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Abstract: We generalize the Thomas–Fermi approach to galaxy structure to include central supermas-
sive black holes and find, self-consistently and non-linearly, the gravitational potential of the galaxy
plus the central black hole (BH) system. This approach naturally incorporates the quantum pressure
of the fermionic warm dark matter (WDM) particles and shows its full power and clearness in the
presence of supermassive black holes. We find the main galaxy and central black hole magnitudes
as the halo radius rh, halo mass Mh, black hole mass MBH , velocity dispersion σ, and phase space
density, with their realistic astrophysical values, masses and sizes over a wide galaxy range. The su-
permassive black hole masses arise naturally in this framework. Our extensive numerical calculations
and detailed analytic resolution of the Thomas–Fermi equations show that in the presence of the
central BH, both DM regimes—classical (Boltzmann dilute) and quantum (compact)—do necessarily
co-exist generically in any galaxy, from the smaller and compact galaxies to the largest ones. The
ratio R(r) of the particle wavelength to the average interparticle distance shows consistently that
the transition, R ' 1, from the quantum to the classical region occurs precisely at the same point
rA where the chemical potential vanishes. A novel halo structure with three regions shows up: in
the vicinity of the BH, WDM is always quantum in a small compact core of radius rA and nearly
constant density; in the region rA < r < ri until the BH influence radius ri, WDM is less compact and
exhibits a clear classical Boltzmann-like behavior; for r > ri, the WDM gravity potential dominates,
and the known halo galaxy shows up with its astrophysical size. DM is a dilute classical gas in this
region. As an illustration, three representative families of galaxy plus central BH solutions are found
and analyzed: small, medium and large galaxies with realistic supermassive BH masses of 105 M� ,
107 M� and 109 M�, respectively. In the presence of the central BH, we find a minimum galaxy size and
mass Mmin

h ' 107 M�, larger (2.2233× 103 times) than the one without BH, and reached at a minimal
non-zero temperature Tmin. The supermassive BH heats up the DM and prevents it from becoming
an exactly degenerate gas at zero temperature. Colder galaxies are smaller, and warmer galaxies
are larger. Galaxies with a central black hole have large masses Mh > 107 M� > Mmin

h ; compact or
ultracompact dwarf galaxies in the range 104 M� < Mh < 107 M� cannot harbor central BHs. We

find novel scaling relations MBH = DM
3
8
h and rh = CM

4
3
BH , and show that the DM galaxy scaling

relations Mh = b Σ0r2
h and Mh = a σh

4/Σ0 hold too in the presence of the central BH, Σ0 being the
constant surface density scale over a wide galaxy range. The galaxy equation of state is derived:
pressure P(r) takes huge values in the BH vicinity region and then sharply decreases entering the
classical region, following consistently a self-gravitating perfect gas P(r) = σ2ρ(r) behavior.
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1. Introduction and Results

Dark matter (DM) is the main component of galaxies: the fraction of DM over the total
galaxy mass goes from 90% for large diluted galaxies to 99.99% for dwarf compact galaxies.
Therefore, as a first approximation, DM alone should explain the main basic magnitudes
of galaxies (as masses and sizes) as well as main structural properties of density profiles
and rotation curves. Baryons should give corrections to the pure DM results. For such
reasons, we consider here warm dark matter galaxies with central supermassive black holes
without including baryons as a first approximation.

Warm dark matter (WDM), that is, dark matter formed by particles with masses
of the order of kiloelectron volt (keV) scale has received increasing attention in the last
years (see, for example, [1–20] and references therein). At intermediate scales, ∼100 kpc,
WDM gives the correct abundance of substructures and solves the cold dark matter (CDM)
overabundance of structures at small scales [21–29]. For scales larger than 100 kpc, WDM
yields the same results as CDM. Hence, WDM agrees with the small-scale as well as
large-scale structure observations and CMB anisotropy observations.

Astronomical observations show that the DM galaxy density profiles are cored to
scales below the kiloparsec (kpc) [30–38]. On the other hand, N-body CDM simulations
exhibit cusped density profiles with a typical 1/r behavior near the galaxy center r = 0.
Inside galaxy cores, below ∼100 pc, N-body classical physics simulations do not provide
the correct structures for WDM because quantum effects are important in WDM at these
scales. Classical, that is, non-quantum physics N-body WDM simulations which do not
take into account the quantum WDM pressure, exhibit cusps or small cores with sizes
smaller than the observed cores [39–42]. WDM predicts correct structures and cores with
the right sizes for small scales (below kiloparsec) when the quantum nature of the WDM
particles, that is, the quantum pressure of the fermionic WDM, is taken into account [9–12].

We follow here the Thomas–Fermi approach to galaxy structure for self-gravitating
fermionic WDM [9–12]. This approach is especially appropriate to take into account the
quantum properties of systems with a large number of particles, namely, macroscopic
quantum systems as neutron stars, white dwarf stars [43] and galaxies [9–12] .

Fermionic dark matter is appropriate because dark matter particles do not interact with
the standard or electromagnetic forces; a typical example is the sterile neutrino. Fermionic
statistics is totally valid for dark matter, and the kiloelectron volt fermionic dark matter has
become popular in the last years. The DM particles composing the self-gravitating Fermi
gas only interact through gravitation.

In this paper, we generalize the Thomas–Fermi approach to galaxies, including their
central supermassive black holes.

In this approach, the central quantity to derive is the DM chemical potential µ(r),
which is the free energy per particle. For self-gravitating systems, the potential µ(r) is
proportional to the gravitational potential φ(r), µ(r) = µ0 −m φ(r), µ0 being a constant,
and obeys the self-consistent and non-linear Poisson equation

∇2µ(r) = −4 π g G m2
∫ d3 p

(2 π h̄)3 f
(

p2

2 m
− µ(r)

)
. (1)

Here, G is Newton’s gravitational constant, g is the number of internal degrees of
freedom of the DM particle, m is the DM particle mass, p is the DM particle momentum
and f (E) is the energy distribution function. This is a semiclassical gravitational approach
to determine self-consistently the gravitational potential of the quantum fermionic WDM,
given its distribution function f (E).

In the Thomas–Fermi approach, DM-dominated galaxies are considered in a stationary
state. This is a realistic situation for the late stages of structure formation since the free-fall
(Jeans) time t f f for galaxies is much shorter than the age of galaxies. t f f is at least one or
two orders of magnitude smaller than the age of the galaxy.
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We consider spherical symmetric configurations where Equation (1) becomes an
ordinary nonlinear differential equation that determines self-consistently the chemical
potential µ(r) and constitutes the Thomas–Fermi approach [9–12]. We choose for the
energy distribution function a Fermi–Dirac distribution

f (E) =
1

eE/T0 + 1
,

where T0 is the characteristic one-particle energy scale. As we see below, except near the
central black hole, we can take the T0 constant. T0 plays the role of an effective temperature
scale and depends on the galaxy mass [11,12].

The Fermi–Dirac distribution function is justified in the inner regions of the galaxy,
inside the halo radius where we find that the Thomas–Fermi density profiles perfectly agree
with the observations [11,12]. These results are supported by our work [13], where, within
an Eddington-like approach for galaxies, it is shown that the observed galaxy density
profiles describe a self-gravitating thermal gas for r . Rvirial .

Our theoretical results follow by solving the self-consistent and non-linear Poisson
equation Equation (1), which is solely derived from the purely gravitational interaction of
the WDM particles and their fermionic nature.

The central quantity in the Thomas–Fermi Equation (1) is the chemical potential µ(r).
The boundary condition of the chemical or gravitational potential µ(r) at the center r → 0
in the Thomas–Fermi approach is extended here to allow for the presence of the central
black hole, namely,

µ(r) r→0=
G m MBH

r
+ Const. +O(r) . (2)

MBH being the black hole mass. That is, the presence of a galactic central black hole implies
near the center r → 0, a behavior proportional to 1/r in µ(r), while in the absence of the
black hole, let us recall that µ(r) is bounded for r → 0 [9–11] ,[12].

Positive values of µ(r) correspond to a self-gravitating quantum gas regime, while
negative values of µ(r) describe the self-gravitating classical (Boltzmann) regime [44].
As we see below, one of the results of this paper is that in galaxies possessing central
black holes, both regimes do appear. The strong gravitational field of the central black
hole makes the WDM chemical potential large and positive near the center. This implies
that the WDM behaves quantum mechanically inside a small quantum core with a nearly
constant density.

We summarize in what follows the main results of this paper:

(i) We find that µ(r) takes large positive values in the inner regions as implied by
Equation (28), then decreases until vanishing at r = rA, and becomes negative for
r > rA, as shown by our detailed resolution of the Thomas–Fermi equation (Section 3.3
and Figure 1). Therefore, rA is precisely the transition between the quantum and clas-
sical DM behaviors; rA plays the role of the quantum DM radius of the galaxy for
galaxies exhibiting a central black hole. Namely, inside rA, the WDM gas is a self-
gravitating quantum gas, while for r & rA the WDM gas is a self-gravitating classical
Boltzmann gas. The size rA of the quantum WDM core turns to be smaller for increas-
ing galaxy masses and black hole masses. WDM inside a small core of radius rA is
in a quantum gas high-density state, namely a Fermi nearly degenerate state with
nearly constant density ρA. For the three representative families of galaxy solutions
we find here, the values of rA and ρA are given by Equations (75)–(77). The density
ρA is orders of magnitude larger than its values for r > rA, where the WDM is in the
classical Boltzmann regime. rA runs between 0.07 and 1.90 pc for galaxies with virial
masses from 1016 M� to 107 M� (as shown in Section 3.3). In any case, rA is much
larger than the Schwarzschild radius of the central black hole, which runs from 10−4

to 10−8 pc.
This is an important result: in the vicinity of the central black hole, the fermionic
WDM is always in a quantum regime, while far from the central black hole, the WDM
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follows a classical Boltzmann regime [12]. This is natural to understand: the strong
attractive gravitational force near the central BH compacts the WDM, and its high
density makes it to behave quantum mechanically. On the contrary, far from the BH,
the gravitational forces are weak, the WDM is diluted, and it is then described by a
classical Boltzmann gas. Ultracompact dwarf galaxies also exhibit WDM in a quantum
regime [9,10,12].

(ii) In addition, the black hole has an influence radius ri. In the vicinity of the black hole,
the gravitational force, due to the black hole, is larger than the gravitational force
exerted by the dark matter. The influence radius of the black-hole ri is defined as the
radius where both forces are of equal strength. Both forces point inward and always
sum up. ri turns out to be larger than the radius rA where the chemical potential
vanishes, ri > rA. The region rA < r < ri is dominated by the central black hole, and
the WDM exhibits there a classical behavior. For r . ri, we see from Figures 1 and 2
that both µ(r) and |dµ(r)/dr| (or equivalently, the dimensionless potential ν(ξ) and
its derivative |dν(ξ)/dx|, x= ln r/rh), follow the behavior dictated by the central black
hole Equation (32), which produce straight lines on the left part of the logarithmic
plots Figures 1 and 2. Consistently, for r & ri, ν(ξ) and |dν(ξ)/dx| are dominated
by the WDM and exhibit a similar behavior to that of the Thomas–Fermi solutions
without a central black hole [9–12].
Figure 3 shows that the local density behavior is dominated by the black hole for
r . ri. For ri . r . rh, the WDM gravitational field dominates over the black hole
field, and the galaxy core shows up. For medium and large galaxies, the core is seen
as a plateau. At the same time, the chemical potential is negative for r & ri > rA, and
the WDM is a classical Boltzmann gas in this region.
The surface density

Σ0 ≡ rh ρ0 ' 120 M�/pc2 up to 10–20% , (3)

has the remarkable property of being nearly constant and independent of luminosity
in different galactic systems (spirals, dwarfs irregular and spheroidal, and ellipticals)
spanning over 14 magnitudes in luminosity and over different Hubble types [36,37]. It
is therefore a useful physical characteristic scale in terms of which galaxy magnitudes
are expressed.

