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Abstract: In this paper, we study the perturbations of the charged static spherically symmetric black
holes in the f (R) = R− 2α

√
R model by a scalar field. We analyze the quasinormal modes spectrum,

superradiant modes, and superradiant instability of the black holes. The frequency of the quasinormal
modes is calculated in the frequency domain by the third-order WKB method, and in the time domain
by the finite difference method. The results by the two methods are consistent and show that the black
hole stabilizes quicker for larger α satisfying the horizon condition. We then analyze the superradiant
modes when the massive charged scalar field is scattered by the black hole. The frequency of the
superradiant wave satisfies ω ∈ (

µ√
2

, ωc), where µ is the mass of the scalar field, and ωc is the critical
frequency of the superradiance. The amplification factor is also calculated by numerical method.
Furthermore, the superradiant instability of the black hole is studied analytically, and the results
show that there is no superradiant instability for such a system.

Keywords: f(R) theory; black hole perturbation; quasinormal modes; superradiant scattering; super-
radiant instability

1. Introduction

The problems of dark energy (DE) and dark matter (DM) have existed for a long time,
for which there are no widely recognized causes till now. The most plausible explanation of
DE and DM should be rooted in the quantum gravity. The first step towards quantum gravity
is to address the shortcomings at ultraviolet and infrared [1] of the standard Einstein general
relativity (GR). Then, it may be a natural consideration to extend the Lagrangian R of gravity
to a more general form f (R). This f (R) modified gravity may give some phenomenological
explanations of early or later universe. For example, the f (R) = R + αR2 (α > 0) model
explains the inflationary behavior of the early universe successfully [2–4]. f (R) = R− β

Rn

model, where both β and n are positive numbers, is able to explain the observed cosmic
acceleration without assuming the cosmological constant [5–7]. Furthermore, more viable
f (R) models, which could describe the inflation, act as dark energy as well as passing the
solar system tests, can be found in [8–10]. For more information of f (R) gravity, one can
see reviews [11,12].

Searching for static spherically symmetric (SSS) solutions is always of basic importance
in any gravitational theory. SSS solutions in f (R) gravity have also been widely discussed.
The introducing of the nonlinear terms Rn to the Lagrangian may lead to more mathematical
difficulties and more possible solutions in the f (R) model. The Birkhoff theorem is no
longer valid for general f (R) theories. Multamäki and Vilja found SSS solutions when
the Ricci scalar is a constant [13,14]. Via the Noether symmetry approach, Capozziello
etc. derived specific spherically symmetric solutions [15] as well as axially symmetric
solutions [16]. Hollenstein and Lobo analyzed SSS solutions in f (R) gravity coupled to
nonlinear electrodynamics [17].
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Among various f (R) models, a specific model f (R) = R− 2α
√

R is of special interest
and attracts continuous attention, especially in searching for SSS solutions of the field
equations in this and other similar models [13,18–26]. The parameter α, which has the
dimension of the inverse mass, is a key characteristic of this model, and thus plays a decisive
role in constructing black holes (BHs). Charged SSS BH solutions in such a particular class
of f (R) models are obtained in [23]:

ds2 = h(r)dt2 − h−1(r)dr2 − r2dΩ2,

h(r) =
1
2
− 1

3αr
+

Q2

r2 ,
(1)

where the parameter α contributes to the mass of the BH as M = 1
6α , and Q is the electric

charge that is independent of α. The horizons of the BHs are located at

r+ = 2M +
√

4M2 − 2Q2 =
1

3α
(1 +

√
1− 18α2Q2),

r− = 2M−
√

4M2 − 2Q2 =
1

3α
(1−

√
1− 18α2Q2).

(2)

Thus, the parameters have to satisfy the relation

0 < α ≤ 1
3
√

2Q
. (3)

Obviously, the parameter α cannot be set to zero, thus these are new BH solutions
constructed in the special class of f (R) gravities, and cannot possibly be reduced to GR ones.
These BHs are asymptotically flat but with a dynamical Ricci scalar R = 1

r2 . In a successive
paper [24], the author further proved that this is the unique SSS solution with gtt = − 1

grr

that deviates from GR and asymptotes as a flat spacetime for f (R) = R− 2α
√

R model.
After obtaining the BH solutions [23,24], the authors calculated some thermodynamic
quantities versus the model parameter α, including the entropy, quasi-local energy, Gibbs
free energy, and the Hawking temperature, etc., and providing a detailed description of the
physical properties including the stability and causal structure. Through these explorations,
the authors tried to show that these BH solutions are physically acceptable.

