . (20)

We also define hab as a metric of the line element on Σ. Then, for the smooth joint of spacetimes at
their boundaries,

[hab] = 0and[Kab] = 0 (21)

are required. We define the deviation of an arbitrary tensorial function on the both sides of the
hypersurface as [F] := (F+ − F−)|Σ, where F+ and F− are functions inM+ andM−, respectively.

On the other hand, if [Kab] 6= 0, in addition to [hab] = 0, there is a stress–energy tensor, Sab,
which satisfies

8πSab = −[Kab] + [K]hab, (22)

The matter with non-zero Sab is confined to the infinitesimally thin surface Σ, so we call the
surface a thin-shell. Equation (22) describes the motion for the thin-shell. The corresponding constraints
are given by

Sb
a|b = −[Tαβeα

a nβ] (23)

and

K̄abSab = [Tαβnαnβ], (24)

where K̄ab := (Kab
+ + Kab

− )|Σ/2. See the works by Poisson [47] and Barrabes and Bressange [48] for the
details of derivation.

2.2. Construction

To investigate wormhole stability, one must construct thin-shell wormholes. Here, we show how
to build them.

First, we note that the construction is operated in spherically, planar and hyperbolically symmetric
spacetimes in d-dimensional (d ≥ 3) Einstein gravity with an electromagnetic field and a cosmological
constant in bulk spacetimes. Such a rich setup is required for later analysis.
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The formalism for maximally symmetric d-dimensional thin-shell wormholes was first developed
by Dias and Lemos [32]. We extend their formalism to more general situations. We obtain wormholes
by operating three steps invoking junction conditions [47].

First, consider a couple of d-dimensional manifolds,M±. We assume d ≥ 3. The d-dimensional
Einstein equations are given by

Gµν± +
(d− 1)(d− 2)

6
Λ±gµν± = 8πTµν±, (25)

where Gµν±, Tµν± and Λ± are Einstein tensors, stress–energy tensors and cosmological constants in
the manifoldsM±, respectively. The metrics onM± are given by g±µν(x±). The metrics for static and
spherically, planar and hyperbolically symmetric spacetimes with G(d−1)(d−2)/2(d− 2, S) symmetry
onM± are written as

ds2
± = − f±(r±)dt2

± + f±(r±)−1dr2
± + r2

±(dΩk
d−2)

2
±, (26)

f±(r±) = k−
Λ±r2

±
3
− M±

rd−3
±

+
Q2
±

r2(d−3)
±

, (27)

respectively. M± and Q± correspond to the mass and charge parameters inM±, respectively. k is a
constant that determines the geometry of the (d− 2)-dimensional space and takes ±1 or 0. k = +1, 0
and −1 correspond to a sphere, plane and a hyperboloid, respectively. (dΩk

d−2)
2 is given by

(dΩ1
d−2)

2 =dθ2
1 + sin2 θ1dθ2

2 + . . . +
d−3

∏
i=2

sin2 θidθ2
d−2,

(dΩ0
d−2)

2 =dθ2
1 + dθ2

2 + . . . + dθ2
d−2,

(dΩ−1
d−2)

2 =dθ2
1 + sinh2 θ1dθ2

2 + . . . + sinh2 θ1

d−3

∏
i=2

sin2 θidθ2
d−2. (28)

We should note that, by generalized Birkhoff’s theorem [49–53], the metric (26) is the unique
solution of Einstein equations of electrovacuum for k = +1, 0 and −1.

Secondly, we construct a manifoldM by gluingM± at their boundaries. We choose the boundary
hypersurfaces ∂M± as follows: ∂M± := {r± = a | f±(a) > 0}, where a is called a thin-shell radius.
Then, by gluing the two regions M̃± which are defined as M̃± := {r± ≥ a | f±(a) > 0}with matching
their boundaries, ∂M+ = ∂M− := Σ, we can construct a new manifoldM which has a wormhole
throat at Σ. Σ should be a timelike hypersurface, on which the line element is given by

ds2
Σ = −dτ2 + a(τ)2(dΩk

d−2)
2. (29)

The surface function for Σ is given by Φ = r − a(τ) = 0. τ stands for proper time on the
junction surface Σ whose position is described by the coordinates xµ(ya) = xµ(τ, θ1, θ2, . . . , θd−2) =

(t(τ), a(τ), θ1, θ2, . . . , θd−2), where Greek indices run over 1, 2, . . . , d and Latin indices run over
1, 2, . . . , d− 1. {ya} are the intrinsic coordinates on Σ.

Thirdly, by using the junction conditions, we derive the Einstein equations for the submanifold Σ.
To achieve this, we define unit normals to hypersurfaces ∂M±. The unit normals are defined by

nα± := ± Φ,α

|Φ,µΦ,µ|
1
2

. (30)

To construct thin-shell wormholes, we make the unit normals on ∂M± take different signs, while to
construct normal thin shell models, the unit normals are chosen to be of same signs. Tangent vectors eα

a
are defined by ∂xα/∂ya. We also define the four-velocity uα

± of the boundary as
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uα
± := eα

τ± = (ṫ±, ȧ, 0, . . . , 0) =
(

1
f±(a)

√
f±(a) + ȧ2, ȧ, 0, . . . , 0

)
, (31)

where ˙ := ∂/∂τ and uαuα = −1 is satisfied. The explicit form of (30) is

nα± = ±
(
−ȧ,

√
f± + ȧ2

f±
, 0, . . . , 0

)
(32)

and the unit normal satisfies nαnα = 1 and uαnα = 0.

2.3. Equation of Motion for the Shell

The equations for the shell Σ are given by (22). The non-zero components of the extrinsic curvature
are the following:

Kτ±
τ = ±( f± + ȧ2)−

1
2 (ä +

1
2

f ′±), Kθ1±
θ1

= Kθ2±
θ2

= . . . = Kθd−2±
θd−2

= ±1
a

√
f± + ȧ2, (33)

where ′ := d/da. Since our metrics Equation (26) are diagonal, Si
j is also diagonal and written as

Si
j = diag(−σ, p, p, . . . , p), (34)

where p is the surface pressure (of opposite sign to the surface tension) and σ is the surface energy
density living on the thin-shell. Hence, we obtain the explicit form of (22):

σ = −d− 2
8πa

(A+ + A−), (35)

p =
1

8π

{
B+

A+
+

B−
A−

+
d− 3

a
(A+ + A−)

}
, (36)

where

A±(a) :=
√

f± + ȧ2 , B±(a) := ä +
1
2

f ′±. (37)

Note that we deduced a critical property of wormholes that σ must be negative.
The conservation law for the surface stress–energy tensor Si

j is given by (23). Since the
stress–energy tensor Tα

β in the bulk spacetime only contains the electromagnetic field, Tα
β =

Q2/(8πr2(d−2))diag(−1,−1, 1, · · · , 1), one can find Tα
β ea

αnβ = 0. Hence, (23) yields Sb
a|b = 0 that is

d
dτ

(σad−2) + p
d

dτ
(ad−2) = 0. (38)

Equation (38) corresponds to the conservation law. For later convenience for calculations, we recast
Equation (38) to

σ′ = −d− 2
a

(σ + p). (39)

We can get the master equation for the thin-shell throat by recasting Equation (35) as follows:

ȧ2 + V(a) = 0, (40)

where

V(a) = −
(

4πaσ

d− 2

)2
−
(

f+ − f−
2

)2 ( d− 2
8πaσ

)2
+

1
2
( f+ + f−) . (41)
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From Equation (40), the range of a which satisfies V(a) ≤ 0 is the movable range for the shell.
Since we obtained Equation (40) by twice squaring Equation (35), there is the possibility that we take
wrong solutions which satisfy Equation (40) but do not satisfy Equation (35). However, we can show
that this is not the case (see [4] for the proof). By differentiating Equation (40) with respect to τ, we get
the equation of motion for the shell as

ä = −1
2

V′(a). (42)

Suppose a thin-shell throat is static at a = a0 and its throat radius must satisfy the relation

f (a0) > 0. (43)

This condition is called the horizon-avoidance condition in [54].
We analyze stability against small perturbations preserving symmetries. To determine whether

the shell is stable or not against the perturbation, we use Taylor expansion of the potential V(a) around
the static radius a0 as

V(a) =V(a0) + V′(a0)(a− a0) +
1
2

V′′(a0)(a− a0)
2 +O((a− a0)

3). (44)

From Equations (40) and (42), ȧ0 = 0, ä0 = 0⇔ V(a0) = 0, V′(a0) = 0 so the potential given by
Equation (44) reduces to

V(a) =
1
2

V′′(a0)(a− a0)
2 +O((a− a0)

3). (45)

The leading term is quadratic as to a and has the co-efficient V′′(a0). The sign of the co-efficient
makes the form of the potential near static solutions. Therefore, the stability condition against radial
perturbations for the static shell is given by

V′′(a0) > 0. (46)

2.4. Simplest Thin-Shell Wormhole

As mentioned above, due to (35), wormholes must have a negative surface energy density, namely
an exotic matter. Hence, the stability of such wormholes depends not only on their geometries but also
on exotic matters on Σ. In the following, we see the simplest thin-shell wormhole made from gluing
two Schwarzschild spacetimes and its stability.