(iii) We find the main galaxy magnitudes as the halo radius rh, halo mass Mh, black hole
mass MBH , velocity dispersion, circular velocity, density, pressure and phase space xx
expressed in terms of the reference surface density Σ0. Moreover, we can express the
black hole mass as

MBH = 2.73116× 104 M�
ξ0

[ξh I2(ν0)]
3
5

(
Σ0 pc2

120 M�

)3
5
(

2 keV
m

)16
5

(4)

ξ0 being the dimensionless central radius and I2(ν0) the 2nd momentum of the distri-
bution function Equation (21). The black hole mass MBH grows when ξ0 grows. Notice
that MBH does not simply grow linearly with ξ0 due to the presence of the factor

[ξh I2(ν0)]
− 3

5 .
(iv) We find in this approach explicit realistic galaxy solutions with central supermassive

black holes and analyze three representative families of them: small size (mass)
galaxies, intermediate size (mass) galaxies, and large size (mass) galaxies.
For a fixed value of the surface density Σ0, the solutions are parametrized by two
truly physical parameters: the dimensionless central radius ξ0 and the constant A
characteristic of the chemical potential behavior Equation (32) at the center ξ → 0.
The dimensionless central radius ξ0 is explicated in Equation (28). This is the ratio of
the relevant physical parameters (m, MBH , T) which appear in the chemical potential
at the center. The constant A is truly physical too and characterizes the boundary
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condition of the chemical potential at the center in the presence of the central super-
massive black hole, Equation (32). In the absence of the central SMBH: ξ0 = 0, and the
boundary condition at the center without BH, ν(0) = A is recovered.
We derive an illuminating expression for the central radius r0 for large galaxies
Mh & 106 M� explicitly in terms of the black hole mass MBH , the halo mass Mh
and the reference surface density Σ0. It follows from Equations (41), (43) and (66) that,

r0 = l0 ξ0 = 126.762

√
106 M�

Mh

MBH

106 M�

√
120 M�
Σ0 pc2 pc (5)

(v) We find from our extensive numerical calculations that the halo is thermalized at
the uniform temperature T0 and matches the circular temperature Tc(r) by r ∼ 3 rh.
This picture is similar to the picture found in the absence of the central black hole
which follows from the observed density profiles in the Eddington-like approach to
galaxies [13]. We obtain here in the Thomas–Fermi approach and in the presence of a
central supermassive black hole that the halo is thermalized at a uniform temperature
T0 inside r . 3 rh, which tends to the circular temperature Tc(r) at r ∼ 3 rh as
illustrated in Figure 4. The circular temperature is defined in terms of the circular
velocity as Tc(r) = m

3 v2
c (r). The circular temperature is discussed in Section 3. We

introduce the circular temperature Tc(r) in terms of the circular (virial) velocity v2
c (r)

in the same way the temperature T(r) is defined in terms of the velocity dispersion
T(r) = mv2(r)/3. The circular velocity v2

c (r) is defined and found in Section 2.
Near the central black hole, the space dependent temperature Tc(r) is given by an
equipartition and the virial theorem, as shown by Equations (68)–(70).
From our extensive numerical calculations, we find that the galaxy mass increases
and the galaxy size increases when the constant |A| characteristic of the the central
behavior of ν(ξ) for ξ → 0 Equation (32) increases. This is similar to the case with the
absence of central black holes, where A = ν(0) [9,10,12].

(vi) We plot in Figure 4 the circular velocity given by Equation (58) vs. log10 r/rh. For
r > rh, the circular velocity tends to the velocity dispersion as obtained from the
Eddington equation for realistic density profiles [13]. For r → 0, the circular velocity
grows as in Equation (59) due to the central black hole field.

(vii) We find in Equations (75)–(77) the WDM mass MA inside the quantum galaxy radius
rA. MA represents only a small fraction of the halo or virial mass of the galaxy but it
is a significant fraction of the black hole mass MBH . We see from Equations (75)–(77)
that MA amounts to 20% of MBH for the medium and large galaxies and 45% for the
small galaxy.

(viii) We also measure the classical and quantum gas character of the galaxy plus the black
hole system by means of the ratio R(r) between the particle de Broglie wavelength
and the average interparticle distance. For R . 1, the system is of a classical dilute
nature while forR & 1, it is a macroscopic quantum system. We findR(r) in terms
of the surface density and momenta of the gravitational or chemical potential in di-
mensionless units ν(ξ) Equations (80) and (81). Figure 5 shows log10R vs. log10(r/rh)
for the three representative galaxy solutions. The transition from the quantum to the
classical regime occurs precisely at the same point rA where the chemical potential
vanishes (see Figure 1), as it must be, showing the consistency and powerful of our
treatment. This point defines the transition from the quantum to the classical behavior.

(ix) There is an important qualitative difference between galaxy solutions with a black
hole (ξ0 > 0), and galaxy solutions without a black hole (ξ0 = 0). In the absence of the
central black hole, the halo mass Mh reaches the minimal value Mmin

h Equation (82),
which is the degenerate quantum limit at zero temperature Tmin

0 = 0 [9,10,12]. In the
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presence of a central black hole, we find that the minimal temperature Tmin
0 is always

non-zero and that the halo mass takes as a minimal value

Mmin
h = 6.892× 107

(
2 keV

m

)16
5
(

Σ0 pc2

120 M�

)3
5

M� , with central black hole. (6)

Mmin
h = 3.0999× 104

(
2 keV

m

)16
5
(

Σ0 pc2

120 M�

)3
5

M� , Tmin
0 = 0 , without central black hole. (7)

The presence of the supermassive black hole heats up the dark matter gas and prevents
it from becoming an exact degenerate gas at zero temperature. The minimal galaxy
mass and size and most compact galaxy state with a central black hole is a nearly
degenerate state at very low but non-zero temperature as seen from Equation (84).
All matter studied in this paper is dark matter, and the only DM interaction is the
gravitational interaction. The presence of the black hole naturally makes the DM parti-
cles acquire a higher velocity (and thus, a higher associated temperature), and in this
sense, the SMBH does “heat” the dark matter around it. Gravitation self-consistently
acts on such DM, and the SMBH adds too to such gravitational action. This is a very
clean physical process, with a clean framework and clean conclusive results.
This situation is clearly shown in Figure 6. The value of Mmin

h with a central black
hole is 2.2233× 103 times larger than without the black hole. Notice that the small
galaxy solution Equation (75) is just 11% larger in halo mass than the minimal galaxy
Equation (83) with a central black hole. We conclude that galaxies possessing a
central black hole are in the dilute Boltzmann regime because of their large mass
Mh > 106 M� > Mmin

h [12]. On the contrary, compact galaxies, in particular, ultracom-
pact galaxies in the quantum regime Mh < 2.3× 106 M� [12], cannot harbor central
black holes because the minimal galaxy mass with central black hole Equation (83) is
always larger than 2.3× 106 M�. In other words, galaxies with masses Mh < Mmin

h ,
namely ultracompact dwarfs, necessarily do not possess central black holes.
The mass of the supermassive black hole MBH monotonically increases with the central
radius r0 or equivalently the dimensionless one ξ0 at fixed A. In addition, for ξ0 < 0.3,
that is, for small supermassive black holes, and all A, the galaxy parameters, such as
halo mass Mh, halo radius rh, virial mass Mvir and galaxy temperature T0, become
independent of ξ0, showing a limiting galaxy solution. Only the BH mass depends on
ξ0 in this regime.
Figure 7 displays our results for T0. Figure 8 displays our results for the black hole
mass log10 MBH vs. the halo mass log10 Mh. We see that MBH is a two-valued function
of Mh. For each value of Mh, there are two possible values for MBH , which are quite
close to each other. This two-valued dependence on Mh is a direct consequence of the
dependence of Mh on A shown in Figure 6. The branch points on the left in Figure 8
correspond to the minimal galactic halo mass Mmin

h Equation (83) when the central
supermassive black hole is present. At fixed ξ0, as shown in Figure 8, the central black
hole mass MBH scales with the halo mass Mh as

MBH = D(ξ0) M
3
8
h ,

where D(ξ0) is an increasing function of ξ0. We plot in Figure 9 the halo galaxy mass
log10 Mh vs. the galaxy temperature log10 T0/K. The halo mass Mh grows when T0
increases. Colder galaxies are smaller. Warmer galaxies are larger. We see at the
branch points in Figure 9 the minimal galaxy temperature Tmin

0 in Equation (84) when
a supermassive black hole is present.
We find galaxy solutions with central black holes for arbitrarily small values of ξ0 > 0
and a correspondingly, arbitrarily small central BH mass. There is no minimal central
BH mass. The only minimal central BH mass possibility is zero (for ξ = 0).
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(x) We find that Mh scales as r2
h, which is the same scaling found in the Thomas–Fermi

approach to galaxies in the absence of black holes [9,10,12]. We plot in Figure 10 the
ordinary logarithm of the halo radius log10 rh vs. the ordinary logarithm of the halo
mass log10 Mh for galaxies with central black holes of many different masses. The halo
mass in the absence of a central black hole behaves in the Thomas–Fermi approach
as [12]

Mh = 1.75572 Σ0 r2
h , without central black hole. (8)

The proportionality factor in this scaling relation is confirmed by the galaxy data [12].
In the presence of a central black hole, we find in the Thomas–Fermi approach an
analogous relation

Mh = b Σ0 r2
h , with central black hole . (9)

where the coefficient b turns to be of order unity. We plot in Figure 11 the coefficient
b as a function of the halo mass Mh. We see that, except for halo masses near the
minimum halo mass Mmin

h , b in the presence of a central black hole takes values up
to 10% below its value in the absence of a central black hole Equation (85). For halo
masses near Mmin

h , b increases, reaching values b ≤ 4. For very large halos and central
black holes, b could be as small as about 1.6. b changes at most by a factor from 1/2
up to 2 while the halo mass Mh varies by ten orders of magnitude. As shown by
Figure 11, b is a two-valued function of Mh. b turns out to be independent of the
precise value of the WDM particle mass m, which is due to the fact that the scaling
relation Equation (86) as well as Equation (85) apply in the classical Boltzmann regime
of the galaxy (Mh & 106 M�). In summary, the scaling relation Equation (86) and the
coefficient b turn out to be remarkably robust.