We concern in this paper about the BH perturbation by the massive charged scalar
fields (MCSFs). The BH perturbation theory dates back to 1957 by Regge and Wheele [27].
Soon after, the special modes of perturbation with purely outgoing waves at spatial infinity
and ingoing waves near the horizon were identified by Vishveshwara [28] and named
as quasinormal modes (QNMs) by Press [29]. After decades of research, several semi-
analytical and numerical methods are widely used to calculate QNMs, in which the most
popular methods are the WKB method [30–34] in frequency domain and the finite difference
method [35,36] in time domain. The frequencies ωn of QNMs are only allowed to be a
series of complex values. The imaginary part indicates the evolution of the perturbation
amplitude whose growth in time means the dynamical instability of the corresponding
modes. Therefore, QNMs have become the essential aspects in the study of the stability of
BHs [37,38].

In addition, superradiance [39] is an interesting phenomenon, which may extract
energy from BHs. It is described by the perturbation of Boson fields scattered by BHs with
both ingoing and outgoing waves existing at spatial infinity. When the energy of outgoing
waves is larger than the energy of ingoing waves, superradiant scattering happens. Recent
studies on superradiance in Reissner–Nordström (RN) spacetimes can be found in [40,41].
Moreover, to make superradiance a physical process, the laws of BH should be satisfied [42].

Provided there is an additional mechanism that can make the superradiant wave reflect
back to the BH, superradiant modes will keep extracting energy from the central BH. Then,
the total extracted energy may grow exponentially with time, for which Press and Teukolsky
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suggested an explosive phenomenon as an end state, dubbed the black hole bomb [43]. The
nonnegligible backreaction on the background destabilizes the central black hole eventually,
which is the superradiant instability of BHs [44]. A natural mechanism that can produce the
superradiant instability is to introduce a mass term for boson fields [45–49]. However, Hod
proved that the system of RN BHs and MCSFs has no superradiant instability [50–52]. This
is because the two conditions, (i) the superradiant amplification of the boson field, and (ii)
the existence of a binding potential well which can reflect the boson field back to the black
hole, cannot operate simultaneously. In order to obtain superradiant instability in the non-
rotating spacetime, Degollado et al. introduced a mirror-like boundary condition [53]. Soon
after, Dolan et al. suggested that the endpoint of superradiant instabilities in RN spacetime
is a hairy BH [54]. After that, Sanchis-Gual et al. did numerical relativity calculations [55,56]
to simulate the hair growth process by superradiant instability of RN BHs in a cavity.

In this paper, we discuss three types of perturbation problems for BHs (1), including
QNMs, superradiant scattering, and superradiant instability. We use two different methods
to calculate the frequency of QNMs. In frequency domain, we adopt the third order WKB
method to do the computation. Meanwhile, we use the finite difference method to evaluate
the Klein–Gordon equation and use the Prony method to extract the main frequency in the
time domain profiles. The results given by the two different methods are consistent, which
show that the BH (1) is stable. Supperradiance is also discussed in spacetime (1).

This paper is organized as follows: In Section 2, we derive the radial equation satisfied
by the perturbation theory of BHs (1). In Section 3, we separately calculate the frequencies
of QNMs in frequency domain and in time domain. The third WKB method is used in
frequency domain. In addition, we use the finite difference method to evaluate the Klein–
Gordon equation outside the BH. Then, we use the Prony method to extract the main
frequency. In Section 4, we analyze the frequency condition of supperradiant scattering,
and compute the amplification factor. In Section 5, we analytically study the extreme points
of the effective potential, and prove there is no superradiant instability for the system of
BHs (1) and MCSFs. In Section 6, we discuss the deficit angle of BHs (1) and use a physical
method to obtain the frequency condition of superradiance. Finally, we give a conclusion
in Section 7. In this paper, we adopt the units G = h̄ = c = 1.

2. The Klein–Gordon Equation

We discuss the perturbation problems of BH (1) by MCSFs. Assume there is a massive
charged scalar field Φ in spacetime (1) and the energy-momentum tensor of the scalar field
is small enough so that it cannot affect the background spacetime. Thus, the evolution of
the scalar field is described by Klein–Gordon equation

[(∇ν − iqAν)(∇ν − iqAν)− µ2]Φ = 0, (4)

where Aν = (−Q
r , 0, 0, 0) is the electromagnetic potential, q is the charge, and µ is the mass

of the scalar field. In the frequency domain, the scalar field can be separated in spherical
coordinate by

Φ(t, r, θ, ϕ) = ∑
l,m

e−iωtYlm(θ, ϕ)
ψl(r)

r
, (5)

where Ylm(θ, ϕ) is the spherical harmonics. Plugging the metric (1) into the evolution
Equation (4), we obtain the radial equation

h2ψ′′l + hh′ψ′l +
[
(ω− qQ

r
)2 − h(

h′

r
+

l(l + 1)
r2 + µ2)