The simplest wormhole was first proposed by Visser. As mentioned above, the simplest thin-shell
wormhole is constructed from cutting and pasting the couple of identical Schwarzschild spacetimes in
the four dimensions, that is, in (27) we take d = 4, k = 1, M± = 2M, Q± = 0 and Λ± = 0 and hence
f (r)± = f (r) = 1− 2M/r. Then, (41) reduces to

V(a) = f (a)− (2πaσ)2, (47)

where σ is not specified yet.

2.5. Stability

In the simplest setup of thin-shell wormholes, the potential takes the form of (47). In this setup,
we study a stability analysis with barotropic fluid and a pure tension matter field.

2.5.1. Global Stability

First, we learn a global stability analysis with general fluid, i.e., we do not specify an equation
of state for the exotic matter residing on the shell. We see how the wormhole can be prevented from
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collapsing to a black hole or expanding infinity. This case is in the book by Visser [17–19]. To begin
with, we investigate the asymptotic form of the potential (47). The explicit form of (47) is

V(a) = 1− 2M
a
− (2πaσ)2. (48)

If we have V(∞) = 1, the wormhole is prevented from an eternal throat expansion. This condition
is explicitly written as

V(a→ ∞) = 1⇔ lim
a→0

(aσ)2 = 0. (49)

Hence, we can say that σ→ 0asa→ ∞. Let us assume Taylor’s expansion of p around σ ' 0:

p = p|σ=0 +
∂p
∂σ

∣∣∣∣
σ=0

σ +O(σ2) =: pσ0 + β2
σ0σ +O(σ2). (50)

On the other hand, the conservation law (38) is solved for p:

p = −σ− 1
2

dσ

da
a. (51)

From (50) and (51), we get

(β2
σ0 + 1)σ ' −pσ0 −

1
2

dσ

da
a. (52)

For β2
σ0 6= −1, this can be integrated to σ = Ca−2(β2

σ0+1)− (β2
σ0 + 1)pσ0 with a constant C. Actually,

pσ0 must vanish because of the asymptotic behavior of σ. Hence, one obtains

σ = Ca−2(β2
σ0+1). (53)

Due to (49) and (53), we see the condition that the wormhole is stable against explosion is

1 + 2β2
σ0 > 0. (54)

We emphasize that this linear equation of state is valid only for large a. As a throat moves
inwardly from infinity, O(σ2) term in (50) gradually becomes significant.

Although we have just shown that (54) is no-explosion condition, we also want to have a
no-collapse condition. As mentioned above, we see the contribution of −2M/a is dominant for
a→ 0. Since there is no hope for M > 0, we assume M < 0 for getting no-collapse condition. We also
assume that we can use (53) also for small a. This assumption allows us to write the potential as

V(a) = 1 +
2|M|

a
− (2πC)2a−2(2β2

σ0+1). (55)

If

β2
σ0 < −1

4
(56)

is satisfied (and parameters M and C are chosen appropriately), this condition prevents the wormhole
throat from collapsing. Therefore, the overlap of (54) and (56) is fully stable condition:

−1
2
< β2

σ0 < −1
4

. (57)

Such a globally stable wormhole is plotted in Figure 7.
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Figure 7. Schematic potential of a globally stable wormhole.

2.5.2. Local Stability

Local stability was studied by Poisson and Visser [20]. They assumed barotropic equation of state,
p = p(σ). Then, (39) can be integrated as

log(a) = −1
2

∫ dσ

σ + p(σ)
. (58)

Since (58) is an equation for σ, the solution is given by σ = σ(a). Substituting σ(a) into the master
Equation (47) reads

V(a) = f (a)− (2πaσ(a))2 . (59)

Static solutions a = a0 satisfy

σ(a0) := σ0 = − 1
2πa0

√
1− 2M

a0
andp(a0) := p0 =

1
4πa0

1−M/a0√
1− 2M/a0

. (60)

The wormhole is stable if the potential satisfies (46). V′′(a0) can be evaluated as

V′′(a0) = −
2
a2

0

2M
a0

+

M2

a2
0

1− 2M
a0

+ (1 + 2β0)

(
1− 3M

a0

) , (61)

where

β0 :=
dp
dσ

∣∣∣∣
σ0

. (62)

Hence, the stability condition is

β0

(
1− 3M

a0

)
< −

1− 3M
a0

+ 3M2

a2
0

2
(

1− 2M
a0

) . (63)

When a0 = 3M, it is unstable regardless of the value β0 because V′′(a0 = 3M) = −2/(9M2) < 0.
Due to (63), one can identify the stable range of a0 if β0 is given. Stable regions are depicted as shaded
regions in Figure 8. Although there are two values a0 that stand for two extremums of F(a0), namely,
a0/M = (3±

√
3)/2, the smaller solution (3−

√
3)/2 is an unphysical value because we consider the

range a0 > 2M.
From the above analysis, we can state that, if we take a particular value of β0, the stability range of

a0 is determined. Since β0 relates to the equation of state of exotic matters, this statement is equivalent
to that the types of exotic matter determine the range of a0 which is the radius of a stable static
throat radius.
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Figure 8. If β0 is given, one knows the range of a0 for the stable static throat solution. Region a0 < 2M is
unphysical since such region does not exist in the wormhole. The upper broken line is β0 = (3+

√
3)/2

while lower is β0 = −1/2. Shaded regions correspond to stable regions. We draw the horizontal line
with β0 = 4 for an example. In this case, wormhole can be stable if 2.19M < a0 < 2.59M.

We summarize the stability analysis in the assumption of barotropic equation of state:

(1) There are stable solutions in β0 ≥ (3 +
√

3)/2 or β0 < −1/2.
(2) No solution in (3 +

√
3)/2 > β0 > −1/2 is stable.

(3) The solution at a0 = 3M is unstable regardless of the value of β0.

In the work of Poisson and Visser, they took the barotropic equation of state p = p(σ) and the
stability analysis does not need to specify the form of the equation of state. As one can see in Figure 8,
there is no stable wormhole between 0 < β2

0 < 1. β2
0 can be interpreted as the square of the magnitude

of the speed of sound for the exotic matter. Poisson and Visser pointed out that, since we do not know
microphysics for exotic matter, there is no guarantee that β2

0 actually is the speed of sound. Therefore,
the region with β2

0 ≤ 0 or β2
0 ≥ 1 is not a priori ruled out.

2.5.3. Pure Tension

We show what happens if we adopt a pure tension as the exotic matter. The pure tension is an
equation of state that is written by

p = −σ(σ : const.). (64)

In our wormhole situation, σ must be negative-definite because of (35). In this setup, due to (60)
and (64), we identify the position of the static solution with a0 = 3M. Then, we have V′′(3M) =

−4/(27M2)− 4(2πσ)2 < 0, that is, the wormhole is unstable.

3. Generalized Thin-Shell Wormholes

In Section 2, we mention that there are many generalizations of the thin-shell wormhole introduced
by Visser. In this section, we review some of its generalizations implemented by several authors.