(xi) We plot in Figure 12 the ordinary logarithm of the halo radius log10 rh versus the
ordinary logarithm of the central black hole mass log10 MBH for many galaxy solutions.
The halo radius rh turns out to be a double-valued function of MBH . Remarkably, rh
for fixed ξ0 scales as

rh = C(ξ0) M
4
3
BH . (10)

The constant C(ξ0) turns out to be a decreasing function of ξ0.
(xii) We find the local pressure P(r) as given by Equation (53). In Figure 13, we plot

log10 P(r) vs. log10(r/rh) for the three representative galaxy solutions. P(r) monoton-
ically decreases with r. The pressure P(r) takes huge values in the quantum (high
density) region r < rA and then it sharply decreases entering the classical (dilute)
region r > rA. In Figure 14, we plot the derived equation of state log10 P(r) vs.
log10 ρ(r)/ρ0 for the three galaxy solutions we find here with central SMBH. The three
curves almost coincide and are almost straight lines of unit slope. That is, the equation
of state is in very good approximation of a perfect gas equation of state P(r) = σ2ρ(r),
which stems from the fact that galaxies with central black holes have halo masses
Mh > Mh & 106 M� > Mmin

h , Equation (83), and therefore necessarily belong to the
dilute Boltzmann classical regime [12]. The equation of state turns out to be a local
(r-dependent) perfect gas equation of state because of the gravitational interaction
(WDM self-gravitating perfect gas). Indeed, for galaxies with central black holes,
the WDM is in a quantum (highly compact) regime inside the quantum radius rA.
However, because rA is in the parsec scale or smaller (see Equations (75)–(77)), the
bulk of the WDM is in the Boltzmann classical regime, which is consistently reflected
in the perfect gas equation of state behavior.
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FIG. 1: The dimensionless chemical potential log10 |ν(ξ)| vs. log10(ξ/ξh) = log10(r/rh) for the three illustrative galaxy solutions
with central SMBH defined by eq.(3.7). ν(ξ) is negative for r > rA = l0 ξA and WDM exhibits there a classical dilute Boltzmann
gas behaviour, while WDM exhibits a compact quantum gas behaviour for r < rA where the chemical potential is positive.
The point rA where the chemical potential vanishes defines the transition from the quantum to the classical galaxy
WDM behaviour. rA is at the downward spike of log10 |ν(ξ)| where ν(ξ) vanishes.

We can measure the classical or quantum character of the system by considering the ratio

R(r) ≡ λdB(r)

d(r)

For R . 1 the system is of classical dilute nature while for R & 1 it is a macroscopic quantum system.

By using the phase-space density eq.(2.45),

Q(r) =
ρ(r)

σ3(r)
,

and eqs.(3.11)-(3.12), R(r) can be expressed solely in terms of the phase space-density Q(r) as [9], [10],[12]

R(r) =
2 π√
3
~
(
Q(r)

m4

)1
3

. (3.13)

Inserting the phase-space density eq.(2.45) into eq.(3.13) yields for the ratio R(r),

R(r) = 2
√
5
( π

81

)1
3 I

5
6
2 (ν(ξ))

I
1
2
4 (ν(ξ))

= 1.513805
I

5
6
2 (ν(ξ))

I
1
2
4 (ν(ξ))

. (3.14)

In Fig. 5 we plot log10 R vs. log10(r/rh) for the three representative galaxy solutions.

Comparing now Figs.1 and 5 we see that ν(ξ) changes sign indicating the transition from the quantum to the
classical galaxy regime precisely at the same point where R ≃ 1, as it must be. This result shows the power and
consistency of our treatment.

Figure 1. The dimensionless chemical potential log10 |ν(ξ)| vs. log10(ξ/ξh) = log10(r/rh) for the
three illustrative galaxy solutions with central SMBH defined by Equation (74). ν(ξ) is negative for
r > rA = l0 ξA, and WDM exhibits there a classical dilute Boltzmann gas behavior, while WDM
exhibits a compact quantum gas behavior for r < rA, where the chemical potential is positive. The
point rA where the chemical potential vanishes defines the transition from the quantum to the
classical galaxy WDM behavior. rA is at the downward spike of log10 |ν(ξ)| where ν(ξ) vanishes.
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FIG. 2: The derivative of the dimensionless chemical potential log10[|dν(ξ)/dx|/3] vs. log10(ξ/ξh) = log10(r/rh) for the three
galaxy solutions with central SMBHs defined by eq.(3.7). For r . ri both ν(ξ) and |dν(ξ)/dx| follow the behaviour dictated by
the central black hole. ri is the influence radius of the BH defined by eq. (2.21). For r & ri, ν(ξ) and |dν(ξ)/dx| are dominated
by WDM and exhibit a similar behaviour to that for the Thomas-Fermi galaxy solutions without a central black hole [9–12].

IV. SYSTEMATIC STUDY OF THE THOMAS-FERMI GALAXY SOLUTIONS WITH A CENTRAL
SUPERMASSIVE BLACK HOLE

We present in this section our extensive study of the Thomas-Fermi Galaxy solutions with a central supermassive
black hole.

As stated in subsection IIIA, each galaxy solution with a central black hole depends only on two free parameters:
ξ0 and A defining the boundary conditions near the center [see eq.(2.22)], ξ0 being the dimensionless central radius
and A characterizing the central chemical potential behaviour.

We plot in Fig. 6 the halo mass log10 Mh vs. A for fixed values of ξ0.
We see that the halo mass Mh increases with ξ0 at fixed A. In addition, at fixed ξ0 > 0, Mh increases when the

absolute value of A increases .

There is an important qualitative difference between galaxy solutions with a black hole (ξ0 > 0 ), and galaxy
solutions without a black hole (ξ0 = 0). In the absence of the central black hole, the halo mass Mh monotonically
decreases when A increases till Mh reaches a minimal value which is the degenerate quantum limit at zero temperature
[9], [10], [12]:

Mmin
h = 3.0999 104

(
2 keV

m

)16
5
(

Σ0 pc2

120 M⊙

)3
5

M⊙, Tmin
0 = 0, without central black hole . (4.1)

In the presence of a central black hole, we find that the halo mass takes as minimal value

Mmin
h = 6.892 107

(
2 keV

m

)16
5
(

Σ0 pc2

120 M⊙

)3
5

M⊙ , with central black hole . (4.2)

This situation is clearly shown in Fig. 6. The value of Mmin
h with a central black hole is 2.2233 103 times larger

Figure 2. The derivative of the dimensionless chemical potential log10[|dν(ξ)/dx|/3] vs.
log10(ξ/ξh) = log10(r/rh) for the three galaxy solutions with central SMBHs defined by
Equation (74). For r . ri, both ν(ξ) and |dν(ξ)/dx| follow the behavior dictated by the central
black hole. ri is the influence radius of the BH defined by Equation (31). For r & ri, ν(ξ) and
|dν(ξ)/dx|, they are dominated by WDM and exhibit a similar behavior to that for the Thomas–Fermi
galaxy solutions without a central black hole [9–12].
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FIG. 3: The density ρ normalized at the influence radius ri, log10(ρ(r)/ρ0) vs. log10(r/rh) for the three galaxy solutions with
central SMBHs. Notice that in the quantum gas WDM region r < rA the density is constant clearly exhibiting a plateau
behaviour corresponding to the quantum Fermi gas behaviour in such region.

than without the black hole. Notice that the small galaxy solution eq.(3.8) is just 11 % larger in halo mass than the
minimal galaxy eq.(4.2) with central black hole.

We conclude that galaxies possesing a central black hole are in the dilute Boltzmann regime because of their large
mass Mh > Mmin

h [12]. In addition, compact galaxies with Mh < Mmin
h , in particular ultracompact galaxies in the

quantum regime Mh < 2.3 106 M⊙ [12], cannot harbor central black holes.

We plot in Fig. 7 the galaxy temperature log10 T0/K vs. the characteristic central chemical potential constant A
for fixed values of ξ0.

Similarly to the halo mass Mh, the galaxy temperature T0 increases with ξ0 at fixed A. On the other hand, at fixed
ξ0 > 0, T0 increases when the absolute value of A increases.

In the absence of a black hole, the galaxy temperature T0 tends to zero for A → ∞, while in the presence of a
central black hole we find that T0 is always larger than the non zero minimal value:

Tmin
0 = 0.06928

(
2 keV

m

)3
5
(

Σ0 pc2

120 M⊙

)4
5

K , with central black hole . (4.3)

The presence of the supermassive black hole heats-up the dark matter gas and prevents it to become an exact
degenerate gas at zero temperature. The minimal mass and size and most compact galaxy state with a supermassive
black hole is a nearly degenerate state at very low temperature as seen from eq. (4.3).

The mass of the supermassive black hole MBH monotonically increases with ξ0 at fixed A. In addition, for ξ0 < 0.3,
that is for small supermassive black holes, and all A, the galaxy parameters as halo mass Mh, halo radius rh, virial
mass Mvir and galaxy temperature T0 become independent of ξ0 showing a limiting galaxy solution. Only the BH
mass depends on ξ0 in this regime.

We depict in Fig. 8 the black hole mass log10 MBH vs. the halo mass log10 Mh. We see that MBH is a two-valued
function of Mh. For each value of Mh there are two possible values for MBH . These two values of MBH for a given
Mh are quite close to each other. This two-valued dependence on Mh is a direct consequence of the dependence of
Mh on A shown in Fig. 6.

Figure 3. The density ρ normalized at the influence radius ri, log10(ρ(r)/ρ0) vs. log10(r/rh) for the
three galaxy solutions with central SMBHs. Notice that in the quantum gas WDM region r < rA, the
density is constant clearly exhibiting a plateau behavior corresponding to the quantum Fermi gas
behavior in such a region.

22

 2

 3

 4

 5

 6

 7

 8

 9

 10

-15 -10 -5  0  5  10  15  20

x = log xi/xh

lo
g
1
0
<

v
2
>

(r
)
k
m
/
s

Small Galaxy
Medium Galaxy

Large Galaxy

Circular Velocity Small Galaxy
Circular Velocity Medium Galaxy
Circular Velocity Large Galaxy

FIG. 4: The velocity dispersion < v2 > (r) and the circular velocity v2c (r) for the three representative galaxy solutions with
central SMBH vs. log10(r/rh). The velocity dispersion is constant in the Boltzmann and in the quantum regions indicating a
thermalized WDM with two different temperatures T0 = 1

3
m < v2 > (r). For r > rh the circular velocity tends to the velocity

dispersion [13]. These results are in agreement with the DM thermalization found in the absence of a central BH [13], [12].

We see at the branch-points on the left in Fig. 8, the minimal galactic halo mass Mmin
h eq.(4.2) when a supermassive

black hole is present.

At fixed ξ0, as shown in Fig. 8, the central black hole mass MBH scales with the halo mass Mh as

MBH = D(ξ0) M
3
8

h ,

where D(ξ0) is an increasing function of ξ0.

• We plot in Fig. 9 the halo galaxy mass log10 Mh vs. the galaxy temperature log10 T0/K. The halo mass Mh

grows when T0 increases. Colder galaxies are smaller. Warmer galaxies are larger.

We see at the branch-points in Fig. 9 the minimal galaxy temperature Tmin
0 eq.(4.3) when a supermassive black

hole is present.

• We find galaxy solutions with central black holes for arbitrarily small values ξ0 > 0 and correspondingly
arbitrarily small central BH mass. There is no emergence of a minimal mass for the central black hole.

A. Universal Scaling relations in the presence of central black holes

We plot in Fig. 10 the ordinary logarithm of the halo radius log10 rh vs. the ordinary logarithm of the halo mass
log10 Mh for galaxies with central black holes of many different masses. We see in all cases that Mh scales as r2h.
The same scaling was found in the Thomas-Fermi approach to galaxies in absence of black holes [9], [10], [12].