]
ψl = 0. (6)

By using the tortoise coordinate dx = dr
h(r) , we can reduce the radial equation to

Schrödinger-like form

d2

dx2 ψl(r) +
[
(ω− qQ

r
)2 −V(r)

]
ψl(r) = 0, (7)
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where

V(r) = h(r)
(h′(r)

r
+

l(l + 1)
r2 + µ2) (8)

is the effective potential. Note that the interaction term qQ
r is coupled with ω and not

included in V(r). Equation (7) is the main equation that the perturbation theory satisfies.
The perturbation theory can be used to study QNMs, absorption and scattering problem,
supperadiant instability, etc. Each problem has its own boundary conditions. In the
following numerical investigations, we only list the results for the typical modes of n = 0
and l = 2.

3. QNMs

For simplicity, we investigate the QNMs under the perturbation of a neutral massless
scalar field µ = 0, q = 0. Since the waves at spatial infinity are purely outgoing and those
near the horizon are purely ingoing, the boundary conditions of QNMs are taken as

ψl =

{
e−iωx, x → −∞;
eiωx, x → ∞.

(9)

The frequencies ω = ωnl are the eigenvalues of Equation (6) with conditions (9). In
the following, we will use two different methods to calculate the frequencies and compare
the results.

3.1. Frequency Domain

We use the third order WKB method to calculate the eigenfrequencies ωnl . The WKB
method is an approximate method to solve linear differential equations, especially the time-
dependent Schrödinger equation. As we have shown, the radial equation of perturbation
theory is a Schrödinger-like form (7). Due to this similarity, Schutz and Will [30] first
introduced the WKB method to calculate the eigenfrequencies of QNMs. On this basis, Iyer
and Will [31] established the third order approximation method. Soon after, Konoplya [34]
extended it to the sixth order. In this paper, we use the third order method. To use the
WKB method, we have to consider the perturbation of a neutral scalar field. In this case,
the influence of the term qQ

r in Equation (7) vanishes. Following [57], we have

ω2 = (V +
√
−2V(2)Γ)− i(1 + Ω)

√
−2V(2)Ξ, (10)

where

Ξ =(n +
1
2
)2,

Γ =
1√
−2V(2)

[
1
8

(
V(4)

V(2)

)(
1
4
+ Ξ

)
− 1

288

(
V(3)

V(2)

)2(
7 + 60Ξ

)]
,

Ω =− 1
2V(2)

[
5

6912

(
V(3)

V(2)

)4

(77 + 188Ξ)− 1
384

(
(V(3))2V(4)

(V(2))3

)
(51 + 100Ξ)

+
1

2304

(
V(4)

V(2)

)2

(67 + 68Ξ) +
1

288
(

V(3)V(5)

(V(2))2
)(19 + 28Ξ)− 1

288

(
V(6)

V(2)

)
(5 + 4Ξ)

]
.

The derivatives of the potential V(n) are defined by

V(n) =
dnV
dxn = h(r)

d
dr

V(n−1). (11)

The coordinates of Equation (10) locate in the maximum point of the effective poten-
tial V.
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The numerical results are presented in Table 1 and Figure 1. The real part of the
eigenfrequencies represents the oscillation of the scalar field, while the imaginary part
indicates the evolution of the perturbation amplitude. The positive value of the imaginary
part means the growth of the perturbation amplitude and hence the dynamical instability
of the corresponding modes, while negative value means decay and hence stability. Table 1
shows the eigenfrequencies for different values of the parameters α and Q constrained by
Equation (3). As is shown in Table 1, the imaginary part of all eigenfrequencies are negative,
which means BHs (1) are stable. Moreover, one can see from Figure 1 that the imaginary
part becomes more negative with α increasing. That is to say, BHs with larger α stabilize
quicker. In contrast, the imaginary part of the eigenfrequencies is insensitive to the values
of Q, which is easy to see from Table 1 and Figure 1.

Table 1. The eigenfrequencies of QNMs for different values of the parameters α and Q.

α Q = 0 Q = 0.5 Q = 1

0.05 0.0506405–0.00723841i 0.0507361–0.00724286i 0.0510277–0.00725603i
0.10 0.101281–0.0144768i 0.102055–0.0145121i 0.104545–0.0146107i
0.15 0.151921–0.0217152i 0.154592–0.0218319i 0.164079–0.0220981i
0.20 0.202562–0.0289536i 0.209090–0.0292214i 0.236908–0.0292890i
0.25 0.253202–0.0361920i 0.266504–0.0366856i
0.30 0.303843–0.0434305i 0.328158–0.0441963i
0.35 0.354483–0.0506689i 0.396082–0.0516327i
0.40 0.405124–0.0579073i 0.473815–0.0585780i
0.45 0.455764–0.0651457i 0.568936–0.0632737i
0.50 0.506405–0.0723841i

Figure 1. The real part (left) and imaginary part (right) of QNMs influenced by the parameters α

and Q.

