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Abstract: The Euclidean path integral is well approximated by instantons. If instantons are dynamical,
they will necessarily be complexified. Fuzzy instantons can have multiple physical applications. In
slow-roll inflation models, fuzzy instantons can explain the probability distribution of the initial
conditions of the universe. Although the potential shape does not satisfy the slow-roll conditions
due to the swampland criteria, the fuzzy instantons can still explain the origin of the universe.
If we extend the Euclidean path integral beyond the Hartle–Hawking no-boundary proposal, it
becomes possible to examine fuzzy Euclidean wormholes that have multiple physical applications in
cosmology and black hole physics.

Keywords: quantum cosmology; no-boundary proposal; instantons

1. Introduction: Preliminaries

In modern physics, understanding the nature of the origin of the universe is one of
the most fundamental problems. Due to the singularity theorem [1], if we move backward
in time and assume reasonable physical conditions, it appears that there must exist an
initial singularity. At this singularity, all the laws of general relativity break down; hence, a
quantum gravitational prescription is required.

To understand the initial singularity, the quantum gravitational description must be
non-perturbative. The most conservative approach is to quantize the gravitational degrees
of freedom as per the canonical quantization method [2]. Using this approach, one can
obtain the quantized Hamiltonian constraint; or the so-called Wheeler–DeWitt equation. If
we solve the equation, we can in principle obtain the probability for a given hypersurface
and the corresponding field configurations.

One of the limitations of canonical quantization is that the probability depends on the
selection of boundary conditions [3]. By selecting a certain boundary condition, one may
or may not provide a reasonable probability distribution for the early universe. There is no
fundamental principle that can be used to select the boundary condition; in principle, the
boundary condition must be confirmed by the possible observational consequences [4].

1.1. Hartle–Hawking Wave Function

Now, we can ask what the most natural assumption regarding the boundary conditions
of the universe is. It might be considered that the ground state wave function corresponds
to the most natural choice of boundary conditions, although one potential problem with
this is that the ground state is not defined in the context of quantum gravity. However,
one may reasonably argue that the Euclidean path integral might be the ground state
wave function of the Wheeler–DeWitt Equation [5]. The mathematical form, the so-called
Hartle–Hawking wave function, is listed below (we use the convention c = G = h̄ = 1):

Ψ
[
hµν, ψ

]
=
∫
DgµνDφ e−SE[gµν ,φ], (1)
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where gµν is the metric, φ is a matter field, and SE is the Euclidean action; we sum over all
regular and compact Euclidean geometries and field configurations satisfying conditions
∂gµν = hµν and ∂φ = ψ. One interesting feature of this wave function is that there is
only one boundary (the final boundary) of the path integral; however, the path integral
usually must have two boundaries (the initial and final boundaries). As the wave function
has no initial boundary, it is known as the no-boundary wave function. Although there
is no guarantee regarding the convergence of this path integral (this might diverge for
Minkowski or anti-de Sitter background), it will still be useful in understanding the physics
of de Sitter background.

1.2. Steepest-Descent Approximation and Fuzzy Instantons

In cosmology, it is reasonable to assume O(4)-symmetry as follows:

ds2
E = dτ2 + a2(τ)dΩ2

3, (2)

where τ is the Euclidean time, dΩ2
3 is the 3-sphere, and a(τ) is the scale factor. In addition

to this symmetry, if we impose the on-shell condition to the metric and matter field; or we
restrict to instantons, we can approximate the wave function based on the steepest-descent
approximation:

Ψ[b, ψ] ' ∑
on−shell

e−Son−shell
E , (3)

where b and ψ are the boundary values of a(τ) and φ(τ), respectively. Finally, the probabil-
ity for each instanton is approximately:

P[b, ψ] = |Ψ[b, ψ]|2 ' e−2 Re Son−shell
E , (4)

where

Son−shell
E = Re Son−shell

E + i Im Son−shell
E . (5)

Due to the analyticity, at the point of the Wick-rotation τ = τ0 + it, we must impose
the continuity of fields

a(t = 0) = a(τ = τ0), (6)

φ(t = 0) = φ(τ = τ0), (7)

as well as the Cauchy-Riemann conditions

ȧ(t = 0) = iȧ(τ = τ0), (8)

φ̇(t = 0) = iφ̇(τ = τ0). (9)

therefore, in general, if the fields are dynamical, the on-shell solutions will be complex-
valued; the instantons will be fuzzy. However, the boundary values b and ψ must be
real-valued [6]. In some sense, this is a type of boundary condition of the instantons. The
reality at the boundary of the wave function is related to the classicality of the solution. Once
the solution becomes classical, the probability must slowly vary along the steepest-descent
path. If the solution is real-valued, or if the real component of each function is at least
dominant over that of the imaginary part, the probability must slowly vary compared with
the phase part, and hence the history will be sufficiently classical. Furthermore, the history
should satisfy the classical equations of motion (e.g., the Hamilton–Jacobi equation). This
condition can be summarized as follows:

|∇αRe SE| � |∇αIm SE|, (10)
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where α = a, φ is the canonical direction [7]. In many practical cases, this classicality
condition can be easily demonstrated by verifying whether the real parts of the functions
dominate the imaginary parts after the Wick-rotation and a sufficient Lorentzian time.

