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Abstract: This is an unconventional review article on spectral problems in black hole perturbation
theory. Our purpose is to explain how to apply various known techniques in quantum mechan-
ics to such spectral problems. The article includes analytical/numerical treatments, semiclassical
perturbation theory, the (uniform) WKB method and useful mathematical tools: Borel summations,
Padé approximants, and so forth. The article is not comprehensive, but rather looks into a few
examples from various points of view. The techniques in this article are widely applicable to many
other examples.
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1. Introduction

The main motivation to write up this article is the following. We collect various
traditional approaches to one-dimensional eigenvalue problems in quantum mechanics.
Some of them are well explained in the usual textbooks, but some are not. We would like to
demonstrate that these approaches are widely applicable to spectral problems in black hole
perturbation theory. We also present a unified manner to treat bound states and resonant
states together. The latter problem is particularly important in the analysis of quasinormal
modes (QNMs) of black holes.

We guess that some of the readers are familiar with general relativity but may not be
so familiar with quantum mechanics. Conversely, some may be familiar with quantum
mechanics but not with general relativity. The article is pedagogical and designed for both
of these people.

There have already been many excellent review articles [1–6] on black hole pertur-
bation theory. For differentiation from these articles, the contents of the current article
are intentionally quite biased. Although we review the linear perturbation of the four-
dimensional Schwarzschild spacetime in Appendix A, the reader who wants to learn black
hole perturbation theory in more general cases should see other good reviews [1–6] or text-
books [7–10] and references therein. In the main text, we rather concentrate our attention
on practical aspects of computational schemes on eigenvalue problems associated with
black hole perturbation theory.

Let us briefly comment on physical significances of QNMs. They are defined as poles
of Green’s function in initial value problems of the linear perturbation around black hole
solutions, and describe exponentially damped oscillation as the late time behavior of the
perturbation1 [11–15]. Interestingly, they also describe the last stage of a gravitational
waveform in a black hole merger, which was firstly observed by LIGO–Virgo [16], while
the black hole merger process should be treated as a fully non-linear problem. A recent
argument [17] shows that the gravitational waveform of the binary black hole merger can
be fit by the superposition of QNMs even before the peak amplitude. This suggests that
the linear perturbation treatment around the final state black hole is a good approximation
even just after the black hole merger. In general relativity, because of the uniqueness of
the Kerr black holes, the QNM spectra are completely characterized by their mass and
spin. If we can check it by observation, it will be a good test for general relativity. In
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other words, we have a possibility to test theories beyond general relativity through the
observation of QNMs [18]. For this purpose, the QNM spectra are particularly important.
The computational technique introduced in the present article can be also applied for
such problems.

Mathematically, the spectral problems in this article are connection problems of local
solutions to ordinary differential equations at two different spatial points, that is, two-
point boundary value problems. Since these problems require global information on the
solutions, they are not solved analytically in general. This fact makes spectral problems rich
and interesting. We would like to investigate the spectral problems as analytic as possible.

The organization of the article is as follows. In the next section, we review several
classic approaches to spectral problems in quantum mechanics. Some of them are less
familiar. It includes analytical/numerical treatments, perturbation theory and the WKB
method. All of them have direct applications to black hole physics. In most cases, spectral
problems are not exactly solvable. It is desirable to present widely applicable ways to
various problems. To understand this section, the reader needs basics on second order
ordinary differential equations, asymptotic analysis and Padé approximants, which are
summarized in Appendices B and C. In Section 3, we discuss how to apply these techniques
to spectral problems in black hole physics. We consider two spectral problems: quasinormal
modes and mode (in)stability of black holes by seeing concrete examples. More basics on
black hole perturbation theory are explained in Appendix A.

2. A Quantum Mechanical Approach to Spectral Problems

In this section, we review various ways for spectral problems in quantum mechanics.
In the next section, we will discuss actual applications to black hole physics.

2.1. Bound States and Resonant States

We begin by reviewing bound states and resonant states in quantum mechanics. Let
us consider the one-dimensional time-independent Schrödinger equation of the form:(

−h̄2 d2

dx2 + V(x)
)

ψ(x) = Eψ(x). (1)

This type of the eigen-equations appears in many places in theoretical physics. Differ-
ent contexts often provide us different perspectives to the same problem. In many cases, h̄
just appears as a parameter of the equation. A typical problem in quantum mechanics is
to compute energy eigenvalues of bound states for a given potential. Another interesting
problem is a potential scattering. As we see just below, this problem is related to resonant
states. These two problems turn out to be interrelated to each other. The former problem
is related to mode stability of black holes, and the latter has a direct connection with
quasinormal modes.

As is well-known, the bound states require the normalizability of the wave function.
Therefore the potential needs to have a global minimum in a considered region. However,
this does not mean that a potential with a minimum always has a bound state. Unless a
well is deep enough, no bound states exist. This point is crucially important in the analysis
of (in)stability problems of black holes.

The resonant states are less familiar. Let us consider a scattering problem for a potential
with a wall, shown in Figure 1.2
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Figure 1. Scattering process by a potential wall. Resonant states are defined by the absence of the
incoming wave. This occurs when 1/R→ 0 (or roughly |T| ∼ |R| � 1).

The Schrödinger equation in this setup is:(
−˜̄h2 d2

dx2 + Ṽ(x)
)

ψ̃(x) = Ẽψ̃(x). (2)

There is an incoming wave from x = +∞, and it scatters with the potential wall. As
a result, there are a reflected and a transmitted waves. In the region x ∼ +∞, the wave
function is written as:

ψ̃(x) ∼ ψ̃in(x) + Rψ̃r(x), x → +∞, (3)

where R is the reflection coefficient. In the region x ∼ −∞, only the transmitted wave
exists:

ψ̃(x) ∼ Tψ̃t(x), x → −∞, (4)

where T is the transmission coefficient. It is more convenient to change the overall normal-
ization as follows:

Bψ̃t(x) −∞←x←− ψ̃(x) x→+∞−→ Aψ̃in(x) + ψ̃r(x), (5)

where A = 1/R and B = T/R. The resonant states are defined by the absence of the
incoming wave:

A =
1
R

= 0. (6)

Clearly, it happens for characteristic energies that are located on singularities of the
reflection coefficient (or equivalently the transmission coefficient). Hence, this phenomenon
is called a resonance. In general, these characteristic eigenvalues are discrete but complex-
valued [19]. Note that the boundary condition for the resonant states is the same as that for
the quasinormal modes of black holes. Computing the resonant energies is the main issue
in this article.

Next, we see a relation between bound states and resonant states. In this article, we par-
ticularly focus on two types of potentials V(x) and their sign-flipped ones Ṽ(x) = −V(x),
as shown in Figure 2. Since the potential V(x) has a well in these cases, it admits bound
states. Then its inverted potential Ṽ(x) has resonant states. The energy eigenvalues of these
two states are simply related by an analytic continuation of the quantum parameter h̄. If
setting h̄ = i˜̄h,3 the eigen-Equation (1) is related to (2) with Ẽ = −E and ψ̃(x) = ψ(x)|h̄→˜̄h.4

Therefore physics in the system (2) may be described by that in the system (1). In particular,
we expect the following exact spectral relation: 5

Ẽresonance
n (˜̄h) = −Ebound

n (h̄ = i˜̄h), n = 0, 1, 2, . . . , (7)

where Ebound
n (h̄) is the bound state energy for the Schrödinger Equation (1), and Ẽresonance

n (˜̄h)
is the resonant energy for its sign-flipped one (2). We will test this equality in a few
examples in detail. We can extract the resonant energy from the bound state energy. This
idea has been applied to the computation of the QNM frequencies in [20,21] (see [22–24]
for earlier works).
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Figure 2. In this article, we mainly consider two types of potentials. These appear in the Morse
potential (8) (left) and in an effective potential (111) in the linear perturbation of the Schwarzschild
spacetime (right). Both cases can be treated in a unified manner.

2.2. Lessons from an Exactly Solvable Model

In the context of black hole perturbation theory, the Pöschl–Teller potential
ṼPT(x) = V0/(2 cosh2 βx) is usually taken as an exactly solvable example [22]. This
is reasonable because its shape is similar to effective potentials of master equations ap-
pearing in black hole perturbations, as in the right panel of Figure 2. For differentiation,
we take another less-familiar example: the Morse potential. The Morse potential is also
exactly solvable. Its asymptotic behavior is quite different from the potentials in black hole
perturbations. See the left panel of Figure 2. However, from the viewpoint of the singu-
larity structure of ordinary differential equations (see Appendix B), the Morse potential is
more similar to the spectral problem for asymptotically flat black holes. The Pöschl–Teller
potential is rather similar to the spectral problem for asymptotically (anti-)de Sitter black
holes. Since the Pöschl–Teller potential has been reviewed in detail in [5], we do not discuss
it here.

Let us consider the following very special potential:

VMorse(x) = V0(e2βx − 2eβx), −∞ < x < ∞, (8)

where we assume V0 > 0 and β > 0. Its shape is shown in the left panel in Figure 2. It has
the global minimum at x = 0. A simple reason of the solvability of the Morse potential is a
shape invariance [25]. Another explanation is that the Schrödinger equation is mapped to
the well-known equation as we will see below. To make expressions simpler, we introduce
the following rescaled parameters:

q := βx, ε :=
E
V0

, g :=
βh̄√
V0

. (9)

Then the Schrödinger equation is rewritten as:(
−g2 d2

dq2 + e2q − 2eq
)

ψ(q) = εψ(q). (10)

We change the variable z = (2/g)eq. The differential Equation (10) becomes:[
−z

d
dz

z
d
dz

+
z
4

(
z− 4

g

)]
ψ(z) =

ε

g2 ψ(z). (11)

We further perform the transform:

ψ(z) = e−z/2z
κ
g y(z), (12)

where κ :=
√
−ε. Since we are interested in the bound states, we implicitly assume

−1 < ε < 0 and κ > 0. However, in the construction of the solutions, we do not need
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this assumption. Then the differential equation reduces to the generalized (or associated)
Laguerre equation:

zy′′(z) + (α + 1− z)y′(z) + νy(z) = 0, (13)

where
α =

2κ

g
, ν =

1− κ

g
− 1

2
. (14)

The generalized Laguerre equation has the regular singular point at z = 0 and the ir-
regular singular point at z = ∞. It is essentially equivalent to the confluent hypergeometric
equation. The (characteristic) exponents at z = 0 are 0 and −α. The former solution corre-
sponds to the generalized Laguerre function Lα

ν(z). Some of basics on ordinary differential
equations are explained in Appendix B.

Let us see the eigenvalues of the bound states. In the limit z→ 0 (i.e., q→ −∞), since
the wave function behaves as ψ(z) ∼ z

κ
g or ψ(z) ∼ z−

κ
g , the normalizability requires the

regularity of y(z) at z = 0. This means that we have to choose y(z) = Lα
ν(z). Therefore the

analytic solution satisfying the boundary condition at z = 0 is given by

ψ(z) = e−z/2z
κ
g Lα

ν(z). (15)

This solution of course does not satisfy the boundary condition at z = ∞ for arbitrary
E because Lα

ν(z) exponentially grows in z → ∞. The boundary condition at infinity is
satisfied if and only if Lα

ν(z) is a polynomial. This requires ν to be a non-negative integer.
Therefore, we obtain an exact quantization condition for the bound states:

1−
√
−εn

g
− 1

2
= n, n = 0, 1, 2, . . . (16)

This is easily solved, and we finally obtain:

εn = −
[

1− g
(

n +
1
2

)]2
, n = 0, 1, 2 . . . . (17)

The same result is obtained by the asymptotic expansion of Lα
ν(z). It is well-known

that the generalized Laguerre function has the following asymptotic expansion:

Lα
ν(z) '

(−z)ν

Γ(ν + 1)

∞

∑
k=0

(−1)k(−ν)k(−α− ν)k

k!zk

− sin(πν)Γ(α + ν + 1)z−α−ν−1ez

π

∞

∑
k=0

(ν + 1)k(α + ν + 1)k

k!zk (z→ ∞),
(18)

where (a)k is the Pochhammer symbol. We have used ' instead of = because the right
hand side contains formal divergent series, that is, the radius of convergence is just zero.
We have to treat it in a careful manner. We return to this issue in the next subsection and
in Appendix B.3. Since the second line in this asymptotic expansion is a source of the
exponential grow, the boundary condition at infinity requires the absence of it: sin(πν) = 0.
Then, the right hand side in the first line has finite terms, and it reduces to a polynomial.

Let us count the number of the bound states. The positivity κn =
√
−εn > 0 for the

bound states leads to the upper bound to the quantum number n:

n <
1
g
− 1

2
. (19)

Therefore, the number of the allowed bound states, Nbound, is given by:

Nbound =

⌈
1
g
− 1

2

⌉
, (20)
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where dpemeans the least integer greater than or equal to p. For instance, if g ≥ 2, there
are no bound states although the potential still has the well. We show Nbound against the
parameter g in the left panel of Figure 3.

1 2 3 4 5

1

2

3

4

5 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Figure 3. (Left) The number of the allowed bound states in the Morse potential. (Right) The exact
spectrum εn against the parameter g. The solid lines are the physical bound state energies while the
dashed lines are on the unphysical branch. For 2/3 < g < 2, the branch for n = 0 is physical but
those for n ≥ 1 are all unphysical. The total number of the bound states is Nbound = 1, which is
consistent with the left panel.

Let us recall the exact spectrum (17). At first glance, it seems to give an infinite
number of the eigenvalues for n = 0, 1, 2, . . . . This is not the case. As seen above, for
relatively large n, κn becomes imaginary. How do we exclude such n’s by looking at only
the spectrum (17)? In the representation (17), this is understood as two branches of the
square root of −εn. We show in in the right panel of Figure 3 the spectrum εn against
the parameter g. For a given negative energy ranging −1 < ε < 0, we have two εn with
quantum number n corresponding to different g. The left branch (solid line) gives the
physical bound state energy because it is continuously connected with the classical point
g = 0. The right branch (dashed line) is an unphysical mode that does not satisfy the
bound state boundary condition.6 For a fixed value of g, highly excited states are mostly
on the unphysical branch.

Things are different for the resonant states. As mentioned in the introductory section,
the resonant states are related to the bound states by the analytic continuation: g = ig̃ (or
g = −ig̃). In this continuation, the parameters become:

z =
2
g

eq =
2
ig̃

eq, α =
2κ

ig̃
, ν =

1− κ

ig̃
− 1

2
. (21)

The eigenvalues and the eigenfunctions for the inverted potential Ṽ are given by:

ε̃n := −εn =

[
1− ig̃

(
n +

1
2

)]2
,

ψ̃n(q) = eieq/g̃
(

2
ig̃

eq
)−iκn/g̃

Lα
n

(
2
ig̃

eq
)

.

(22)

One can check that this eigenfunction always satisfies the boundary condition of the
resonant states for all n = 0, 1, 2, . . . . We conclude that there are always an infinite number
of the resonant states7 while the number of the bound states is finite. To construct highly
excited resonant states, we need unphysical “false bound states”.

2.3. Numerical Methods

There are many ways to evaluate the eigen-energies numerically. Since our purpose is
not to cover all of these methods, we present only two particular methods that are useful
in our later analysis.
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2.3.1. Milne’s Method

Here we revisit a very old result by Milne [26] because it is useful to numerically count
the number of bound states. We first rewrite the Schrödinger Equation (1) as:(

h̄2 d2

dx2 + Q(x)
)

ψ(x) = 0, (23)

where
Q(x) = E−V(x). (24)

We assume that Q(x) does not have any singular points for x ∈ R. We consider two
independent solutions satisfying conditions:

ψ1(x0) = 1, ψ′1(x0) = 0,

ψ2(x0) = 0, ψ′2(x0) = 1,
(25)

where x0 is a certain point on the real axis. It is well-known that the Wronskian of these
two solutions does not depend on x, and it always equals to unity. Let us define

wE(x) :=
√

ψ1(x)2 + ψ2(x)2, (26)

where we use the subscript E to emphasize the energy dependence of w. The fact that
the Wronskian of ψ1(x) and ψ2(x) is the unity guarantees that wE(x) never vanishes. It
satisfies

wE(x0) = 1, w′E(x0) = 0. (27)

One can easily check that wE(x) satisfies the following non-linear differential equation:(
h̄2 d2

dx2 + Q(x)
)

wE(x) =
h̄2

wE(x)3 . (28)

The two solutions are conversely reconstructed by:

ψ1(x) = wE(x) cos
[∫ x

x0

dx′

wE(x′)2

]
,

ψ2(x) = wE(x) sin
[∫ x

x0

dx′

wE(x′)2

]
.

(29)

Now, we would like to construct a solution that satisfies the decaying boundary
condition at x = −∞. Let us consider the following function:

ψ(x) = wE(x) sin
[∫ x

−∞

dx′

wE(x′)2

]
. (30)

This is a solution to (23) because the function ψ(x) is written as a superposition of the
two solutions ψ1(x) and ψ2(x).

ψ(x) = ψ1(x) sin
[∫ x0

−∞

dx′

wE(x′)2

]
+ ψ2(x) cos

[∫ x0

−∞

dx′

wE(x′)2

]
. (31)

This function also behaves as ψ(x) ∼ C/(xwE(x)) in x → −∞, and actually satisfies
the boundary condition at x = −∞. Therefore, this is what we want. Then, the decaying
boundary condition at x = ∞ requires:

sin
[∫ ∞

−∞

dx
wE(x)2

]
= 0. (32)
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Let us define
NMilne(E) :=

1
π

∫ ∞

−∞

dx
wE(x)2 − 1. (33)

The important fact found in [26] is that this function is a non-decreasing function of
E.8 It turns out that for the bound state energy En, the function satisfies9

NMilne(En) = n, n = 0, 1, 2, . . . . (34)

This is a kind of quantization condition. Therefore, NMilne(E) can be regarded as a
counting function of the bound states. If m− 1 ≤ NMilne(E) < m, then there are m bound
states below the energy E.