3.2. Time Domain

In the time domain, we numerically solve the Klein–Gordon Equation (4) without
implying the stationary ansatz Φ = e−iωt. Plugging Φ = χ(r,t)

r Ylm(θ, ϕ) into (4), we obtain
the equation

∂2χ(x, t)
∂x2 − ∂2χ(x, t)

∂t2 −V(x)χ(x, t) = 0. (12)

Note that we use the coordinate x to replace the radial coordinate r. In general, we
cannot find an analytical form for the function r(x). However, it is possible to find a
numerical list between r and x. Using the light-cone coordinates ũ = t− x, ṽ = t + x, we
rewrite Equation (12) as [

4
∂2

∂ũ∂ṽ
+ V(ũ, ṽ)

]
χ(ũ, ṽ) = 0. (13)
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We numerically integrate Equation (13) on a ũ, ṽ null grid [35,36]. Note that the
properties of QNMs are independent of the initial conditions. For simplicity, we choose the
initial condition as

χ(ũ, 0) = 0, χ(0, ṽ) = 1. (14)

The numerical calculations are performed in a selected area and are shown in Figure 2.
The left panel is the results for different α and the right is for different Q. One can see that
the scalar field decays quicker for larger α. That is to say, the BHs with larger α stabilizes
quicker, which is a consistent behavior with the WKB method. In addition, the insensitivity
of the decay of the scalar field to the parameter Q is also confirmed here.

Figure 2. Time domain profiles for the scalar perturbations. The left panel indicates the decay of the
perturbation for different α, and the right panel indicates the decay of the perturbation for different Q.

In order to extract the quasinormal frequency in time domain profile, we use the
Prony method of fitting the profile data [58]. As an example, we obtain the frequency
ω = 0.104569− 0.0146088i in the case α = 0.10, Q = 1. The corresponding result given
by the WKB method is ω = 0.104545− 0.0146107i, which shows an error less than one
thousandth. More generally, we plot Figure 3 to compare the results given by the WKB
method and by time domain profiles, which shows well consistent behaviors between the
two methods.

Figure 3. The comparison of QNM’s frequencies given by the WKB method and by time domain
profiles. The lines are the results of WKB, and the dots are the frequencies extracted by the Prony
method. The results show good consistency between the two methods.

4. Superradiant Scattering

In order to obtain the superradiant modes, the perturbation field should be massive
(massless) and charged. The solutions approaching the boundaries can be obtained from
Equation (7):

ψl ≈
{

e−iωvr + Rleiωvr, for r → ∞;
Tle−iωξx, for r → r+.

(15)

where |Rl |2 is the reflection coefficient, |Tωl |2 is the transmission coefficient, v =
√

1− µ2

2ω2

is the speed of propagation of the wave in the far field, and ξ = 1− ωc
ω . The conservation
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of flux indicates a relationship between the reflection coefficient and the transmission coef-
ficient

|Rl |2 +
ξ

v
|Tl |2 = 1. (16)

If ξ > 0, e−iωξx is an ingoing wave and the BH absorbs the wave. However, if
ξ < 0, instead of an ingoing wave, we obtain an outgoing wave e−iωξx on the horizon. In
addition, in this case, the reflection coefficient |Rl |2 is larger than 1 because this outgoing
wave reinforces the emergent wave at infinity. The energy of the BH is also extracted by
scattering wave to infinity. Therefore, the superradiance only occurs when µ√

2
< ω < ωc.

We emphasize that this condition only corresponds to the scattering problem outside the
BHs.

The amplification factor Z is defined by

Z =
|Rl |2
|Tl |2

− 1. (17)

When superradiance occurs, the amplification factor Z should be positive since the
reflection coefficient |Rl |2 is larger than the transmission coefficient |Tl |2. The amplification
factor Z is also used to indicate the intensity of superradiance.

We solve numerically the radial Equation (6) with boundary conditions (15). The
solutions are expanded near both the horizon and the infinity. The corresponding boundary
conditions are taken to be the first order expansion. Using the asymptotical expressions
given by Equation (15) and its derivatives, we numerically integrate the radial Equation (6)
from somewhere adjacent to the event horizon to somewhere far away. Then, by matching
the numerical integration and the expansion of solution approaching infinity, we obtain the
reflection and transmission coefficients. Furthermore, we calculate the amplification factor
Z and show the numerical results in Figure 4.