3.1. Charged Generalization

A charged generalization is a theoretically natural extension of the simplest thin-shell wormhole.
This was done by Eiroa and Romero [21,22]. A charged wormhole is constructed from cutting and
pasting the couple of identical Reissner–Nordström spacetimes in four dimensions. This situation is
reproduced in our formula by putting

d = 4, k = 1, M± = 2M, Q± = Q, Λ± = 0
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into (27). In this case, stability condition reduces to

−(1− 3M
a0

+
2Q2

a2
0
)β2

0 >
1

2(1− 2M
a0

+ Q2

a2
0
)

(
1− 3M

a0
+

3M2

a2
0
− Q2

a0M
)
. (65)

Stable regions are presented with each value of charge |Q| in Figure 9. The outer horizon r+
corresponds to

r+
M

= 1 +

√
1− |Q|

2

M2 . (66)

Therefore, the regions inside of the outer horizons (vertical lines in the figure) have no physical
meaning. One finds that stable region appears in 0 < β2

0 < 1, the sound-speed condition that
is supposed to be satisfied for conventional matters. After the charge reaches the extremal value,
|Q| = M, there is no longer horizon. Thus, any static solution a0 can be stable for corresponding β2

0.
We should emphasize that there are always stable solutions when 1 < |Q|/M ≤ 3/

√
8 ∼ 1.06 regardless

of values of β2
0.

Figure 9. Charged thin-shell wormholes. Shaded regions correspond to stable regions. The outer
horizon r+ corresponds to r+/M = 1 +

√
1− |Q|2/M2; therefore, the regions inside of the outer

horizons (vertical lines) have no physical meaning in these figures when 0 ≤ |Q|/M ≤ 1.
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3.2. Presence of a Cosmological Constant

Another generalization is implemented in a cosmological sense. Lobo and Crawford developed
the construction by introducing a cosmological constant to the simplest wormhole [24]. In our notation,
such situation is recovered by taking

d = 4, k = 1, M± = 2M, Q± = 0, Λ± = Λ

in (27). Stability condition reduces to

β2
0

(
1− 3M

a0

)
< −

1− 3M/a0 + 3M2/a2
0 −ΛMa0

2
(
1− 2M/a0 −Λa2

0/3
) . (67)

Since the ingredient spacetimes are Schwarzschild–(anti) de Sitter, for any Λ the event horizon rH
(and also the cosmological horizon for Λ > 0) exists where the equation

1− 2M
r
− Λr2

3
= 0 (68)

holds. Evidently, Λ = 0 corresponds to the Schwarzschild shell wormhole. Figures 10 and 11 show
Schwarzschild–de Sitter and Schwarzschild–anti de Sitter thin-shell wormhole, respectively.

Figure 10. Schwarzschild–de Sitter thin-shell wormholes. The shaded regions indicate stable ones.
In Figures 2–4, the right-side vertical lines correspond to the cosmological horizons.
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Figure 11. Schwarzschild–anti de Sitter thin-shell wormhole. The shaded regions indicate the stability.

3.2.1. Schwarzschild–de Sitter Thin-Shell Wormhole: Λ > 0

For each value of ΛM2, there are two vertical lines where the denominator diverges in (67).
These lines correspond to the event horizon and the cosmological horizon, respectively. Hence, the left
(right) side of the event (cosmological) horizon is the unphysical region. For any curves, “the region
above curves lying in a0 < 3M” and “the region below curves lying in a0 > 3M” are stable regions.
One finds that, in the case of the Schwarzschild–de Sitter thin-shell wormhole, stability region decreases
with increasing Λ relative to the Schwarzschild thin-shell wormhole (Λ = 0).

3.2.2. Schwarzschild–Anti de Sitter Thin-Shell Wormhole: Λ < 0

For each value of ΛM2, there is a vertical line where the denominator diverges in (67). This vertical
line corresponds to the event horizon. Hence, the left side of the event horizon is an unphysical region.
Stable regions are similar to those in the case of the Schwarzschild–de Sitter thin-shell wormhole.
One finds that in the case of the Schwarzschild–anti de Sitter thin-shell wormhole, the stability region
increases with decreasing Λ relative to the Schwarzschild thin-shell wormhole (Λ = 0).

3.2.3. (Anti) de Sitter Thin-Shell Wormhole

We can also construct (anti) de Sitter wormhole just by putting M→ 0 in (67):

β2
0 < − 1

2(1−Λa2
0/3)

. (69)

See Figures 12 and 13 for stable equilibrium.
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Figure 12. De-Sitter wormholes. A stable region is below the curve. Each vertical line represents the
cosmological horizon. Hence, the right side of the vertical line is an unphysical region.

Figure 13. Anti de Sitter wormholes. Stable region is below the curve. Figure (1) describes a wormhole
in the Minkowski spacetime.
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3.3. Non-Z2 Symmetric Case

The simplest thin-shell wormhole is made by gluing a couple of Schwarzschild spacetimes with
M+ = M− =: M. Ishak and Lake expanded this analysis into the different-mass case, i.e., M is not
continuous at Σ. See [23] for detail. This situation corresponds to

d = 4, k = 1, Q± = Λ± = 0 (70)

in (27). In four dimensions, if we transform M± as M± → 2M± in (27), then M± is interpreted as the
ADM mass. In this situation, V′′(a0) reduce to the following form:

V′′(a0) = −A−
2

(d− 2)2

(
C2 + BD

)
− (d− 2)2

2

(
F 2 + EG

)
, (71)

where

A := (d− 2)(d− 3)
M̄

ad−1
0

,B := − d− 2
2

δ1, C := − d− 2
2

δ2

a0
, (72)

D :=
(d− 2)(d− 3)

2a2
0

(δ2 − δ1) +
(d− 2)2

2a2
0

(δ2 − δ1)β2
0, E := − 2

(d− 2)
m(a0)

a0δ1
, (73)

F := − 2
(d− 2)

m′(a0)

a0δ1
+

2
(d− 2)

m(a0)

a2
0

δ1 + δ2

δ2
1

, (74)

G := − 2
(d− 2)

m′′(a0)

a0δ1
+

4
d− 2

m′(a0)

(a0δ1)2 (δ1 + δ2)

+2
d− 3
d− 2

m(a0)

a3
0δ1
− 2

d− 5
d− 2

m(a0)δ2

a3
0δ2

1
− 2m(a0)

(a0δ1)2
1
a0
(δ2 − δ1)β2

0 −
4

(d− 2)
m(a0)

(a0δ1)3 (δ1 + δ2)
2. (75)

We define m, x̄ and x̂ as

m(a) :=
M̂

ad−4 , x̄ : =
x+ + x−

2
, x̂ :=

x+ − x−
2

. (76)

δ1,2 is also defined through the equations:

σ(a0) = − d− 2
8πa0

(A+(a0) + A−(a0)) = : −d− 2
8πa0

δ1, (77)

p(a0) =
1

8πa0

{(
B+(a0)

A+(a0)
+

B−(a0)

A−(a0)

)
a0 + (d− 3){A+(a0) + A−(a0)}

}
= :

1
8πa0

(δ2 + (d− 3)δ1). (78)

Putting d = 4 into (71) recovers the condition V′′(a0) > 0 by Ishak and Lake. Stable equilibrium
is depicted in Figure 14. We find that the area of stable regions decreases with increasing the difference
between M+ and M−.

3.4. In Higher Dimensions

A higher dimensional generalization was introduced by Dias and Lemos [32]. We show a
spherically symmetric shell wormhole in arbitrary dimensions, say, a Tangherlini shell wormhole.
In (27), this situation corresponds to

k = 1, M± = 2M, Q± = Λ± = 0. (79)
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Putting these values into (71)–(75), we have the stable condition. Figure 15 shows the stable
equilibrium. We find that the area of the stable regions increases with d.

Figure 14. Non-Z2 symmetry. The shaded regions represent stability. The area of stable regions
decreases with increasing the difference between M+ and M−. The horizontal axis is normalized
by M+.

Figure 15. A higher dimensional generalization. The shaded regions represent the stability.
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4. Pure Tension Wormholes in Einstein Gravity

4.1. Einstein Gravity

Although general relativity is the most successful simple gravitational theory, many alternative
theories have also been theoretically investigated. Particularly, gravity models in four or higher
dimensions have been investigated in many aspects:

The notion of higher dimensional spacetimes was first introduced by Kaluza and Klein [55,56].
They found that the gravitational field and the electromagnetic field can be unified in five-dimensional
spacetimes. In their work, the length of the fifth dimension is confined to a very small scale.

The gauge/gravity correspondence conjectured by Maldacena [57] generally sheds light on
structures in the anti de Sitter spacetime in higher dimensions.

At the end of the twentieth century, Randall and Sundrum proposed an idea that we perhaps
live in a (3+1)-dimensional brane in the (4+1)-dimensional spacetime whose extra dimension spreads
widely with a negative cosmological constant, which is called a brane-world model [58]. In this model,
the bulk five-dimensional spacetime is the anti de Sitter spacetime.