Now we apply this simple method to the Morse potential (8). In the actual computa-
tion, we use (10). To fit the notation in this subsection, we equivalently fix the parameters
V0 = β = 1. There is no difficulty to solve (28) with (27) numerically for given E. This
is just an initial value problem of the second order ordinary differential equation. We
can easily evaluate NMilne(E). Solving NMilne(E) = n, we obtain the bound state energy
at level n. In the computation, we set x0 = 0. It is interesting to notice that we have
another exact quantization condition (16). Since the left hand side in (16) is obviously an
increasing function,

Nexact(E) :=
1−
√
−E

h̄
− 1

2
(35)

is also a counting function.
We show in Figure 4 the behaviors of NMilne(E) and Nexact(E) for h̄ = 1/5. Inter-

estingly, these two functions are quite different, but NMilne(E) indeed gives the correct
bound state spectra. The total number of the bound states is evaluated by the values of the
counting functions at E = 0 because VMorse → 0 in x → −∞. In the case of h̄ = 1/5, since
NMilne(0) ≈ 4.1 or Nexact(0) = 4.5, we have the five bound states. Of course it is consistent
with the exact result (20). In other words, we always have

Nbound = dNexact(0)e = dNMilne(0)e. (36)

We can use this relation in the mode stability analysis of black holes. On the other
hand, it seems hard to apply this method to resonant state problems. To compute their
eigenvalues numerically, one needs other approaches.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0

1

2

3

4

Figure 4. Two counting functions of the Morse potential. The (red) thick line is Milne’s one, and the
(blue) thin line is Nexact(E).

2.3.2. Wronskian Method

We also review the well-known Wronskian method. The Wronskian is useful to
evaluate connection coefficients among local solutions. Let yp1(x) and yp2(x) be two
independent solutions around x = p. Let us consider a two-point boundary value problem
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between x = a and x = b. The four solutions should be related by the connection
coefficients:

ya1(x) = C11yb1(x) + C12yb2(x),

ya2(x) = C21yb1(x) + C22yb2(x).
(37)

The connection coefficients Cij are evaluated by Wronskians. Let us assume that ya1(x)
and yb1(x) satisfy boundary conditions we are interested in. Then these two boundary
conditions require:

C12 =
W[ya1, yb1]

W[yb2, yb1]
= 0 =⇒ W[ya1, yb1] = 0. (38)

This determines the eigenvalues of the boundary value problem. In other words,
C12 = 0 means that the two solutions ya1(x) and yb1(x) are linearly dependent, and their
Wronskian must vanish. This method works not only for bound state problems but also for
resonant state problems.

Let us apply it to the Morse potential. It is more convenient to use the z-variable. We
consider the boundary value problem for the differential Equation (13). As already seen,
the regular solution at z = 0 is given by y01(z) = Lα

ν(z). The construction of the local
solutions at infinity is more involved because z = ∞ is the irregular singular point. See
Appendix B.2 on formal series solutions at an irregular singular point. Here we take a
shortcut. We use the asymptotic expansion (18). This tells us the all-order expressions of
the two formal series solutions at z = ∞:

yformal
∞1 (z) = zν

∞

∑
k=0

(−1)k(−ν)k(−α− ν)k

k!zk ,

yformal
∞2 (z) = z−α−ν−1ez

∞

∑
k=0

(ν + 1)k(α + ν + 1)k

k!zk .
(39)

One can check that these are actually solutions to (13). The former solution satisfies
the boundary condition at infinity. An important caution is that the sums on the right hand
side are divergent series. They do not converge for any values of z and generic values of
α and ν. This is why we call these solutions formal. To see it in detail, let us consider the
truncated sum in the first equation in (39):

Sm(z) :=
m

∑
k=0

(−1)k(−ν)k(−α− ν)k

k!zk . (40)

We plot some values of Sm(z) for ν = 1/3, α = 3/2 and z = 1, 2, 3 in Figure 5.
Obviously Sm diverges when m gets large. The dashed lines are the values of the Borel
summation (see Appendix B.2) of the infinite sum S∞(z). By setting p = 1 in (A142), the
Bore sum of S∞(z) is analytically given by:

SBorel
∞ (z) =

∫ ∞

0
dζ e−ζ

2F1(−ν,−α− ν; 1;−ζ/z), (41)

where 2F1(a, b; c; z) is the Gauss hypergeometric function. This integral is convergent for
any z ∈ (0, ∞), and reproduces the asymptotic series S∞(z). Up to a certain order, Sm(z)
gets close to the Borel sum SBorel

∞ (z). This maximal order is called an optimal order. The
optimal order mopt(z) depends on z. Its simple estimation method is explained in [30].
In the present case, mopt(1) = 3, mopt(2) = 4 and mopt(3) = 6. See the right panel in
Figure 5. Beyond the optimal order, the approximation of SBorel

∞ (z) by the finite sum Sm(z)
gets worse. This fact sometimes causes a confusion in numerics. If a series expansion is a
divergent series, one has to choose a truncation order very carefully. A facile calculation
makes an approximation worse10. The Borel summation avoids this problem.
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z=1

z=2

z=3

5 10 15
m

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Sm

z=1

z=2

z=3

5 10 15
m

10-4

0.001

0.010

0.100

1

|1-Sm/S∞
Borel |

Figure 5. The (left) panel shows the divergence of the asymptotic sum Sm(z). We set ν = 1/3,
α = 3/2 and z = 1, 2, 3. The dashed lines represent the values of the Borel sum SBorel

∞ (z). The Borel
sum gives the “true value” of the formal divergent sum S∞(z). The (right) panel shows the optimal
order of Sm(z). Beyond this order, Sm(z) gets away from the “true value” SBorel

∞ (z).

Now we apply the Borel summation to the formal power series (39). The Borel
summation of the first equation in (39) is given by:

yBorel
∞1 (z) = zνSBorel

∞ (z) = zν
∫ ∞

0
dζ e−ζ

2F1(−ν,−α− ν; 1;−ζ/z). (42)

By construction, it has the correct asymptotic expansion in 1/z. This solution is
analytic in a Stokes sector −π < arg z < π, but the Stokes phenomenon happens along
arg z = ±π. See Appendix B.3 for the Stokes phenomenon. In our analysis here, the Stokes
phenomenon is not important because we are interested in arg z = 0. We look for the zeros
of the Wronskian for the two analytic solutions y01(z) and yBorel

∞1 (z). One can check that the
Wronskian for z > 0 vanishes when ν is a non-negative integer.

Of course, in most examples, we cannot construct analytic solutions at boundary
points. We have to use truncated series solutions to evaluate their Wronskians. If a
boundary point is an ordinary point or a regular singular point of a differential equation,
we can immediately apply Padé approximants to the truncated series solutions. It provides
us an approximate solution of the analytical one in the complex domain. For irregular
singular points, formal series solutions are usually divergent. For divergent series, Padé
approximants usually still works (see Appendix C.2), but sometimes, due to the Stokes
phenomenon, we need the Borel–Padé summation method or numerical solutions.

2.4. Perturbation Theory

In this subsection, we consider perturbative expansions of eigenvalues in the quantum
parameter h̄. Since the Schrödinger Equation (1) is the form of singular perturbation in h̄,
we cannot naïvely apply the ordinary method of Rayleigh–Schrödinger perturbation theory.
Normally singular perturbations are treated by the WKB method that is reviewed in the
next subsection. Here, we use a more unconventional treatment. We will show that results
from this method agree with those from the uniform WKB method in the next subsection.

We first rescale the variable by x =
√

h̄q. The Schrödinger Equation (1) is then
written as (

−1
2

d2

dq2 +
V(
√

h̄q)
2h̄

)
ψ(q) =

E
2h̄

ψ(q). (43)

It is more convenient to define new variables by:

g =
√

h̄, v(x) =
V(x)−V(0)

2
, ε =

E−V(0)
2h̄

. (44)

The Schrödinger equation is now written as:

−1
2

ψ′′(q) +
v(gq)

g2 ψ(q) = εψ(q). (45)
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In our analysis, the potential generically has the following form:

v(gq)
g2 =

1
g2

M

∑
m=0

gmvm(gq). (46)

Taking the limit g→ 0 with q kept finite, we can expand the potential functions as:

v0(gq)
g2 =

1
2

Ω2q2 +
∞

∑
j=3

gj−2v0,jqj,

gm−2vm(gq) =
∞

∑
j=1

gj+m−2vm,jqj, m ≥ 1,
(47)

where Ω =
√

v′′0 (0) and vm,j = v(j)
m (0)/j!. We have used v(0) = 0. Therefore (45) can

be regarded as a perturbation of the harmonic oscillator. In this picture, we zoom in the
potential minimum. Near the minimum the potential is a deformation of the harmonic
potential.

Now we can apply perturbation theory. The eigenvalue at the n-th energy level is
perturbatively expanded as:

εn =
∞

∑
l=0

glεn,l , εn,0 = Ω
(

n +
1
2

)
. (48)

The usual textbook method is quite complicated to compute high-order corrections for
the potential (47). Instead we use a smart way by Bender and Wu [31] and a generalization
by Sulejmanpasic and Ünsal [32]. The idea is very simple. We put the following ansatz of
the normalizable eigenfunction:

ψn(q) = Nn(g)e−Ωq2/2
∞

∑
l=0

gl Fn,l(q). (49)

In the perturbative computation, we can fix the overall factor Nn(g) as we want.
The zeroth order term Fn,0(q) is of course the n-th Hermite polynomial Hn(

√
Ωq) for the

unperturbed harmonic oscillator. The l-th order correction Fn,l(q) is a polynomial of at
most degree n + 3l,

Fn,l(q) =
n+3l

∑
k=0

Ak
n,lq

k, (50)

where we use a freedom of Nn(g) so that

An
n,l = δl0. (51)

This ansatz is very powerful. In fact, the Schrödinger equation determines all the
coefficients in the polynomial Fn,k(q) as well as εn,k recursively. This fact was first observed
in the quartic anharmonic oscillator [31], and it was recently generalized in [32] to arbitrary
potentials with a locally harmonic minimum.

We borrow the result in [32]. First, we have relations:

Ak
n,l =

1
2Ω(k− n)

[
(k + 2)(k + 1)Ak+2

n,l +
l−1

∑
j=1

2εn,j Ak
n,l−j − 2

l

∑
j=1

v0,j A
k−j−2
n,l−j

−2
l

∑
j=1

M

∑
m=1

vm,j A
k−j
n,l−j+2−m

]
(n + 1 ≤ k ≤ n + 3k),

(52)
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where we set Ak
n,l = 0 for k > n + 3k. This determines Ak

n,l for k = n + 3k,
n + 3k− 1, . . . , n + 1 uniquely. Next, the energy correction is obtained by:

εn,l = −
(n + 2)(n + 1)

2
An+2

n,l −
l−1

∑
j=1

εn,j An
n,l−j +

l

∑
j=1

v0,j A
n−j−2
n,l−j +

l

∑
j=1

M

∑
m=1

vm,j A
n−j
n,l−j+2−m. (53)

Finally, we fix the remaining coefficients by:

Ak
n,l =

1
2Ω(k− n)

[
(k + 2)(k + 1)Ak+2

n,l +
l

∑
j=1

2εn,j Ak
n,l−j − 2

l

∑
j=1

v0,j A
k−j−2
n,l−j

−2
l

∑
j=1

M

∑
m=1

vm,j A
k−j
n,l−j+2−m

]
(0 ≤ k ≤ n− 1).

(54)

These relations are easily solved by symbolic computation systems. In general, there
are no odd order corrections in the energy: εn,l = 0 for all odd l. The perturbative series of
the original energy is then given by:

En = V(0) + 2h̄εn = V(0) + 2h̄Ω
(

n +
1
2

)
+ 2h̄

∞

∑
l=1

h̄lεn,2l . (55)

Let us apply it to the Morse potential. We start with the rescaled eigen-Equation (10).
After changing variables q→ √gq and E = (ε + 1)/(2g), this is rewritten as:(

−1
2

d2

dq2 +
1
2

q2 +
∞

∑
k=1

gk/2 2k+2 − 2
2(k + 2)!

qk+2
)

ψ(q) = Eψ(q). (56)

It turns out that the energy eigenvalue has only the first order perturbative correction:

En = n +
1
2
− g

2

(
n +

1
2

)2
+ 0g2 + 0g3 + 0g4 + · · · . (57)

Of course, this is a reflection of the hidden supersymmetric structure in the Morse
potential. This cancellation is directly confirmed by the Mathematica package in [32] up to
any desired orders in g. The result is consistent with the exact result (17). However, we
should note that the wave function receives an infinite number of corrections. For instance,
the ground state eigenfunction is given by:

ψ0(q) = e−q2/2
(

1− g1/2

6
q(q2 + 3) +

g
72

q2(q4 + 3q2 + 9)− g3/2

6480
q3(5q6 + 54q2 + 135)

+
g2

155520
q4(5q8 − 30q6 + 81q4 + 162q2 + 405) + · · ·

)
.

(58)

It is a good exercise to compare it with the exact eigenfunction.
A merit of the perturbative series is that one can easily analytically continue the Planck

parameter to the complex domain. Therefore, the resonant eigenvalues are obtained in this
way. In the case of the Morse potential, the perturbative series accidentally stops at the first
order, but this is not the case for most models. Moreover the perturbative series (48) is not
convergent in general. Therefore we need to resume it by the Borel summation method (or
Padé approximants). This point is important to obtain correct numerical values.

2.5. The WKB Method

The WKB method is a very powerful tool to investigate global properties of the wave
function. Typically, it is used to analyze quantum tunneling effects. We review two WKB
methods.
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2.5.1. Standard WKB

Let us start with the original WKB method. We use (23). Since the equation takes the
form of the singular perturbation in h̄, we put the ansatz:11

ψ(x) =
1√
p(x)

exp
[

i
h̄

∫ x
p(x′)dx′

]
, (59)

where p(x) satisfies the non-linear differential equation:12

p(x)2 −Q(x) + h̄2
(

p′′(x)
2p(x)

− 3p′(x)2

4p(x)2

)
= 0. (60)

We can solve (60) perturbatively in h̄:

p(x) =
∞

∑
k=0

h̄2k pk(x). (61)

At the lowest order, we have two branches of the solution:

p±0 (x) = ±
√

Q(x) = ±
√

E−V(x). (62)

For each branch, the quantum corrections are uniquely fixed. Hence these two
branches leads to the two solutions of the Schrödinger equation. In general, these two are
independent. Once one of them is constructed, the other is easily obtained. Therefore, we
abbreviate the subscripts ±. The first two corrections in p(x) are given by:

p1 = −
p′′0

4p2
0
+

3p′20
8p3

0
,

p2 =
p′′′′0

16p4
0
−

5p′0 p′′′0

8p5
0
−

13p′′20

32p5
0
+

99p′20 p′′0
32p6

0
−

297p′40
128p7

0
.

(63)

The higher order corrections rapidly get so lengthy.
For practical computations, a sophisticated way in [33] is very useful.13 Let us intro-

duce the following notations:

q(x) :=
p(x)
p0(x)

, D̂ :=
1

p0(x)
d

dx
. (64)

The non-linear Equation (60) now becomes:

1− q(x)2 + h̄2
(

ε0(x) + q(x)1/2D̂2q(x)−1/2
)
= 0, (65)

where

ε0(x) := p0(x)−3/2 d2

dx2 p0(x)−1/2 =
5Q′(x)2

16Q(x)3 −
Q′′(x)
4Q(x)2 . (66)

We solve (65) perturbatively,

q(x) = 1 +
∞

∑
k=1

h̄2kYk(x). (67)

By construction we have pk(x) = Yk(x)p0(x). The non-linear Equation (65) leads to a
recurrence relation for Yk(x) [33]. This function can be separated as:

Yk(x) = Zk(x) + D̂Uk(x). (68)
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Note that this separation is not unique. We require that Zk(x) gets as “simple” as
possible, as shown below. It has the following advantage. In the WKB approach, a contour
integral around two turning points14.∮

C(a,b)
pk(x)dx, (69)

is particularly important. Here the contour C(a, b) is a closed curve encircling only the two
turning points x = a and x = b. Using the above notation, this integral is written as:∮

C(a,b)
pk(x)dx =

∮
C(a,b)

Yk(x)p0(x)dx =
∮

C(a,b)

(
Zk(x)p0(x) +

d
dx

Uk(x)
)

dx

=
∮

C(a,b)
Zk(x)p0(x)dx.

(70)

Therefore, the derivative term D̂Uk(x) does not contribute to the contour integral.
This fact drastically reduces the computational cost. For our purpose in spectral problems,
it is sufficient to compute Zk. These are much simpler than pk. Up to order h̄12 (k = 6), we
have:

Z1 =
1
2

ε0, Z2 = −1
8

ε2
0, Z3 =

1
32

(2ε3
0 − ε2

1),

Z4 = − 1
128

(5ε4
0 − 10ε0ε2

1 + ε2
2), Z5 =

1
512

(14ε5
0 − 70ε2

0ε2
1 + 14ε0ε2

2 − ε2
3),

Z6 = − 1
2048

(42ε6
0 − 420ε3

0ε2
1 − 35ε4

1 + 126ε2
0ε2

2 + 20ε3
2 − 18ε0ε2

3 + ε2
4),

(71)

where εk := D̂kε0. We perform the separation (68) so that Zk does not contain higher
derivative functions εk. This requirement uniquely fixes the separation. The explicit forms
of Uk are found in [33,35]. They are not important in our analysis.