1.3. Scope of This Paper

The question that naturally arises is this: for which physical situations can the classi-
cality condition be satisfied? The answer is that inflation is required to satisfy the classicality
condition. This is very important: if our universe was created from the Hartle–Hawking
wave function, a small amount of inflation is required [8]. However, there still remain
several questions:

1. Does the Hartle–Hawking wave function prefer sufficient inflation?
2. Which type of inflation allows classicalization: slow-roll or fast-roll?
3. Is the Hartle–Hawking wave function a unique choice for quantum cosmology; or can

there be additional generalization from the Euclidean path integral approach?
4. Is the Hartle–Hawking wave function compatible with the recent progress of quan-

tum gravity?

In this study, we review several interesting developments about the Hartle–Hawking
wave function and its potential applications. Furthermore, we answer a number of previous
questions and provide certain possible future applications and research directions.

2. Fuzzy Instantons with Slow-Roll Inflation

The first issue is to obtain classicalized fuzzy instantons based on slow-roll inflation.

2.1. Simplest Model

To discuss the generic properties of slow-roll inflation and fuzzy instantons, we
consider the following model [7]:

SE = −
∫

d4x
√
+g
[

1
16π

(R− 2Λ)− 1
2
(∇Φ)2 −V(Φ)

]
, (11)

where R is the Ricci scalar, Λ is the cosmological constant, Φ is a scalar field, and

V(φ) =
1
2

m2Φ2 (12)

is the potential. For simplicity, one can define the metric and several other variables
as follows:

ds2
E =

3
Λ

(
dτ2 + a2(τ)dΩ2

3

)
, (13)

φ ≡
√

4π

3
Φ, (14)

µ ≡
√

3
Λ

m. (15)

The equations of motion are as follows:

ä + a + a
(

2φ̇2 + µ2φ2
)

= 0, (16)

φ̈ + 3
ȧ
a

φ̇− µ2φ = 0. (17)

These are two second-order differential equations but we will consider complexified
instantons. Hence, each equation has two parts with one being the real part and the other
being the imaginary part. Therefore, there are basically eight initial conditions (at τ = 0)
that determine the solution; however, because of the Hamiltonian constraint, two of them
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are restricted. If we assume the no-boundary condition a(τ = 0) = 0 with the Hamiltonian
constraint, we must require that

a(τ = 0) = 0, (18)

ȧ(τ = 0) = 1, (19)

φ̇(τ = 0) = 0. (20)

The above equations already fix six of the initial conditions. There are thus two free
parameters Re φ(τ = 0) and Im φ(τ = 0), or we present

φ(τ = 0) = φ0eiθ , (21)

where both φ0 and θ are real values (see a recent analytic review in [9]).
Physically, φ0 corresponds to the initial condition of the inflaton field, i.e., the initial

condition of an inflationary universe. Therefore, we will eventually examine the probability
distribution as a function of φ0. On the other hand, θ is merely a free parameter. This
must be used to satisfy the boundary condition after the Wick-rotation (i.e., to achieve
classicality). If we select an appropriate θ, it may be possible that after the Wick-rotation
τ = τ0 + it, the imaginary parts of both a and φ will approach zero, and the real parts will
dominate (e.g., see Figure 1 [10]). Therefore, in other words, θ is a tuning parameter for the
classicality at a future infinity.

0 2 4 6 8 10 12
0.0

5.0x10-8

1.0x10-7

1.5x10-7

2.0x10-7

Im
 a

Re a
0.0218 0.0220 0.0222 0.0224 0.0226

-0.00030

-0.00025

-0.00020

-0.00015

-0.00010

-0.00005

0.00000

Im
 

Re 

Figure 1. Example of a fuzzy instanton solution with m2/V0 = 0.2 and mφ0/
√

V0 = 0.02, where the left side is the metric a,
and the right side is the scalar field φ. Here, the cusp is the turning point from a Euclidean to a Lorentizan signature [10].

Then, one may ask what the role of θ is in detail [11]. To determine this, let us first
assume slow-roll inflation given a classical background metric, i.e., φ̇2 � 1, µ2φ2 � 1, and
Im a� Re a. In this case, it can be stated that

Re a = Caet + Dae−t ' Caet, (22)

where Ca and Da are integration constants. The equations of motion for the scalar fields are
approximately

Re φ̈ + 3Re φ̇ + µ2Re φ ' 0, (23)

Im φ̈ + 3Im φ̇ + µ2Im φ ' 0. (24)

Hence,

Re φ ' CRe
φ e−

3
2 t+ωt + DRe

φ e−
3
2 t−ωt, (25)

Im φ ' CIm
φ e−

3
2 t+ωt + DIm

φ e−
3
2 t−ωt, (26)
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where CRe
φ , DRe

φ , CIm
φ , and DIm

φ are constants, and

ω2 ≡
(

3
2

)2
− µ2. (27)

From these equations, we can easily obtain the following conclusion. If µ < 3/2, the
solutions satisfy the over-damped motion. In other words, there are two linearly independent
solutions with different exponents. Therefore, it is possible to select θ such as to make
CIm

φ � 1 (and hence finely tune the integration constants). Then,

Im φ

Re φ
' e−2ωt → 0, (28)

and hence after the Wick-rotation, the solution will eventually satisfy the classicality
conditions. On the other hand, if µ > 3/2, the solutions satisfy under-damped motion. For
any choice of initial conditions, Im φ/Re φ will be proportional to a trigonometric function,
and hence,

Im φ

Re φ
' O(1). (29)

Therefore, the imaginary part and real part of the scalar field oscillate in a similar order.
One might query the consequences of this if there is no approach to classicalize a

scalar field. Note that the imaginary part of the scalar field provides the negative kinetic
term, indicating it is ghost-like. The energy of the scalar field will contribute to the matter
content of the universe. If the imaginary part of the scalar field is of the same order as
the real part even after the Wick-rotation, we cannot avoid the instability of the ghost-like
imaginary part of the field. This is a catastrophic consequence, and we cannot physically
allow this possibility. (However, for the possibility of observing restricted contributions
from the ghost-like term, please refer to [12]).