The halo mass in the absence of a central black hole behaves in the Thomas-Fermi approach as [12]

Mh = 1.75572 Σ0 r2h , without central black hole . (4.4)

Figure 4. The velocity dispersion < v2 > (r) and the circular velocity v2
c (r) for the three repre-

sentative galaxy solutions with central SMBH vs. log10(r/rh). The velocity dispersion is constant
in the Boltzmann and in the quantum regions, indicating a thermalized WDM with two different
temperatures, T0 = 1

3 m < v2 > (r). For r > rh, the circular velocity tends to the velocity disper-
sion [13]. These results are in agreement with the DM thermalization found in the absence of a central
BH [12,13].
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FIG. 5: The ratio R of the particle de Broglie wavelength to the interparticle distance in the galaxy as a function of r for the
three representative galaxy solutions with central SMBH: Small galaxy (red), Medium galaxy (green), Large galaxy (blue)
For R . 1 the galaxy plus SMBH system is of classical nature while for R & 1 the system is quantum. The transition from
the quantum to the classical regime occurs precisely at the same point rA where the chemical potential vanishes (see Fig.
1) showing the consistency and power of our treatment. This point defines the transition from the quantum to the classical
behaviour.

The proportionality factor in this scaling relation is confirmed by the galaxy data [12].

In the presence of a central black hole we find in the Thomas-Fermi approach an analogous relation

Mh = b Σ0 r2h , with central black hole , (4.5)

where the coefficient b turns to be of order unity.

We plot in Fig. 11 the coefficient b as a function of the halo mass Mh. We see that except for halo masses near
the minimum halo mass Mmin

h , b in the presence of a central black hole takes values up to 10% below its value in
the absence of a central black hole eq.(4.4). For halo masses near Mmin

h , b increases reaching values b ≤ 4. For very
large halos and central black holes, b could be as small as about 1.6.

That is, the coefficient b changes at most by a factor from 1/2 up to 2 while the halo mass Mh varies ten orders of
magnitude. As shown by Fig.11, the coefficient b turns to be a two-valued function of Mh.

The coefficient b turns to be independent of the precise value of the WDM particle mass m. This is due to the fact
that the scaling relation eq.(4.5) as well as eq.(4.4) apply in the classical Boltzmann regime of the galaxy.

In summary, the scaling relation eq.(4.5) and the coefficient b turn out to be remarkably robust.

We plot in Fig. 12 the ordinary logarithm of the halo radius log10 rh versus the ordinary logarithm of the central
black hole mass log10 MBH for many galaxy solutions. The halo radius rh turns to be a double-valued function of
MBH . Remarkably, rh scales for fixed ξ0 as

rh = C(ξ0) M
4
3

BH . (4.6)

The constant C(ξ0) turns out to be a decreasing function of ξ0.

Figure 5. The ratioR of the particle de Broglie wavelength to the interparticle distance in the galaxy
as a function of r for the three representative galaxy solutions with central SMBH: small galaxy (red),
medium galaxy (green), and large galaxy (blue). For R . 1, the galaxy plus SMBH system is of a
classical nature, while for R & 1, the system is quantum. The transition from the quantum to the
classical regime occurs precisely at the same point rA where the chemical potential vanishes (see
Figure 1), showing the consistency and power of our treatment. This point defines the transition from
the quantum to the classical behavior. 24
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FIG. 6: The halo mass log10 Mh vs. the constant A of the chemical potential behaviour at the origen for fixed values of ξ0. The
halo mass Mh increases with ξ0 at fixed A. Mh increases when the absolute value of A increases at fixed ξ0 > 0. In absence of
the central black hole, the halo mass monotonically decreases when A increases till Mh reaches its minimal value eq.(4.1) at
the degenerate quantum limit at zero temperature [9, 10, 12]. In the presence of a central black hole, we find a larger minimal
value for the halo mass Mmin

h eq.(4.2) with a non zero minimal temperature Tmin
0 eq.(4.3) . Therefore, there is an important

qualitative difference between galaxy solutions with a black hole ξ0 > 0, and galaxy solutions without a black hole ξ0 = 0.

B. Pressure and equation of state in the presence of central black holes

The local pressure P (r) is given by eq. (2.43). In Fig. 13 we plot log10 P (r) vs. log10(r/rh) for the three
representative galaxy solutions. We see that P (r) monotonically decreases with r. The pressure P (r) takes huge
values in the quantum (high density) region r < rA and then it sharply decreases entering the classical (dilute) region
r > rA.

In Fig. 14 we plot log10 P (r) vs. log10 ρ(r)/ρ0 for the three galaxy solutions with central SMBH. We see that the
three curves almost coincide and that they are almost straight lines of unit slope. That is, the equation of state is in
very good approximation a perfect gas equation of state. This perfect gas equation of state stems from the fact that
galaxies with central black holes have halo masses Mh > Mmin

h eq.(4.2) and therefore belong to the dilute Boltzmann
classical regime [12]. The equation of state turns out a local (r-dependent) perfect gas equation of state because of
the gravitational interaction, (WDM self-gravitating perfect gas).

Indeed, for galaxies with central black holes the WDM is in a quantum (highly compact) regime inside the quantum
radius rA. However, because rA is in the parsec scale or smaller [see eqs.(3.8)-(3.10)] the bulk of the WDM is in the
Boltzmann classical regime which consistently reflects in the perfect gas equation of state behaviour.

V. CONCLUSIONS

• We have presented here a novel study of galaxies with central supermassive black holes which shows itself
fruitful and enlighting. This framework stress the key role of gravity and warm dark matter in structurating
galaxies with their central supermassive black holes and provides correctly the major physical quantities to
be first obtained for the galaxy-black hole system: the masses, sizes, densities, velocity dispersions, and their
internal physical states. This also yields a physical and precise characterisation of whether they are compact,

Figure 6. The halo mass log10 Mh vs. the constant A of the chemical potential behavior at the origin
for fixed values of ξ0. The halo mass Mh increases with ξ0 at fixed A. Mh increases when the
absolute value of A increases at fixed ξ0 > 0. In the absence of the central black hole, the halo mass
monotonically decreases when A increases until Mh reaches its minimal value, Equation (82) at the
degenerate quantum limit at zero temperature [9,10,12]. In the presence of a central black hole, we find
a larger minimal value for the halo mass Mmin

h Equation (83) with a non zero minimal temperature Tmin
0

Equation (84) . Therefore, there is an important qualitative difference between galaxy solutions with
a black hole ξ0 > 0, and galaxy solutions without a black hole ξ0 = 0.
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FIG. 7: The galaxy temperature log10(T0/K) vs. the constant A of the chemical potential behaviour at the origin, for fixed
values of ξ0. As for the halo mass Mh, the galaxy temperature T0 increases with ξ0 at fixed A. T0 increases when the absolute
value of A increases at fixed ξ0 > 0. In the absence of a black hole, the galaxy temperature T0 tends to zero for A → ∞ (at the
exact Fermi degenerate state) while in the presence o f a central black hole, we find that T0 is always larger than a minimal
non-zero value Tmin

0 given by eq.(4.3).

ultracompact, low density or large dilute galaxies, encompassed with their classical physics and quantum gas
physical properties.

• We thus found different regions structurating internally the halo of the galaxy from the vicinity of the supermas-
sive central black hole region to the external regions or virial radius. For all galaxy arboring a central black hole
there is a transition from the quantum to the classical regime going from the more compact inner regions which
are in a quantum gas state till the classical dilute regions in a Boltzmann-like state. This is accompanied by
a decreasing of the local temperature from the central warmer regions to the colder external ones. The SMBH
heats the DM near around and prevents it to became exactly degenerated at zero temperature. Although the
inner DM quantum core is highly compact in a nearly degenerate quantum gas state, it is not at zero tempera-
ture. Inside r . 3 rh the halo is thermalized at a uniform or slowly varying local temperature T0 which tends
to the circular temperature Tc(r) at r ∼ 3 rh.

• We have formulated the problem of galaxy structure with central supermassive black holes in the WDM Thomas-
Fermi approach and found the main physical magnitudes and properties of the galaxy plus black hole system. We
solved the corresponding equations and boundary conditions, find three representative families of realistic galaxy
solutions (small, medium and large size galaxies) with central supermassive black holes and provided a systematic
analysis of the new quantum and classical physics properties of the system. The approach naturally incorporates
the quantum pressure of the self-gravitating dark matter fermions showing its full power and clearness to treat
the galaxy plus supermassive black hole system. The realistic astrophysical masses of supermassive black holes
are naturally obtained in this framework.

• We found the main important physical differences between galaxies with and without the presence of a central
black hole. In the presence of a central black hole, both the quantum and classical behaviours of the dark matter
gas do co-exist generically in any galaxy from the compact small galaxies to the dilute large ones and a novel
galaxy halo structure with three regions show up.

• The transition from the quantum to classical regime occurs at the point rA where the chemical potential vanishes

Figure 7. The galaxy temperature log10(T0/K) vs. the constant A of the chemical potential behavior
at the origin, for fixed values of ξ0. As for the halo mass Mh, the galaxy temperature T0 increases
with ξ0 at fixed A. T0 increases when the absolute value of A increases at fixed ξ0 > 0. In the absence
of a black hole, the galaxy temperature T0 tends to zero for A → ∞ (at the exact Fermi degenerate
state), while in the presence of a central black hole, we find that T0 is always larger than a minimal
non-zero value Tmin

0 given by Equation (84).
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FIG. 8: The black hole mass log10 MBH vs. the halo mass log10 Mh. The black hole mass MBH turns out to be a two-valued
function of Mh. For each value of Mh there are two values for MBH . These two values of MBH for a given Mh are quite close
to each other. This two-valued dependence on Mh is a direct consequence of the dependence of Mh on the central chemical
potential behaviour characterized by the constant A as shown in Fig. 6.

and which is in addition, precisely and consistently, the point where the particle wavelength and the interparticle
distance are equal (their ratio being a measure of the quantum or classical properties of the system). The
quantum radius rA is larger for the smaller and more compact galaxies and diminishes with increasing galaxy
and black hole masses for the large dilute galaxies. The WDM mass MA inside the quantum galaxy radius rA
represents only a small fraction of the halo mass Mh or virial mass of the galaxy but it is a significant fraction
of the black hole mass MBH . MA amounts for 20% of MBH for the medium and large galaxies and 45% for the
small galaxies.

• The minimal mass Mmin
h a galaxy should have in order to harbor SMBHs have been found, which shows among

other features why compact or ultracompact galaxies (in the range 104 M⊙ < Mh < 107 M⊙) cannot harbor
necessarily central black holes.

• Novel universal scaling relations in the presence of a central supermassive black hole have been derived: black
hole mass MBH - halo radius rh - halo mass Mh relations. The black hole mass MBH turns out to be a two-
valued function of the halo mass Mh and size rh, and we found the local pressure and equation of state of the
galaxy-black hole system and its different regimes.

• A more detailed quantitative account of the main features and results of this paper is presented in the
Introduction-Section I.