Sometimes, the function Q(x) depends on h̄ explicitly. For example, in the next section,
we encounter the situation such as:

Q(x) = Q0(x) + h̄2Q1(x). (72)

Even in this case, we can still use the above formulae. Equation (60) is now written as:

p(x)2 −Q0(x) + h̄2
(
−Q1(x) +

p′′(x)
2p(x)

− 3p′(x)2

4p(x)2

)
= 0. (73)

Then the Equation (65) becomes:

1− q(x)2 + h̄2
(

ε0(x) +
Q1(x)
p0(x)2 + q(x)1/2D̂2q(x)−1/2

)
= 0, (74)

where p0(x) =
√

Q0(x). If we define:

ε̄0(x) := ε0(x) +
Q1(x)
p0(x)2 , (75)

then the formulae (71) still hold by replacing εk → ε̄k = D̂k ε̄0.
In general, the turning points in the contour integral are complex, and we have to

consider the WKB solutions in the complex domain. The WKB method still works in the
complex domain [36,37]. In the resonant spectral problem, such a complex analysis is
particularly important. Since the lowest function p0(x) is a multivalued function, we have
to choose branch cuts carefully in numerical calculations.
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Let us see the computations of the bound state energy and the resonant energy in the
WKB method. To find these eigenvalues, we need to solve the connection problems at the
semiclassical level. We start with the connection problem for the bound states shown in
the left panel in Figure 6. There are two real turning points a < b. We use the lowest order
WKB solution:

ψ(x) ∼ 1√
p0(x)

exp
[

i
h̄

∫ x
p0(x′)dx′

]
. (76)

Let us define:

w(x1, x2) :=
1
h̄

∫ x2

x1

√
E−V(x)dx, σ(x1, x2) :=

1
h̄

∫ x2

x1

√
V(x)− E dx. (77)

The solution satisfying the boundary condition at x → −∞ is given by:

ψ(x) ∼ 1√
p0(x)

e−σ(x,a), (78)

where we ignore irrelevant constants. Using the connection formula in [19], we can continue
this solution to the region in x → +∞. The result is:

1√
p0(x)

e−σ(x,a) −∞←x←− ψ(x) x→+∞−→ cos φ√
p0(x)

e−σ(b,x) +
2 sin φ√

p0(x)
eσ(b,x), (79)

where
φ =

π

2
− w(a, b). (80)

Figure 6. Two turning points in the WKB method.

In the region x → +∞, the first term satisfies the boundary condition. We conclude
that the bound state boundary condition requires:

sin φ = 0 ⇐⇒ w(a, b) = π

(
n +

1
2

)
, n = 0, 1, 2, . . . . (81)

where we have used w(a, b) > 0 for a < b. This equation is well-known as the Bohr–
Sommerfeld quantization condition.

It seems hard to extend this argument when the quantum corrections are taken into
account. Instead we rewrite the quantization condition as follows:∮

C(a,b)
p0(x)dx = 2πh̄

(
n +

1
2

)
, (82)

where p0(x) =
√

Q(x) should be understood as a multi-valued complex function that
defines a Riemann surface. Geometrically the left hand side gives an area surrounded by
the curve p2 + V(x) = E in the phase space (x, p). This quantization condition is simply
derived by the following argument. We assume that there are no singular points of the
Schrödinger equation inside the closed curve C(a, b). Then the wave function should
be single-valued when x goes around C(a, b). After encircling it, the WKB solution (76)
apparently becomes



Universe 2021, 7, 476 16 of 57

1√
p0(x)

exp
[

i
h̄

∫ x
p0(x′)dx′

]
→ − 1√

p0(x)
exp

[
i
h̄

∮
C(a,b)

p0(x)dx +
i
h̄

∫ x
p0(x′)dx′

]
, (83)

where the minus sign comes from the multi-valuedness of
√

p0(x).15 The single-valued
condition requires the quantization condition (82). This argument is easily extended to the
formal WKB solution (59) [38]. The result is given by:

∞

∑
k=0

h̄2k
∮

C(a,b)
pk(x)dx ' 2πh̄

(
n +

1
2

)
, (84)

or equivalently
∞

∑
k=0

h̄2k
∮

C(a,b)
Zk(x)p0(x)dx ' 2πh̄

(
n +

1
2

)
. (85)

Two remarks should be mentioned in order. As for usual perturbative series, the left
hand side is a formal divergent series in h̄. Therefore the equality in (84) and (85) should be
understood in the asymptotic sense. The Borel resummation of the left hand side causes the
Stokes phenomenon in the complex h̄-plane. Therefore, in general, the left hand side may
have non-perturbative corrections in h̄. Its analysis is quite complicated. This is beyond
the scope of this article. We refer to [34,37,39,40] on this issue. The other remark is that
if there is a singular point of the Schrödinger equation inside C(a, b), one has to consider
a monodromy (see Appendix B.1). Then the required condition is a matching condition
of two monodromies of the analytic solution and of the WKB solution. The monodromy
of the WKB solution is given by (83), and our task is to know the monodromy of the true
solution.

The argument of the resonant states is in parallel. See the right panel in Figure 6. Let
us define:

w̃(x1, x2) :=
1˜̄h
∫ x2

x1

√
Ẽ− Ṽ(x)dx, σ̃(x1, x2) :=

1˜̄h
∫ x2

x1

√
Ṽ(x)− Ẽ dx. (86)

In the case of the resonance, we start with the transmitted wave in x → −∞, and
connect it to the waves in x → +∞. The connection formula leads to:

T
1√

p̃0(x)
e−iw̃(x,ã) −∞←x←− ψ̃(x) x→+∞−→ 1√

p̃0(x)
e−iw̃(b̃,x) + R

1√
p̃0(x)

eiw̃(b̃,x), (87)

where ã and b̃ are two turning points, and

R =
e−iδ√

1 + e−2σ̃(ã,b̃)
, T =

e−σ̃(ã,b̃)−iδ√
1 + e−2σ̃(ã,b̃)

, (88)

with some phase shift δ that is not relevant in our analysis. See [19]. As seen in Section 2.1,
the resonant states require 1/R = 0, and semiclassically, it yields:

1 + e−2σ̃(ã,b̃) = 0. (89)

Therefore, we obtain the Bohr–Sommerfeld condition for the resonant energy:

σ̃(ã, b̃) = πi
(

n +
1
2

)
, n = 0,±1,±2, . . . . (90)

For the resonant states, σ̃(ã, b̃) must be complex-valued. There are no reasons to
exclude n < 0. However, the spectra for n = m and for n = −m− 1 (m = 0, 1, 2, . . . ) are
symmetric.16 This is checked by taking the complex conjugate to (90). We can restrict on
n ≥ 0 without loss of generality.
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If two turning points ã and b̃ are both real, σ̃(ã, b̃) is necessarily real. Therefore, the
resonance condition is never satisfied. This implies that the resonant energy should be
complex-valued. We have to carefully choose the correct complex turning points when we
solve the quantization condition (90). A simple criterion is to trace continuous variations
from real turning points to complex ones. To extend to the quantum corrected result, it is
useful to rewrite the quantization condition as:∮

C(ã,b̃)
p̃0(x)dx = 2π˜̄h(n +

1
2

)
. (91)

It is straightforward to derive the quantum corrected condition:

∞

∑
k=0

˜̄h2k
∮

C(ã,b̃)
p̃k(x)dx ' 2π˜̄h(n +

1
2

)
, (92)

or equivalently
∞

∑
k=0

˜̄h2k
∮

C(ã,b̃)
Z̃k(x) p̃0(x)dx ' 2π˜̄h(n +

1
2

)
. (93)

We have seen that the (all-order) Bohr–Sommerfeld quantization conditions for the
bound states and the resonant states are almost same. These are related by the analytic
continuation. This is a reason why we can expect the spectral relation (7).

For the Morse model (10), we compute the Bohr–Sommerfeld integral. The two
turning points are given by:

a = log(1−
√

1 + ε), b = log(1 +
√

1 + ε). (94)

These are real as long as −1 ≤ ε < 0. The classically allowed integral is exactly
given by:

w(a, b) =
1
g

∫ b

a

√
ε− e2q + 2eq dq =

π

g
(1−

√
−ε). (95)

The Bohr–Sommerfeld condition turns out to give the exact result in this case:

π

g
(1−

√
−εn) = π

(
n +

1
2

)
=⇒ εn = −

[
1− g

(
n +

1
2

)]2

. (96)

The computation of the resonant states for the inverted potential is almost the same:

σ̃(ã, b̃) =
1
g̃

∫ b̃

ã

√
−e2q + 2eq − ε̃ dq =

π

g̃
(1−

√
ε̃), (97)

where17 ã = log(1−
√

1− ε̃), b̃ = log(1 +
√

1− ε̃) and

π

g̃
(1−

√
ε̃n) = πi

(
n +

1
2

)
=⇒ ε̃n =

[
1− ig̃

(
n +

1
2

)]2

. (98)

It would be interesting to check that the quantum corrections really do not contribute
to the all-order Bohr–Sommerfeld quantization condition.

2.5.2. Uniform WKB

The uniform WKB method has a little bit of a different flavor. In the standard WKB
method, it is not so easy (but possible) to derive the semiclassical perturbative expansion
of the energy eigenvalue itself. In perturbation theory, this is easy, but it is rather hard
(but possible) to see the global structure of the solutions because we zoom in the potential
well/wall. The uniform WKB method has both advantages of these two approaches in a
sense. This is particularly powerful in the analysis of non-perturbative instanton corrections
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to the spectrum. See [41,42] for instance. In this article, we just show a perturbative aspect
to mention a relation to previous works in black hole physics.

The starting point is the following uniform WKB ansatz of the solution:

ψ(x) =
1√

u′(x)
Dν

(
u(x)√

h̄

)
, (99)

where Dν(z) is the parabolic cylinder function that satisfies the Weber equation:

y′′(z) +
(

ν +
1
2
− z2

4

)
y(z) = 0. (100)

This differential equation is essentially same as the Schrödinger equation for the
harmonic oscillator. The other solution is given by D−ν−1(iz). Plugging the uniform ansatz
into the Schrödinger Equation (1), one obtains:

1
4

u2u′2 + E−V − h̄
(

ν +
1
2

)
u′2 + h̄2

(
3u′′2

4u′2
− u′′′

2u′

)
= 0. (101)

For simplicity, we assume that the potential has the (global) minimum Vmin = 0
at x = 0. This is easily realized by constant shifts of x and E. The equation is solved
perturbatively:

u(x) =
∞

∑
l=0

h̄lul(x), E =
∞

∑
l=1

h̄lEl . (102)

At the lowest order, we have:

u0(x)u′0(x) = ±2
√

V(x). (103)

It is formally solved by:

u0(x)2 = 4
∫ x

0

√
V(x′)dx′, (104)

where we have chosen the positive branch. We have also required the condition u0(0) = 0
to fix the integration constant. The reason is as follows. If u0(0) 6= 0, then u′0(0) = 0
because of V(0) = 0 and (103). In this case, the wave function is divergent at x = 0. We
exclude this unphysical case. As in the standard WKB, two branches of the square root
in (104) lead to two independent solutions. We can choose the plus sign without loss of
generality.

Let us expand the potential around x = 0:

V(x) =
∞

∑
k=2

Vkxk. (105)

Then the solution u0(x) has the series representation:

u0(x) =
√

2V1/4
2 x +

V3

3
√

2V3/4
2

x2 +
−13V2

3 + 36V2V4

144
√

2V7/4
2

x3 +O(x4), x → 0. (106)

At the first order, we have:

E1 −
(

ν +
1
2

)
u′20 +

1
2

u0u′0(u0u1)
′ = 0. (107)
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It is not easy to solve this equation for u1 analytically. However, our goal is to get the
spectrum. This is done by the regularity condition of u1 at x = 0. The result is:

E1 = 2
√

V2

(
ν +

1
2

)
. (108)

Similarly at the second order, the regularity of u2 at x = 0 as well as u0 and u1
determines:

E2 = −7 + 60α2

32
V2

3
V2

2
+

3(1 + 4α2)

8
V4

V2
, (109)

where α := ν + 1/2. In this way, we can fix the perturbative coefficients order by order.
There is no difficulty to push the computation for higher orders.

So far, we do not require the normalizability of the wave function. It is realized by the
special condition ν = n (n = 0, 1, 2, . . . ) because in this case the parabolic cylinder function
Dν(z) becomes normalizable. The perturbative coefficients of the energy eigenvalue should
be compared with the result from the perturbative method in Section 2.4. It turns out that
both are in agreement as expected. See Equation (2.7) in [20].

A very similar approach is found in the context of black hole perturbation theory [43–45].
There, the connection problem near the potential peak was solved by using the parabolic
cylinder function. In black hole perturbation theory, the method in [43–45] is conventionally
called the WKB approach. In this article, we refer to it as the uniform WKB approach
to distinguish it from the standard WKB reviewed in the previous subsection. At the
perturbative level, the uniform WKB method leads to the same result in perturbation
theory. Its true value is revealed in non-perturbative analysis, which is beyond the scope of
this article.

3. Applications to Black Hole Perturbation Theory

Now we proceed to applications to two kinds of problems in black hole perturbation
theory. First, we review computations of the QNM frequencies of Schwarzschild black
holes. They are well-studied and a very good playground for the applications. Next, we
look at a mode stability problem of black strings in five-dimension. It is well-known that
they show the Gregory–Laflamme instability. We show that the method in Section 2.3
allows us to evaluate a critical value of a parameter in this phase transition numerically.
This method also judges a mode (in)stability of a given black hole easily.

3.1. Quasinormal Modes of Schwarzschild Black Holes

For notational simplicity, we abbreviate tildes in this subsection though we consider a
resonant state problem. It will cause no confusions. Let us see the QNM problem of the
four-dimensional Schwarzschild spacetime. We will present basics on linear perturbation
theory of this geometry in Appendix A. There are also several excellent review articles
on the QNMs [2–6]. The odd parity gravitational perturbation finally leads to the master
equation with the effective potential (A91). As we will discuss in Appendix A, it is well-
known that the odd parity and the even parity perturbations have the same QNM spectra.
Since the former master equation is simpler than the latter one, we can concentrate our
attention to the odd parity sector.

For later convenience, we use a dimensionless variable z = r/rH = r/(2M) rather
than the radial variable r itself. The master equation then takes the form:(

f (z)
d
dz

f (z)
d
dz

+ (2Mω)2 −Vs(z)
)

φ(z) = 0, (110)

where

f (z) = 1− 1
z

, Vs(z) = f (z)
(
`(`+ 1)

z2 + (1− s2)
1
z3

)
. (111)
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Here, s = 0, 1, 2 is the spin weight of the perturbing field. To see a direct connection to
the Schrödinger equation, it is useful to introduce the so-called tortoise coordinate by:

dx
dz

=
1

f (z)
⇐⇒ x = z + log(z− 1) + c, (112)

where we fix the integration constant c so that the potential Vs has a peak at x = 0. This
choice is not essential in the following analysis. In the tortoise coordinate x, the potential
Vs has the shape shown as the dashed line in the right panel of Figure 2. The analytic form
in terms of x is complicated. The resonant boundary condition is then given by:

φ→
{

e−2iMωx ∼ (z− 1)−2iMω (x → −∞),
e+2iMωx ∼ e+2iMωz (x → +∞).

(113)

As we will see below, sometimes it is more convenient to use the original variable z
rather than the tortoise variable x.

We apply previous methods to compute quasinormal mode frequencies (i.e., resonant
energies), satisfying this boundary condition. Our purpose is to present widely applicable
ways. The computation here is just an example. For instance, one can easily extend
it to other spherically symmetric geometries such as the Reissner-Nördstrom solution.
Although the Kerr solution is not spherically symmetric, the approach in this article is
probably applicable even in this case. To do so, we note that an alternative master equation,
which is isospectral to Teukolsky’s master equation [46], for the Kerr spacetime was recently
conjectured in [47]. This master equation is expected to be useful for studying the QNM
spectra.

3.1.1. Wronskian Method

We first apply the Wronskian method to this problem. For this purpose, we use the
z-variable. Transforming the wave function by18

φ(z) = z1+s(z− 1)−2iMωe2iMωzy(z), (114)

then the new function y(z) satisfies the differential equation:

y′′(z) +
(

γ

z
+

δ

z− 1
+ ε

)
y′(z) +

αz− q
z(z− 1)

y(z) = 0, (115)

where

q = `(`+ 1)− s(s + 1) + 4iMω(1 + 2s), α = (4Mω)2 + 4iMω(1 + s),

γ = 1 + 2s, δ = 1− 4iMω, ε = 4iMω.
(116)

This differential equation is well-known as the confluent Heun equation [48]. The
relation between the master Equation (110) and the confluent Heun equation was discussed
in great detail in [49]. We construct formal series solutions at z = 1 (event horizon) and
z = ∞ (spacial infinity). The local solutions at z = 1 can be expressed by the local confluent
Heun solution in [48], but we rather construct the series solutions directly for extensions to
other cases.

The point z = 1 is a regular singular point of (115). Its exponents are ρ1 = 0 and
ρ2 = 1− δ. Recalling the transformation (114), the QNM boundary condition at z = 1 is
satisfied by the solution with ρ1 = 0. Therefore the Frobenius series solution we want is
given by:

y11(z) =
∞

∑
k=0

ak(z− 1)k. (117)
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Plugging it into the confluent Heun equation, we obtain the following three-term
recursion:

α1
k ak+1 + β1

kak + γ1
k ak−1 = 0, (118)

where
α1

k = (k + 1)(k + δ),

β1
k = k2 + k(γ + δ + ε− 1) + α− q,

γ1
k = (k− 1)ε + α.

(119)

Using this recursion, we can easily evaluate the coefficients ak to very high orders.
The series solution is convergent for |z− 1| < 1 in general. In the practical computation,
we have to truncate the sum at a certain finite order. The standard method to reconstruct
an (approximate) analytic solution from a truncated convergent series solution is Padé
approximants. We review the Padé approximants in Appendix C.