In a broader context, candidate theories for quantum gravity, such as superstring theory and
M-theory, entail higher dimensional spacetimes.

The most natural and the simplest generalization into higher dimension is the higher dimensional
generalization of general relativity. This generalization is taken by writing the gravitational action in
vacuum as

SE =
1

2κ2
d

∫
ddx

√
−gR(d ≥ 3), (80)

where κd :=
√

8πGd and Gd is a d-dimensional gravitational constant. The Ricci scalar R is associated
with the d-dimensional metric. Variation of the action with respect to the metric gives the same form
of general relativity, Gµν = 0.

4.2. Advantage of Use of Pure Tension

Pure tension branes, whether the tension is positive or negative, have particular interest because
they have Lorentz invariance and have no intrinsic dynamical degrees of freedom. In the context of
stability, pure negative-tension branes have no intrinsic instability by their own, although they violate
the weak energy condition. This is in contrast with the Ellis wormholes, for which a phantom scalar
field is assumed as a matter content and it suffers the so-called ghost instability because of the kinetic
term of a wrong sign [12–14].

The construction of traversable wormholes by using negative tension branes were first proposed
by Barceló and Visser [54]. We prove that a wormhole with a pure tension brane analyzed
in Section 2.5.3 is unstable. Barceló and Visser investigated pure tension wormholes in more
general construction: They analyzed the dynamics of spherically symmetric traversable wormholes
obtained by operating the cut-and-paste procedure for negative tension 2-branes (three-dimensional
timelike singular hypersurface) in four-dimensional spacetimes. They found stable brane wormholes
constructed by pasting a couple of Reissner–Nordström–(anti) de Sitter spacetimes. In their work [54],
both the charge and negative cosmological constant are important to sustain such stable wormholes.
In most cases, a negative cosmological constant tends to make the black hole horizons smaller. However,
in exceptional cases, one can obtain wormholes with a vanishing cosmological constant, if the absolute
value of the charge satisfies a certain condition.

4.3. Pure Tension Wormholes in Einstein Gravity

Here, we concentrate on stability of thin-shell wormholes against radial perturbations. The radial
perturbation is important in the context of stability analysis in the following reasons: (i) Since the
stability analysis against radial perturbations is much simpler than nonradial perturbations which
entail gravitational radiation, it is a natural first step to investigate radial stability of wormhole
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models. For thin-shell models, the stability analysis against radial perturbations is particularly
simple. (ii) The previous study suggests that the radial perturbation of wormhole spacetimes is most
dangerous: [11] showed that the Ellis wormhole is stable against metric perturbations including
nonradial perturbations which do not change the throat radius. Subsequently, the Ellis wormhole
turned out to be unstable against radial perturbation which changes the radius of the throat. The throat
must shrink or inflate [12]. From the above, we might say that, for the Ellis wormhole, the radial
perturbation which changes the radius of the throat is the most “dangerous” perturbation, as mentioned
in Bronnikov’s book [59]. One can expect that this property applies to not only the Ellis wormhole but
also other wormhole solutions.

The effects caused by the electromagnetic field on the stability of a thin-shell wormhole are not
well known. One may wonder whether the existence of the electric charge of wormholes can stabilize
the wormholes. Therefore, it is worth studying electrically charged thin-shell wormholes.

In recent several years, the possibility of stable wormholes in various theories of modified gravity
has gathered attention and has been extensively investigated by many authors [29,30,60–70]. However,
the possibility of wormholes whose exotic matter is a pure tension brane has not yet fully been checked
in those theories. To study such possibility, it is important and necessary to fully understand the
existence and stability of all kinds of Z2 symmetric Reissner–Nordström–(anti) de Sitter thin-shell
wormholes in higher dimensional pure Einstein–Maxwell theory.

In this section, we investigate negative-tension branes as thin-shell wormholes in spherical, planar
and hyperbolic symmetries in d-dimensional Einstein gravity with an electromagnetic field and a
cosmological constant in bulk spacetimes. In spherical geometry, we find the higher dimensional
counterpart of Barceló and Visser’s wormholes which are stable against spherically symmetric
perturbations. As the number of dimensions increases, larger charge is allowed to construct such
stable wormholes without a cosmological constant. Not only in spherical geometry, but also in
planar and hyperbolic geometries, we find static wormholes which are stable against perturbations
preserving symmetries.

4.4. Effective Potential

From now on, for simplicity, we assume Z2 symmetry, that is, we assume M+ = M−, Q+ = Q−
and Λ+ = Λ− and, hence, f+(r) = f−(r). We denote M+ = M− = M, Q+ = Q− = Q, Λ+ = Λ− = Λ
and f (r) := f+(r) = f−(r). We investigate wormholes which consist of a negative-tension brane.
From Equations (35) and (36), the surface energy density and surface pressure for the negative-tension
brane are represented as

σ = −d− 2
4πa

A = α, (81)

p =
1

4π

(
B
A

+
d− 3

a
A
)
= −α, (82)

where α is a constant with a negative value. The effective potential reduces to

V(a) = f (a)−
(

4πα

d− 2

)2
a2. (83)

4.5. Static Solutions and Stability Criterion

The present system may have static solutions a = a0. The equation for the static solutions is
given by

2ka2(d−3)
0 − (d− 1)Mad−3

0 + 2(d− 2)Q2 = 0. (84)
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The stability condition for wormholes was shown before as V′′(a0) > 0. The corresponding
stability condition is

V′′(a0) > 0⇔ (d− 3)

(
4k− (d− 1)

M
ad−3

0

)
< 0. (85)

As one can see, since the static solutions Equation (84) and stability condition Equation (85) do
not contain Λ, the cosmological constant only affects the horizon-avoidance condition of Equation (43).
By studying both the existence of static solutions and stability condition, we can search static and
stable wormholes.

For d ≥ 4, k 6= 0 and M 6= 0, Equation (84) is a quadratic equation. The static solutions are then
given by

ad−3
0± =

d− 1
4k

M(1± b), (86)

where

b :=

√
1− k

q2

q2
c

, q :=
|Q|
|M| , qc :=

(d− 1)
4
√

d− 2
. (87)

Combining Equations (85) and (86), we can see that for b = 0, the positive and negative sign
solutions coincide and their stability depends on higher order terms.

As a specific example of stability analysis, we review the d ≥ 4, k = 1 and M 6= 0 case below.
For b > 0 and k = +1, the negative sign solution is stable, while the positive sign solution is unstable.
When 0 < b < 1 ⇔ 0 < q < qc, there are two static solutions determined by Equation (86). The stability
condition is satisfied if we take the negative sign solution of Equation (86). The positive sign solution
is unstable. Since the radius of the static wormhole must be positive, we must have M > 0. In this
stable case, one can achieve this situation if and only if

1
2
< q < qc (88)

is satisfied. Therefore, we can construct a stable thin-shell wormhole without Λ when the condition
Equation (88) is satisfied. Thus, the extremal or subextremal charge q ≤ 1/2 of the Reissner–Nordström
spacetime cannot satisfy Equation (88). We can reconfirm the previous result by taking d = 4 and
M = 2m for Equation (88) as

1 <

(
|Q|
m

)2

<
9
8

. (89)

This coincides with the previous result by Barceló and Visser [54]. From Equation (88),
as d increases, a larger charge is allowed to construct a stable wormhole without Λ. This class
of wormholes are constructed by pasting a couple of over-charged higher dimensional Reissner–
Nordström spacetimes.

The following transformation helps us to understand the potentials:

Ṽ(a) :=
k
a2 −

M
ad−1 +

Q2

a2(d−2)
(90)

so that

ȧ2 + V(a) = 0⇔
(

d ln a
dτ

)2
+ Ṽ(a) = Λeff, (91)
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where Λeff is a constant defined by

Λeff :=
Λ
3
+

(
4πα

d− 2

)
. (92)

The potentials Ṽ(a) are plotted in Figure 16 for d = 4 and d = 5, respectively.
In the above, we discuss the stability analysis for k = 1. The analysis for k = 0 and k = −1

has also been completed (see [4] for the detail of the analysis). We summarize the stability analysis
of the wormholes for all combinations of k, M and q in Tables 1–4 (see [4] for the definitions of
λ; R(d), H±(d, q), I(d, q), N(d, q), S(d, q) and J(d, q) are given in [4]).