The superradiance modes exist in the range Z > 0, which is shown in Figure 4. The
critical frequency ωc is located at Z(ωc) = 0. It is easy to see that, when ω < ωc, we have
Z > 0. Since the horizon r+ decreases as parameter Q increases, the critical frequency
ωc = qQ

r+ increases as parameter Q increases, which is clearly shown in Figure 4. The
monotonous increase of ωc with q is obvious.

If the superradiance scattering modes can be detected, there must be an appropriate
frequency window satisfying µ√

2
< ω < ωc, which means that the ratios η = Q

M and µ
q

must satisfy
µ

q
<

η√
2 +

√
2− η2

. (18)

We plot the parameter space of (η, µ
q ) in Figure 5. The line satisfies ωc =

µ√
2
. Above

this line, superradiant scattering is forbidden.

Figure 4. The amplification factor Z.
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Figure 5. The parameter space of (η, µ
q ). Below the line, superradiant scattering with appropriate

frequencies could occur.

5. Superradiant Instability

The superradiance can also exist in a bound state system provided there is an ad-
ditional mechanism that can restrain the superradiant field around the BH. In this case,
superradiant modes will keep extracting energy from the central BH and destabilize the
background spacetime eventually. A natural mechanism is to introduce a mass term into
the boson field that offers an attractive force between the central BH and the massive field.
In the case of rotating charged BHs, the MCSFs may lead to the superradiant instabilities.
However, such a mechanism cannot make the RN black hole unstable. Hod has shown that
the system of the RN BHs and MCSFs is always stable [50]. In order to obtain the bound
state, the effect potential should have a minimum so that the potential well can bound the
superradiant modes. However, for the system of RN BHs and MCSFs, there is only one
maximum point for the effect potential outside the horizon. That is to say, the superradiant
modes cannot form bound state. Following his work, we analyze all of the four extreme
points of the effective potential and show that only one maximum point is in the physical
regime. Thus, the superradiant instability of the BHs (1) and MCSFs system cannot be
triggered.

We still consider the radial Equation (7). Now, the boundary condition is chosen to be

ψ ∼
{

e−i(ω−ωc)x, x → −∞;

e−
√

µ2
2 −ω2x, x → ∞.

(19)

Defining a new radial function φ,

φ = h(r)
1
2 ψ, (20)

we rewrite Equation (7) as
d2φ

dr2 + (ω2 −U)φ = 0, (21)

where

U = ω2 − 1
∆
(

2M
r
− 2Q2

r2 )−
((ω− qQ

r )2 −V)r4 + M2 − Q2

2
∆2 (22)

with

∆ =
r2

2
− 2Mr + Q2. (23)

If it is not limited to the scattering problem, the superradiant condition becomes
ω < ωc. In addition, the binding potential well satisfies ω < µ√

2
. Therefore, the overlapping

region between the superradiant condition and the bound state condition implies

0 < ω < min{ωc,
µ√
2
}. (24)

Then, the important task is to analyze the behavior of the effective potential U.
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Following [50–52], we define
z = r− r−. (25)

The derivative of the effective potential U′ = dU
dr satisfies

− ∆3

2
U′(r; M, Q, µ, q, ω, l) = az4 + bz3 + cz2 + dz + e, (26)

where the coefficients a, b, c, d, e are given by

a = −2Mω2 +
1
2

qQω +
1
2

Mµ2, (27)

b = (2Mr− − 2M2 − 1
2

Q2)µ2 + (−8Mr− + 2Q2)ω2 + 2(M + r−)qQω− 1
2

q2Q2

+
1
4

l(l + 1), (28)

c = −3
8

r2
−(r+ − r−)µ2 + 3r3

−(
qQ
r−
−ω)(ω− qQ

2r−
)− 3

4
l(l + 1)(2M− r−), (29)

d = 2ω2Q2r2
− − 2ω2r4

− +
7
2

qQωr3
− −

1
2

Q2µ2r2
− +

1
8

µ2r4
− +

1
2

µ2Q4 − 3qQ3ωr−

+ q2Q4 − 3
2

q2Q2r2
− −

3
4

Mr− +
1
2

l(l + 1)(4M2 + Q2)− 3
4

l(l + 1)(4Mr− − r2
−)

+
1
2
(Q2 −M2) + M2 − 3

8
M(r+ − r−), (30)

e =
1
2

r4
−(ω−

qQ
r−

)2(r+ − r−) +
1

32
(r+ − r−)3. (31)