Let us proceed to the solutions at infinity. The confluent Heun equation has the
irregular singular point at z = ∞. The Poincaré rank of this singular point is just r = 1, and
the asymptotic series solutions take the form (see Appendix B.2):

yformal
∞ (z) = eazzb

∞

∑
k=0

ck

zk . (120)

The leading asymptotic behavior determines a and b as:

(a, b) =
(

0,−α

ε

)
,
(
−ε,−γ− δ +

α

ε

)
. (121)

The QNM boundary condition at infinity is satisfied by the former case. Therefore, we
seek the formal solution with the form:

yformal
∞1 (z) = z−α/ε

∞

∑
k=0

ck

zk . (122)

The coefficients ck again satisfy the following three-term recursion:

α∞
k ck+1 + β∞

k ck + γ∞
k ck−1 = 0, (123)

where
α∞

k = (k + 1)ε,

β∞
k = −k2 + k

(
γ + δ− ε− 1− 2α

ε

)
+ q− α +

α(γ + δ− 1)
ε

− α2

ε2 ,

γ∞
k =

(
k− 1 +

α

ε

)(
k− γ +

α

ε

)
.

(124)

A big difference from the solution near the horizon z = 1 is that this formal series
is not convergent for any z. We have to truncate or resum it properly as in the Morse
potential. As shown in Section 2.3, one way is the Borel summation. In practice, however,
the computational cost is much saved by using the Padé approximants. We discuss an
application of the Padé approximants to divergent series in Appendix C.2.

In summary, to evaluate the Wronskian practically, we use the Padé approximants
y[M1/N1]

11 (z) and y[M∞/N∞ ]
∞1 (z) of the formal series solutions (117) and (122) by regarding

z − 1 and 1/z as expansion parameters, respectively. We have a freedom to choose z0,
at which we search zeros of the Wronskian. We fix it so that both the approximants
y[M1/N1]

11 (z0) and y[M∞/N∞ ]
∞1 (z0) have the same numerical accuracy. Such accuracy is roughly

estimated by |1− y[(M−1)/(N+1)](z0)/y[M/N](z0)|. Therefore our requirement for z0 is:

|1− y[(M1−1)/(N1+1)]
11 (z0)/y[M1/N1]

11 (z0)| ∼ |1− y[(M∞−1)/(N∞+1)]
∞1 (z0)/y[M∞/N∞ ]

∞1 (z0)|.
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Let us show an explicit result. We set (s, `) = (2, 2), and computed the series
solutions (117) and (122) up to (z − 1)120 and 1/z120 respectively for a given numerical
value of Mω. By using the recurrence relations, they are very quickly done. We used the
Padé approximants y[60/60]

11 (z) and y[60/60]
∞1 (z). Setting z0 = 8, we searched zeros of the

Wronskian W[y[60/60]
11 , y[60/60]

∞1 ] by Newton’s method for an initial value Mω = 0.4− 0.07i.
Then we finally get:

MωQNM
s=2,`=2 ≈ 0.373671684418041835793492− 0.0889623156889356982804609i. (125)

Comparing it with a zero of W[y[59/61]
11 , y[59/61]

∞1 ], the accuracy estimation is about
O(10−30). Therefore, we can obtain quite good numerical values of the QNM eigenvalues.
However, in this approach, it is not easy to identify the overtone number of the obtained
QNMs. This identification is usually fixed by comparing with other approaches like the
perturbative method or the (uniform) WKB method. In these methods, we can easily know
the overtone number of the QNM, as will be seen below.

The Wronskian method presented here is similar to the well-known continued fraction
method by Leaver [50]. We do not explain Leaver’s method in detail because it is discussed
in many places. An advantage of the Wronskian method is that it still works even when
we do not have an explicit recurrence relation. We just need two series (or numerical)
solutions satisfying proper boundary conditions. This can be done without information on
the recurrence relation in principle. Moreover, to use Leaver’s continued fraction method,
one has to treat a recurrence relation carefully if it is not a three-term relation [51,52]. In
this sense, the application range of the Wronskian method is wider than that of Leaver’s
method. However, since Leaver’s method seems to be the best numerical method to obtain
the precise QNM frequencies for the Schwarzschild spacetime, we can use it as a reference
for comparison. For instance, the numerical result (125) shows about 30-digit agreement
with Leaver’s result as expected.

3.1.2. WKB Method

We proceed to another method. In the WKB method, we have two options which
variables x or z we use. It turns out that the z-variable looks more useful technically. The
similar approach is found in [35].

To see a quantum mechanical aspect more clearly, we rewrite the master Equation (110)
as follows. First, we divide it by `(`+ 1)/2,[

2
`(`+ 1)

f (z)
d
dz

f (z)
d
dz

+
2

`(`+ 1)
(2Mω)2 − f (z)

(
2
z2 +

2
`(`+ 1)

1− s2

z3

)]
φ(z) = 0. (126)

We regard the coefficient in front of the derivative term as the square of a Planck
parameter,

h̄ :=
(

2
`(`+ 1)

)1/2

. (127)

Of course, this is not a unique way to introduce h̄. Ultimately, one can freely introduce
it by hand, and set h̄ = 1 at last. Such freedom is related to a choice of “base functions”
in [33]. Here, we choose a very particular base function, which naturally relates h̄ to the
multipole index `. It has the advantage that we do not have to introduce an additional
freedom of parameters.

Then, we obtain[
h̄2 f (z)

d
dz

f (z)
d
dz

+ E− f (z)
(

2
z2 + h̄2 1− s2

z3

)]
φ(z) = 0, (128)

where
E :=

2
`(`+ 1)

(2Mω)2. (129)
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In terms of the tortoise variable x, this is nothing but the Schrödinger equation. The
potential receives the quantum correction in general. In our picture, the master equation
for general spins s is regarded as a quantum deformation from that for the electromagnetic
perturbation s = 1. Note that this picture is just a computational technique.

The role of the multipole number ` is now mapped to (the inverse of) the Planck
parameter. The eikonal limit ` → ∞ corresponds to the classical limit h̄ → 0. We should
note that ` = 0 is singular in our picture.19 We have to consider this case separately. The
treatment in this particular case is, however, straightforward by introducing a formal
Planck parameter by hand.

Next, we rewrite the differential equation as the so-called normal form. To do so, we
transform the dependent variable by:

ψ(z) =
√

f (z)φ(z). (130)

We finally obtain the Schrödinger-like equation for the z-variable:(
h̄2 d2

dz2 + Q0(z) + h̄2Q1(z)
)

ψ(z) = 0, (131)

where

Q0(z) =
2− 2z + Ez3

z(z− 1)2 , Q1(z) =
1− 4s2 + 4s2z

4z2(z− 1)2 . (132)

Note that the domain we are interested in is z > 1, not the whole real line.
We apply the WKB method to the differential Equation (131). This is essentially the

same form as (23), but Q depends on h̄ explicitly. Even in this case, we can apply the
WKB method, as was discussed in the previous section. The all-order Bohr–Sommerfeld
quantization condition is given by (93). We start with:

p0(z) =
√

Q0(z) =

√
2− 2z + Ez3

(z− 1)
√

z
. (133)

Three zeros of Q0(z) are turning points. For 0 < E < 8/27, two of them are in the
regime z > 1. Let us denote these two turning points by a(E) and b(E) with a(E) < b(E),
as shown in Figure 6. In the computation of the quasinormal mode frequencies, we need to
analytically continue these turning points to the complex domain.

We want to compute the contour integral:

Ω0(E) :=
∮

C(a,b)
p0(z)dz =

∮
C(a(E),b(E))

√
2− 2z + Ez3

(z− 1)
√

z
dz. (134)

At first glance, it looks hard to perform the integral analytically. In principle, it is
evaluated numerically by analytic continuations of a(E) and b(E) for complex values of E.
In the numerical computation, we have to choose directions of branch cuts carefully.20 In
our case, however, it is evaluated analytically. We need no integration formulae.

A basic strategy to obtain an analytic result is to look for a differential equation that
Ω0(E) satisfies. To do so, we notice that the known function p0(z) satisfies the following
partial differential equation:(

8E2(8− 27E)
∂3

∂E3 + 4E(40− 189E)
∂2

∂E2 + 2(16− 123E)
∂

∂E
+ 15

)
p0

=
∂

∂z

(
8
√

z(−15 + 20z− 3z2 − (2 + 3E)z3 + Ez4)

(2− 2z + Ez3)3/2

)
.

(135)
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Since the integration contour C(a, b) is a closed path that does not encircle the branch
point z = 0 nor the other turning point, the contour integral of the right hand side trivially
vanishes. As a result, we immediately find an ODE for Ω0(E),(

8E2(8− 27E)
d3

dE3 + 4E(40− 189E)
d2

dE2 + 2(16− 123E)
d

dE
+ 15

)
Ω0(E) = 0. (136)

Such ODEs for contour integrals are known as Picard–Fuchs equations [53]. To find
the Picard–Fuchs Equation (136), the partial differential Equation (135) for p0 is crucial.
This happens very non-trivially, and we do not have a systematic algorithm to find it. An
approach in [53] is a hint to do this for general cases. Here we have put ansatz of differential
operators appropriately.

Once we find the Picard–Fuchs Equation (136), it is not difficult to solve it. The stan-
dard technique is to construct series solutions at singular points, as reviewed in Appendix B.
In the current case, we find analytic solutions in terms of generalized hypergeometric func-
tions by using a new variable.21

ξ =
8

27E
. (137)

The general solution is given by:

Ω0(E) =
C1√

ξ
+ C2ξ1/6

3F2

(
1
6

,
1
6

,
2
3

;
1
3

,
5
3

; ξ

)
+ C3ξ5/6

3F2

(
5
6

,
5
6

,
4
3

;
5
3

,
7
3

; ξ

)
. (138)

There are three integration constants, which should be fixed by conditions of Ω0(E)
with the integral form (134). This is obtained by considering the limit E→ 8/27 or ξ → 1.
In this limit, the two turning points a and b meet together at z = 3/2. The integrand p0(z)
has the expansion around ξ = 1,

p0(z) =
2z− 3

3(z− 1)

√
2(z + 3)

3z
− 2z2

3(z− 1)(2z− 3)

√
2z

3(z + 3)
(ξ − 1)

+
2z2(z3 − 9z + 9)

(z− 1)(z + 3)(2z− 3)3

√
2z

3(z + 3)
(ξ − 1)2 +O((ξ − 1)3).

(139)

The turning points a and b are now shrinking in all orders in ξ − 1. Then, the integral
around the turning points a and b is simply evaluated by the residue theorem:

Ω0(E) = −
√

2πi(ξ − 1) +
49πi
36
√

2
(ξ − 1)2 +O((ξ − 1)3), ξ → 1. (140)

Our requirement for the integration constants is to reproduce this expansion from (138).
With the help of Mathematica, we find the following exact values:

C1 =
8πi

3

√
2
3

, C2 = − i
2

√
3
2

Γ2(1/6)
Γ(1/3)

, C3 =
3i
8

√
3
2

Γ2(5/6)
Γ(2/3)

. (141)

Once we find the exact form of Ω0(E), it is a easy task to continue it to the complex
E-plane. Our leading Bohr–Sommerfeld quantization condition is:

Ω0(E) = 2πh̄
(

n +
1
2

)
, E = h̄2(2Mω)2, h̄ =

(
2

`(`+ 1)

)1/2

. (142)

Note that there is no spin dependence at the leading order while the multipole depen-
dence is included through the Planck parameter. This is expected in the eikonal limit. The
spin dependence appears as “quantum corrections” to the potential. As mentioned above,
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at the leading order, the quantization condition should give an approximate value for s = 1.
The integer n characterizes quasinormal modes. It corresponds to the overtone number.

By solving the quantization condition (142) for ` = 1 and n = 0, we find the following
values of the frequencies:

Mω
(0)
`=1,n=0 ≈ 0.2675− 0.09695i, (143)

where the superscript (0) means the leading Bohr–Sommerfeld approximation. This value
is compared to the QNM frequency for the s = 1 perturbation,

MωQNM
s=1,`=1,n=0 ≈ 0.248263264178− 0.0924877179529i. (144)

The leading approximation already provides a relatively good numerical value. Of
course, the semiclassical approximation should get better for the eikonal limit `� 1. The
` = 1 case is the most “severe” situation.

The approximation is expected to be improved by including the quantum corrections
as in (93). To check it, we need:

Ωk(E) =
∮

C(a,b)
Zk(z)p0(z)dz, (145)

where Zk are given by (71) but we have to replace ε0 by ε̄0 in (75) due to the quantum
correction Q1(z) to the potential.

It turns out that these integrals are also evaluated analytically in the Schwarzschild
case. The idea is similar to the Picard–Fuchs equation. We look for certain differential
operators acting on Ω0(E). Let us see the computation for k = 1 in detail. We want to
evaluate

Ω1(E) =
∮

C(a,b)
Z1(z)p0(z)dz =

1
2

∮
C(a,b)

ε̄0(z)p0(z)dz, (146)

where

ε̄0(z) = p0(z)−3/2 d2

dz2 p0(z)−1/2 +
Q1(z)
p0(z)2 . (147)

We seek a good differential relation for the integrand Z1(z)p0(z). We find the following
one:

Z1(z)p0(z) = D1 p0(z) +
∂

∂z
a1,0 + a1,1z + · · ·+ a1,5z5
√

z(2− 2z + Ez3)3/2 , (148)

where D1 is a second order differential operator,

D1 =

(
1

12
(5− 24s2)− 9

8
(1− 6s2)E

)
∂2

∂E2

+

(
1

12
(1− 12s2)− 3

4
(1− 6s2)E

)
∂

∂E
+

(
1
16

+
3

32
(1− 6s2)E

)
,

(149)

and a1,i are some coefficients. We do not know a general algorithm to find (148), but once
we put such an ansatz correctly by trials and errors, we can fix all the coefficients uniquely.
With the similar argument for the Picard–Fuchs equation, the relation (148) immediately
leads to the contour integral relation:

Ω1(E) = D1Ω0(E). (150)

Since we know Ω0(E) exactly, we obtain an analytic form of Ω1(E) without any
integration!
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This nice property seems to exist in the higher corrections. We observe that there exist
second order differential operators such as

Ωk(E) = DkΩ0(E). (151)

We confirmed this statement up to k = 6.
Now we can evaluate the Bohr–Sommerfeld condition with the quantum corrections.

We want to solve:
∞

∑
k=0

h̄2kΩk(E) ' 2πh̄
(

n +
1
2

)
. (152)

Of course, in the practical computation, we have to truncate the sum on the left hand
side at a certain finite order. We set (s, `) = (2, 2), for example. We solve the 12th order
(k = 6) quantization condition for n = 0, and obtain the numerical eigenvalue,

Mω
(12)
s=2,`=2,n=0 ≈ 0.3736290− 0.08894092i. (153)

This is indeed close to the correct value (125). The approximation is improved by using
Padé approximants for the asymptotic series (152). If we use the [6/6] Padé approximant
of the left hand side, we get:

Mω
[6/6]
s=2,`=2,n=0 ≈ 0.3736770− 0.08896645i. (154)

The more detailed result is shown in Table 1.

Table 1. The numerical fundamental QNM frequency for the gravitational perturbation s = 2 with
` = 2. The numerical values in the WKB analysis are determined by solving (152) for n = 0. The
values in the perturbative analysis are obtained from (168). The same result as (168) is also obtained
by the uniform WKB analysis. These approximate methods get better in the eikonal limit `→ ∞, and
thus ` = 2 is the most severe.

Order WKB Perturbation/Uniform WKB

h̄0 0.4686939− 0.09646671i 0.4714045
h̄2 0.3824606− 0.08924751i 0.3748360− 0.1210154i
h̄4 0.3745148− 0.08847747i 0.3723472− 0.0896396i
h̄6 0.3734578− 0.08859956i 0.3735116− 0.0882316i
h̄8 0.3734641− 0.08878269i 0.3737158− 0.0887288i
h̄10 0.3735665− 0.08889202i 0.3736968− 0.0889343i
h̄12 0.3736290− 0.08894092i 0.3736751− 0.0889682i

[6/6] Padé 0.3736770− 0.08896645i 0.3736670− 0.0889626i

Wronskian 0.3736717− 0.08896232i 0.3736717− 0.08896232i

3.1.3. Perturbative Method

Next, we use perturbation theory, reviewed in Section 2.4. Fortunately we have a
natural quantum parameter h̄ in terms of the multipole index `. We derive the perturbative
expansions of the QNM frequencies in this quantum parameter. Compared with the WKB
method, this method has an advantage that directly gives the small-h̄ expansion of the
QNM frequency. As we have already mentioned, the same result is also obtained by the
uniform WKB method in Section 2.5.

For this purpose, the tortoise variable (112) is useful. We rewrite (128) as:[
−h̄2 d2

dx2 + V(x)
]

φ(x) = Eφ(x), (155)
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where

V(x) = V0(x) + h̄2V1(x) = f (z)
(

2
z2 + h̄2 1− s2

z3

)
. (156)

The potential now depends on h̄, but we can use the results in the previous section.
V0(x) has the maximum at z = 3/2. We fix the integration constant c in (112) so that
z = 3/2 is mapped to x = 0. Hence we have c = −3/2 + log 2. We then expand the
potential V0(x) and V1(x) around x = 0.

V0(x) =
8

27
− 32x2

729
+

128x3

19683
+

256x4

59049
− 256x5

177147
− 2048x6

7971615
+O(x7),

V1(x) = (1− s2)

(
8

81
− 16x

729
− 32x2

2187
+

128x3

19683
+

448x4

531441
− 8192x5

7971615
+

17408x6

215233605
+O(x7)

)
.