(1) (2)

Figure 16. (1) The potential Ṽ(a) for d = 4, k = +1 and M > 0. The dashed line is the potential for the
critical value defined in Equation (87). (2) The potential for d = 5, k = +1 and M > 0.

Table 1. The existence and stability of static wormholes in three dimensions.

Static Solution Horizon Avoidance Stability

k−M + Q2 = 0 ∀a0 > 0 Satisfied Marginally stable

k−M + Q2 6= 0 None – –

Table 2. The existence and stability of static wormholes in spherical symmetry in four and
higher dimensions.

Static Solution Horizon Avoidance Stability

q = 0 [(d− 1)M/2]1/(d−3) λ < H+(d, 0) Unstable

M > 0 0 < q < qc a0± λ < H±(d, q)
a0−: Stable

a0+: Unstable
q = qc [(d− 1)M/4]1/(d−3) λ < R(d) Unstable
qc < q None – –

M ≤ 0 None – –

Table 3. The existence and stability of static wormholes in planar symmetry in four and
higher dimensions.

Static Solution Horizon Avoidance Stability

M > 0 q = 0 None – –
q > 0 [2(d− 2)q2 M/(d− 1)]1/(d−3) λ < J(d, q) Stable

M < 0 q ≥ 0 None – –

M = 0 Q = 0 ∀a0 > 0 Satisfied
Marginally

stable
|Q| > 0 None – –
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Table 4. The existence and stability of static wormholes in hyperbolic symmetry in four and
higher dimensions.

Static Solution Horizon Avoidance Stability
M > 0 q = 0 None – –

q > 0 a0− λ < I(d, q) Stable

M < 0 q = 0 [(d− 1)|M|/2]1/(d−3) λ < N(d, 0) Stable
q > 0 a0+ λ < N(d, q) Stable

M = 0 Q = 0 None – –
|Q| > 0 [

√
d− 2|Q|]1/(d−3) Λ/3 < S(d, q) Stable

5. Pure Tension Wormholes in Einstein–Gauss–Bonnet Gravity

5.1. Einstein–Gauss–Bonnet Gravity

The action of the d(≥ 5)-dimensional Einstein–Gauss–Bonnet gravity in vacuum is given by

S =
1

2κ2
d

∫
ddx

√
−g
(

R− 2Λ + αLGB

)
, (93)

where Λ is the cosmological constant. The Gauss–Bonnet term LGB is defined by the following special
combination of the Ricci scalar R, the Ricci tensor Rµν and the Riemann tensor Rµ

νρσ:

LGB := R2 − 4RµνRµν + RµνρσRµνρσ. (94)

The Gauss–Bonnet term appears in the action as the ghost-free quadratic curvature correction
term in the low-energy limit of heterotic superstring theory in ten dimensions (together with a
dilaton) [71–75]. In this context, the coupling constant α is regarded as the inverse string tension and
positive definite.

For this reason, we assume α > 0 throughout this article. In addition, we put another conservative
assumption 1 + 4α̃Λ̃ > 0, where

Λ̃ :=
2Λ

(d− 1)(d− 2)
, α̃ := (d− 3)(d− 4)α, (95)

so that the theory admits maximally symmetric vacua, namely Minkowski, de Sitter (dS) or anti de
Sitter (AdS) vacuum solutions. Although there exists a maximally symmetric vacuum for 1 + 4α̃Λ̃ = 0,
we do not consider this case for simplicity.

The variation of the action (93) with respect to the metric gµν gives the following vacuum
Einstein–Gauss–Bonnet equations:

Gµ
ν + αHµ

ν + Λδµ
ν = 0, (96)

where

Gµν :=Rµν −
1
2

gµνR, (97)

Hµν :=2
(

RRµν − 2RµαRα
ν − 2RαβRµανβ + Rµ

αβγRναβγ

)
− 1

2
gµνLGB. (98)

The tensor Hµν obtained from the Gauss–Bonnet term does not give any higher-derivative term
and Hµν ≡ 0 holds for d ≤ 4. As a result, Einstein–Gauss–Bonnet gravity is a second-order quasi-linear
theory as Einstein gravity is.
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5.2. Pure Tension Wormholes in Einstein–Gauss–Bonnet Gravity

In 2011, Kanti, Kleihaus and Kunz numerically constructed four-dimensional spherically
symmetric wormhole solutions in Einstein–Gauss–Bonnet-dilaton gravity and showed that they are
dynamically stable against spherical perturbations [69,70] 1. The Gauss–Bonnet term non-minimally
coupled to a dilaton scalar field appears in the Lagrangian as the ghost-free quadratic correction in the
low-energy limit of heterotic string theories [71]. Although this Einstein–Gauss–Bonnet–dilaton theory
is realized only in ten dimensions, their result gives courage and hope toward the construction of
wormholes in our universe described by a well-motivated effective theory of gravity. Then, a natural
question arises: Which is the main ingredient stabilizing the wormhole, the Gauss–Bonnet term or its
dilaton coupling?

The main purpose of the article is to clarify the effect of the Gauss–Bonnet term on the dynamical
stability. For this purpose, we study the simplest thin-shell wormhole which is made of its tension.
While dynamical stability of thin-shell wormholes have been intensively investigated both in general
relativity (Einstein gravity) [17–28,31,32] and in various models of modified gravity [60,62–68],
pure tension brane is the best set-up to analyze stability as a pure gravitational effect because such a
thin-shell does not suffer from the matter instability.

In Einstein gravity, such thin-shell wormholes have been fully investigated in the previous section.
In the vacuum case, such thin-shell wormholes are stable against radial perturbations only in the
hyperbolically symmetric case with negative mass in the bulk spacetime [4].

In this section, we study the same system with the Gauss–Bonnet term but without a dilaton
in the Lagrangian. Since the Gauss–Bonnet term becomes total derivative and does not affect the
field equations in four or lower dimensions in the absence of the non-minimal coupling to a dilaton,
we consider five or higher dimensional spacetimes. In comparison with the general relativistic case,
the equation of motion for the shell is much more complicated. For this reason, although thin-shell
wormholes have been investigated in Einstein–Gauss–Bonnet gravity by many authors [67,77–83],
the stability analysis has not been completed yet even against radial perturbations.

In Section 5.8, for investigating stability of shell wormholes, we develop a systematic method that
is applied to any gravitational theories. This method makes stability analysis simpler.

5.3. Bulk Solution

We study the properties of thin-shell wormholes in Einstein–Gauss–Bonnet gravity.
Such wormhole solutions are constructed by gluing two bulk solutions at a timelike hypersurface.

In this article, we consider the d-dimensional vacuum solution with a maximally symmetric base
manifold [84–88] as the bulk solution, of which metric is given by

ds2
d = gµνdxµdxν = − f (r)dt2 + f (r)−1dr2 + r2γABdzAdzB, (99)

where zA and γAB(A, B = 2, 3, · · · , d − 1) are the coordinates and the unit metric on the base
manifold and

f (r) := k +
r2

2α̃

(
1∓

√
1 +

4α̃m
rd−1 + 4α̃Λ̃

)
. (100)

Here, k = 1, 0,−1 is the curvature of the maximally symmetric base manifold corresponding
to the spherical, planar and hyperbolically symmetric spacetime, respectively. m is called the mass
parameter.

1 Recently, the instability of the present wormhole was reported by [76].
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The expression of the metric function (100) shows that there are two branches of solutions
corresponding to the different signs in front of the square root. The branch with the minus sign,
called the GR branch, allows the general relativistic limit α→ 0 as

f (r) = k− m
rd−3 − Λ̃r2. (101)

On the other hand, the metric in the branch with the plus sign, called the non-GR branch, diverges
in this limit. In the following section, we consider the bulk solution only in the GR branch as a
conservative choice.

The global structure of the spacetime (99) depending on the parameters has been completely
classified [89]. There are two classes of curvature singularities in spacetime. One is the central curvature
singularity at r = 0. Since we assume α̃ > 0 and 1 + 4α̃Λ̃ > 0, the interior of the square root becomes
zero at some r = rb(> 0) for negative m. This corresponds to another curvature singularity called the
branch singularity and the metric becomes complex at r < rb. In this case, the domain of the coordinate
r is r ∈ (rb, ∞).