• The circular velocities, galactic rotation curves in the WDM halo with central SMBH are discussed, self-
consistently computed and plotted in Section II, Eqs (2.46) to (2.49), Eqs (2.53)-(2.54) and Fig.4 of this paper
together with the obtained velocity dispersions. These results are presented for the three family of galaxy so-
lutions with SMBHs obtained here with this approach: Small or Dwarf Galaxies, Medium Galaxies and Large
Galaxies. They remarquably accompass the other relevant physical magnitudes obtained for these systems in
this paper with the same approach. Towards the central regions, the circular velocity grows as in eq.(2.49) due
to the central black hole field. As seen from Fig 4, the dispersion velocity is constant in the Boltzmann (outer
or classical) region and in the quantum (inner or compact) region, indicating WDM thermalization. For r > rh,
the circular velocity tends to the velocity dispersion. Remarquably, this result confirms the same behaviour we

Figure 8. The black hole mass log10 MBH vs. the halo mass log10 Mh. The black hole mass MBH

turns out to be a two-valued function of Mh. For each value of Mh, there are two values for MBH .
These two values of MBH for a given Mh are quite close to each other. This two-valued dependence
on Mh is a direct consequence of the dependence of Mh on the central chemical potential behavior
characterized by the constant A as shown in Figure 6.
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FIG. 9: The halo galaxy mass log10 Mh vs. the galaxy temperature log10 T0/K. Mh turns to be a two-valued function of
T0. The halo mass Mh grows when T0 increases. Colder galaxies are smaller while warmer galaxies are larger. We see at the
branch-points in Fig. 9 the minimal galaxy temperature Tmin

0 eq.(4.3) when a supermassive black hole is present.
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FIG. 10: The halo radius log10 rh vs. the common logarithm of the halo mass log10 Mh for galaxies with supermassive central
black holes of many different masses. rh turns to be a two-valued function of Mh. We see that Mh accurately scales as r2h.
The same scaling was found in the Thomas-Fermi approach for galaxies in the absence of black holes [9, 10, 12].

Figure 9. The halo galaxy mass log10 Mh vs. the galaxy temperature log10 T0/K. Mh turns to be
a two-valued function of T0. The halo mass Mh grows when T0 increases. Colder galaxies are
smaller, while warmer galaxies are larger. We see at the branch points in Figure 9 the minimal galaxy
temperature Tmin

0 Equation (84) when a supermassive black hole is present.
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FIG. 9: The halo galaxy mass log10 Mh vs. the galaxy temperature log10 T0/K. Mh turns to be a two-valued function of
T0. The halo mass Mh grows when T0 increases. Colder galaxies are smaller while warmer galaxies are larger. We see at the
branch-points in Fig. 9 the minimal galaxy temperature Tmin

0 eq.(4.3) when a supermassive black hole is present.
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black holes of many different masses. rh turns to be a two-valued function of Mh. We see that Mh accurately scales as r2h.
The same scaling was found in the Thomas-Fermi approach for galaxies in the absence of black holes [9, 10, 12].

Figure 10. The halo radius log10 rh vs. the common logarithm of the halo mass log10 Mh for galaxies
with supermassive central black holes of many different masses. rh turns out to be a two-valued
function of Mh. We see that Mh accurately scales as r2

h. The same scaling was found in the Thomas–
Fermi approach for galaxies in the absence of black holes [9,10,12].
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FIG. 11: The scaling amplitude b ≡ Mh/[Σ0 r2h] as a function of the halo mass Mh. Except for halo masses near the minimum
halo mass Mmin

h eq.(4.2), b in the presence of a central black hole takes values up to 10% below its value 1.75572 in the absence
of a central black hole eq.(4.4). The continuous red horizontal line b = 1.75572 corresponds to galaxies without central black
holes [eq.(4.4)].

obtained independently with a different approach (the inverse problem or the Eddington integral equation for
galaxies which we developped in Ref [13]), namely : given the observed density profiles as input, the velocities,
pressure and other galaxy magnitudes are obtained and analyzed as output. The observed density profiles being
by definition real realistic data, the obtained results from them are trustable realistic magnitudes. Moreover,
another robust verification of the keV WDM Thomas-Fermi approach are the 10 independent sets of observa-
tional data we used in Ref [11] for galaxy masses from 5 109M⊙ to 5 1011M⊙. The theoretical and observational
rotation curves do agree. In addition, they agree extremely well with the observational rotation curves described
by the empirical Burkert profile for r ≥ 2rh. (they differ from each other by only 2.4 per cent). These results
show the success of the keV WDM Thomas-Fermi approach to correctly describe the galaxy structures.

• We have first investigated pure WDM galaxies with their central black holes, because DM is on average the
over-dominant component in galaxies, and it is reasonable then to investigate first the effects of gravity plus
WDM. This is thus a first approximation, more precisely the zero order of a first approximation in which the
visible matter component, baryons, can be incorporated to provide a most accurate and complete picture. We
have seen, that these zero order results found here are already realist very good and robust results and they set
the basis and the direction for improvements and a more complete understanding.

• Baryons will provide corrections to this picture and will allow to study other processes in which ordinary matter
naturally plays a role as the gas and star components, but baryons will not change drastically the pure WDM
results found here which are the structural galaxy and black hole properties, masses, sizes, their scaling and
relations, density profiles, the classical and quantum nature of the halo regions and their physical, high density,
medium density or dilute state, the halo thermalization and virialization.

• This predictive theory and the obtained classes of solutions include very well the different galaxy types through
their generic and important physical quantitive properties as the pressure, density, equation of state, mass, halo
structure, central black holes. Thus, we have primarily three galaxy classes: large dilute galaxies, intermediate
galaxies, and small compact galaxies, whatever their astronomical empirical/historical name. The Milky Way
galaxy is one of the galaxies in the large dilute galaxy class we found with all the specific properties of this

Figure 11. The scaling amplitude b ≡ Mh/[Σ0 r2
h] as a function of the halo mass Mh. Except for halo

masses near the minimum halo mass Mmin
h Equation (83), b in the presence of a central black hole

takes values up to 10% below its value 1.75572 in the absence of a central black hole Equation (85).
The continuous red horizontal line b = 1.75572 corresponds to galaxies without central black holes
(Equation (85)).
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Figure 12. The common logarithm of the halo radius log10 rh vs. the common logarithm of the
central black hole mass log10 MBH for many galaxy solutions. The halo radius rh turns out to be
a double-valued function of MBH . Remarkably, rh scales with the black hole mass for fixed ξ0 as

rh = C(ξ0) M
4
3
BH , where the constant C(ξ0) is a decreasing function of ξ0.
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Figure 13. The logarithm of the local pressure log10 P(r) vs. log10(r/rh) for the three galaxy solutions
with central SMBH. Notice the huge values of P(r) in the quantum (high density) region r < rA and
its sharp decrease entering the classical (dilute) region r > rA.
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FIG. 14: The obtained equation of state of the galaxy plus central SMBH system: The logarithm of the local pressure log10 P (r)
vs. log10 ρ(r)/ρ0. In all the cases we find almost straight lines of unit slope. The equation of state is a perfect gas equation
of state in the Boltzmann classical region. In the quantum gas (dense) region the equation of state becomes steeper than the
perfect gas. Galaxies with central black holes are in the dilute Boltzmann regime because their halo masses are Mh > Mmin

h

eq.(4.2). This explains the perfect gas equation of state.

class, mass, structure and central SMBH. Messier 87 is a larger (”supergiant”) galaxy within the large class of
galaxies we found, and hosting consequently, a bigger central SMBH (M87).

• As explained in the paper, the central quantum WDM gaz is relevant for the presence of the obtained central
non cusped cores and their correct sizes, and for the presence of the central SMBHs and their realistic mass
values without any ad-hoc prescription. Recall for instance Fig. 3 of the paper, which displays the density ρ(r)
normalized at the influence radius ri, vs r/rh for the three family of galaxy solutions with central SMBHs we
found: Large dilute galaxies, intermediate galaxies, and small compact galaxies, covering the different types of
galaxies with their central SMBHs. The Milky Way is within the Large dilute galaxy class we found with all the
characteristic properties of this class: mass, structure and central SMBH, namely MBH = 4.100 106M⊙, galaxy
mass M = (0.8−1.5) 1012M⊙ and rh = 580+/−120kpc). Notice that in the quantum WDM gas region r < rA,
the density is constant clearly exhibiting a plateau behaviour corresponding to the quantum macroscopic Fermi
DM gas behaviour in such region. Fig. 3 shows that the local density behaviour is dominated by the black hole
for r . ri. Coherently, for ri . r . rh the WDM gravitational field dominates over the black hole field and the
galaxy core shows up. For medium and large galaxies as the Milky Way the core is seen as a plateau. At the
same time the chemical potential is negative for r > ri > rA and the WDM is a Boltzmann gas in this region.

The first or primary ”signatures” are the set of galactic physical magnitudes and structural properties : sizes,
masses, cored density profiles and their correct sizes. In particular, Dwarf galaxies appear to be a full quantum
macroscopic system. Dwarf galaxies are really interesting to observe in this respect, as tracers of the quantum
keV WDM nature in nearly degenerated states, their temperatures and properties. These are important features
all found and provided by the same and one single approach, without tailorated prescriptions, and without con-
sidering different approachs for each of the different computed magnitudes. Therefore, these are all ”signatures”
say for this approach.

These results consistently accompass the ones shown in Fig.2 : the derivative of the chemical potential vs.
(r/rh) for the three families of galaxy solutions with central SMBH. For r . ri the behaviour is dictated by the
central black hole. For r > ri, they are dominated by the WDM and in this region exhibit a similar behaviour to

Figure 14. The obtained equation of state of the galaxy plus central SMBH system: the logarithm of
the local pressure log10 P(r) vs. log10 ρ(r)/ρ0. In all the cases, we find almost straight lines of unit
slope. The equation of state is a perfect gas equation of state in the Boltzmann classical region. In the
quantum gas (dense) region, the equation of state becomes steeper than the perfect gas. Galaxies with
central black holes are in the dilute Boltzmann regime because their halo masses are Mh > Mmin

h ,
Equation (83). This explains the perfect gas equation of state.

In summary, the results of this paper show the power and cleanliness of the Thomas–
Fermi theory and WDM to properly describe the galaxy structures and the galaxy physical
states with and without supermassive central black holes. We consider in this paper
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pure WDM galaxies with central supermassive black holes. Adding baryons will introduce
corrections, but the picture of galaxies with central supermassive black holes presented here
should not change essentially. This approach is independent of any WDM particle physics
model. It depends only on the fermionic WDM nature and gravity. The results presented
in this paper do not depend on the precise value of the WDM particle mass m but only on
the fact that m is in the kiloelectron volt scale, namely keV 2 . m . 10 keV, for example.

This paper is organized as follows.
In Section 2, we formulate the problem of galaxy structure with central supermassive

black holes in the WDM Thomas–Fermi approach and find the main physical magnitudes
and properties of the galaxy plus the black hole system. In Section 3, we solve the corre-
sponding equations with the boundary conditions, find three representative families of
galaxy solutions (small, medium and large size galaxies) with central supermassive black
holes and analyze the new quantum and classical physics properties of the system. In
Section 4, we perform an extensive study of the galaxy solutions with a central supermas-
sive black hole, find the main important differences between galaxies with and without the
presence of a central black hole, derive universal galaxy scaling relations in the presence
of a central supermassive black hole (halo mass Mh and halo size rh relation, black hole
mass MBH and halo radius rh relation) and find the galaxy local pressure and equation of
state in the presence of central supermassive black holes and their different regimes. In
Section 5 we provide remarks and Conclusions. In Appendix A we provide the analytical
computation of the density and pressure integrals.