For a generic scalar field potential V, the criterion for a classical universe is µ2 < 9/4, or∣∣∣∣V′′V

∣∣∣∣ < 6π. (30)

If m2/V < 6π, φ = 0 (local minimum) can allow for a classical universe. If m2/V > 6π,
there exists a cutoff φcutoff > 0 such that φ > φcutoff only allows for classical universes [7].

2.2. Probabilities and Preferences of Large e-Foldings

If one is able to construct a classical universe, it is possible to obtain the probability of
that universe. For the slow-roll potential, the probability of a classical universe with the
initial condition φ0 is approximately

log P ' 3
8V(φ0)

. (31)

Note that this is positive definite. Hence, the probability is exponentially enhanced.
The most highly favored initial condition is a field value with the smallest possible potential.
Considering the no-boundary proposal [8], this indicates that φ ' φcutoff corresponds to
the most probable initial condition.

However, the limitation is that the e-foldings of the most probable initial condition
are, in general, insufficient. For example, if we have a quadratic potential with Λ = 0, the
most preferred e-folding number will be ∼0.62, while more than ∼50 e-foldings will be
required [13].

There have been several proposals to resolve or understand this problem. First, the
simplest suggestion is that the no-boundary proposal is simply wrong. For example,



Universe 2021, 7, 367 6 of 20

if we do not trust the steepest-descent approximation for theoretical reasons, we may
obtain an alternative probability distribution [14]. Alternatively, if we begin from a new
fundamental wave function, it is possible to obtain a different probability distribution that
may prefer a large vacuum energy [3]. However, it is fair to say that there are still several
theoretical arguments to support the consistency of the original approaches put forward by
Hartle and Hawking [15]. Thus, we can consider several viable possibilities to rescue the
Hartle–Hawking wave function [16]:

1. We require a number of ad hoc terms to measure the probability. For example, Hartle,
Hawking, and Hertog introduced the volume-weighting factor to the probability
measure [8]. Consequently, there is competition between the volume-weighting
component and the Euclidean probability component. If the vacuum energy is suffi-
ciently large, the volume-weighting component is dominated, and large e-foldings
are eventually preferred. However, this assumption cannot be justified from first
principles. Furthermore, this leads to eternal inflation, while this eternal inflation goes
beyond the scope of our understanding because of the infinite volume and subsequent
quantum tunneling.

2. Our universe began from V ∼ 1 (Planck scale) vacuum energy. If this is the case, there
are no significant probability differences between the cutoff and other field values.
However, based on observational constraints, this Planck-scale inflation cannot be the
primordial inflation of our universe.

3. Unknown physical degrees of freedom are required. For example, if there exists a very long
field space or a large number of fields that contribute to inflation [13], such degeneracy
of the field space can compete with the Euclidean probability component. However,
in multiple cases, this requires too many degrees of freedom. Hence, in terms of
quantum field theory, these possibilities may be unnatural.

4. Certain modifications of the theory of gravity can explain large e-foldings. For example,
massive gravity models [17,18] could provide certain interesting possibilities; however,
this approach goes beyond the regime of Einstein gravity.

2.3. Rescue from the Secondary Scalar Field

However, the most reasonable rescue is to probably introduce one additional massive
field [11]. The primary idea is that the classicality condition requires the classicality of
all fields not only the inflaton field but also the other matter fields. If this is not the case
(i.e., if the only inflaton field is classicalized while the second field is not classicalized),
the ghost-like modes of the secondary field cannot be controlled after the Wick-rotation.
Hence, this possibility must be avoided.

For simplicity, let us consider the following model

SE = −
∫

d4x
√
+g
[

1
16π

R− 1
2
(∇Φ1)

2 − 1
2
(∇Φ2)

2 − 1
2

m2
1Φ2

1 −
1
2

m2
2Φ2

2

]
, (32)

where m1 and m2 are mass parameters of Φ1 and Φ2, respectively. In particular, we assume
that m1 � m2, and hence Φ1 is the inflaton field and Φ2 is only an assisting field. Similar
to the previous section, one can select the metric ansatz as follows:

ds2
E =

1
m2

2

(
dτ2 + a2(τ)dΩ2

3

)
. (33)

Due to the slow-roll condition, the variation of Φ1 is negligible along the field direction
of Φ2. Hence, it is possible to approximate that (1/2)m1Φ2

1 ' V0 is a constant; therefore,
the classicality condition of the potential (Equation (30)) is

m2
2

V0
'

m2
2

1
2 m2

1Φ2
1
≤ 6π. (34)
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The results of numerical investigation are consistent with this expectation (Figure 2 [11]).
The shadowed box region becomes increasingly narrow as m1/m2 decreases. Hence, in the
m1/m2 � 1 limit, if Φ2 ' 0, the genuine cutoff of the Φ1 direction will satisfy Φ1 � 1.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1

2
 (m

1
/m

2
)2=0.125

 (m
1
/m

2
)2=0.25

 (m
1
/m

2
)2=0.5

Figure 2. Numerical calculations of the cutoffs for (m1/m2)
2 = 0.125, 0.25, and 0.5 [11].