The spacetime has a Killing horizon at r = rh satisfying f (rh) = 0 depending on the parameters.
To construct static thin-shell wormholes, the bulk spacetime needs to be static. For this reason,
we consider the bulk solution (99) in the domain r ∈ (rh, ∞) if there is no branch singularity
and r ∈ (max{rb, rh}, ∞) if there is a branch singularity. We define the future (past) direction
with increasing (decreasing) t. We stress that since there is a generalized Birkhoff’s theorem in
Einstein–Gauss–Bonnet gravity [90], the bulk spacetime is static as long as a shell moves with
preserving symmetries.

5.4. Equation of Motion for a Thin-Shell

A thin-shell wormhole spacetime is constructed by gluing two bulk spacetimes (99) at a timelike
hypersurface r = a. Here, the bulk spacetimes are defined in the domain r ≥ a(> rh) and may
have different parameters. Then, the junction conditions, which are the field equations (96) in the
distributional sense, tell us the matter content on the thin-shell at r = a. Finally, the equation of motion
for the shell is obtained as a closed system when the equation of state for the matter is assumed.

The junction condition in Einstein–Gauss–Bonnet gravity is given by

[Ki
j]− δi

j[K] + 2α
(

3[Ji
j ]− δi

j[J]− 2Pi
kjl [K

kl ]
)
= −κ2

dSi
j, (102)

i, j = 1, 2, · · · , (d− 1) are indices for the coordinates on the timelike shell [91–93]. In the junction
conditions (102), Ki

j is the extrinsic curvature of the shell and K := hijKij, where hij is the induced
metric on the shell. Other geometrical quantities are defined by

Jij :=
1
3

(
2KKikKk

j + KklKklKij − 2KikKklKl j − K2Kij

)
, (103)

Pikjl := Rikjl + 2hi[lRj]k + 2hk[jRl]i +Rhi[jhl]k , (104)

whereRijkl ,Rij, andR are the Riemann tensor, Ricci tensor, and Ricci scalar on the shell, respectively.
Pijkl is the divergence-free part of the Riemann tensor Rijkl satisfying DiPi

jkl = 0, where Di is the
covariant derivative on the shell. Lastly, Si

j is the energy-momentum tensor on the shell, which satisfies
the conservation equations DiSi

j = 0.
A static thin-shell wormhole is realized as a static solution for the equation of motion. However,

in general, a is not constant but changes in time, representing a moving shell. In such a case, a may be
written as a function of the proper time τ on the shell as a = a(τ).
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Now, let us derive the equation of motion for the shell. We describe the position of the thin-shell
as r = a(τ) and t = T(τ) in the spacetime (99) and assume the form of Si

j as

Si
j = diag(−ρ, p, p, · · · , p) + diag(−σ,−σ,−σ, · · · ,−σ). (105)

This assumption means that the matter on the shell consists of a perfect fluid and the constant
tension σ of the shell, where ρ and p are the energy density and pressure of the perfect fluid. Assuming
the Z2 symmetry for the bulk spacetime, we write down the junction conditions (102) as

1
2

κ2
d(ρ + σ) =− (d− 2) f Ṫ

a

{
1 +

2α̃

3

(
2

ȧ2

a2 +
3k
a2 −

f
a2

)}
, (106)

−1
2

κ2
d(p− σ) =− a

f Ṫ

{
ä
a
+

f ′

2a
+ (d− 3)

(
ȧ2

a2 +
f

a2

)}
− 2α̃a

f Ṫ

{
d− 5

3

(
ȧ2

a2 +
f

a2

)(
2

ȧ2

a2 +
3k
a2 −

f
a2

)
+

(
2

ȧ2

a2 +
k
a2 +

f
a2

)
ä
a
+

f ′

2a

(
k
a2 −

f
a2

)}
, (107)

where f = f (a). A dot and a prime denote the derivative with respect to τ and a, respectively. (see [5]
for the details of derivation). The above equations give the equation of motion for a thin-shell in
Einstein–Gauss–Bonnet gravity.

To obtain the equation of motion in a closed system, the equation of state for the perfect fluid is
required. One possibility is the following linear equation of state with a constant γ:

p = (γ− 1)ρ. (108)

With this equation state, the energy-conservation equation on the shell DiSi
j = 0, written as

ρ̇ = −(d− 2)(p + ρ)
ȧ
a

, (109)

is integrated to give

ρ =
ρ0

a(d−2)γ
, (110)

where ρ0 is a constant.

5.5. Effective Potential for the Shell

The dynamics of the shell governed by Equations (106) and (107) with the equation of state (108)
can be discussed as a one-dimensional potential problem. Then, the shape of the effective potential
V(a) for the shell determines the stability of static configurations, namely the static wormholes.

Let us derive the effective potential V(a). Squaring Equation (106) and using uµuµ = −1,
we obtain

Ω(a)2 =

(
f

a2 +
ȧ2

a2

){
1 +

2
3

α̃

(
2

ȧ2

a2 +
3k
a2 −

f
a2

)}2

, (111)

where

Ω(a)2 :=
κ4

d(ρ(a) + σ)2

4(d− 2)2 . (112)
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This is a cubic function for ȧ2. The position of the throat a = a0 for a static wormhole is obtained
by solving the following algebraic equation for a0:

Ω2
0 =

f0

a2
0

{
1 +

2
3

α̃

(
3k
a2

0
− f0

a2
0

)}2

, (113)

where f0 := f (a0) and Ω2
0 := Ω(a0)

2.
For convenience, we define

A(r) := 1 +
4α̃m
rd−1 + 4α̃Λ̃ (114)

with which the metric function (100) in the GR branch is written as

f (r) = k +
r2

2α̃

(
1−

√
A(r)

)
. (115)

A > 0 is required for the real metric and the absence of branch singularity. In the GR branch,
because of the existence of the square root in Equation (115), the following inequality holds:

r2 + 2α̃k− 2α̃ f (r) > 0, (116)

which is used below.
Actually, Equation (111) admits only a single real solution for ȧ2:

ȧ2 = −V(a), (117)

which has the form of the one-dimensional potential problem. The effective potential V(a) is defined by

V(a) := f (a)− J(a)a2, (118)

where J(a) is defined by

J(a) :=

(
B(a)− A(a)1/2

)2

4α̃B(a)
, (119)

B(a) :=
{

18α̃Ω(a)2 + A(a)3/2 + 6
√

α̃Ω(a)2(9α̃Ω(a)2 + A(a)3/2)

}1/3

. (120)

One can see B > A1/2. Ω2 can be expressed in terms of A and B as

Ω2 =
(B3 − A3/2)2

36α̃B3 . (121)

5.6. Negative Energy Density of the Shell

We show that the energy density on the shell ρ + σ must be negative for static wormholes.
The condition ρ + σ ≥ 0 and Equation (106) with a = a0(> 0) yields a2

0 ≤ −4α̃k/(2 +
√

A0),
where A0 := A(a0). Clearly, this is not satisfied for k = 1, 0 under the assumption α̃ > 0. For k = −1,
Equation (106) gives a2

0 ≤ 4α̃/(2 +
√

A0) < 2α̃ and this is not satisfied because there is a constraint
a2

0 > 2α̃ for the throat radius in the GR branch, which can be shown from the combination of
Equations (116) and f (a0) > 0. Now, we have shown that the energy density on the shell is negative
in the physical set up considered in this article. Hence, the weak energy condition is violated in the
GR-branch with α > 0. However, the negative-tension brane still satisfies the null energy condition.
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Hereafter, we consider the case without a perfect fluid on the shell (ρ = p = 0) and assume
σ < 0. The resulting static thin-shell wormholes are made of the pure (negative) tension σ and
satisfy the null energy condition. This simplest set up is preferred by the minimal violation of the
energy conditions. The energy-momentum tensor for the negative tension is equivalent to a negative
cosmological constant. Such a matter corresponds to an inverted harmonic oscillator in classical
mechanics. A technical advantage in this set up is the constancy of Ω2.

5.7. Static Solutions

Here, we summarize the existence conditions for a static shell located at a = a0. Equation (117) is
interpreted as the conservation law of mechanical energy for the shell. By differentiating Equation (117)
with respect to τ, we obtain the equation of motion for the shell as

ä = −1
2

V′(a). (122)

From Equations (117) and (122), a0 is determined algebraically by V(a0) = 0 and V′(a0) = 0.
In addition, a0 must satisfy A(a0) > 0 and f (a0) > 0. The latter condition f (a0) > 0 is called the
horizon-avoidance condition in the previous section and Reference [54], which simply means that the
position of the throat is located in the static region of the spacetime. Actually, this condition is always
satisfied because we have V(a0) = 0 and Equation (118) implies f (a) > V(a).