2. Galaxy Structure with Central Supermassive Black Holes in the WDM
Thomas–Fermi Approach

We consider DM-dominated galaxies in their late stages of structure formation when
they are relaxing to a stationary situation, at least not too far from the galaxy center.

This is a realistic situation since the free-fall (Jeans) time t f f for galaxies is much
shorter than the age of galaxies:

t f f =
1√
G ρ0

= 1.49× 107

√
M�

ρ0 pc3 yr . (11)

The observed central densities of galaxies yield free-fall times in the range from
15 million years for ultracompact galaxies to 330 million years for large diluted spiral
galaxies. These free-fall (or collapse) times are small compared with the age of galaxies
running in billions of years.

Hence, we can consider the DM described by a time-independent and energy distribu-
tion function f (E), where E =

√
p2 + m2 −m− µ is the relativistic single-particle energy,

m is the mass of the DM particle, and µ is the chemical potential [9,10,12] related to the
gravitational potential φ(r) by

µ(r) = µ0 −m φ(r) , (12)

where µ0 is a constant. We consider here relativistic kinematics because the WDM particles
in the vicinity of the central black hole can be relativistic. In the non-relativistic limit, we
recover the relations used in Refs. [9,10,12].

In the Thomas–Fermi approach, ρ(r) is expressed as a function of µ(r) through the
standard integral of the DM phase–space distribution function over the momentum

ρ(r) =
g

2 π2 h̄3

∫ ∞

0
dp p2

√
p2 + m2 f

[√
p2 + m2 −m− µ(r)

]
, (13)

where g is the number of internal degrees of freedom of the DM particle, with g = 1 for
Majorana fermions and g = 2 for Dirac fermions. Equation (13) is valid in general for
relativistic fermions, and generalizes the non-relativistic framework of Refs. [9,10,12].
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We consider spherical symmetric configurations. Then, the Poisson equation for φ(r)
takes the self-consistent form

d2µ

dr2 +
2
r

dµ

dr
= −4π G m ρ(r) = −2 g G m

π h̄3

∫ ∞

0
dp p2

√
p2 + m2 f

[√
p2 + m2 −m− µ(r)

]
, (14)

where G is Newton’s constant and ρ(r) is the DM mass density.
Equation (14) provides an ordinary nonlinear differential equation that determines self-

consistently the chemical potential µ(r) and constitutes the Thomas–Fermi approach [9,10,12]
(see also Refs. [45–47]). This is a semi-classical approach to galaxy structure in which the
quantum nature of the DM particles is taken into account through the quantum statistical
distribution function f (E).

The DM pressure and the velocity dispersion can also be expressed as integrals over
the DM phase–space distribution function as

P(r) =
1
3

ρ(r) < v2(r) >=
g

6 π2 h̄3

∫ ∞

0
dp

p4
√

p2 + m2
f
[√

p2 + m2 −m− µ(r)
]

. (15)

We see that µ(r) fully characterizes the DM halo structure in this Thomas–Fermi frame-
work.

In this semi-classical framework, the stationary energy distribution function f (E) must
be given. We consider the Fermi–Dirac distribution

f (E) = ΨFD(E/T0) =
1

eE/T0 + 1
, (16)

where the characteristic one-particle energy scale T0 in the DM halo plays the role of an
effective temperature. T0 can be taken as constant, except near the central black hole.

In neutron stars, where the neutron mass is about six orders of magnitude larger than
the WDM particle mass, the temperature can be approximated by zero.

As shown in Ref. [12], the value of T0 depends on the galaxy mass. In galaxies,
T0 ∼ m < v2 > turns out to be non-zero but small in the range of 10−3 K . T0 . 10 K for
all halo galaxy masses in the range 105 − 1012 M�, which reproduce the observed velocity
dispersions for m ' 2 keV. The smaller values of T0 correspond to compact dwarf galaxies,
and the larger values of T0 are for large and diluted galaxies [12].

More precisely, large positive values of the chemical potential correspond to the de-
generate fermions limit, which is the extreme quantum state, and oppositely, large negative
values of the chemical potential at the origin give the diluted states, which are in the classi-
cal regime. The quantum-degenerate regime describes dwarf and compact galaxies, while
the classical diluted regime describes large and diluted galaxies. In the classical regime,
the Thomas–Fermi Equation (14) becomes the equation for a self-gravitating Boltzmann gas.

Galaxies possessing central black holes exhibit both quantum and classical regions as
we see below.

The units used in this paper are those appropriate to the kiloelectron volt mass of the
dark matter particle in the context of galaxy structure. The expression and conversion of
units in terms of the kiloelectron volt includes the Planck constant h. Relevant conversion
relations in terms of kiloelecron volt in this context are

keV kpc = 1.563738× 1029 (17)

M� = 1.115468× 1063 keV (18)

2.1. Thomas–Fermi Equations with a Central Black Hole

It is useful to introduce dimensionless variables ξ, ν(ξ)

r = l0 ξ , µ(r) = T0 ν(ξ) , f (E) = Ψ(E/T0) , (19)
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where l0 is the characteristic length that emerges from the dynamical Equation (14):

l0 ≡
h̄√
8 G

(
2
g

)1
3
[

9 π I2(ν0)

m8 ρ0

]1
6
= R0

(
2 keV

m

)4
3
(

2
g

)1
3
[

I2(ν0)

ρ0

M�
pc3

]1
6
, R0 = 7.425 pc , (20)

and

I2(ν) ≡ 3
∫ ∞

0
y2 dy

√
1 +

2 y2

τ
ΨFD

(
τ

[√
1 +

2 y2

τ
− 1

]
− ν

)
, (21)

τ ≡ m
T0

, ν0 ≡ ν(ξi) , ρ0 = ρ(ξi) (22)

where we use the integration variable y ≡ p/
√

2 m T0. ξi stands for the influence radius of
the black hole, which is defined below by Equation (31).

We consider in Equation (21) the case of a constant temperature T0. The case of a
r-dependent temperature is analyzed in Section 3.2.

For definiteness, we will take g = 2, Dirac fermions in the sequel. One can easily
translate from Dirac to Majorana fermions, changing the WDM fermion mass as

m⇒ m

2
1
4
= 0.8409 m .

Then, in dimensionless variables, the self-consistent Thomas–Fermi Equation (14) for
the chemical potential ν(ξ) takes the form

d2ν

dξ2 +
2
ξ

dν

dξ
= −I2(ν) . (23)

The presence of the central black hole is introduced through the boundary conditions,
Equation (32), given below for the chemical potential ν(ξ) at ξ → 0.

2.2. Central Galactic Black Hole and Its Influence Radius

In the presence of a central galactic black hole, the gravitational potential and the
chemical potential near the center take the form

φ(r) r→0= −G MBH
r

, µ(r)− µ0
r→0=

G m MBH
r

, (24)

where MBH is the black hole mass.
Integrating Equation (14) from r = 0 to r yields

r2 dµ

dr
−
[

r2 dµ

dr

∣∣∣∣
r→0

]
= −G m M(r) (25)

where
M(r) = 4π

∫ r

0
dr′ r′2 ρ(r′) , (26)

is the total WDM mass M(r) enclosed in a sphere of radius r, not including the central
black hole mass.

Inserting the r → 0 behavior of Equation (24) into Equation (25) yields, for the
derivative of the chemical potential,

dµ

dr
= −G m

r2 [M(r) + MBH ] , (27)

showing that the chemical potential is monotonically decreasing in r.
From Equations (12) and (19), the dimensionless chemical potential ν(ξ) takes the form

ν(ξ)
ξ→0
=

G m MBH
T0 l0 ξ

≡ ξ0

ξ
=

r0

r
, ξ0 ≡

G m MBH
T0 l0

=
r0

l0
. (28)
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That is, the presence of a galactic central black hole implies near the center ξ → 0,
a ξ0/ξ behavior in ν(ξ). ξ0 is proportional to the black hole mass MBH . Recall that in the
absence of the black hole, ν(ξ) is bounded for ξ → 0 [9,10,12].

We see from Equation (28) that in the vicinity ξ . ξ0 of the central black hole, the
chemical potential ν(ξ) is dominated by its boundary expression Equation (28), and there-
fore, ν(ξ) takes positive values ν(ξ) & 1. Values of ν(ξ) larger than unity correspond to a
fermionic WDM gas in a quantum regime [43]. This is an important result: in the vicinity
of the central black hole, the fermionic WDM is always in a quantum regime, while far from
the central black hole, the WDM follows a classical Boltzmann regime [12]. This is natural
to understand: the strong attractive gravitational force near the central BH compacts the
WDM, and its high density makes it to behave quantum mechanically. On the contrary, far
from the BH, the gravitational forces are weak, the WDM is diluted, and it is then described
by a classical Boltzmann gas.

Ultracompact dwarf galaxies also exhibit WDM in a quantum regime [9,10,12].
ν(ξ) takes large positive values for ξ � ξ0 as implied by Equation (28), then decreases

until vanishing at ξ = ξA, ν(ξA) = 0 and becomes negative for ξ > ξA, as shown by our
detailed resolution of the Thomas–Fermi equation (Section 3.3 and Figure 1).

Therefore, rA = l0 ξA plays the role of the quantum DM radius of the galaxy for
galaxies exhibiting a central black hole. Namely, inside rA, the WDM gas is a quantum gas,
while for r & rA, the WDM gas is a classical Boltzmann gas.

That is, a small quantum core of DM forms around the central black hole. The size
rA of the quantum core turns to be smaller for increasing galaxy masses and black-hole
masses, because the larger the black hole mass, the larger its gravitational attraction on the
WDM, which is thus more compact, and, hence, the smaller the quantum radius core rA.

rA runs between 0.07 and 1.90 pc for galaxies with virial masses from 1016 to 107 M�
(see Section 3.3). In any case, rA is much larger than the Schwarzschild radius of the central
black hole which runs from 10−4 to 10−8 pc.

In the vicinity of the black hole, the gravitational force due to the black hole is larger
than the gravitational force exerted by the dark matter. The influence radius of the black
hole ri is defined as the radius where both forces are of equal strength. Notice that both
forces point inward and always sum up.