(157)

Recall that we are considering the resonant problem for the QNMs. Strictly speaking,
to use perturbation theory in Section 2.4, we need to analytically continue the Planck
parameter h̄→ −ih̄ in order to invert the potential. See [20] for detail. However, the result
in Section 2.4 can be formally used if we instead consider the analytic continuation of Ω.
Let us see it in detail.

The Equation (155) can be written as:

−1
2

ψ′′(q) +
v(gq)

g2 ψ(q) = εψ(q), (158)

where g =
√

h̄ and x = gq,

v(gq)
g2 =

v0(gq)
g2 + g2v4(gq),

v0(x) =
V0(x)−V0(0)

2
, v4(x) =

V1(x)−V1(0)
2

,

(159)

and

ε =
E−V(0)

2h̄
. (160)

The perturbative series of ε can be computed by the method reviewed in Section 2.4.
The angular frequency Ω is given by:

Ω2 = 2v′′0 (0) = −
32

729
, (161)

which is now purely imaginary due to the resonant problem. However we can regard Ω as
a formal parameter during the computation.

Here, we focus on the lowest overtone n = 0 for simplicity. The perturbative correc-
tions are then computed as follows. For l = 1, 2, . . . , we start with the recurrence relation
(see (52)),

Ak
0,l =

1
2Ωk

[
(k + 2)(k + 1)Ak+2

0,l +
l−1

∑
j=1

2ε0,j Ak
0,l−j − 2

l

∑
j=1

v0,j A
k−j−2
0,l−j

−2
l

∑
j=1

v4,j A
k−j
0,l−j−2

]
(1 ≤ k ≤ 3l),

(162)

where we regard Ak
0,l = 0 for k > 3l and for k < 0. This determines Ak

0,l for
k = 3l, 3l − 1, . . . , 1 in this order. Then the energy correction is obtained by:

ε0,l = −A2
0,l . (163)

Recall that we set A0
0,l = δl0.
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For l = 1, the recurrence relation (162) gives:

A3
0,1 = − 64

59049Ω
, A2

0,1 = 0, A1
0,1 = − 64

19683Ω2 , A0
0,1 = 0. (164)

Then we find ε0,1 = 0.
For l = 2, we have the following non-zero components:

A6
0,2 =

2048
3486784401Ω2 , A4

0,2 = − 32
59049Ω

+
5632

1162261467Ω3 ,

A2
0,2 = − 32

19683Ω2 +
5632

387420489Ω4 ,
(165)

and
ε0,2 =

32
19683Ω2 −

5632
387420489Ω4 . (166)

Up to this order, the results do not depend on s, but the spin-dependence appears for
l ≥ 3. In this way, we can easily fix ε0,l up to quite high orders.

The perturbative series of the fundamental QNM frequency is given by:

(Mω
pert
n=0)

2 =
`(`+ 1)

8

[
V(0) + h̄Ω + 2h̄

∞

∑
l=1

h̄lε0,2l

]
. (167)

Plugging Ω = −4
√

2i/27 and s = 2, we finally get22

(Mω
pert
s=2,n=0)

2 =
`(`+ 1)

8

[
8

27
− 4
√

2ih̄
27

− 281h̄2

729
+

6163ih̄3

26244
√

2
+

969319h̄4

17006112

+
60687295ih̄5

2448880128
√

2
+

21306926297h̄6

528958107648
− 4107036251635ih̄7

114254951251968
√

2

+
172267964131073h̄8

24679069470425088
+O(h̄9)

]
.

(168)

Recall that h̄ =
√

2/[`(`+ 1)]. The higher order corrections are easily and quickly
computed by using Mathematica.

Note that this result is closely related to the uniform WKB method in [43–45,54]. The
result can also be compared with an expansion in [55]23 by re-expanding (168) in terms of
L−1 := (`+ 1/2)−1. As we have mentioned many times, the semiclassical perturbative
series (168) is in general an asymptotic divergent series, and we have to truncate the sum
at the optimal order or to resum it by the Borel(-Padé) summation [20,21] or the Padé
approximants [56–58].

For ` = 2, we show the numerical values of Mω
pert
s=2,`=2,n=0 for lower orders in Table 1.

Of course, as in the WKB analysis, the perturbative approximation is better for larger `.
An advantage of this method is that it is widely applicable to many potentials. In

fact, to compute the QNM frequency we need only the information near the potential
peak (i.e., the Taylor series around it). The global information is encoded in high-order
corrections in principle. Moreover, the overtone number n of the QNMs naturally appears
as the quantum number of the bound states.

The application range of perturbation theory is quite wide. One can consider other
types of perturbative expansions of the QNM spectra. For instance, some parameters of
black holes can be regarded as deformation parameters from simpler geometries (e.g., the
Schwarzschild spacetime). The Reissner-Nördstrom spacetime is regarded as a deformation
of the Schwarzschild one by the electric charge, and the Kerr case is also regarded as a
deformation by the angular momentum. Then one can consider the perturbative expansions
of the QNM spectra for such deformation parameters [47,59–62].
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3.1.4. Comments on Even Parity Perturbation

So far, we have looked into the analysis in the odd parity sector as well as in the scalar
and the electromagnetic perturbations. As discussed in Appendix A, the even parity gravi-
tational perturbation of the Schwarzschild spacetime leads to the Zerilli Equation (A105).
Since the QNM spectra of the Zerilli equation is exactly the same as those of the Regge–
Wheeler equation, it is sufficient to study either of them. However we should comment
that our formulation is also applicable to the Zerilli equation. We briefly see it.

In our convention in this section, the Zerilli equation is written as:(
f (z)

d
dz

f (z)
d
dz

+ (2Mω)2 −V+(z)
)

φ(z) = 0, (169)

where

f (z) = 1− 1
z

, V+(z) = f (z)
λ2(λ + 2)z3 + 3λ2z2 + 9λz + 9

z3(λz + 3)2 , (170)

with λ = `2 + ` − 2. This ODE has regular singular points at z = 0, 1,−3/λ and an
irregular singular point at z = ∞ with Poincaré rank 1. Then, the local series solutions near
z = 1 and z = ∞ can be constructed straightforwardly. This means that the Wronskian
method works in this case.

The semiclassical analyses are also applied. To see them, we rewrite the Zerilli
potential as:

V+(z) = f (z)
(
`(`+ 1)

z2 + δV+(z)
)

, δV+(z) = −
3(λ(λ + 4)z2 + 6z− 3)

z3(λz + 3)2 . (171)

In the eikonal limit ` → ∞, we can see δV+(z) ∼ O(1), and then this part can be
regarded as the “quantum” correction, as in the Regge–Wheeler potential. We can play
the same game. In particular, the perturbative correction is computed by expanding the
potential as:

V+(z) =
f (z)
h̄2

[
2
z2 − h̄2 3

z3 − h̄4 3(2z− 3)
z4 − h̄6 3(4z2 − 15z + 12)

2z5 +O(h̄8)

]
, (172)

with h̄ =
√

2/[`(`+ 1)]. We can use the general formulation in Section 2.4. Note that,
to obtain a perturbative correction to the eigenvalue, we can truncate the sum in the
potential (172) to a certain order. It is a good exercise to check that the perturbative
correction to the QNM frequency for this potential agrees with (168) for the Regge–Wheeler
potential. This is nothing but the isospectrality of the Regge–Wheeler/Zerilli potential. See
Appendix A.4.7.

3.2. Mode Stability Analysis: Gregory–Laflamme Instability for Black Strings

In this subsection, we discuss the mode stability problem in black hole perturbation
theory. If the linear perturbation of a spacetime geometry has an exponentially growing
mode, then it is unstable. In the language of master equations, there exists a bound state
solution with a negative energy (E = ω2 < 0) that corresponds to an unstable mode. As
we reviewed in Section 2.3, the number of bound states of the Schrödinger type equation is
captured by counting functions. We can use them to judge whether the linear perturbation
of a given geometry is stable or not.

Here we use Milne’s counting function (33) for this purpose. The number of bound
states below an energy E are computed by dNMilne(E)e. Therefore the mode stability
condition is simply presented by:

NMilne(0) < 0. (173)

If this condition is satisfied, then there is no bound state for E < 0.
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Let us consider a concrete example. We discuss the mode (in)stability of black strings
in five-dimensions. It is well-known that this black string shows the so-called Gregory–
Laflamme instability. We show that Milne’s counting function actually explains the critical
value of this transition. The metric of the black string solution in five-dimension is given by

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) + dz2, (174)

where f (r) = 1− rH/r, and the z-direction is compactified. The master equation reduces
to the Schrödinger type equation,(

d2

dx2 + ω2 −V(x)
)

ψ(x) = 0, (175)

where x is the tortoise variable, defined by:

x = r + rH log
(

r
rH
− 1
)
+ c. (176)

The integration constant c is fixed as follows.
The potential is explicitly given by:

V(x) =
f (r)
r3

k6r9 + 6k4r7 − 9k4r6rH − 12k2r4rH + 9k2r3r2
H + r3

H
(k2r3 + rH)2 , (177)

where k is the wave number along the z-direction. For k2 < 2 +
√

3, the potential has a
global minimum in r > rH . V → 0 in x → −∞, and V → k2 in x → ∞. We focus on the
case 0 < k2 < 2 +

√
3, and fix the integration constant c so that the potential V(x) has a

minimum at x = 0. The typical shape of V(x) is shown in the left panel of Figure 7.
We first solve the differential equation:(

d2

dx2 + E−V(x)
)

wE(x) =
1

wE(x)3 , wE(0) = 1, w′E(1) = 0, (178)

where E = ω2. Milne’s counting function is then obtained by:

NMilne(E) =
1
π

∫ ∞

−∞

dx
wE(x)2 − 1. (179)

Of course, the non-linear differential Equation (178) cannot be solved analytically.
We numerically solve it for a finite segment [xmin, xmax]. We finally want to evaluate
NMilne(0). We have to care about its numerical evaluation. In the region x > xmax, the
potential is greater than zero-energy. See the left of Figure 7. Since 1/w0(x)2 very rapidly
decays in x > xmax, we can ignore the contribution to NMilne(0) from this region as long as
V(∞) = k2 > 0. On the other hand, in x < xmin, the potential asymptotically goes to zero.
The contribution from this region is not exponentially small for E = 0. We need to evaluate
this contribution approximately. If |xmin| is large, we can ignore the potential. Therefore
the approximate equation at E = 0 in x < xmin is

w̄′′0 (x) =
1

w̄0(x)3 . (180)

This equation can be solved analytically,

w̄0(x)2 = C1 +
(x + C2)

2

C1
, (181)
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where C1 and C2 are integration constants. We have to connect it, at x = xmin, with
the (numerical) solution in xmin ≤ x ≤ xmax smoothly. This determines the integration
constants. The result is the following:

C1 =
w0(xmin)

2

1 + w0(xmin)2w′0(xmin)2 , C2 = −xmin +
w0(xmin)

3w′0(xmin)

1 + w0(xmin)2w′0(xmin)2 , (182)

where w0(xmin) and w′0(xmin) are evaluated by solving (178) at E = 0 numerically. There-
fore the counting function at E = 0 is approximately evaluated by

NMilne(0) =
1
π

∫ ∞

−∞

dx
w0(x)2 − 1 ≈ 1

π

∫ xmax

xmin

dx
w0(x)2 +

1
π

∫ xmin

−∞

dx
w̄0(x)2 − 1, (183)

where the integration over (−∞, xmin) can be computed exactly,∫ xmin

−∞

dx
w̄0(x)2 =

∫ xmin

−∞
dx

C1

C2
1 + (x + C2)2

= arctan[w0(xmin)w′0(xmin)] +
π

2
. (184)

Our final expression is thus given by:

NMilne(0) ≈ 1
π

∫ xmax

xmin

dx
w0(x)2 +

1
π

arctan[w0(xmin)w′0(xmin)]−
1
2

. (185)

The remaining integral is evaluated by solving (178) with E = 0 numerically for
xmin ≤ x ≤ xmax.
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Figure 7. (Left) The shape of the potential (177) is shown. The parameter is fixed as k = 0.7. Our
interest is to know whether this potential admits a bound state or not. (Right) This figure show
Milne’s counting function for the black string potential (177). There is the critical value kc ≈ 0.876 at
which the counting function changes its sign.

Now we apply this formalism to the black string potential (177). Technically, it is
not hard to solve (178) numerically for a given potential because it is an initial value
problem. In the right panel of Figure 7, we show NMilne(0) against the parameter k. We
set xmin = −100 and xmax = 100. It is clear to see that there is a value at which the sign of
NMilne(0) changes. This is nothing but the Gregory–Laflamme instability. Our estimation
of the critical value kc is:

kc ≈ 0.8762. (186)

For k < kc, there exists a negative bound state mode, and we conclude that the black
string solution is unstable.

We note that there is another efficient way to discuss the mode stability of black
holes [63–66]. The approach in this article is effectively useful to see the (in)stability quickly.
On the other hand, the method in [63–66] is useful to show the (in)stability more rigorously.

4. Concluding Remarks

In this article, we reviewed various techniques in quantum mechanics, and explained
how these techniques are applied to spectral problems appearing in black hole perturbation
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theory. Each of them has its own advantage, and it would be important to see the same
problem from various perspectives. We hope that the techniques in this article will be
useful for future developments of black hole perturbation theory.

Our main interest is QNM frequencies, which is particularly important in recent
gravitational wave observations. As spectral problems, they are understood as resonant
eigenvalues for Schrödinger-type wave equations. We showed various methods to compute
the QNM frequencies with high precision both numerically and analytically.

We also proposed a simple criteria to see the mode (in)stability of the linear pertur-
bation of a given geometry. The problem is mapped to an existence condition of negative
energy bound states. We can easily write it down by using Milne’s very old idea in [26]. As
an application, we explicitly showed the Gregory–Laflamme instability of 5D black string
solutions.

In theories beyond general relativity, one often encounters coupled master equations.
There are some approaches to analyze such systems [60,66–73]. It would be interesting to
develop the techniques in this article for the coupled master equations.

Although we did not review them in this article, there are also new perspectives to study the
black hole spectral problems from four-dimensional supersymmetric gauge theories [47,74,75]
and from two-dimensional conformal filed theories [76–80].24 The ideas are based on the
common mathematical structure in the spectral problems. These new perspectives provide
us powerful analytic treatments for the spectral problems. However, a nice physical
interpretation of the relation is still obscure.
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Appendix A. Derivation of the Master Equations around the Four-Dimensional
Schwarzschild Spacetime

In this appendix, we review a derivation of the master equations around the Schwarzschild
spacetime [82,83]. For simplicity, we assume that the spacetime is four dimensional and
it has the global spherical symmetry. The basic technique used in this section can also
be applied for the various cases such as modified gravity theories. See also reviews and
textbooks [1,3,7–9]. For further general cases, which treat higher dimensions and the
maximally symmetric angular part, are discussed, for example, in [84,85].

Appendix A.1. Four-Dimensional Schwarzschild Spacetime and Killing Vectors

The metric of the Schwarzschild spacetime is given by

ds2 = g(Sch)
µν dxµdxν = − f dt2 +

dr2

f
+ r2(dθ2 + sin2 θdφ2), (A1)
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with f = 1− rH/r. This spacetime admits four linearly independent Killing vectors

ξ
µ

(t)
∂

∂xµ =
∂

∂t
, (A2)

ξ
µ

(1)
∂

∂xµ = − sin φ
∂

∂θ
− cos θ cos φ

sin θ

∂

∂φ
, (A3)

ξ
µ

(2)
∂

∂xµ = cos φ
∂

∂θ
− cos θ sin φ

sin θ

∂

∂φ
, (A4)

ξ
µ

(3)
∂

∂xµ =
∂

∂φ
, (A5)

where those vectors satisfy the Killing equations ∇µξµ +∇νξµ = 0. The generator of the
spherical symmetry ξ

µ

(I) with I = 1, 2, 3 form the SO(3) algebraic relations

[Lξ(I)
,Lξ(J)

] = εI JKLξ(K)
, (A6)

where I, J, K run over 1, 2, 3, the operator Lξ(I)
denotes the Lie derivative along ξ

µ

(I), and
εI JK is the totally anti-symmetric symbol with ε123 = 1. Defining the Casimir operator
L2 as

L2 :=
3

∑
I=1
Lξ(I)
Lξ(I)

, (A7)

the relations

[L2,Lξ(I)
] = 0, (A8)

hold for I = 1, 2, 3.

Appendix A.2. Massless Klein–Gordon Equation

First, we consider the massless Klein–Gordon equation on the Schwarzschild spacetime

�Φ = 0, (A9)

where � = ∇µ∇µ. Before showing the explicit calculation, we discuss the general relation
among the separation of variables and Killing vectors.

Appendix A.2.1. Killing Vector and Separation of Variable

When a spacetime admits a Killing vector ξµ, we can choose the coordinate system so
that ξµ becomes one of the coordinate basis. We denote the corresponding coordinate by λ,
then

ξµ ∂

∂xµ =
∂

∂λ
, (A10)

holds. In particular, the Killing equations Lξ gµν = 0 become

∂gµν

∂λ
= 0, (A11)

in this coordinate system and the relation [∂/∂λ,�] = 0 holds because the d’Alembertian,
which acts on scalar fields, � = (1/

√
|g|)∂µ(

√
|g|gµν∂ν) does not depend on λ. If we

assume the form of the Klein–Gordon field Φ as

Φ = eiLλΦ̃(xi), (A12)
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where L is the separation constant and xi denote the coordinates except for λ, we obtain a
relation

∂

∂λ
�Φ = �

∂Φ
∂λ

= iL�eiLλΦ̃(xi)

= iL�Φ. (A13)

The solution of this equation can be written by

�Φ = eiLλF(xi), (A14)

where F is a function of xi. Thus, we conclude that the Klein–Gordon equation reduces to
the equation F(xi) = 0 which only contains xi, while the explicit form of the function F(xi)
is not known.