The location of the static wormhole throat a = a0 is determined by the following algebraic
equation obtained by eliminating σ from Equations (106) and (107):(

f0

a0
−

f ′0
2

)(
1 + 2α̃

k− f0

a2
0

)
+

8α̃k f0

a3
0

= 0, (123)

where f ′0 := f ′(a0). In the limit of α → 0, Equation (123) reduces to the corresponding equation in
Einstein gravity [4]. The explicit form of Equation (123) is

ka2
0

√
A0 = 2ka2

0 −
(d− 1)m

2ad−5
0

+ 4α̃k2. (124)

5.8. Stability Criterion

As explained at the beginning of this section, the sign of V′′(a0) determines stability of a static
thin-shell wormhole. In this subsection, we derive V′′(a0) in a convenient form to prove the (in)stability.

5.8.1. Einstein Gravity

First, let us consider Einstein gravity as a simple lesson. In the general relativistic limit α → 0,
Equation (111) reduces to

Ω2 =
f (a)
a2 +

ȧ2

a2 . (125)

By solving Equation (125) for ȧ2, we define a potential V(a) of the conservation law of the
one-dimensional potential problem. Then, we directly calculate the second derivative of V(a).
However, without such direct calculations, in principle, we can derive the form of V′′(a0) by operating
a systematic method below, which can be applied also in more general theories of gravity.

Suppose we get a master equation as ȧ2 + V(a) = 0. By this master equation, ȧ2 in Equation (125)
is replaced by −V(a) to give

Ω2 =
f (a)−V(a)

a2 . (126)
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Differentiating this equation twice, we obtain

0 = a( f ′ −V′)− 2( f −V), (127)

0 = a( f ′′ −V′′)− ( f ′ −V′), (128)

where Ω′ = 0 for the pure tension brane.
In Einstein gravity, the metric function is

f (a) =k− m
ad−3 − Λ̃a2, (129)

which satisfies

f ′(a) =
(d− 3)(k− f )− Λ̃(d− 1)a2

a
, (130)

f ′′(a) =
Λ̃(d− 1)(d− 4)a2 − (k− f )(d− 2)(d− 3)

a2 . (131)

Substituting Equation (130) into Equation (127) and evaluating it at a = a0 satisfying V(a0) =

V′(a0) = 0, we obtain

fE0(:= f (a0)) =
d− 3
d− 1

k− Λ̃a2
0. (132)

Combining this with Equation (129), we obtain the algebraic equation to determine a0:

2k
d− 1

=
m

ad−3
0

. (133)

For k = 0, Equation (133) requires m = 0 and a0 is totally undetermined. For k = 1(−1),
Equation (133) requires m > (<)0 and the throat radius a0 is given by

a0 =

(
(d− 1)m

2k

)1/(d−3)

. (134)

As seen in Equation (134), Λ does not contribute to the size of the wormhole throat. However,
it appears in the horizon-avoidance condition f0 > 0. Equation (132) shows that f0 > 0 requires Λ < 0
in the case of k = 0,−1. In the case of Λ = 0, f0 > 0 is satisfied only for k = 1. In the case of Λ > 0 and
k = 1, f0 > 0 gives a constraint a0 < a(GR)

c on the size of the wormhole throat, where

a(GR)
c :=

(
(d− 3)k
(d− 1)Λ̃

)1/2

. (135)

On the other hand, in the case of Λ < 0 and k = −1, f0 > 0 gives a0 > a(GR)
c . Combining this

inequality with Equation (134), we obtain the range of the mass parameter admitting static wormhole
solutions; 0 < m < m(GR)

c for k = 1 with Λ > 0 and m < m(GR)
c (< 0) for k = −1 with Λ < 0, where

m(GR)
c :=

2k
d− 1

(
(d− 3)k
(d− 1)Λ̃

)(d−3)/2

. (136)

In Einstein gravity, a simple criterion for the stability of static solutions is available. Substituting
Equations (130) and (131) into Equation (128) and evaluating them at a = a0, we obtain



Universe 2020, 6, 197 33 of 40

V′′(a0) =−
(d− 1)(d− 3)m

ad−1
0

= −2(d− 3)k
a2

0
, (137)

where we use Equations (129) and (133).
This simple expression clearly shows that the wormhole is stable only for k = −1 with m < 0 [4].

Existence and stability of static thin-shell wormholes in Einstein gravity are summarized in Table 5.

Table 5. The existence and stability of Z2 symmetric static thin-shell wormholes made of pure negative

tension in Einstein gravity, where a(GR)
c and m(GR)

c are defined by Equations (135) and (136), respectively.

Existence Possible Range of a0 Stability

k = 1 Λ > 0 0 < m < m(GR)
c 0 < a0 < a(GR)

c Unstable
Λ ≤ 0 m > 0 a0 > 0 Unstable

k = 0 Λ ≥ 0 None – –
Λ < 0 m = 0 a0 > 0 Marginally stable

k = −1 Λ ≥ 0 None – –
Λ < 0 m < m(GR)

c (< 0) a0 > a(GR)
c Stable

5.8.2. Einstein–Gauss–Bonnet Gravity

Although it is more complicated, we can play this game in Einstein–Gauss–Bonnet gravity in a
similar manner. Replacing ȧ2 by −V(a) in the master Equation (111), we obtain

Ω2 =
f (a)−V(a)

a2

{
1 +

2α̃(−2V(a) + 3k− f (a))
3a2

}2

. (138)

In Einstein–Gauss–Bonnet gravity, the metric function is

f (a) =k +
a2

2α̃

(
1−

√
1 + 4α̃Λ̃ +

4α̃m
ad−1

)
, (139)

which satisfies

f ′(a) =
(d− 5)α̃(k− f )2 + (d− 3)a2(k− f )− Λ̃(d− 1)a4

a{a2 + 2α̃(k− f )} , (140)

f ′′(a) =
L(a)

a2{a2 + 2α̃(k− f )}3 , (141)

where

L(a) :=2(d− 1)2α̃Λ̃2a8 − Λ̃a4(d− 1)
{

12α̃2(k− f )2 + 12α̃a2(k− f )− (d− 4)a4
}

− (k− f )
{

2(d− 3)(d− 5)α̃3(k− f )3 + 4(d2 − 8d + 13)α̃2a2(k− f )2

+ 3(d− 2)(d− 5)α̃a4(k− f ) + (d− 2)(d− 3)a6
}

. (142)

Equation (139) gives

m = ad−3
{
−Λ̃a2 + (k− f (a)) + α̃a−2(k− f (a))2

}
. (143)
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Differentiating (138) and evaluating it at a = a0, we obtain

f 2
0 =
{(d− 1)a2

0 + 2k(d + 1)α̃} f0 + (d− 1)Λ̃a4
0 − k{(d− 3)a2

0 + (d− 5)α̃k}
(d− 1)α̃

. (144)

where we use Equation (140). This equation reduces to Equation (132) for α → 0. Equation (144) is
used to express f p

0 (p = 2, 3, 4, · · · ) in terms of f0.
Differentiating Equation (138) twice and using Equations (140) and (141), we finally obtain V′′(a0)

in a rather compact form:

V′′(a0) =−
2kP(a0)

a2
0(a2

0 + 2kα̃ + 2α̃ f0)(a2
0 + 2kα̃− 2α̃ f0)

, (145)

P(a0) :=4α̃2 f0

{
6k− (d− 3) f0

}
+(a2

0 + 2kα̃)

{
(d− 3)a2

0 + 2(d− 5)kα̃

}
, (146)

where we have eliminated Λ̃ by using Equation (144). This expression reduces to Equation (137)
for α → 0. Because of Equation (116), the denominator in the expression of V′′(a0) is positive and,
therefore, the sign of the function P(a0) determines the stability of the shell.

5.9. Effect of the Gauss–Bonnet Term on the Stability

Before moving onto the full-order analysis, let us clarify how the Gauss–Bonnet term affects the
stability of thin-shell wormholes in the situation where α̃ is small.