Now, we are required to ask what the most probable initial condition over the field
space (Φ1, Φ2) is. The smallest potential energy is the most preferred initial condition. As
we assumed m1 � m2, the potential varies very sensitively along the Φ2 direction. Hence,
the initial conditions with Φ2 ' 0 must be the most preferred. If we assume Φ2 ' 0, the
most probable initial condition of the Φ1 direction is Φ1,cutoff. However, to classicalize the
Φ2 field, the following condition must be satisfied:

m2
2

3πm2
1
≤ Φ2

1,cutoff, (35)

where the details regarding the constants on the left-hand-side are not extremely important.
If there is a mass hierarchy m1 � m2, the cutoff of Φ1 will be sufficiently large while the
initial condition of the inflaton field must have large e-foldings N :

N ' O(1)×
m2

2
m2

1
. (36)

In this case, it is easy to make N greater than 50.
It might be asked why massive particles play an important role in the no-boundary

wave functions, as per our physical intuitions, massive particles can be integrated out based
on low energy effective theory. This is an interesting feature of Euclidean quantum gravity.
Massive particles will have greater stability in Lorentzian signatures and lower stability in
Euclidean signatures. If the Hartle–Hawking wave function is a fundamental prescription
of quantum gravity, it must classicalize all fundamental fields, including the most massive
(probably Planck-scale) particles. If the massive fields are not classicalized, there remains an
imaginary degree of freedom, which is detrimental for providing a consistent description.
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This idea is not limited to quadratic potential models. It might be interesting to apply
it to realistic inflation models, in addition to models with various interactions among fields.

3. Fuzzy Instantons with Fast-Roll Potential

The second issue is to obtain classicalized fuzzy instantons even if the slow-roll
condition is not guaranteed. Indeed, this issue has been highlighted in recent discussions
in string theory.

3.1. Landscape vs. Swampland

To understand the cosmological constant problem and multiple fine-tuning issues
regarding the universe, the cosmic landscape was a highly sophisticated hypothesis [19].
String theory allows for a wide variety (almost all possible) constants of nature, including
the cosmological constant, as well as detailed shapes of the inflaton potential with these
being referred to as the cosmic landscape. These possible parameter spaces are physically
realized via eternal inflation and the quantum tunneling of bubble universes. Eventually,
any fine-tuned parameters can be realized at a certain location in the multiverse.

Although there have been several criticisms of this approach, the most significant
criticism was suggested by the string theory community [20]. As per the authors, the
landscape where string theory is allowed is indeed a very restricted region among possible
parameter spaces, e.g., it was conjectured that the inflaton potential must be restricted by∣∣∣∣V′′V

∣∣∣∣ > O(1), (37)∣∣∣∣V′V

∣∣∣∣ > O(1), (38)

where these conditions are known as the swapland criteria. Of course, there are several
subtle issues here. First, there is no fundamental proof of the criteria. Hence, the order-one
constant is tricky to define. Perhaps slow-roll inflation can be marginally allowed [21];
however, there can be no fundamental cosmological constant if we seriously accept the
swampland criteria.

In this study, we do not agree or disagree on the details of the swampland criteria.
However, it has been established that they are harmful to the Hartle–Hawking proposal. In
particular, there is a tension with Equation (30). On seeing more details, we may identify a
run-away quintessence model, which is typical for string-inspired models [22]:

V(φ) = Ae−Cφ. (39)

For each point near φ0, we can approximate the potential as

V(φ) ' 1
2

AC2e−Cφ0

(
φ− φ0 −

1
C

)2
+

Ae−Cφ0

2
. (40)

Therefore, it is not surprising that φ = φ0 has a classical history only if

C2 . 3π. (41)

From numerical computations, we can confirm that C . 4 is the condition for the
existence of a classical solution (Figure 3, [22]). On the other hand, if C > 4 happens, which
is extremely natural for string-inspired models, there will be no classicalized instantons
along the runaway direction. Hence, such a quintessence model is not compatible with the
Hartle–Hawking wave function.
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Figure 3. Euclidean action for exponential potential. If C > 4, classicalized solutions are not
allowed [22].

The question then arises as to whether, even in the context of the swampland criteria,
there is any way to rescue the Hartle–Hawking wave function.

3.2. Rescue Using Hwang-Sahlmann-Yeom Instantons

Although the swampland criteria do not favor the local minimum of the potential,
they do not exclude the unstable local maximum of the potential. We describe the hilltop
potential near the hilltop (φ = 0) as follows:

V(φ) = V0

(
1− 1

2
µ2φ2

)
. (42)

If µ� 1, the slow-roll condition is satisfied; moreover, the usual fuzzy instanton can
exist. On the other hand, if µ� 1, which is more natural for string-inspired models, the
slow-roll condition is no longer satisfied. Thus, close to the hilltop, the initial field values
rapidly rise to the local maximum of the potential during the Euclidean time. By selecting
proper initial conditions, one can obtain the fuzzy instantons close to the fast-rolling hilltop
potentials [23] (for example, see Figure 4). We name these solutions Hwang-Shalmann-
Yeom (HSY) instantons to contrast them with the slow-roll fuzzy instantons proposed by
Hartle–Hawking–Hertog (HHH).