It is easy to find the asymptotic behavior of U′ as

U′(r) = −16a
r2 + O(

1
r3 ). (32)

We now analyze the roots {z1, z2, z3, z4} of the quartic equation U′(z) = 0. There are
well-known relations between them

z1 + z2 + z3 + z4 = − b
a

, (33)

z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 =
c
a

, (34)

z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = −d
a

, (35)

z1z2z3z4 =
e
a

. (36)

The coefficient a is always positive when ω is in the range (24). It is easy to prove this
conclusion. We solve a(ω) = 0, and obtain the bigger root

ω+ =
qQ +

√
q2Q2 + 16M2µ2

8M
. (37)

If ω < qQ
r+ <

√
2

2 µ, we use ω+ > qQ
4r+ +

√
q2Q2

16r2
+
+ q2Q2

2r2
+

= qQ
r+ > ω; If ω <

√
2

2 µ < qQ
r+ ,

we use ω+ >
√

2
8 µ +

√
µ2

32 + µ2

4 =
√

2
2 µ > ω. Thus, the conclusion a > 0 is proved.

Then, from Equation (32), we know that

U′(r → ∞)→ 0−. (38)
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Note also that

U(r → r−) −→ −∞, (39)

U(r → r+) −→ −∞. (40)

Equations (38)–(40) imply that U(r) has at least one maximum point in both the regions
(r+, ∞) and (r−, r+). We arrange

0 < z2 < r+ − r− < z1. (41)

It is also easy to show e > 0, and thus, from Equation (36), we have

z1z2z3z4 > 0, (42)

which implies that z3, z4 must be both positive or both negative. In the following, we will
analyze z3, z4 further.

If c ≤ 0, from Equaiton (34), we have

z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 ≤ 0, (43)

which means that z3, z4 are both negative.
If c > 0, from Equation (29), one can find that the necessary condition for c > 0 is

( qQ
r− −ω)(ω− qQ

2r− ) > 0. Then, one obtains qQ
2r− < ω < qQ

r+ . Substituting Equation (2) into
this inequality and solving it, we find in this case that the value of α must be taken in the
range satisfying η = Q

M < 4
3 . Taking Equation (24) and using the inequality that qQ

2r− < ω,
one realizes that the range of ω becomes

qQ
2r−

< ω < min
{

qQ
r+

,
µ√
2

}
. (44)

Next, one can prove that b > 0 when c > 0. Then, from Equation (33), we have
z1 + z2 + z3 + z4 < 0, which means that z3, z4 are both negative. To prove b > 0, one
needs to prove that the minimum of b is positive. The two cases of positive and negative
coefficient of µ2 in Equation (28) should be analyzed separately. The detailed analysis is
primary and tedious, so we put the analysis process in Appendix A.

Through the analysis, one can prove that z3, z4 are both negative. This means that,
among the four extreme points {z1, z2, z3, z4} of the effective potential U(r), only one
maximum point z1 is in the physical region, which shows that there is no binding potential
well outside the black hole(r > r+). Therefore, we conclude that there is no superradiant
instability for the system of BHs (1) and the MCSFs.

6. Further Discussion
6.1. Deficit Angle

BHs (1) are different from RN BHs in two aspects. First, the dimensional parameter
α describes the mass M of the BHs. Secondly, BHs (1) have a fixed deficit angle δθ = π.
It is clear that through coordinate transformation r = ρ√

2
and t =

√
2τ, BHs (1) can be

reexpressed as

ds2 = h(ρ)dτ2 − h−1(ρ)dρ2 − ρ2
(

1− δθ

2π

)
dΩ2,

h(ρ) = 1− 2
√

2
3αρ

+
4Q2

ρ2 .
(45)

We often encounter the deficit angle issue in the studies related to monopole, high
dimensional theory and some modified BH solutions. The global monopole solutions have
a very small deficit angle δθ = ε [59]. The deficit angle of extra dimensions can be used to
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explain the cosmological constant problem [60]. A modified BH solution with small deficit
angle in Lorentz breaking massive gravity has also been obtained [61].

It is also convenient to use the line element (45) to explain or study the properties of
BHs (1). For example, the radial Equation (6) of perturbation theory can be rewritten as

h2ψ∗∗ + hh∗ψ∗ +
[
(ω′ − qQ√

2ρ
)2 −V(ρ)

]
ψ = 0,

V =h
(

h∗

ρ
+

l(l + 1)
ρ2
(
1− δθ

2π

) + µ2
)

,
(46)

where h = h(ρ), and * and ** denote one and second order derivatives with respect to ρ,
respectively. Since the time coordinate becomes τ, the frequency ω′ of the wave described
by radial Equation (46) and the frequency ω described by Equation (6) satisfy

ω′ =
√

2ω. (47)

It is easy to see that the deficit angle δθ only influences ψ when l 6= 0. Furthermore, all
the preceding results can be reproduced by solving the new radial Equation (46).