The total gravitational potential V(r) and its derivative V′(r) are given by

V(r) = −G MBH
r

+ φ(r) , V′(r) =
G MBH

r2 − 1
m

µ′(r) (29)

where we used Equation (12). In dimensionless variables, V′(r) becomes

V′(r) =
T0

m l0 ξ

[
ξ0

ξ
− ξ

dν

dξ

]
(30)

The black hole and dark matter gravitational forces become equal at ξ = ξi. ξi is the
solution of the equation

ξ2
i

dν

dξ

∣∣∣∣
ξi

= ξ0 . (31)

In the Thomas–Fermi approach to galaxies with a central supermassive black hole,
the boundary condition for ν(ξ) at ξ → 0 imposes the black hole presence according to
Equation (28). That is,

ν(ξ)
ξ→0
=

ξ0

ξ
+ A +O(ξ) (32)

where ξ0 is the dimensionless radius defined in Equation (28) and A is a constant that
determines the properties of the corresponding galaxy solution as the galaxy mass and
galaxy radius. In the absence of the central BH, we have ξ0 = 0 , ν(0) = A, and the
boundary condition used in Refs. [9,10,12] is recovered.
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2.3. Main Physical Magnitudes of the Galaxy Plus Central Black Hole System

We find the main physical galaxy magnitudes, such as the mass density ρ(r), the ve-
locity dispersion σ2(r) = v2(r)/3 and the pressure P(r), which are all r-dependent, as

ρ(r) =
m

5
2

3 π2 h̄3 (2 T0)
3
2 I2(ν(ξ)) = ρ0

I2(ν(ξ))

I2(ν0)
, ρ0 =

m
5
2

3 π2 h̄3 (2 T0)
3
2 I2(ν0) (33)

P(r) =
m

3
2

15 π2 h̄3 (2 T0)
5
2 I4(ν(ξ)) =

1
5

(
9 π4

)1
3

(
h̄6

m8

)1
3 [

ρ0

I2(ν0)

]5/3
I4(ν(ξ)) (34)

I4(ν) ≡ 5
∫ ∞

0

y4 dy√
1 + 2 y2

τ

ΨFD

(
τ

[√
1 +

2 y2

τ
− 1

]
− ν

)
. (35)

The integrals I2 and I4 are analytically computed in Appendix A. As a consequence,
from Equations (19), (20), (27) and (33) the total WDM mass M(r) enclosed in a sphere of
radius r (not including the central black hole mass) turns out to be

M(r) = 4 π
ρ0 l3

0
I2(ν0)

∫ ξ

0
dx x2 I2(ν(x)) . (36)

That is, M(r) is the mass enclosed inside a sphere of radius r not including the mass
of the central black hole mass.

The integral Equation (36) can be computed in closed form by integrating both sides
of Equation (23)

M(r) = 4 π
ρ0 l3

0
I2(ν0)

{
ξ2 |ν′(ξ)| −

[
ξ2 |ν′(ξ)|

∣∣∣
ξ→0

]}
(37)

The contribution here from ξ → 0 is obtained from the boundary condition Equation (32)
with the result

M(r) = M0 ξ2 |ν′(ξ)|
(

keV
m

)4
√

ρ0

I2(ν0)

pc3

M�
−MBH ,

M0 = 4 π M�

(
R0

pc

)3
= 0.8230× 105 M� . (38)

In the absence of the central black hole, we recover the expression for the total mass
M(r) obtained in Ref. [12].

In these expressions, we have systematically eliminated the energy scale T0 in terms
of the central density ρ0 through Equation (33).

We define the core size rh of the halo by analogy with the Burkert density profile as

ρ(rh)

ρ0
=

1
4

, rh = l0 ξh . (39)

It must be noticed that the surface density

Σ0 ≡ rh ρ0 , (40)

is found to be nearly constant and independent of luminosity in different galactic systems
(spirals, dwarfs irregular and spheroidal, and ellipticals) spanning over 14 magnitudes in
luminosity and over different Hubble types. More precisely, all galaxies seem to have the
same value for Σ0, namely Σ0 ' 120 M�/pc2 up to 10–20% [36–38]. It is remarkable that,
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at the same time, other important structural quantities, such as rh, ρ0, the baryon fraction
and the galaxy mass vary by orders of magnitude from one galaxy to another.

The constancy of Σ0 seems unlikely to be a mere coincidence and probably reflects a
physical scaling relation between the mass and halo size of galaxies. It must be stressed
that Σ0 is the only dimensionful quantity which is practically constant among the differ-
ent galaxies.

It is then useful to take here the dimensionful quantity Σ0 as physical scale to express
the galaxy magnitudes in the Thomas–Fermi approach. That is, we replace the central
density ρ0 in the above galaxy magnitudes Equations (20)–(38) in terms of Σ0 Equation (40)
with the following results:

l0 =

(
9 π

29

)1
5
(

h̄6

G3 m8

)1
5 [

ξh I2(ν0)

Σ0

]1
5

,

l0 = 4.2557 [ξh I2(ν0)]
1
5

(
2 keV

m

)8
5
(

120 M�
Σ0 pc2

)1
5

pc

(41)

T0 =

(
18 π6 h̄6 G2

m3

)1
5 [ Σ0

ξh I2(ν0)

]4
5

,

T0 =
7.12757 10−3

[ξh I2(ν0)]
4
5

(
2 keV

m

)3
5
(

Σ0 pc2

120 M�

)4
5

K .

(42)

The dimensionless quantum radius of the galaxy ξ0 Equation (28) can be expressed as

ξ0 =

(
28

34 π7

) 1
5
[

ξh I2(ν0)

Σ0

]3
5

G
6
5 m

16
5 MBH , (43)

ξ0 = 36.6145
[

ξh I2(ν0)
120 M�
Σ0 pc2

]3
5 ( m

2 keV

)16
5 MBH

106 M�
. (44)

Moreover, we can express from here the black hole mass as

MBH = 2.73116× 104 M�
ξ0

[ξh I2(ν0)]
3
5

(
Σ0 pc2

120 M�

)3
5
(

2 keV
m

)16
5

. (45)

Furthermore, we obtain

r = 4.2557 ξ [ξh I2(ν0)]
1
5

(
2 keV

m

)8
5
(

120 M�
Σ0 pc2

)1
5

pc (46)

ρ(r) =
(

29 G3 m8

9 π h̄6

)1
5
[

Σ0

ξh I2(ν0)

]6
5

I2(ν(ξ)), (47)

ρ(r) = 18.1967 ;
I2(ν(ξ))

[ξh I2(ν0)]
6
5

( m
2 keV

)8
5
(

Σ0 pc2

120 M�

)6
5 M�

pc3 (48)
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M(r) + MBH = 4 π

(
9 π h̄6

29 G3 m8

)2
5 [ Σ0

ξh I2(ν0)

]3
5

ξ2 |ν′(ξ)|, (49)

M(r) + MBH =
27312 ξ2

[ξh I2(ν0)]
3
5
|ν′(ξ)|

(
2 keV

m

)16
5
(

Σ0 pc2

120 M�

)3
5

M� (50)

σ2(r) =
1
3

v2(r) =
11.0402

[ξh I2(ν0)]
4
5

I4(ν(ξ))

I2(ν(ξ))

(
2 keV

m

)8
5
(

Σ0 pc2

120 M�

)4
5
(

km
s

)2
, (51)

P(r) =
8 π

5
G
[

Σ0

ξh I2(ν0)

]2
I4(ν(ξ)) , (52)

P(r) =
200.895

[ξh I2(ν0)]
2 I4(ν(ξ))

(
Σ0 pc2

120 M�

)2 M�
pc3

(
km

s

)2
. (53)

That is, M(r) + MBH is the total mass inside a sphere of radius r including the mass of
the central black hole.

Notice that both M(r) and MBH at fixed Σ0 do scale with the WDM particle mass as
m−

16
5 .
In particular, the halo galaxy mass Mh follows from Equation (50) at r = rh:

Mh ≡ M(rh) + MBH =
27312 ξ

7
5
h

[I2(ν0)]
3
5
|ν′(ξh)|

(
2 keV

m

)16
5
(

Σ0 pc2

120 M�

)3
5

M� . (54)

The phase–space density Q(r) follows from Equations (48) and (51) as

Q(r) ≡ ρ(r)
σ3(r)

= 3
√

3
ρ(r)

< v2 >
3
2 (r)

=

√
125

3 π2
m4

h̄3
I

5
2
2 (ν(ξ))

I
3
2
4 (ν(ξ))

. (55)

Notice that Q(r) turns out to be independent of T0 and Σ0. In addition, Q(r)/m4 has
no explicit dependence on the DM particle mass.

For a fixed value of the surface density Σ0, the solutions of the Thomas–Fermi
Equation (23) are parametrized by two parameters: the dimensionless central radius ξ0
and the constant A characteristic of the chemical potential behavior of Equation (32) at the
center ξ → 0 .

Additionally, at fixed surface density Σ0, the halo mass Mh, the black hole mass
MBH , the characteristic length l0, the density ρ0 and the effective temperature T0 are only
functions of ξ0 and the constant A.

The circular velocity vc(r) is defined through the virial theorem as

vc(r) ≡
√

G [M(r) + MBH ]

r
, (56)

and it is directly related by Equation (27) to the derivative of the chemical potential as

vc(r) =

√
− r

m
dµ

dr
=

√
−T0

m
dν

d ln ξ
. (57)
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Expressing T0 in terms of the surface density Σ0 using Equation (42), we have, for the
circular velocity, the explicit expression

vc(r) = 5.2537

√
−ξ ν′(ξ)

[ξh I2(ν0)]
2
5

(
2 keV

m

)4
5
(

Σ0 pc2

120 M�

)2
5 km

s
. (58)

For r → 0, the circular velocity vc(r) grows due to the black hole field as

vc(r)
r→0=

√
T0

m
r0

r
, (59)

where we used Equations (24) and (57).

2.4. Galaxy Properties in the Diluted Boltzmann Regime

In the diluted Boltzmann regime, ν0 . −5 corresponding to large galaxies Mh & 106 M�,
we find for the main galaxy magnitudes, the following analytic expressions:

Mh = 1.75572 Σ0 r2
h , rh = 68.894

√
Mh

106 M�
120 M�
Σ0 pc2 pc (60)

T0 = 8.7615× 10−3

√
Mh

106 M�
m

2 keV

√
Σ0 pc2

120 M�
K (61)

ρ(r) = 5.19505
(

Mh
104 M�

Σ0 pc2

120 M�

)3
4 ( m

2 keV

)4
eν(ξ) M�

pc3 (62)

v2
c (r) = 33.9297

√
Mh

106 M�
Σ0 pc2

120 M�

∣∣∣∣
dν(ξ)

d ln ξ

∣∣∣∣
(

km
s

)2
, (63)

v2
c (rh) = 62.4292

√
Mh

106 M�
Σ0 pc2

120 M�

(
km

s

)2
(64)

M(r) + MBH = 7.88895
∣∣∣∣
dν(ξ)

d ln ξ

∣∣∣∣
r

pc

√
Mh

106 M�
Σ0 pc2

120 M�
. (65)

Equations (42) and (61) allow us to express the quantity ξh I2(ν0) in terms of the
observable galaxy magnitudes Mh and Σ0 for large galaxies Mh & 106 M� in the diluted
regime. We obtain from Equations (42) and (61)

ξh I2(ν0) = 0.772598
(

106 M�
Mh

)5
8
(

2 keV
m

)2 ( Σ0 pc2

120 M�

)3
8

(66)

It is illuminating to express the radius r0 Equation (28) in terms of MBH and Σ0 for
large galaxies Mh & 106 M�. It follows from Equations (41), (43) and (66) that

r0 = l0 ξ0 = 126.762

√
106 M�

Mh

MBH

106 M�

√
120 M�
Σ0 pc2 pc (67)

This explicitly provides the value of the radius r0 in terms of the black hole mass MBH ,
the halo mass Mh, and the reference surface density Σ0.
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In summary, we see the power of the WDM Thomas–Fermi approach to describe the
structure and the physical state of galaxies in a clear way and in very good agreement
with the observations.

3. Explicit Thomas–Fermi Galaxy Solutions with Central Supermassive Black Holes

We solve here the Thomas–Fermi Equation (23) with the boundary conditions (32) for
a galaxy with a central black hole.