If the spacetime admits two or more commutative Killing vectors, we can choose coor-
dinate system so that these Killing vectors are coordinate bases, and the same discussion as
single Killing vector case holds by using the method of separation of variables with respect
to the corresponding coordinates.

Appendix A.2.2. Separation of Variable Using SO(3) Symmetry

While the SO(3) Killing vectors ξ
µ

(I) are not commutative, we can consider the simul-

taneous eigenfunction of one of the Killing vectors and L2. We denote the simultaneous
eigenfunction with respect to Lξ(t)

,Lξ(3)
and the Casimir operator L2 by e−iωteimφS(θ)

where ω and m are constants, and we assume the eigenvalue of L2 is −`(` + 1). The
operator L2 satisfies

[L2,�] = 0, (A15)

because L2 = ∑3
I=1 Lξ(I)

Lξ(I)
and [Lξ(I)

,�] = 0. Assuming the form of the Klein–Gordon
field Φ as

Φ = e−iωteimφS(θ)Φ̃(r), (A16)

the relations

Lξ(t)
Φ = −iωΦ, (A17)

Lξ(3)
Φ = imΦ, (A18)

L2Φ = −`(`+ 1)Φ, (A19)

hold. Because the operator L2 is the Laplacian on S2, L2Φ = ∂2
θΦ + cot θ∂θΦ + csc2 θ∂2

φΦ,
the regular solutions to the above equations exist only when ` = 0, 1, 2, · · · and
m = 0,±1,±2, · · · ,±` from the Sturm-Liouville theory, then eimφS(θ) is the spherical
harmonics Y`m

eimφS(θ) = Y`m. (A20)

Defining L± = −iLξ(1)
±Lξ(2)

, the relations

L±Y`m =
√
(`∓m)(`±m + 1)Y`m±1, (A21)
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hold for different modes m. Using the commutation relations [Lξ(t)
,�] = [Lξ(3)

,�] =

[L2,�] = 0, we can also show that �Φ satisfies

Lξ(t)
�Φ = −iω�Φ, (A22)

Lξ(3)
�Φ = im�Φ, (A23)

L2�Φ = −`(`+ 1)�Φ. (A24)

The regular solution of the above equations can be written by

�Φ = e−iωtY`mF(r), (A25)

where F(r) is a function of r. This implies that the Klein–Gordon equation reduces to an
ordinary differential equation F(r) = 0 which only depends on r.25

Appendix A.2.3. Explicit Calculation

We write the form of the Klein–Gordon field Φ as

Φ = ∑
`,m

Φ`m, (A26)

with

Φ`m = e−iωtY`m(θ, φ)
Φ(0)(r)

r
, (A27)

where we assumed the time dependence as e−iωt and omitted to write indices `, m in Φ(0).
Because Equation (A25) holds for each mode `, m, and the spherical harmonics Y`m with
different indices are linearly independent, we can separately discuss different `, m modes.
The Klein–Gordon equation for each mode reduces to26

�Φ`m =
e−iωtY`m

r f

(
f

d
dr

(
f

dΦ(0)

dr

)
+
(

ω2 −V(0)
)

Φ(0)

)
= 0, (A28)

where the effective potential V(0) is given by

V(0) = f
(
`(`+ 1)

r2 +
rH

r3

)
. (A29)

Thus, we obtain the master equation

f
d
dr

(
f

dΦ(0)

dr

)
+
(

ω2 −V(0)
)

Φ(0) = 0. (A30)

We comment that if we consider the massive Klein–Gordon equation (�−m2)Φ = 0,
the effective potential is changed as V(0) → V(0) + f m2.

Appendix A.3. Vector Harmonics on S2

Before discussing the case of the Einstein equations, we introduce some mathematical
arguments.



Universe 2021, 7, 476 36 of 57

Appendix A.3.1. Helmholtz–Hodge Decomposition

We introduce the Helmholtz–Hodge decomposition of vector and symmetric two
tensor fields on S2. 27 Let γij be the metric of a unit two sphere S2

γijdxidxj = dθ2 + sin2 θdφ2. (A31)

In this subsection, i, j denote the tensor indices on S2, and we raise or lower tensor
indices by γij. We denote by ∇̂i the covariant derivative with respect to γij.

Any regular vector field vi on S2 can be uniquely decomposed into the scalar part and
the vector part as

vi = ∇̂iS + Vi, (A32)

with

∇̂iVi = 0. (A33)

The proof is simple. Taking the divergence of Equation (A32), we obtain an equation
∇̂ivi = ∇̂i∇̂iS. Solving this Poisson equation on S2, ∇̂iS is uniquely determined.28 Then,
Vi is given by Vi = vi − ∇̂iS which clearly satisfies ∇̂iVi = 0.

In a similar way, any regular symmetric tensor field tij on S2 can be uniquely decom-
posed as29

tij =

(
∇̂i∇̂j −

1
2

γij4̂
)

tT + tLγij + 2∇̂(it
v
j), (A34)

with

∇̂itv
i = 0. (A35)

To prove this, first, taking the trace of Equation (A34), we obtain tL = ti
i/2. Next,

acting an operator ∇̂i∇̂j on Equation (A34), after some calculation, we obtain

4̂4̂tT + 24̂tT = 2∇̂i∇̂j(tij − tLγij). (A36)

Solving Equation (A36) with respect to 4̂tT , an equation 4̂tT = A with a regular
function A is obtained, and then we obtain tT by solving this equation. Then, the form
of (∇̂i∇̂j − (1/2)γij4̂)tT is uniquely determined.30 Finally, taking a divergence of Equa-
tion (A34), we obtain an equation

∇̂i
(

tij −
(
∇̂i∇̂j −

1
2

γij4̂
)

tT − tLγij

)
= 4̂tv

j + tv
j . (A37)

The solution of Equation (A37) with ∇̂itv
i = 0 is uniquely determined except for

the homogenous solutions. Because the homogenous solutions correspond to the Killing
vectors on S2, they do not affect the form of ∇̂(itv

j).

Appendix A.3.2. Vector Harmonics

It is well known that any regular function on S2 can be written by the spherical
harmonics Y`m. Here, we introduce the vector spherical harmonics V`m

i which can express
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any divergence free regular vector field on S2.31 The vector spherical harmonics V`m
i

satisfies the equations32

Lξ(3)
V`m

i = imV`m
i , (A38)

L2V`m
i = −`(`+ 1)V`m

i , (A39)

with

∇̂iV`m
i = 0, (A40)

where ` = 1, 2, · · · , and m = 0,±1,±2, · · · ,±`. We can explicitly construct V`m
i by using

the spherical harmonics Y`m as

V`m
i = ε̂i

j∇̂jY`m, (A41)

where ε̂ij is the Levi–Civita tensor of γij.33

Using the vector spherical harmonics, any divergence free vector Vi on S2 can be
written by

Vi = ∑
`m

d`mV`m
i , (A42)

where d`m are constants. Then, a vector field vi in Equation (A32) becomes

vi = ∇̂iS + Vi

= ∑
`,m

v`m
i

= ∑
`,m

(
c`m∇̂iY`m + d`mV`m

i

)
. (A43)

We note that each `, m component v`m
i satisfies

Lξ(3)
v`m

i = imv`m
i , (A44)

L2v`m
i = −`(`+ 1)v`m

i . (A45)

On the other hand, if vi satisfies Equations (A44) and (A45), vi should take the form of

vi = v`m
i = c`m∇̂iY`m + d`mV`m

i . (A46)

This can be shown as follows. Substituting Equation (A43) into Equations (A44) and (A45),
we obtain equations ∑ ¯̀,m̄(m̄−m)v ¯̀m̄

i = 0 and ∑ ¯̀,m̄(
¯̀( ¯̀ + 1)− `(`+ 1))v ¯̀m̄

i = 0. Then v ¯̀m̄
i

with ¯̀ 6= ` and m̄ 6= m should vanish because of the linear independence of Y`m and V`m
i .

Appendix A.4. Einstein Equations

Appendix A.4.1. Linear Metric Perturbation

Next, we consider the case of the vacuum Einstein equations.34

We denote by εhµν the small deviation from the Schwarzschild metric where ε is a
small parameter. The total metric at O(ε) becomes

gµν = g(Sch)
µν + εhµν. (A47)
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We need to solve the vacuum Einstein equations Gµν = 0 or equivalently Rµν = 0 at
O(ε)

Gµν = ε

(
− 1

2
∇µ∇νhα

α −
1
2
∇α∇αhµν +∇α∇(µhν)α +

1
2

gµν(∇α∇αhβ
β −∇α∇βhαβ)

)
=: εX̂hµν = 0, (A48)

where ∇µ denotes the covariant derivative with respect to the Schwarzschild metric, and
X̂ denotes the operator s.t. X̂hµν gives the linearized Einstein tensor.

The perturbed metric hµν can be written by

hµνdxµdxν = hABdxAdxB + hAidxAdxi + hijdxidxj, (A49)

where A, B run t, r, and i, j run θ, φ. We can regard hAB, hAi, hij as scalar, vector and
symmetric tensor on S2, respectively. Then, using the Helmholtz–Hodge decomposition,
perturbed metric hµν can be expressed by Y`m and V`m

i

hµνdxµdxν = ∑
`,m

h`m
µν dxµdxν = ∑

`,m

(
h(+)`m

µν + h(−)`m
µν

)
dxµdxν, (A50)

where h(+)`m
µν is the even parity perturbation

h(+)`m
µν dxµdxν = e−iωt

(
H0dt2 + 2H1dtdr + H2dr2

)
Y`m

− 2re−iωt(HtΩdt + HrΩdr)
∇̂iY`mdxi√
`(`+ 1)

+ 2r2e−iωt
(

KγijY`m +
K2

`(`+ 1)

(
∇̂i∇̂jY`m −

1
2

γij4̂Y`m

))
dxidxj, (A51)

and h(−)`m
µν is the odd parity perturbation

h(−)`m
µν dxµdxν = 2e−iωt(h0dt + h1dr)V`m

i dxi − 2r2e−iωthΩ

∇̂(iV`m
j) dxidxj√

`(`+ 1)− 1
. (A52)

We assumed the time dependence of hµν as e−iωt. There are seven unknown functions
H0, H1, H2, HtΩ, HrΩ, K, K2 for the even parity perturbation, and three unknown functions
h0, h1, hΩ for the odd parity perturbation. Note that we omitted to write indices `, m in
these unknown functions.

Similar to the case of the Klein–Gordon equation, h`m
µν satisfies relations

Lξ(t)
h`m

µν = −iωh`m
µν , (A53)

Lξ(3)
h`m

µν = imh`m
µν , (A54)

L2h`m
µν = −`(`+ 1)h`m

µν . (A55)

We should note that if a symmetric tensor hµν satisfies the above equations, hµν

should take the form of Equations (A51) and (A52) from a similar discussion to obtain
Equation (A46) for the vector case.

Because the operator X̂ in Equation (A48) depends only on the covariant derivative of
the background metric g(Sch)

µν , X̂ and the Lie derivative with respect to the Killing vectors
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are commute, and the commutation relations [X̂,Lξ(t)
] = [X̂,Lξ(3)

] = [X̂, L2] = 0 hold.
Thus, the relations

Lξ(t)
X̂h`m

µν = −iωX̂h`m
µν , (A56)

Lξ(3)
X̂h`m

µν = imX̂h`m
µν , (A57)

L2X̂h`m
µν = −`(`+ 1)X̂h`m

µν , (A58)

hold and X̂h`m
µν should take the same form of Equations (A51) and (A52) but coefficients

are different functions. This implies that we can separately discuss different `, m, ω modes
and we need to solve ordinary differential equations of r for each `, m, ω mode.

Appendix A.4.2. Parity Transformation

In this subsection, we show that we can separately discuss the even and odd parity
perturbations. We define the parity transformation operator P which is generated by the
coordinate transformation

(θ, φ)→ (π − θ, π + φ). (A59)

Then, the relations

PY`m = (−1)`Y`m, (A60)

PV`m
i = (−1)`+1V`m

i , (A61)

hold, where we used Pε̂ij = −ε̂ij.35 Using these relations, h(±)`m
µν satisfy

Ph(+)`m
µν = (−1)`h(+)`m

µν , (A62)

Ph(−)`m
µν = (−1)`+1h(−)`m

µν . (A63)

Because the background metric g(Sch)
µν is invariant under the parity transformation

and X̂ has the same symmetry as that of g(Sch)
µν , the commutation relation [P, X̂] = 0 holds,

and then

PX̂h(+)`m
µν = (−1)`X̂h(+)`m

µν , (A64)

holds. We write X̂h(+)`m
µν as

X̂h(+)`m
µν = C+Z(+)

µν + C−Z(−)
µν , (A65)

where C± are constants, and Z(+)
µν and Z(−)

µν take the same form as Equations (A51) and (A52),
respectively. On the other hand, using Equation (A64), we obtain

(−1)`X̂h(+)`m
µν = PX̂h(+)`m

µν

= (−1)`C+Z(+)
µν + (−1)`+1C−Z(−)

µν , (A66)

and this implies

X̂h(+)`m
µν = C+Z(+)

µν − C−Z(−)
µν . (A67)

Equations (A65) and (A67) show C−Z(−)
µν = 0, and we conclude that X̂h(+)`m

µν does

not contain the odd parity components. In a similar way, we can see that X̂h(−)`m
µν does
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not contain the even parity components. Thus, even and odd parity perturbations can be
separately discussed because they are not coupled in the Einstein equations.

Appendix A.4.3. Gauge Transformation

The total line element at O(ε) is given by

ds2 = (g(Sch)
µν + εhµν)dxµdxν. (A68)

If we introduce a coordinate transformation

xµ → xµ − εζµ, (A69)

the line element changes

ds2 → g(Sch)
µν dxµdxν + ε

(
2∇(µζν) + hµν

)
dxµdxν, (A70)

where ∇µ is the covariant derivative with respect to the Schwarzschild metric. Thus, there
is an gauge ambiguity due to the term 2∇(µζν) at O(ε). Writing ζµ as

ζµdxµ = ∑
`,m

(
e−iωt(ζtdt + ζrdr)Y`m − e−iωtζS

∇̂iY`mdxi√
`(`+ 1)

+ e−iωtζVV`m
i dxi

)
, (A71)

the perturbed metric transforms

H0 → H0 − 2iωζt − f f ′ζr, (A72)

H1 → H1 − iωζr −
f ′

f
ζt + ζ ′t, (A73)

H2 → H2 +
f ′

f
ζr + 2ζ ′r, (A74)

HtΩ → HtΩ −
√
`(`+ 1)

r
ζt −

iω
r

ζS, (A75)

HrΩ → HrΩ −
√
`(`+ 1)

r
ζr −

2
r2 ζS +

1
r

ζ ′S, (A76)

K → K +
f
r

ζr +

√
`(`+ 1)

2r2 ζS, (A77)

K2 → K2 −
√
`(`+ 1)

r2 ζS, (A78)

for the even parity modes, and

h0 → h0 − iωζV , (A79)

h1 → h1 −
2
r

ζV + ζ ′V , (A80)

hΩ → hΩ −
√
`(`+ 1)− 1

2r2 ζV , (A81)

for the odd parity modes, where ′ denotes the radial derivative.



Universe 2021, 7, 476 41 of 57

Hereafter, we focus on ` ≥ 2 modes because ` = 0, 1 modes do not contain dynamical
degrees of freedom. Then, we can choose HtΩ = HrΩ = K2 = hΩ = 0 gauge, which is
called the Regge–Wheeler gauge, by choosing ζµ as

ζt =
rHtΩ√
`(`+ 1)

− ir2ωK2

`(`+ 1)
, (A82)

ζr =
rHrΩ√
`(`+ 1)

+
r2K′2

`(`+ 1)
, (A83)

ζS =
r2K2√
`(`+ 1)

, (A84)

ζV =
2r2hΩ√

`(`+ 1)− 1
. (A85)

Due to the spherical symmetry of the background spacetime, the master equations for
each mode only depend on ` but not m.36 Thus, we only need to consider m = 0 cases. If
we need the explicit metric form of m 6= 0, it can be obtained by acting the ladder operators
of spherical harmonics on m = 0 modes.

Appendix A.4.4. Remarks on Complete Gauge Fixing and Gauge Invariant Quantities

In the gauge choice HtΩ = HrΩ = K2 = hΩ = 0, the gauge functions ζµ are alge-
braically determined in Equations (A82)–(A85). In general, this type of gauge choice is
called the complete gauge fixing.37 We should note that the perturbed metric with the
complete gauge fixing does not admit a pure gauge.38 This implies that non-trivial hµν with
the complete gauge fixing always corresponds to physically meaningful perturbations.

Another remark is that we can construct gauge invariant quantities. Let hµν be an

arbitrary perturbed metric whose form is hµν = h̄µν +∇(µζ
(1)
ν)

with some vector field ζ
(1)
µ .

We consider a gauge transformation hµν → hµν + 2∇(µζ
(2)
ν)

with a vector field ζ
(2)
µ . We

assume that we can completely fix the gauge by choosing ζ
(2)
µ . If we substitute the form of

ζ
(2)
µ for the complete gauge fixing, which are Equations (A82)–(A85) for the Schwarzschild

case, to the perturbed metric hµν, all components of the perturbed metric do not contain ζ
(1)
µ .

This is because if ζ
(1)
µ is contained, we can construct the perturbed metric hµν with pure

gauge by setting h̄µν = 0, and this contradicts with the complete gauge fixing. This implies
that all components of the perturbed metric with the complete gauge fixing corresponds
to the gauge invariant quantities. For the Schwarzschild case, the non-trivial components
of the right hand side of Equations (A72)–(A78) with Equations (A82)–(A85) are gauge
invariant quantities.