The physical difference is attributed to the probability (Figure 5 [22]). If µ � 1, the
probability is approximately

log PHHH '
3

8V0

(
1− 1

2 µ2φ2
0

) . (43)

On the other hand, if µ� 1, the field quickly approaches the local maximum of the
potential, and hence the dependence on the initial condition is negligible:

log PHSY '
3

8V0
. (44)

Therefore, once there is a hilltop with µ � 1, the probability of left-rolling and
right-rolling are almost the same.
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Figure 4. A fuzzy instanton solution (φ0 = 0.01) of a toy potential V = V0 − (1/2)m2φ2 + (1/24)λφ4, where V0 = 10−7,
m2 = 10−4, and λ = 2 × 10−2. The top figures depict Euclidean time, while the bottom figures depict Lorentzian
time. During Euclidean time, the field rapidly oscillates along the hilltop (φ = 0 in this potential, top right). After the
Wick-rotation, the field rolls in the left or right direction (bottom right).

0.00 0.02 0.04 0.06 0.08 0.10
-0.1886

-0.1884

-0.1882

-0.1880

-0.1878

-0.1876

-0.1874

-0.1872

V
0 x

 S
E

 =1   =5

 =10  =15
 analytic (slow-rolling)
 analytic (fast-rolling)

Figure 5. Euclidean action V0SE as a function of µφ0. The red curve is log PHHH; however, the blue
line is log PHSY [22].

This HSY instanton can rescue the Hartle–Hawking wave function even in the context
of the swampland because the classicalized universes can be created close to the narrow
and unstable hilltop of the field space.
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3.3. Cosmological Applications

If fuzzy instantons and the swampland criteria both exist in the context of the cosmic
landscape, there can be multiple cosmological applications of HSY instantons [22].

1. As per the moduli or dilaton stabilization issue, there is a probability competition
between the stable and unstable directions. It may be that the only possible starting
point from the no-boundary wave function is the hilltop of the potential. As per HSY
instantons, there is no preference between left-rolling and right-rolling. Hence, given
a reasonable probability, the moduli or dilaton stabilization can be explained using
quantum cosmology [23].

2. The universe starts from the local maximum rather than the local minimum. The
cosmological constant depends on the local minimum; however, the probability of the
HSY instanton depends on the local maximum. Therefore, although the cosmologi-
cal constant varies from anti-de Sitter to de Sitter space, there may be no singular
changes in the a priori probability because there is no singular change in the local
maximum [22].

3. HSY instantons can rescue the Hartle–Hawking wave function even in the context
of the swampland criteria because classicalized universes can be created close to the
narrow and unstable hilltop of the field space.

In terms of embedding a consistent inflation model with the swampland criteria
and the trans-Planckian censorship conjecture, if we consider only a single-field inflation
model, the no-boundary wave function will not be compatible with the criteria [21]. On the
other hand, if we include one additional field, there may be the possibility of rescuing the
no-boundary proposal. Alternatively, if the universe began from a hilltop of a very sharp
potential, it can be explained from the no-boundary wave function. However, its smooth
connection to a successful inflation model must be explained.

4. Extensions

In the previous sections, we examined the no-boundary proposal in a single scalar
field model with Einstein gravity. However, in principle, there are possible additional
extensions such as the following:

1. The Euclidean path integral does not necessarily indicate the no-boundary proposal,
which is a specific choice of the Euclidean path integral. In more generic cases,
there can be two boundaries (initial and final boundaries). However, because of
the ambiguity of time in quantum gravity, one may make the interpretation that
two universes are created from nothing. These solutions are known as Euclidean
wormholes (Figure 6 [24]).

2. The theory can be extended by or embedded with quantum gravitational models. For ex-
ample, string-inspired models can be used to introduce a number of additional terms,
e.g., the Gauss–Bonnet term with dilaton coupling [25]. Furthermore, loop quantum
cosmological models suggest the big bounce near the putative singularity [26]. These
corrections suggest a new type of solution.

4.1. Fuzzy Euclidean Wormholes

As a simple extension, we consider fuzzy Euclidean wormholes in Einstein gravity [24].
Indeed, in terms of instantons, Euclidean wormholes are more natural than compact
instantons. The intuitive reason for this is listed below [27].
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Figure 6. Possible interpretations of Euclidean wormholes [24]. Top: A collapsing universe is bounced (Interpretation 1).
Middle: A small universe tunnels to a large universe or one contracting and one expanding universes are created (Inter-
pretation 2). Bottom: Two entangled universes are created or a contracting universe is bounced to an expanding universe
(Interpretation 3).