6.2. The Frequency Condition of Superradiance

The superradiance may exist both in the scattering state problem and bound state
problem. In the previous discussion, we obtain the frequency condition of superradiance by
analyzing the solution of radial equation. However, in the superradiance process, the bound
condition near the horizon is an outgoing wave instead of an ingoing wave. It is known
that BHs absorb everything naturally. Then, one may wonder whether the superradiance
solution of radial equation can really happen in physics. The method introduced by
Bekenstein [42] can answer this question. The idea is based on the area law of black hole,
independent of detailed examination of the wave equation. Through this method, we will
see the superradiance is not a mathematical solution but a real physical process. Following
his work, we can also obtain the frequency condition of superradiance in a physical way.

The process of extracting energy from BHs must satisfy the Hawking’s theorem that
the area of the BH can never decrease. The area of BHs (45) is A = 4π

(
1− δθ

2π

)
ρ2
+. The

differential of the horizon area A is proportional to dM− φ̃dQ, where φ̃ = Q
ρ+

. Far from
the BH, the scattering wave may be regarded to be composed of many quanta (scalarons,
mesons, electrons, etc.). The energy of each quantum is h̄ω and the electric charge of
each quantum is q

h̄ . The ratio of Coulomb energy to the energy carried by the wave must
be q/ω′. On the other hand, the extraction of mass dM is proportional to ω′ and the
extraction of electric charge dQ is proportional to q. However, the charge outside the event
horizon becomes Q√

2
. Thus, in the superradiance process, there must be dQ = q√

2ω′
dM

from the conservation laws for energy and electric charge. Therefore, the change of area is
expressed as

dA ∝
(
1− qQ√

2ρ+ω′

)
dM = (1−

√
2ωc

ω′
)dM. (48)

If ω′ >
√

2ωc, the mass of the BH increases, which means that the BH absorbs the
wave. If ω′ <

√
2ωc, the mass of the BH decreases, which means that the BH radiates the

wave. We then conclude that the superradiance does happen physically and its frequency
satisfies ω < ωc.

7. Conclusions

The BH solutions given in Equation (1) are new charged SSS solutions obtained from
the special class of f (R) gravity. The model parameter α contributes to the mass of the BH
and cannot be set to zero, which makes the BHs deviate from the standard solutions of GR.
In this paper, we study the perturbation problem of BH (1) by MCSFs in three cases: QNMs,
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superradiant scattering, and superradiant instability. The three problems are described by
the same radial Equation (7) but with different boundary conditions. The main conclusions
are as follows:

(i) The third order WKB method is used to calculate QNMs in the frequency domain
and the finite difference method is used in the time domain. The results indicate that the
BH (1) is stable and stabilizes quicker with larger α constrained by the horizon condition
Equation (3).

(ii) We analyze the superradiant scattering and obtain the condition of superradiant
scattering µ√

2
< ω < ωc. Since the metric function h(r) is approximate to 1

2 when r → ∞,

the effective potential V(r) approaches µ2

2 when r → ∞. Furthermore, the scattering modes
approaching infinity satisfy ω > µ√

2
, which is different from the frequency condition of

scattering states in the RN metric. The amplification factor is calculated numerically. In
some parameter region, there is no frequency window satisfying µ√

2
< ω < ωc. Therefore,

the superradiant scattering is forbidden above the line in Figure 5.
(iii) We prove that there is no superradiant instability for the system of BHs (1) and

MCSFs. Through analyzing the extreme points of the potential, we show there is only one
maximum point but no minimum one outside the BH. Thus, the conditions of superradiant
amplification and binding potential well cannot be satisfied simultaneously.

(iv) We also show that the spacetime of BHs (1) has a fixed deficit angle δθ = π.
The previous conclusions can be reobtained by the metric (45) with deficit angle. Using
this metric, we obtain the frequency condition of superradiance based on the Hawking’s
theorem that the area of BHs never deceases. This method, independent of detailed
examination of radial equation, would be more physical.

Our study indicates that the BHs (1) are stable under the perturbation of the scalar
field. Possibly, it is just the deviation of these BHs from the ones in GR that attracts the
continuous interest in recent years. However, a concomitant question may come: “Is it
possible to have BHs with different values of mass in this special f (R) = R− 2α

√
R model?”