Appendix A.4.5. Odd Parity Perturbation

For the odd parity perturbation, we need to consider the perturbed metric with

h(−)`0
µν = 2e−iωtsinθ

∂Y`0
∂θ

(h0dt + h1dr). (A86)

The (θ, φ) component of Einstein equations gives39

h0 =
i f
ω
( f h1)

′. (A87)

The (r, φ) component also gives the second order differential equation of h1

f 2h′′1 − f
(2r− 5rH)

r2 h′1 +
2r2 − 6rrH + 5r2

H − `(`+ 1) f r2

r4 h1 + ω2h1 = 0. (A88)
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Introducing the master variable

Φ(2)
− =

r− rH

r2 h1, (A89)

we obtain the master equation for the odd parity perturbation

f
d
dr

(
f

dΦ(2)
−

dr

)
+ (ω2 −V(2)

− )Φ(2)
− = 0, (A90)

where V(2)
− is the effective potential

V(2)
− = f

(
`(`+ 1)

r2 − 3rH

r3

)
. (A91)

Equation (A90) is the Regge–Wheeler equation [82].40

Appendix A.4.6. Even Parity Perturbation

For the even parity perturbation, we need to consider the perturbed metric with

h(+)`0
µν = e−iωtY`0(H0dt2 + 2H1dtdr + H2dr2 + 2Kr2(dθ2 + sin2dφ2)). (A92)

The traceless part of the angular components of the Einstein equations shows the
relation

H0 = f 2H2. (A93)

The (t, θ) component of the Einstein equations gives

H2 = −2K
f

+
i

ω f
( f H1)

′. (A94)

Combining (t, r), (r, r) and (r, θ) components of the Einstein equations, we obtain two
equations

H′1 =

(
− rH(6rH + r(2 + 3λ))

2r2(3rH + rλ) f
+

2r2ω2

(3rH + rλ) f

)
H1

+

(
9r2

H + 4rrH(−2 + λ)− 4r2λ

r(3rH + rλ) f 2 +
4r3ω2

(3rH + rλ) f 2

)
(iωK), (A95)

(iωK)′ =
(
− (2 + λ)(2rH + rλ)

4r2(3rH + rλ)
− rω2

3rH + rλ

)
H1

+

(
rH(6rH + r(−4 + λ))

2r2(3rH + rλ) f
− 2r2ω2

(3rH + rλ) f

)
(iωK), (A96)

with λ = `2 + `− 2. Introducing new variables Φ(2)
+ and D+

H1 = a1Φ(2)
+ + a2D+, (A97)

ωK = a3Φ(2)
+ + a4D+. (A98)
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with functions a1, a2, a3, a4

a1 =
i
f
− 2irλ

rλ + 3rH
, (A99)

a2 = −2i
f

, (A100)

a3 =
λ(λ + 2)r2 + 3rrHλ + 6r2

H
2r2(rλ + 3rH)

, (A101)

a4 = 1, (A102)

Φ(2)
+ and D+ satisfy

f
dΦ(2)

+

dr
= D+, (A103)

f
dD+

dr
= (V(2)

+ −ω2)Φ(2)
+ , (A104)

where V(2)
+ is the effective potential

V(2)
+ = f

λ2(λ + 2)r3 + 3λ2rHr2 + 9λr2
Hr + 9r3

H
r3(λr + 3rH)2 . (A105)

Thus, we obtain the master equation for the even parity perturbation

f
d
dr

(
f

dΦ(2)
+

dr

)
+ (ω2 −V(2)

+ )Φ(2)
+ = 0, (A106)

which is called the Zerilli equation [83].

Appendix A.4.7. Relation between the Regge–Wheeler and Zerilli Equations

While the effective potentials for the Regge–Wheeler and Zerilli equations in Equa-
tions (A91), (A90), (A105) and (A106) are different, it is known that these two equations
have same spectra (see e.g., [5] for further discussion). In fact, the solutions of these two
equations are connected by transformations

Φ(2)
± =

1
β−ω2

(
∓WΦ(2)

∓ + f
dΦ(2)
∓

dr

)
, (A107)

where

β = −4λ2(λ + 1)2

9r2
H

, (A108)

W = − f
3rH

r(3rH + 2rλ)
− 2λ(λ + 1)

3rH
. (A109)

Thus, we only need to analyze the Regge–Wheeler equation in Equations (A91) and (A90)
to discuss the spectra of the system.

Appendix A.5. Maxwell Equations

In a similar way, we can also derive the master equations for the Maxwell equations

∇µFµν = 0, (A110)
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where Fµν = ∂µ Aν − ∂ν Aµ. We expand the gauge field Aµ as

Aµdxµ = ∑
`,m

(
A(+)`m

µ + A(−)`m
µ

)
dxµ, (A111)

with

A(+)`m
µ dxµ = e−iωt(atdt + ardr)Y`m − e−iωtaS

∇̂iY`mdxi√
`(`+ 1)

, (A112)

A(−)`m
µ dxµ = e−iωtaVV`m

i dxi. (A113)

Note that ` = 0 mode does not contain dynamical degrees of freedom, and then we
focus on ` ≥ 1. Because the Maxwell equations are invariant under the gauge transforma-
tion Aµ → Aµ +∇µΨ with a scalar field Ψ, we can choose one of components of A(+)`m

µ as
zero. Expanding Ψ as

Ψ = ∑
`,m

e−iωtψY`m, (A114)

the gauge field Aµ transforms as

at → at − iωψ, (A115)

ar → ar + ∂rψ, (A116)

aS → aS +
√
`(`+ 1)ψ. (A117)

We can choose aS = 0 gauge and this completely fixes the gauge. We note that aV is
gauge invariant. Defining two master variables

Φ(1)
+ =

f ar

iω
, (A118)

Φ(1)
− = aV , (A119)

after some calculations, we obtain the master equations

f
d
dr

(
f

dΦ(1)
±

dr

)
+ (ω2 −V(1))Φ(1)

± = 0, (A120)

with the effective potential

V(1) = f
`(`+ 1)

r2 . (A121)

Appendix A.6. Master Equations for Different Spins

The master equations for the Klein-Gordon, Maxwell and Einstein equations are given
by Equations (A29), (A30), (A90), (A91), (A105), (A106), (A120) and (A121). Because the
Regge–Wheeler and Zerilli equations have same spectra as discussed in Appendix A.4.7,
we can discuss the spectra of the master equations with different spins by studying a single
equation in the form

f
d
dr

(
f

dφ

dr

)
+ (ω2 −Vs)φ = 0, (A122)



Universe 2021, 7, 476 45 of 57

where Vs is the effective potential

Vs = f
(
`(`+ 1)

r2 − (1− s2)
rH

r3

)
, (A123)

and s denotes the spin of the fields, that is, s = 0, 1, 2 for the Klein-Gordon, Maxwell and
Einstein equations, respectively. The range of ` is given by ` ≥ s.

Appendix B. Some Basics on Second Order Ordinary Differential Equations

In this appendix, we review fundamental results on second order linear ordinary
differential equations in the complex domain. We do not show any proofs on these results.
We just refer the reader to [89–91] for rigorous treatments.

Let us consider a second order ordinary differential equation:

y′′(z) + p1(z)y′(z) + p2(z)y(z) = 0. (A124)

In this article, it is sufficient to assume that p1(z) and p2(z) are rational functions. For
the Morse potential (8), by setting z = eβx, the differential equations are transformed into
this form. See (13). The master Equation (110) is of this form from the beginning. Moreover
most master equations including the Teukolsky equation [46] in black hole perturbation
theory belong to this class.

The first step to analyze the differential Equation (A124) is to see singularities. We refer
to singular points of p1(z) and p2(z) as singular points of the differential Equation (A124).
In our assumption, all these singular points of (A124) are poles. In linear differential
equations, we have the following nice property:

singular points of solutions to (A124) =⇒ singular points of (A124).

Note that the converse is not true in general. This statement is not true for non-
linear differential equations because there appear movable singular points that depend on
integration constants.

If both p1(z) and p2(z) are analytic at z = z0, this point is an ordinary point of (A124).
If p1(z) has at most a simple pole at z = z0 and p2(z) has at most a double pole at the
same point, then z = z0 is a regular singular point of (A124). Otherwise, singular points
are called irregular singular points. The singularity at z = ∞ are discussed by the variable
transformation z′ = 1/z. It is particularly important to construct formal series solutions in
the neighborhood of a singular point.

Appendix B.1. Regular Singular Points

Let us see series solutions at a regular singular point. The method is well-known
as the Frobenius method. Without loss of generality, a regular singular point is located
at z = 0. From the condition of regular singularity, p1(z) and p2(z) have the following
Laurent expansions

p1(z) =
p1,−1

z
+O(1), p2(z) =

p2,−2

z2 +O(z−1), z→ 0. (A125)

The indicial equation is then given by

ρ2 + (p1,−1 − 1)ρ + p2,−2 = 0. (A126)

Let ρi (i = 1, 2) be two roots of the indicial equation. These roots are called characteris-
tic exponents.
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If ρ1− ρ2 is not an integer, two independent series solutions are simply constructed by

yi(z) = zρi
∞

∑
k=0

aikzk, i = 1, 2. (A127)

Let γ be a counterclockwise closed path encircling z = 0 but not encircling any
other singular points. Then the analytic continuation of the two solutions (A127) along γ
generates two solutions yγ

i (z) and they are represented by

(yγ
1 (z), yγ

2 (z)) = (y1(z), y2(z))
(

e2πiρ1 0
0 e2πiρ2

)
. (A128)

The matrix on the right hand side is referred to as a monodromy matrix.
If ρ1 − ρ2 is an integer, the classification is slightly intricate. In this case, one of

the solutions can be constructed in the same way above. If ρ1 − ρ2 = m where m is a
non-negative integer, the solution corresponding to the exponent ρ1 is given by

y1(z) = zρ1
∞

∑
k=0

a1kzk. (A129)

The second solution in general takes the form

y2(z) = αy1(z) log z + zρ2
∞

∑
k=0

a2kzk, (A130)

where α is a constant. The monodromy matrix of these solutions is given by

(yγ
1 (z), yγ

2 (z)) = (y1(z), y2(z)) e2πiρ1

(
1 2πiα
0 1

)
, (A131)

where we have used e2πiρ2 = e2πiρ1 . In most cases, α is non-zero, and the logarithmic
term exists in the second solution.41 In particular, α is never zero for m = 0 (or ρ1 = ρ2).
However in exceptional cases, it is accidentally vanishing, and neither solutions have
logarithmic singularities. In this exceptional case, the monodromy matrix is proportional
to the unit matrix: e2πiρ1 diag(1, 1). Furthermore, if ρ1 is an integer, then the monodromy
matrix becomes trivial. In this very special case, the singular point is referred to as an
apparent singular point.42

The important fact is that all the infinite sums appearing formal series solutions at a
regular singular point are necessarily convergent. Thus the formal solutions naturally lead
to analytic solutions. This is not the case for series solutions at an irregular singular point.

Appendix B.2. Irregular Singular Points

Constructions of local series solutions at an irregular singular point are much more
involved. Discussing them with full generality is beyond the scope of this article. We
just see a few examples. Let z = ∞ be an irregular singular point of (A124). We need
asymptotic expansions to construct local solutions at the irregular singular point z = ∞.
For all the examples in this article, formal local solutions at z = ∞ have the following
asymptotic expansion:

yformal(z) = eazr
zb

∞

∑
k=0

ck

zrk (c0 = 1), (A132)

where r is referred to as the Poincaré rank.43 This asymptotic expansion is generally
divergent, and the solution (A132) is purely formal. Note that the Poincaré rank r is easily
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computed from the differential Equation (A124) [48]. If p1(z) and p2(z) in (A124) behaves
as

p1(z) = O(zK1), p2(z) = O(zK2), z→ ∞, (A133)

then the rank r is given by

r = 1 + max
(

K1,
K2

2

)
. (A134)

If p1(z) is identically zero, we have r = 1 + K2/2.
We first revisit the generalized Laguerre Equation (13). Using the above prescription,

we immediately get r = 1. Then we plug the ansatz (A132) into (13). The leading behavior
in z→ ∞ also determines the parameters a and b as

(a, b) = (0, ν), (1,−α− ν− 1). (A135)

These provides two independent solutions. For each of them, one can fix the coeffi-
cients ck uniquely, and finally obtains the formal series solutions (39).

Next let us see Airy’s differential equation in detail,

y′′(z)− zy(z) = 0. (A136)

It is easy to check that it has the irregular singular point at z = ∞. The Poincaré rank
is 3/2 in this case. Plugging the ansatz (A132) into the Airy equation, one obtains

(a, b) =
(
−2

3
,−1

4

)
,
(

2
3

,−1
4

)
. (A137)

For (a, b) = (−2/3,−1/4), the coefficients ck satisfy the following recurrence relation:

48kck + (6k− 1)(6k− 5)ck−1 = 0, c0 = 1. (A138)

It is solved by

ck =
1

2πk!

(
−3

4

)k
Γ
(

k +
1
6

)
Γ
(

k +
5
6

)
. (A139)

Obviously the other case has almost the same structure. Hence the two formal solu-
tions are given by

yformal
∞1 (z) = e−

2
3 z3/2

z−1/4
∞

∑
k=0

1
2πk!

(
−3

4

)k
Γ
(

k +
1
6

)
Γ
(

k +
5
6

)
1

z3k/2 ,

yformal
∞2 (z) = e

2
3 z3/2

z−1/4
∞

∑
k=0

1
2πk!

(
3
4

)k
Γ
(

k +
1
6

)
Γ
(

k +
5
6

)
1

z3k/2 .

(A140)

Since the coefficients factorially divergent ck ∼ k!, the radius of convergence of these
series is zero. In the next subsection, we discuss how to treat these formal solutions.

Appendix B.3. Borel Summations and Stokes Phenomena

We want to construct analytic solutions from formal series solutions in the previous
subsection. To do so, we use the Borel summation method. Let us consider a formal power
series

Fformal(z) =
∞

∑
k=0

fk

zk . (A141)
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We often encounter that the coefficient fk diverges factorially, fk ∼ k! (k → ∞). The
(generalized) Borel summation is defined by

FBorel
p (z) :=

∫ ∞

0
dζ e−ζ ζ p−1Bp

(
ζ

z

)
, p > 0, (A142)

where

Bp(ζ) :=
∞

∑
k=0

fk
Γ(k + p)

ζk. (A143)

Usually we set p unity, but it is convenient to keep it freely. If fk diverges factorially,
the Borel transformed series (A143) has a finite radius of convergence. We can analytically
continue it to the whole complex domain except for its singular points. Therefore the
Borel summation method provides us a definite value from a formal divergent series. One
can see the Borel summation (A142) is regarded as the Laplace transform. Then Bp(ζ) is
obtained by the inverse Laplace transform.

We apply the Borel summation to the formal series (A140). By setting p = 5/6, we
obtain a good analytic expression of the first solution:

yBorel
∞1 (z) =

Γ(1/6)
22/3π

e−
2
3 z3/2

z−1/4
∫ ∞

0
dζ

e−ζ

ζ1/6(4 + 3ζ/z3/2)1/6 . (A144)

To derive this result, we have implicitly assumed that z is real and positive. In this
slice, the integral in (A144) is always convergent. It turns out that as long as z > 0, this
solution is exactly related to the well-known Airy function:

yBorel
∞1 (z) = 2

√
π Ai(z), z > 0. (A145)

In other words, the asymptotic expansion of the Airy function Ai(z) is given by the
first equation in (A140). If one is interested in the solution in the complex domain, then the
Stokes phenomenon appears. We explain it briefly. It is clear that the integrand of (A144)
has two singularities at ζ = 0 and at

ζ = −4
3

z3/2. (A146)

The latter causes the Stokes phenomenon. When arg z = ±2π/3,±2π,±10π/3, . . . ,
the singularity is located on the positive real axis in the ζ-plane, and the integral is not
defined as a result. Moreover, along these rays, the integral (A144) has discontinuities.
Therefore, yBorel

∞1 (z) is analytic only in each domain of

2π

3
(2m− 1) < arg z <

2π

3
(2m + 1), m ∈ Z. (A147)

Let us recall that Airy’s differential equation has only the singular point at
z = ∞. Hence its solutions must be analytic in the whole complex plane. In fact,
the two Airy functions Ai(z) and Bi(z) are both entire functions. The Borel resummed
solution (A144) is understood as a building block to construct globally analytic solutions
because it is not analytic in the complex plane. From these facts, we can extend the
equality (A145) to the sector |arg z| < 2π/3. Beyond this sectorial domain, the asymptotic
expansion of Ai(z) discontinuously changes, and it is well-known as the Stokes phe-
nomenon. Clearly this phenomenon is associated with the discontinuity of yBorel

∞1 (z). The
rays |arg z| = 2π/3, 2π, 10π/3, . . . are Stokes lines, and the sectorial domains separated
by these lines are Stokes sectors. Outside the Stokes sector, the relation (A145) must be
modified due to the Stokes phenomenon. Ai(z) receives an additional contribution. We
should emphasize that Ai(z) itself does not have any discontinuities along the Stokes lines.
The Borel resums of the asymptotic series solutions have them. This point is somewhat
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confusing. The additional contribution outside the Stokes sector is related to the Borel
summation of the second solution yformal

∞2 (z). As the result, the asymptotic series expansion
of Ai(z) changes discontinuously.