Let us first consider a free scalar field model with an O(4)-symmetric metric ansatz.
The following will then be the generic solution of the scalar field in a Lorentzian signature:

dφ

dt
=
A
a3 . (45)

Of course, due to classicality,A is a real-valued number. If we Wick-rotate this solution
to Euclidean time, then we obtain

dφ

dτ
= −i

A
a3 . (46)

Therefore, if the velocity of the scalar field is non-vanishing in Lorentzian signatures
and if the solution is classical in Lorentzian signatures, it is necessary that the velocity of the
scalar field must be purely imaginary in Euclidean signatures. However, purely imaginary
scalar fields in Euclidean signatures are perfectly acceptable in terms of the formalism of
the Euclidean path integral. Then, the corresponding Euclidean metric satisfies

ȧ2 = 1− a2

`2 +
a4

0
a4 , (47)

where ` ≡
√

3/Λ and a4
0 = 4πA2/3.

If a0 � `, ȧ has two zeros. Hence, the Euclidean solution has two turning points say
amax and amin. If we consider a solution that covers amax to amin to amax, this becomes the
Euclidean wormhole solution where there are two boundaries arising from the solution,
and the Wick-rotation can be applied for these two boundaries. The compact instantons
are available only if A = 0, or when the velocity of the scalar field is zero. On the other
hand, the non-compact instantons occur in more general situations when the Lorentzian
solutions have non-trivial velocities.
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What we have considered is the case in which the scalar field is free. The natural
question that arises is what happens if we generalize to a specific inflation model. For this
purpose, we can introduce the ansatz of the initial condition of the Euclidean wormholes
as follows [27]:

Re a(0) = amin cosh η, (48)

Im a(0) = amin sinh η, (49)

Re ȧ(0) =

√
4π

3
B

a2
min

√
sinh ζ cosh ζ, (50)

Im ȧ(0) =

√
4π

3
B

a2
min

√
sinh ζ cosh ζ, (51)

Re φ(0) = φ0 cos θ, (52)

Im φ(0) = φ0 sin θ, (53)

Re φ̇(0) =
B

a3
min

sinh ζ, (54)

Im φ̇(0) =
B

a3
min

cosh ζ, (55)

where amin, B, φ0, η, ζ, and θ are free parameters. However, these free parameters are
not entirely free, but should satisfy the real-part and imaginary-part equations of the
Hamiltonian constraint:

0 = 1 +
8π

3
a2

min(−Vr + sinh 2ηVi)−
4πB2

3a4
min

(1 + sinh 2ζ sinh 2η), (56)

0 = a6
min +

B2 sinh 2η

2(Vr sinh 2η + Vi)
, (57)

where Vr and Vi are the real and the imaginary part of V(φ) at τ = 0. Based on these two
equations, two parameters among the five free parameters are determined, say, amin and η.

Now, the remaining free parameters are B, φ0, ζ, and θ. However, B determines the
amplitude of the imaginary part of the scalar field, and hence the size of the wormhole
throat. ζ is the parameter that determines the symmetry between the left and right sides of
the wormhole. These two parameters do nothing but determine the shape of the wormhole.
φ0 corresponds to the initial field value of the solution. Therefore, the only tuning parameter
that can be used to fulfill the classicality condition is θ.

This situation is the same as the compact instanton case; however, there is a serious
problem. In the compact instanton case, there is only one boundary (future boundary);
hence, the classicality must be imposed given only one boundary. Using θ, we can make one
boundary classical. However, in the Euclidean wormhole case, there are two boundaries
that we need to classicalize. In general, it is impossible to classicalize two boundaries at
the same time.

However, there are a number of exceptional cases, e.g., let us consider the follow-
ing potential:

V(φ) =
3

8π`2

(
1 + A tanh2 φ

α

)
, (58)

where `, A, and α are free parameters (see Figure 7 [27]). This model provides a flat
hilltop [28] that is consistent with the Starobinsky model [29], which is preferred by the
recent Planck data analysis [30]. In this model, the scalar field at the end of the wormhole
rolls down to the local minimum, and hence the primordial inflation is naturally terminated.
By tuning θ, we classicalize this end. On the other hand, it is not possible to tune the other
end; however, if the scalar field rolls up to the hilltop, it is possible it will come to an
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automatic stop as long as the hilltop is sufficiently flat. If the field stops at the hilltop, the
field will not be classicalized though the metric will be classicalized because the kinetic
terms of the scalar field provide no contribution. Furthermore, because of the flat potential,
there will be a local shift symmetry. By shifting the field along the complex direction, one
can classicalize the field value at the hilltop. In any case, the point is that we can definitely
classicalize one end; the other end is a little bit subtle, but the Euclidean action does not
vary after the Wick-rotation at the hilltop. As we are observing only one universe, we do
not require to worry about the details at the other end of the wormhole as long as the real
part of the Euclidean action is bounded well.

Figure 7. Complex time contours and numerical solution of Re a, Im a, Re φ, and Im φ for Equation (58). The top figure is
the physical interpretation of the wormhole. Part A (red) and C (green) are Lorentzian, and Part B (blue) is Euclidean [27].