In the general relativistic limit α̃→ 0 with k = ±1, Equation (124) gives

ad−3
0 =

(d− 1)mk
2

=: ad−3
E . (147)

This is the static solution in Einstein gravity which requires mk > 0 [4]. Now, we obtain the static
solution for ε := α̃/a2

E � 1 in a perturbative method. We expand a0 in a power series of ε:

a0 = aE + a(1)ε + a(2)ε
2 + . . . . (148)

Substituting this expression into Equation (124) and expanding it in a series of ε, we obtain

a(1) =
2Λ̃(d− 1)a2

E − 4(d− 2)k
(d− 1)(d− 3)

aE. (149)

This allows us to derive the expansion of Equation (145):

V′′(a0) ' −
2(d− 3)k

a2
E

− 8kε

a2
E

fE0. (150)

The first term of Equation (150) coincides with Equation (137) and the second term is negative
because of Equation (132). Hence, we arrive at a simple conclusion about the effect of the Gauss–Bonnet
term for small α̃: it destabilizes wormholes in the spherically symmetric case (k = 1), while it stabilizes
in the hyperbolically symmetric case (k = −1).

5.10. Stability Analysis

Here, we prove (in)stability of the static thin-shell wormhole in the framework of Einstein–Gauss–
Bonnet gravity. We focus on stability analysis for k = 1 as an educational example.

In this article, we do not clarify the parameter region with positive m admitting static wormhole
solutions because they are all dynamically unstable in any case. In Figure 17, we plot the profile of
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V̄(a) with k = 1 and m > 0, in which there is a local maximum. This implies that the corresponding
static solution is unstable. Indeed, we can prove that this case is unstable.

���

��������

d = 5

d = 6

d = 7

1 2 3 4
a

0��

���

���

�	


V(a)

Figure 17. The potential V̄(a) for d = 5, 6, 7 in Einstein and Einstein–Gauss–Bonnet (EGB) gravity with
k = 1, α = 0.02, m = 1, Λ = 1 and σ = −0.1.

For k = 1, the positivity of P(a0) in Equation (145) means instability of the static wormhole. Using
the inequality (116), we evaluate the lower bound of P(a0) as

P(a0) =4α̃2 f0

{
6− (d− 3) f0

}
+(a2

0 + 2α̃)

{
(d− 3)a2

0 + 2(d− 5)α̃
}

>4α̃2 f0

{
6− (d− 3) f0

}
+2α̃ f0

{
(d− 3)a2

0 + 2(d− 5)α̃
}

=2α̃ f0

{
2(d− 3)α̃

(
a2

0
2α̃
− f0

)
+2(d + 1)α̃

}
>2α̃ f0

{
−2(d− 3)α̃ + 2(d + 1)α̃

}
= 16α̃2 f0 > 0. (151)

Therefore, the wormhole is dynamically unstable. We note that a similar analysis for k = 0, 1 can
reveal the instability of thin-shell wormholes which are made of a dust fluid (see [5]).

We focus on the analysis with k = 1 and m > 0. The remaining combinations of k and m have
also been completely analyzed (see [5] for the details). All the results obtained in Reference [5] for all
combinations of k and M are summarized in Table 6.

Table 6. The existence and stability of Z2 symmetric static thin-shell wormholes made of pure negative
tension in the GR branch with α̃ > 0 and 1+ 4α̃Λ̃ > 0. “S“, “M” and “U” stand for “Stable”, “Marginally
stable” and “Unstable”, respectively.

Static Solutions Exist? Stability
k = 1 m > 0 Yes U

m ≤ 0 No –
k = 0 m = 0 Λ ≥ 0: No –

Λ < 0: Yes M
m 6= 0 No –

k = −1 m ≥ 0 No –
m < 0 Λ ≥ 0: No –

−(2d− 5)/(2d− 1) < 4α̃Λ̃ < 0: Yes S
4α̃Λ̃ = −(2d− 5)/(2d− 1): Yes S or M

−1 < 4α̃Λ̃ < −(2d− 5)/(2d− 1) with d = 5: Yes S or M
−1 < 4α̃Λ̃ < −(2d− 5)/(2d− 1) with d ≥ 6: Yes S, M, or U
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6. Conclusions

6.1. In Einstein Gravity

We developed the thin-shell formalism for d-dimensional spacetimes, which is more general than
Dias and Lemos formalism [32]. We investigated spherically, planar and hyperbolically symmetric
wormholes with a pure negative-tension brane and found and classified Z2 symmetric static solutions
which are stable against radial perturbations. We summarize the results in Tables 1–4. We found
that, in most cases, charge is needed to keep the static throat radius positive and that a negative
cosmological constant tends to decrease the radius of the black hole horizon and then to achieve
the horizon avoidance. Thus, the combination of an electric charge and a negative cosmological
constant makes it easier to construct stable wormholes. However, a negative cosmological constant is
unnecessary in the certain situation of k = +1 and M > 0 and charge is unnecessary in the certain
situation of k = −1 and M < 0.

We note that the existence and stability of negative-tension branes as thin-shell wormholes
crucially depend on the curvature of the maximally symmetric (d − 2)-dimensional manifolds.
On the other hand, they do not qualitatively but only quantitatively depend on the number of
spacetime dimensions.

We considered only radial stability for thin-shell wormholes here. In a realistic situation,
a wormhole in the universe would be suffered by gravitational waves that are produced by a particle
falling into the wormhole, incidental waves produced from gravitational collapses of nearby stars,
etc. In such situations, we must consider non-radial gravitational perturbations for wormholes.
Thus far, there is no stability analysis for gravitational perturbations of thin-shell wormholes. A linear
stability analysis on a specific-perturbation mode (so-called axial perturbations) for a wormhole that
corresponds to Morris–Thorne type has been investigated [94]. In [94], the matter distribution is
continuous not as a shell. Since matters of thin-shell wormholes are localized on their throat as a shell,
the perturbation analysis for thin-shell wormholes is not like that of Morris–Thorne type. To treat the
non-spherically perturbed shell, we can employ the perturbed junction condition developed by Gerlach
and Sengupta [95–98]. By using the perturbed junction condition, Kodama et al. investigated whether
a domain wall emits gravitational waves or not. In their work, a domain wall is constructed by pasting
a couple of Minkowski spacetimes with a negative-tension brane localized at their boundary [99].
Since their situation is similar to that of a thin-shell wormhole, we expect their study can be extended
to the case of shell wormholes.

6.2. In Einstein–Gauss–Bonnet Gravity

d(≥ 5)-dimensional static thin-shell wormholes with the Z2 symmetry have been investigated
in the spherically (k = 1), planar (k = 0) or hyperbolically (k = −1) symmetric spacetime in
Einstein–Gauss–Bonnet gravity. For our primary motivation to reveal the effect of the Gauss–Bonnet
term on the static configuration and dynamical stability of a wormhole, we have studied the stability
against linear perturbations preserving symmetries in the simplest set up where the thin-shell is made
of pure negative tension, which satisfies the null energy condition.

In this system, the dynamics of the shell can be treated as a one-dimensional potential problem
characterized by a mass parameter m in the vacuum bulk spacetime for a given value of d, k,
the cosmological constant Λ and the Gauss–Bonnet coupling constant α. We have studied solutions
which admit the general relativistic limit α → 0 and considered a very conservative region in the
parameter space. The shape of the effective potential for the shell dynamics clarifies possible static
configurations of a wormhole and their dynamical stability.

As shown in Tables 5 and 6, the results with and without the Gauss–Bonnet term are similar in
many cases. For k = 1, static wormholes require m > 0 and they are dynamically unstable. For k = 0,
static wormholes require m = 0 and Λ < 0 and they are marginally stable. For k = −1, m < 0 and
Λ < 0 are required for static wormholes.
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We have clarified the effect of the Gauss–Bonnet term on the stability in a perturbative method by
expanding the equation in a power series of α̃. We have shown that, for α̃/a2

E � 1, the Gauss–Bonnet
term tends to destabilize spherically symmetric thin-shell wormholes (k = 1), while it stabilizes
hyperbolically symmetric wormholes (k = −1). For planar symmetric wormholes (k = 0),
the Gauss–Bonnet term does not affect their stability and they are marginally stable, same as in
Einstein gravity. However, we have observed that the non-perturbative effect is quite non-trivial.

As the effect of the Gauss–Bonnet term on the existence and stability of static wormholes is
revealed in this article, the effect of its dilaton coupling is now of great interest. Unfortunately, in the
presence of a dilaton, exact bulk solutions are not available to construct thin-shell wormholes. Moreover,
Birkhoff’s theorem does not apply to the dilatonic system because of the additional dynamical degree
of freedom in the dilaton. Nevertheless, this is a promising direction of research leading to understand
the result in [69,70].
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