The similar thing happens for the second solution. The Borel resum of the second
solution is given by

yBorel
∞2 (z) =

Γ(1/6)
22/3π

e
2
3 z3/2

z−1/4
∫ ∞

0
dζ

e−ζ

ζ1/6(4− 3ζ/z3/2)1/6 . (A148)

However, this is not defined for positive z. To evaluate it, we have to displace z
in imaginary directions slightly. The positive real axis is just a Stokes line. There is a
discontinuity along this line. It is not hard to find the following exact discontinuity:

yBorel
∞2 (z + i0)− yBorel

∞2 (z− i0) = −iyBorel
∞1 (z), z > 0. (A149)

Note that yBorel
∞1 (z) does not have a discontinuity along the positive real axis. Interest-

ingly the combinations yBorel
∞2 (z± i0)± i

2 yBorel
∞1 (z) have no discontinuity along the positive

real axis. It turns out that we have the following identities:

yBorel
∞2 (z + i0) +

i
2

yBorel
∞1 (z) = yBorel

∞2 (z− i0)− i
2

yBorel
∞1 (z) =

√
π Bi(z), z > 0. (A150)

The Airy function Bi(z) has the Stokes lines along |arg z| = 0, 4π/3, 8π/3, . . . . The
relation (A150) is understood as the Stoke phenomenon of Bi(z) along the Stokes line
arg z = 0. We show the branch cut structure of yBorel

∞1 (z) and yBorel
∞2 (z) (or equivalently the

Stokes lines of Ai(z) and Bi(z)) in Figure A1.

0

−1

−2

1

2

0

−1

−2

1

2

Figure A1. Branch cuts of yBorel
∞1 (z) (Left) and yBorel

∞2 (z) (Right) in the Airy equation. These correspond
to the Stokes lines of Ai(z) and Bi(z) respectively. We start with the sheet 0, and cross the cuts in two
opposite ways. The colored shaded domains are the Stokes sectors, and the dashed lines represent
virtual cuts on other sheets.
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Appendix C. Padé Approximants

Padé approximants are rational functions constructed from a given power series. They
are a very powerful and practical tool in numerics because they are not merely approximate
functions but also extrapolating functions of the original power series beyond its radius
of convergence. They often work even if the radius of convergence is zero. Moreover
they have important analytic information on the original function. Padé approximants are
discussed in great detail in [92]. We introduce very basic aspects on Padé approximants.

Let us define them more precisely. For a given formal power series

Fformal(z) =
∞

∑
k=0

fkzk, (A151)

its Padé approximants of degree [M/N] are defined by

F[M/N](z) :=
a0 + a1z + · · ·+ aMzM

1 + b1z + · · ·+ bNzN , (A152)

where the M + N + 1 coefficients {am; bn} are determined uniquely by the condition

Fformal(z)− F[M/N](z) = O(zM+N+1), z→ 0. (A153)

Therefore to obtain F[M/N](z), we need the formal power series up to zM+N . We do
not discuss an algorithm to determine these coefficients. It is easily done by recent symbolic
computational systems in practice. We refer to (A152) as the [M/N] Padé approximant.
Padé approximants with M = N are called diagonal Padé approximants. Obviously,
for N = 0, the [M/0] Padé approximant is just the (truncated) original formal power
series itself.

Theoretical aspects of Padé approximants seem complicated [92]. For instance, it
is unclear for us what is the best choice of M and N in general when M + N is fixed.
Empirically, the diagonal Padé approximant seems to be the best. In this appendix, we
rather focus on its practical aspects by seeing a few examples.

Appendix C.1. Convergent Series

Let us consider a simple function

F(z) =
√

z + 1
z2 + 1

= 1 +
z
2
− 5z2

8
− 3z3

16
+

51z4

128
+

47z5

256
− 369z6

1024
+O(z7). (A154)

We compare this exact function with its Padé approximants as well as its Taylor
series expansion. Clearly the complex function F(z) has singularities at z = −1,±i, and the
radius of convergence of its Taylor series is unity. Therefore the Taylor series approximation
does not work for |z| > 1. Even in this region its Padé approximants still work. Figure A2
shows graphs of F(z), F[12/0](z), F[6/6](z), F[7/5](z) and F[5/7](z), obtained by the same
truncated sum up to z12. In this example, the diagonal [6/6] Padé approximant looks the
“best” rational approximate function. Of course, the situations may change depending on
M + N. It is not obvious for us whether the diagonal Padé approximant is always “best”
or not. However, we can definitely say that the Padé approximants are better than the
truncated power series because the latter cannot be used as an approximation beyond its
radius of convergence while the former can.
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exact

[12/0](Taylor)

[6/6]

[7/5]

[5/7]
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1.0

1.5

2.0
F(z)

Figure A2. The Padé approximants of (A154) have good extrapolations to z > 1 where the Taylor
series approximation necessarily breaks down.

Padé approximants also have information on the singularity structure of the original
function [92]. At first glance, since all the singularities of Padé approximants are poles,
it seems that they cannot describe other types of singularities such as branch points nor
essential singularities. However, Padé approximants tell us even about these singularities.
Let us see it for the example (A154). In the left panel of Figure A3, we show zeros and poles
of the [80/80] Padé approximant of (A154). Clearly we can see the branch cut structure as
a cluster of them. Interestingly the Padé approximant automatically chooses the direction
of the branch cuts. They are stretched in the opposite direction to the origin.

We illustrate other examples:

G(z) =
1√

z2 + 1
exp

(
z

z + 1

)
= 1 + z− z2 − z3

3
+

2z4

3
+

2z5

15
− 14z6

45
+O(z7),

H(z) =
1√

z2 + 1

∞

∑
k=0

z2k−1 = 1 + z− z2

2
+

z3

2
+

3z4

8
− z5

8
− 5z6

16
+O(z7).

(A155)

The function G(z) has an essential singularity at z = −1, and H(z) has a natural
boundary on |z| = 1. These singularities are not obvious from the power series expansions
at all. We can decipher them by the Padé approximants. We show the zeros and poles of
G[80/80](z) and H[80/80](z) in the middle and right panels in Figure A3, respectively. It is
interesting to observe that the branch cut structure in H(z) outside the natural boundary
disappears in the Padé approximant. For more detail on singularities, see Section 2.2 in [92].
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Figure A3. Padé approximants tell us singularity structures of complex functions. We show the
distribution of zeros (light blue) and poles (light red) for F[80/80](z) (left), G[80/80](z) (middle) and
H[80/80](z) (right). The black dashed line is the convergence circle.
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Appendix C.2. Divergent Series

Padé approximants for formal asymptotic series are involved but interesting. We show
an illuminating example known as the Stieltjes series:

Sformal(z) =
∞

∑
k=0

(−1)kk!zk. (A156)

Obviously it is a divergent series. Its Borel summation is exactly given by

SBorel(z) =
∫ ∞

0
dζ

e−ζ

1 + zζ
, (A157)

where we have taken p = 1 in (A142) as usual. We compute the Padé approximant of the
Stieltjes series (A156). For comparison, we also evaluate the truncated sum

Sm(z) =
m

∑
k=0

(−1)kk!zk. (A158)

We show numerical values of S2m(1/10), S[m/m](1/10) and S[m/m](e11πi/12/10) for
1 ≤ m ≤ 10 in Table A1. The Padé approximant rapidly converges to the Borel sum for
z > 0 while the truncated sum has an optimal order. However, if z is close to the negative
real axis, the convergence gets quite worse. This is because the Borel sum (A157) has a
discontinuity along z < 0. In fact, the Padé approximant implies the cut structure as shown
in the left panel of Figure A4. This is perfectly consistent with the expectation from the
Borel analysis. Finally, we show the convergence behavior of the Padé approximants in the
right panel of Figure A4.

Table A1. Truncated sums and Padé approximants of the Stieltjes series are compared with the Borel
sum. For z > 0, the Padé approximant quickly converges to the numerical value of the Borel sum,
but it is not the case if z is near the branch cut z < 0 of the Borel sum.

m S2m(1/10) S[m/m](1/10) S[m/m](e11πi/12/10)

1 0.920000000000000 0.916666666666667 1.1171803947− 0.0395971996i
2 0.916400000000000 0.915662650602410 1.1194368945− 0.0441279793i
3 0.915920000000000 0.915634674922601 1.1185374181− 0.0449593628i
4 0.915819200000000 0.915633423180593 1.1186500893− 0.0442145546i
5 0.915819200000000 0.915633346051126 1.1185456350− 0.0446695805i
6 0.915899033600000 0.915633340032624 1.1186923372− 0.0444312796i
7 0.916148114432000 0.915633339468114 1.1185170114− 0.0445036358i
8 0.916932719052800 0.915633339406670 1.1186359811− 0.0445494854i
9 0.919778218477568 0.915633339399102 1.1186152844− 0.0444638222i
10 0.931942728518451 0.915633339398066 1.1185679982− 0.0445073821i

SBorel(z) 0.915633339397881 0.915633339397881 1.1186001330− 0.0445042079i
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Figure A4. (Left) Zeros and poles of the Padé approximant S[80/80](z) of the Stieltjes series (A156). It
implies the branch cut on the negative real axis. This is consistent with the discontinuity of the Borel
sum (A157). This branch cut is related to the Stokes phenomenon of the Borel summation. (Right)
Convergence of the Padé approximants S[m/m](eiθ/10). As θ gets close to π, the convergence gets
slower.

In summary, if one uses Padé approximants to divergent series, one has to see the
branch cut structure of its Borel summation. If a parameter region one is interested in
is far from these cuts, one can safely use the Padé approximants. If the parameter is
close to the cuts, one needs a modification. A good resolution is to combine the Borel
summation and the Padé approximants, which is sometimes referred to as the Borel–Padé
summation. In this method, we first consider the Borel transform (A143), and compute its
Padé approximant. A big difference is that the infinite series (A143) is convergent. We can
evaluate the Borel summation (A142) by replacing Bp(ζ/z) by its Padé approximant.

Notes
1 We note that there is also a branch cut contribution, which corresponds to the power law tails. We do not discuss this contribution

in the present article.
2 In this section, we use ˜ for resonant state problems to distinguish them from bound state problems.
3 We have the freedom to set h̄ = −i˜̄h, and it leads to another branch of the resonance. Since these two branches are symmetric, it

is sufficient to consider either of them.
4 Concerning boundary conditions, one can see the following observation. If the wave function behaves as e−

√
−Ex/h̄ in x → ∞,

then it satisfies the bound state condition in x → ∞. After the analytic continuation, the wave function behaves as ei
√

Ẽx/˜̄h, and
satisfies the resonant boundary condition.

5 Strictly, there is a subtlety on the number of the allowed bound states. This point is discussed in the next section. This relation is
also based on an assumption that the potential V(x) has bound states. In the case of the cubic potential for example, both V(x)
and Ṽ(x) have only the resonant states, and the relation (7) should be modified for these eigenvalues.

6 In fact, this state satisfies the boundary condition such that there is no contamination of the decaying mode in |q| → ∞. That is,
the solution purely grows in |q| → ∞.

7 Moreover the infinite number of the resonant states is “doubled” by the other analytic continuation h̄ = −i˜̄h. This corresponds to
including n = −1,−2,−3, . . . .

8 We are not sure whether this is strictly proved or not. As far as we checked for many models, it indeed holds.
9 The function NMilne(E) in Equation (33) counts the number of nodes, that is, the number of zeros, of the wave function

Equation (30). According to the nodal theorem [27–29], it corresponds to the number of the bound states with energy less than or
equal to E.

10 However, up to the optimal order, the truncated sum gives a very good approximate value. This is why perturbation theory in
physics is a successful approximation method

11 If one puts the ansatz ψ(x) = exp[ i
h̄
∫ x p̂(x′)dx′], one obtains the Riccati equation for p̂(x). It is solved order by order in h̄. The

odd order part in the perturbative solution can be expressed by a derivative of the even order part, and it finally leads to (59).
Hence p(x) has only the even order corrections as in (61). See [33,34] for a rigorous proof

12 We notice that this equation is formally equivalent to Milne’s non-linear Equation (28) if identifying p(x) = −ih̄/wE(x)2.
13 In the phase-integral formalism in [33], there is a freedom to choose a “base function” that depends on situations. We simply

choose it as Q(x) itself. A change of the base function might improve the approximation. This technical issue is not a purpose of
this review. See [33].
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14 A turning point a is defined by Q(a) = E−V(a) = 0
15 Since p0(x) has a square root branch cut, it comes back to the same value when going around the two turning points. However√

p0(x) changes its sign.
16 The case of n < 0 corresponds to another analytic continuation h̄ = −i˜̄h in our framework.
17 At this moment, we assume that ã and b̃ are real numbers such that ã < b̃, but for the resonant eigenvalues these are actually

complex. We easily perform an analytic continuation in this case. If we cannot evaluate the integral analytically, things are more
delicate.

18 This transformation is not always necessary. We do it in order to map the problem into a known differential equation.
19 Note that the ` = 0 mode exists only for s = 0.
20 For instance, the branch cut of

√
z in Mathematica is along the negative real axis. This is not useful in evaluating the contour

complex integral (134) numerically.
21 In the original variable E, the differential equation is also hypergeometric-type, but two of the solutions near E = 0 are expressed

in terms of so-called Meijer’s G-functions
22 For Ω = 4

√
2i/27, we get the complex conjugate to the right hand side in (168). Because of the physical requirement of the

QNMs, we have to choose a branch of the square root of (Mωn)2 so that the imaginary part of Mωn must be negative. Therefore
the two possible values of Ω finally lead to two branches of Mωn whose real parts have opposite signs to each other.

23 In fact, the idea in [55] is very similar to the uniform WKB approach. The continuity condition in [55] just corresponds to the
regularity condition in the uniform WKB method

24 These two approaches turn out to be interrelated due to the Alday–Gaiotto–Tachikawa relation [81] However, the relation is
quite non-trivial. See the introductory section in [74]

25 This conclusion holds even if we do not use the global spherical symmetry of the spacetime. Because the only non-trivial operator
which commutes with all SO(3) Killing vectors is the Casimir operator L2, the derivatives with respect to the angular coordinates
in � should be proportional to L2. Thus, assuming Φ = e−iωtΦ̃(r)Y(θ, φ) where the function Y satisfies L2Y = −λY with a
separation constant λ, �Φ should take the form of e−iωtYF(r).

26 We can easily calculate the explicit form of �Φ`m by using Mathematica.
27 Generalization to compact Riemannian (Einstein) manifolds can be seen in [86].
28 The homogeneous equation ∇̂i∇̂iS = 0 has a constant solution, and this gives an ambiguity of the solution for ` = 0 mode.

However, it does not affect ∇̂iS.
29 While one may think that there might exitst a tensor part which satisfies tt

ij with trace free and divergence free conditions

tt
i
i = ∇̂itt

ij = 0, such a term does not exist for S2. If we assume that a tensor part tt
ij exists, we can consider a perturbed metric

γ̄ij = γij + εtt
ij, where γij is the metric of a unit two sphere. Using the conditions tt

i
i = ∇̂itt

ij = 0, we can show that the Ricci scalar

of γ̄ij becomes 2 +O(ε2). This implies that γ̄ij is the metric of a unit two sphere at this order, and the metric can be transformed
into the same form as Equation (A31) by a gauge transformation at O(ε). Thus, tt

ij should be tt
ij = 2∇̂(iζ j) with some vector field

ζ j. If we write ζi = ∇̂iS + Vi with ∇̂iVi = 0, the conditions tT
i

i = ∇̂itT
ij = 0 implies ∇̂iS = Vi = 0, and then we conclude tt

ij = 0.
30 While there are homogeneous solutions in tT for ` = 0 and 1 modes, these do not affect (∇̂i∇̂j − (1/2)γij4̂)tT .
31 The proof of the completeness can be seen in [84].
32 The second equation can also be written as 4̂V`m

i = (−`(`+ 1) + 1)V`m
i .

33 If we use the differential form, ε̂ij becomes ε̂ = sin θdθ ∧ dφ.
34 See [87] for the case with source terms.
35 We define the parity transformation of the tensor fields PWµ1µ2···µn as the components of the tensor after performing the coordinate

transformation Equation (A59) to the whole tensor Wµ1µ2···µn dxµ1 ⊗ dxµ2 ⊗ · · · ⊗ dxµn which includes the coordinate basis, where
⊗ denotes the tensor product.

36 Because the ladder operators L± = −iLξ(1) ± Lξ(2) are constructed from the Killing vector on S2, Equation (A21) shows that
different m modes can be generated by the infinitesimal coordinate transformation associated with the Killing vectors on S2.

37 We assume that the Einstein equations can be decouposed into some modes which can be separately duscussed by each mode,
for example, even and odd parity modes for the Schwarzschild case, and we focus on one of the modes where the generator
of the gauge transformation ζµ contains n functional degrees of freedom. At each mode, we can completely fix the gauge iff n
independent components of hµν + 2∇(µζν) can be set as zero for any hµν by algebraically choosing ζµ. Then, ζµ is expressed as
linear combinations of n components of hµν, which will be set to be zero after the gauge choice, and their derivatives.

38 If a pure gauge is possible, the perturbed metric becomes hµν = −2∇(µ ζ̄ν) with some non-trivial vector field ζ̄µ. From the
assumption, we already completely fixed the gauge and n independent components of hµν vanish, where n is a functional degrees
of freedom of the gauge transformation in the mode which we focus on. If we focus on such n components of the equation
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hµν = −2∇(µ ζ̄ν), we can solve them algebraically with respect to ζ̄µ. The vector ζ̄µ is expressed as linear combinations of four
components of hµν, which are already set to be zero, and their derivatives. This implies ζ̄µ = 0.

39 Similar to the case of the Klein-Gordon equation, we can compute the components of the linearized Einstein equations by using
Mathematica.

40 See [88] for the other possible choices of the master variables and the effective potentials.
41 We note that two solutions with the form of Equation (A127) are linearly dependent when α is non-zero.
42 Note that since we can shift the exponents ρi to ρi + s by a transformation ŷ(z) = zsy(z), the monodromy matrix e2πiρ1 diag(1, 1)

can be always reduced to diag(1, 1) by ŷ(z) = z−ρ1 y(z). In the new function ŷ(z), the singular point z = 0 is now apparent.
43 The definition of the Poincaré rank seems different in the literature. In this article, we follow [48].
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