In terms of this mechanism, we have three important comments:

1. This mechanism cannot be applied to convex inflaton potential (e.g., quadratic poten-
tial). Therefore, the Euclidean wormhole selects the concave inflaton potential [27].
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2. For a given vacuum energy scale V0 or `, the probability of the Euclidean wormhole is
larger than that of the compact instanton [24] because the maximum probability of the
Euclidean wormhole is

log P ' π`2
(

1 + 0.16
( a0

`

)5/2
)

, (59)

where that of the compact instanton is log P = π`2.
3. For a given concave potential, there may be competition between the compact instan-

tons and Euclidean wormholes. The largest probability of compact instantons occurs
close to the cutoff, where it is generally larger than that of the Euclidean wormholes
that appear only near the hilltop. On the other hand, if we assume a mechanism that
enhances the large e-foldings (e.g., introducing a massive field direction), Euclidean
wormholes will be more highly favored than compact instantons [28]. Therefore, as
long as we assume that our universe experienced more than 50 e-foldings, a Euclidean
wormhole with a concave potential will be preferred over compact instantons with
convex or concave potentials.

In conclusion, Euclidean wormholes can interestingly answer the question of why our
universe started from the concave part of a potential rather than the convex part? However, there
is a point of warning that is worth remarking upon. For all computations of Euclidean
wormholes, we implicitly assumed the ultraviolet(UV)-completion of the inflaton poten-
tials. In general, the Euclidean wormhole requires the potential to have a flat direction.
However, in the context of the swampland criteria, this might be an unjustifiable assump-
tion. Identifying a sufficiently flat field direction within a UV-completed model would
make an interesting future research topic.

4.2. Euclidean Wormholes in Gauss–Bonnet-Dilaton Gravity

If we consider the string theory as the UV-completion of quantum gravity, it is rea-
sonable to include higher-order corrections of string-inspired models and observe their
physical applications. The most famous model in this regard is known as Gauss–Bonnet-
dilaton gravity:

S =
∫

d4x
√
−g
(

R
16π
− 1

2
(∇φ)2 −V(φ) +

1
2

ξ(φ)R2
GB

)
, (60)

where

R2
GB = RµνρσRµνρσ − 4RµνRµν + R2 (61)

is the Gauss–Bonnet term, φ is the dilaton field, and

ξ(φ) = λe−cφ (62)

is the coupling function of the dilaton field. Note that λ and c are model-dependent
parameters.

Due to the corrections of the Gauss–Bonnet-dilaton term, although the null energy
condition is satisfied, the null curvature condition is effectively violated. Equivalently,
if we consider the Gauss–Bonnet-dilaton term as an effective contributor to matter, the
null energy condition will be effectively violated. Accordingly, it is not surprising that a
Lorentzian or Euclidean wormhole solution might exist [31].
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To obtain a Euclidean wormhole solution, we consider the following initial condition
at τ = 0 [32]:

a(0) =

√
3

4π(2V0 − φ̇2(0))
, (63)

ȧ(0) = 0, (64)

φ(0) = φ0, (65)

φ̇(0) = 0, (66)

where a(0) is obtained from the Hamiltonian constraint equation. By tuning φ0, we must
satisfy the boundary condition at τ = τend:

a(τend) = 0, (67)

ȧ(τend) = −1, (68)

to achieve a regular end.
In general, this solution penetrates over a sharp potential barrier. Furthermore, be-

cause the volume is greater than that of the usual compact instanton, the probability is
higher than that of the pure de Sitter instanton. Therefore, once there exists a string-inspired
term, although there exists a potential barrier, it can be used to create a universe with a
higher probability.

If we Wick-rotate at τ = 0, we can apply this solution to quantum cosmology [25].
However, if we extend the Euclidean time to τ < 0 and Wick-rotate the solution along
the anisotropic direction, this can explain a (expanding) Lorentzian wormhole based on
quantum tunneling [32]. The examination of the quantum tunneling of the Lorentzian
wormhole is another interesting issue and requires further investigation.

4.3. Hartle–Hawking Wave Function with Loop Quantum Cosmology

For loop quantum gravity, we consider the generic quantum state that satisfies the
(quantum) Hamiltonian constraint equation, in addition to the (quantum) momentum
constraint equations. The generic states that satisfy the momentum constraint equations
should follow the loop representations. Due to the loop representation, there must be
a correction to the Hamiltonian constraint at the classical level [33]. By including these
corrections, we can examine the effects of quantum gravity.

In general, it is believed that, in a cosmological context, the beginning of the universe
can be explained by the big bounce. The Lorentzian dynamics of the scale factor satisfy the
equation ȧ2 + V(a) = 0, where V(a) has a zero at a minimum value amin. This corresponds
to the bouncing point of the universe [26]. However, there remains a conceptual question:
As a goes to amin, the universe approaches the deep quantum regime, and it must be asked
how we can select the arrow of time. It would seem strange if we were able to determine a
definite direction for time even in this quantum gravitational regime.

Perhaps this conceptual tension might be explained if we introduce the Hartle–
Hawking wave function [26]. To compute the Euclidean Lagrangian LE from the loop
quantum gravity modified Euclidean Hamiltonian HE, we follow the relation:

LE = pa ȧ− HE, (69)

where pa is the canonical momentum of a. However, because of the Hamiltonian constraint,
HE = 0 in the on-shell level description. Therefore, the Euclidean action is simply

SE = −3π

2

∫
aȧ2dτ = −3π

2

∫ amin

0
a
√
|V(a)|da. (70)

Interestingly, in Euclidean signatures, as a approaches to zero, V(a) approaches to
zero. This indicates that the instanton explains the infinitely stretched solution as a function
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of τ, although the probability is well-defined [34]. Except for this feature, the interpretation
is the same as that of the usual Hartle–Hawking wave function. Therefore, close to the
quantum bouncing point, the bouncing interpretation is not the only possible explanation,
as a universe can be created from nothing (Figure 8 [26]). Furthermore, in certain parameter
regimes, a Euclidean wormhole solution is possible. Accordingly, there is an ambiguity in
defining the arrow of time around the quantum bouncing point; either a contracting phase
bounces to an expanding phase or two expanding universes are created via a Euclidean
wormhole solution.