What is certain is there must be other BH solutions in this f (R) model. Maybe there are
some generic solutions that allow different values of the mass and include the solutions
(1) as a special case. To have a clearer physical picture, further investigations are needed.
Moreover, it is worth studying further about more astrophysical characteristics such as the
formation and collapse of these BHs. Comparing the predictions from these BHs with those
from GR and with the astrophysical observations would be very interesting and expected.
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Appendix A. Proof of B > 0 When C > 0

Appendix A.1. Case(I): 2Mr− − 2M2 − 1
2 Q2 < 0

When the coefficient of µ2 in Equation (28) 2Mr− − 2M2 − 1
2 Q2 < 0, which gives

0 < η2 < 8
√

3− 12, one can obtain a lower bound on the value of b by substituting into
Equation (28) the maximally allowed value of the mass parameter µ2. This value is given
by Equation (29) with c > 0:

0 <
3
8

r2
−(r+ − r−)µ2 < 3r3

−(
qQ
r−
−ω)(ω− qQ

2r−
)− 3

4
l(l + 1)(2M− r−). (A1)
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Substituting Equations (2) and (A1) into Equation (28), one finds

b > B1(ω) +

√
4− 2η2

(
√

4− 2η2 − 2)2
l(l + 1) (A2)

where

B1(ω) =
4(−4 + η2 + 2

√
4− 2η2)√

4− 2η2
M2ω2 + (

η2 + 4√
4− 2η2

− 6)MqQω

+
3
√

4− 2η2 − 2√
4− 2η2(2−

√
4− 2η2)

q2Q2

(A3)

Note that, in the range 0 < η2 < 8
√

3− 12, we have −4 + η2 + 2
√

4− 2η2 < 0, which
implies that the dependence of B1(ω) on ω is in the form of a convex parabola. Thus, the
minimum value of B1(ω) is located at the boundaries of the frequency interval (44).

Substituting ω → qQ
2r− into Equation (A3), one obtains

B1(
qQ
2r−

) =
1
2
(qQ)2 > 0, (A4)

which obviously has a positive value. Substituting ω → qQ
r+ into Equation (A3) for the case

qQ
r+ ≤

µ2
√

2
, one obtains

B1(
qQ
r+

) =
8(6−

√
4− 2η2)− η2(

√
4− 2η2 + 22)

2η2(
√

4− 2η2 + 2)
(A5)

It is easy to prove B1(
qQ
r+ ) > 0 in the range 0 < η2 < 8

√
3− 12. Substituting ω → µ√

2

into Equation (A3) for the case qQ
2r− < µ√

2
< qQ

r+ , one obtains

B1(
µ√
2
) > min

{
B1(

qQ
2r−

), B1(
qQ
r+

)

}
> 0. (A6)

We therefore conclude that B1(ω) > 0 and thus b > 0.

Appendix A.2. Case(II): 2Mr− − 2M2 − 1
2 Q2 ≥ 0

When the coefficient of µ2 in Equation (28) 2Mr− − 2M2 − 1
2 Q2 ≥ 0, one can obtain a

lower bound on the value of b by substituting into Equation (28) the minimally value of µ2.
This value is given by ω < µ√

2
. One then finds

b > B2(ω) +
1
4

l(l + 1), (A7)

where

B2(ω) = (η2 + 4
√

4− 2η2 − 12)M2ω2 + (6− 2
√

4− 2η2)MqQω− 1
2

q2Q2 (A8)

Note that, in this case, the range of η is 8
√

3− 12 ≤ η2 ≤ 2. Then, we have η2 +
4
√

4− 2η2 − 12 < 0, which implies that the minimum value of B2(ω) is located at the
boundaries of Equation (44).

Substituting ω → qQ
2r− into Equation (A8), one obtains

B2(
qQ
2r−

) =
12− 3η2 − 8

√
4− 2η2

4(
√

4− 2η2 − 2)2
q2Q2 (A9)
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It is easy to prove B2(
qQ
2r− ) > 0 in the range 8

√
3− 12 ≤ η2 ≤ 2. Substituting ω → qQ

r+

into Equation (A8) for the case qQ
r+ ≤

µ2
√

2
, one obtains

B2(
qQ
r+

) =
6η2 + 4

√
4− 2η2 − 12

(
√

4− 2η2 + 2)2
q2Q2 (A10)

It is easy to prove B2(
qQ
r+ ) ≥ 0 in the range 8

√
3− 12 ≤ η2 ≤ 2. Substituting ω → µ√

2

into Equation (A8) for the case qQ
2r− < µ√

2
< qQ

r+ , one obtains

B2(
µ√
2
) > min

{
B2(

qQ
2r−

), B2(
qQ
r+

)

}
≥ 0. (A11)

We therefore conclude that B2(ω) > 0 and thus b > 0.
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