Figure 8. A conceptual interpretation of V(a) [26].

4.4. Fuzzy Instantons in Anti-De Sitter Space

Finally, we report a number of discussions of the anti-de Sitter space. Let us consider
the following potential:

V(Φ) = V0

(
−1− 1

2
µ2Φ2 + λΦ4

)
. (71)

In the Euclidean domain, it is not surprising to have a complex-valued solution. Thus,
we consider the following pure imaginary field: Φ→ iφ. Then, the potential is effectively

U(φ) = V0

(
−1 +

1
2

µ2φ2 + λφ4
)

, (72)

while the kinetic term has an opposite sign. Therefore, it is possible to determine a solution
according to which the scalar field asymptotically approaches zero while there may exist a
throat at the center [35].

One potential issue is whether the Euclidean action is well-defined or not. As the
volume of Euclidean anti-de Sitter space is infinite, the Euclidean action itself is infinite.
However, by subtracting to the pure anti-de Sitter background, one may obtain a finite
action difference. The sufficient condition to obtain a finite action difference is that the field
should approach zero sufficiently quickly near the infinity [36]. This can be achieved if we
tune the shape of the potential [35].

If this finite action difference is allowed, this instanton can explain a case of tunneling
from two separate anti-de Sitter spaces to a connected anti-de Sitter wormhole after the
Wick-rotation (Figure 9 [35]). This solution satisfies the classicality at the time-like infinity.
One potential question is whether any effects from the fuzzy core of the solution can reach
a future infinity or not. However, in principle, this solution is embedded in the Euclidean
path integral formalism. Therefore, we can very easily extend this technique to anti-de
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Sitter fuzzy Euclidean wormholes in a black hole background. After the Wick-rotation, this
explains a Lorentzian (probably unstable) wormhole in anti-de Sitter space. The existence of
this structure can then cause conceptual trouble with the ER = EPR conjecture [37]. We leave
these interesting connections to the information loss paradox for future research [38,39].

AdS r r AdSbefore tunneling

after tunneling

throat

Figure 9. Conceptual picture of tunneling in anti-de Sitter space [35].

5. Future Perspectives

In this study, we discussed various aspects of the fuzzy instantons of the Hartle–
Hawking wave function.

First, we examined the slow-roll inflation models. Due to the fuzzy instanton analysis
and classicality condition, the universe should experience a small amount of inflation.
However, the amount is not sufficient, and we require several routes to rescue the Hartle–
Hawking wave function to fit the observations. Perhaps the most natural approach is to
introduce a massive field and impose the classicalization of all matter fields.

Second, we investigated the cases in which the slow-roll conditions break down. This
is very natural from the point of view of a UV-completed theory such as string theory.
However, a classical universe can be created even in these cases. We named these new
types of solutions HSY instantons.

Third, we extended this to divergent situations, e.g., the Euclidean path integral
formalism does not necessarily indicate that there is only one boundary. In principle, there
can be two boundaries. This case is related to fuzzy Euclidean wormholes, which in de
Sitter space can explain the preference of a concave inflaton potential. Fuzzy Euclidean
wormholes in anti-de Sitter space may be related to the information loss paradox, in
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addition to a possible criticism of the ER=EPR conjecture. Furthermore, the no-boundary
wave function can be applied to string-inspired models or loop quantum cosmology models.
These models allow for Euclidean wormhole solutions.

There are several interesting possible directions for future research:

1. Traditionally, we assumed cosmological landscapes and considered slow-roll infla-
tion models. However, in recent discussions, models that are consistent with the
swampland criteria might be more interesting. The Hartle–Hawking wave function is
definitely useful for both problems, though it might be more interesting to provide pos-
sible observational consequences [40,41] that reveal issues related to the swampland
criteria.

2. Fuzzy Euclidean wormholes can be realized in various systems, but the application of
the associated techniques might be complicated beyond Einstein gravity. This might
include the Gauss–Bonnet-dilaton gravity model or the loop quantum cosmological
model. Some fuzzy extensions of oscillating instantons are interesting [42]. In any
case, this will be a challenging topic.

3. Fuzzy instantons in anti-de Sitter backgrounds or black hole backgrounds are another
interesting topic. This issue may cover a number of topics regarding Hawking radia-
tion [43] as well as the information loss problem [44]. However, it is fair to say that it
is not easy to impose the classicality condition at a future infinity if the symmetry is
less than the O(4)-symmetry. The generalization of dynamical instantons in spherical
symmetry will be an important topic.

In conclusion, the Euclidean path integral is approximated well by instantons. If
the instantons are dynamical, they must be fuzzy or complexified. An investigation of
dynamical wormholes is a challenging and fruitful future research topic. This is necessarily
related to the study of fuzzy instantons not only in the context of cosmology but also in
black hole physics. We leave these fascinating topics for future research.
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