3.1. Local Thermal Equilibrium in the Galaxy

In Ref. [13], using the Eddington equation for dark matter in galaxies and observed
density profiles, it is shown that the DM halo is realistically a self-gravitating thermal gas
for r . Rvirial . More precisely, the DM halo can be consistently considered in a local thermal
equilibrium situation with (i) a constant temperature T0 for r . 3 rh, and (ii) a space-
dependent temperature T(r) for 3 rh < r . Rvirial , which slowly decreases with r. T(r)
outside the halo radius nicely follows the decrease in the circular velocity squared Tc(r) [13].
These results are physically understood because thermalization is more easy achieved in
the inner regions due to the fact that the gravitational interaction is stronger than in the
external regions where instead virialization occurs. The slow decreasing in the temperature
T(r) with the halo radius consistently corresponds to a transfer flux of the kinetic energy
into potential energy. These results were derived from empirical observed density profiles,
which do not have information of the regions near the central black hole.

The constant temperature T0 for r . 3 rh turns out to be in the Kelvin scale for a DM
particle mass in the kiloelectron volt scale [12].

To implement the Thomas–Fermi approach for a galaxy plus a central black hole,
we take into account the results of Ref. [13]. We simply set the WDM temperature to be
a constant T0, except in the vicinity of the central black hole. We do not assume WDM
thermalization near the central black hole where the black hole force is strong but we
assume virialization. Namely, the WDM square velocity is determined by the black hole
gravitational field through virialization.

In summary, we have the following:

• Near the central black hole, the space-dependent temperature is given by equipartition
and the virial theorem

Tc(r) =
m
3

v2
c (r) =

G m
3 r

MBH =
T0 ξ0

3 ξ
(68)

where we used Equations (19) and (28). We use this temperature Tc(r) for ξ ≤ ξ0/3.
T0 is given by Equation (42).

• For ξ ≥ ξ0/3 we set
Tc(r) = T0 .

Here, the circular temperature Tc(r) associated to the velocity squared is given by

Tc(r) =
m
3

G [M(r) + MBH ]

r
, (69)

where M(r) + MBH , the mass of the galaxy inside the radius r including the BH mass
MBH , is given by Equation (50). Inserting Equation (50) into Equation (69) and using
Equation (42) yields

Tc(r) =
1
3

ξ |ν′(ξ)| T0 . (70)

Near the central black hole, that is, for ξ ≤ ξ0/3, the chemical potential ν(ξ) is given
by Equation (28). Inserting Equation (28) into Equation (70) yields Equation (68) as it
must be.
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• We find from our extensive numerical calculations that the halo is thermalized at
the uniform temperature T0 and matches the circular temperature Tc(r) by r ∼ 3 rh.
This picture is similar to the picture found in the absence of the central black hole
which follows from the observed density profiles in the Eddington-like approach to
galaxies [13]. We obtain here in the Thomas–Fermi approach and in the presence of a
central supermassive black hole that the halo is thermalized at a uniform temperature
T0 inside r . 3 rh which matches the circular temperature Tc(r) at r ∼ 3 rh (see
Figure 4).

• In summary, each galaxy solution with a central black hole depends only on two
free parameters: the dimensionless constants ξ0 and A in Equation (32). We have a
two-parameter family of Thomas–Fermi galaxy solutions with a central supermassive
black hole parametrized by ξ0 and A.
The black hole mass MBH grows when ξ0 grows as shown by Equation (45). Notice
that MBH does not simply grow linearly with ξ0 due to the presence of the factor

[ξh I2(ν0)]
− 3

5 ,

in Equation (45).

From our extensive numerical calculations, we find that the galaxy mass increases and
the galaxy size increases when the constant |A|, characteristic of the the central behavior of
ν(ξ) for ξ → 0 Equation (32) increases. This is similar to the case in the absence of central
black holes, where A = ν(0) [9,10,12].

3.2. Thomas–Fermi Equations with r-Dependent Temperature Tc(r)

For a r-dependent temperature Tc(r), the normalized energy density I2(ν) (recall
Equation (21)) takes the form

I2(ν) = 3
∫ ∞

0
y2 dy

√
1 +

2 y2

τ
ΨFD

(
T0

Tc(r)

[
τ

(√
1 +

2 y2

τ
− 1

)
− ν

])
, (71)

which becomes Equation (21) for a constant temperature Tc(r) = T0, that is in the region
ξ ≥ ξ0/3, i.e., r ≥ r0/3.

Near the BH, for ξ ≤ ξ0/3, we have from Equation (68),

T0

Tc(r)
=

3 ξ

ξ0
. (72)

Beyond r = 3 rh, using Equation (70), these quantities take the values

T0

Tc(r)
=

3
ξ |ν′(ξ)| (73)

Notice that Tc(r) grows for r → 0 as 1/r due to the BH presence; Equation (68). On the
contrary, Tc(r) decreases with increasing r > 3 rh.

For a density profile scaling at large r, r > 3 rh, as r−2α we find Tc(r) ∼ r2(1−α).
Because observations favor α ∼ 1.5 > 1, Tc(r) decreases with increasing r > 3 rh, as in the
case where the black hole is absent [13].

3.3. Examples of Thomas–Fermi Galaxy Solutions with a Central Supermassive Black Hole

We consider here three realistic examples: a small mass galaxy, a medium mass and a
large mass galaxy. We choose as boundary conditions in Equation (32)

ξ0 = 1 , A = 0 , small size galaxy

ξ0 = 7 , A = −10 , medium size galaxy
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ξ0 = 9 , A = −15 , large size galaxy . (74)

These values are illustrative and yield realistic galaxies with a supermassive central
black hole as we see below.

Indeed, we find realistic solutions for a large manifold of boundary conditions.
To compute these solutions, we set as reference values m = 2 keV and Σ0 = 120 M�/pc2.
The present solutions allow to characterize the WDM properties that show up in the

different halo regions according to the distance to the central black hole.
For the three representative galaxy solutions Equation (74), we plot in Figure 1 the

dimensionless chemical potential log10 ν(ξ) versus the dimensionless radius log10(ξ/ξh) =
log10(r/rh), rh being the halo radius (and ξh the dimensionless one); in Figure 2, we plot
the derivative log10 |dν(ξ)/dx| vs. log10(r/rh); and in Figure 3, we plot the density profiles
log10[ρ(ξ)/ρ0] vs. log10(r/rh), (recall that ρ0 ≡ ρ(ξi), ξi being the dimensionless influence
radius of the black hole Equation (31), that is, when the black hole and dark matter
gravitational forces become equal).

Notice that the curves for the three galaxy solutions are of similar size thanks to the
use of the rescaled variable r/rh = ξ/ξh in the abscissa. The dimensionless halo radius ξh
increases by five orders of magnitude going from the small to the large size galaxy.

For the relevant parameters of the solutions, we obtain the following results:

Small size galaxy :

ri = 221 pc , rh = 452 pc , T0 = 0.0978 K,

√
< v2 >(r & rA) = 35.48 km/s,

√
< v2 >(r . rA) = 383.75 km/s ,

Mh = 7.678× 107 M�, Mvir = 8.582× 108 M�,

MBH = 1.947× 105 M�, rSchw
BH = 1.863× 10−8 pc ,

ρ0 = 1.797× 10−23 g/cm3,

ρA = 0.9878× 10−19 g/cm3, MA = 8.767× 104 M�, rA = 1.91 pc . (75)

Medium size galaxy :

ri = 54.3 pc , rh = 210 kpc , T0 = 26.97 K,

√
< v2 >(r & rA) = 559.8 km/s,

√
< v2 >(r . rA) = 6370.9 km/s ,

Mh = 9.022× 1012 M�, Mvir = 8.222× 1013 M�,

MBH = 9.224× 107 M�, rSchw
BH = 8.828× 10−6 pc ,

ρ0 = 3.867× 10−26 g/cm3,

ρA = 7.182× 10−15 g/cm3, MA = 1.932× 107 M�, rA = 0.2 pc . (76)

Large size galaxy :

ri = 21.66 pc, rh = 8.237× 103 kpc , T0 = 1061 K,

√
< v2 >(r & rA) = 3511.2 km/s,

√
< v2 >(r . rA) = 39591 km/s ,
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Mh = 1.3753× 1016 M�, Mvir = 3.3482× 1016 M�,

MBH = 1.8632× 109 M�, rSchw
BH = 1.783× 10−4 pc ,

ρ0 = 0.9860× 10−27 g/cm3,

ρA = 2.9163× 10−12 g/cm3, MA = 3.873× 108 M�, rA = 0.074 pc . (77)

MA stands for the mass inside the radius rA.
Notice that the obtained galaxy solutions have halo masses Mh > 106 M� and,

therefore, belong to the dilute Boltzmann regime [12].
Let us now analyze Figures 1–3. We start from the galaxy center and go toward the

halo tail.

• Quantum to classical behavior: The central black hole strongly attracts the WDM and
makes its density very high for r < rA, where a compact quantum core gets formed.
The dimensionless chemical potential ν(ξ) vanishes at r = rA and becomes negative
for r > rA. The density ρ(r) drops several orders of magnitude immediately after
rA as shown in Figure 3. ν(ξ) is negative for r > rA, and the WDM exhibits there a
classical Boltzmann behavior while the WDM exhibits a quantum behavior for r < rA,
where the chemical potential is large and positive. Therefore, the point rA where
the chemical potential vanishes defines the transition from the quantum to classical
behavior. In the quantum region r < rA, the density exhibits a constant plateau as
shown in Figure 3. Notice from Equation (75) that rA turns to be much larger than the
Schwarzschild radius of the central black hole rA � rSchw

BH .
• Black hole influence radius ri: For r < ri, the black hole gravitational field dominates

over the dark matter gravitational field. The influence radius ri = l0 ξi is defined by
Equation (31). The black hole influence radius turns out to be larger than the radius rA
where the chemical potential vanishes, ri > rA. The region rA < r < ri is dominated
by the central black hole and the WDM exhibits there a classical behavior. For r . ri,
we see from Figures 1 and 2 that both ν(ξ) and |dν(ξ)/dx| follow the behavior dictated
by the central black hole. That is, from Equation (32)

ν(ξ) ' ξ0 e−x + A = ξ0
rh
r
+ A , |dν(ξ)/dx| ' ξ0 e−x = ξ0

rh
r

, x ≡ ln
r
rh

,

which produce straight lines on the left part of the logarithmic plots of Figures 1 and 2.
r & ri, ν(ξ) and |dν(ξ)/dx| are dominated by the WDM and exhibit a similar be-
haviour to that of the Thomas–Fermi solutions without a central black hole [9–12].
Figure 3 shows that the local density behavior is dominated by the black hole for
r . ri. Coherently, for r & ri the WDM gravitational field dominates over the black
hole field and the galaxy core shows up for ri . r . rh in Figure 3. For medium and
large galaxies, the core is seen as a plateau. At the same time, the chemical potential is
negative for r & ri > rA, and the WDM is a classical Boltzmann gas in this region.

• Halo radius rh: Finally, we see in Figure 3 the tail of the WDM density profile for
r & rh, which exhibits a similar shape for all three galaxy solutions.

• WDM thermalization: As shown by Figure 4, the velocity dispersion < v2 > (r) is
constant as a function of r, indicating a thermalized WDM with temperature

T0 =
1
3

m < v2 > .

WDM is thermalized as in the absence of the central black hole [12]. This is consistent
with the use of a thermal Fermi–Dirac distribution function for r ≥ r0/3.

• We also plot in Figure 4 the circular velocity given by Equation (58) vs. log10 r/rh.
For r > rh, the circular velocity tends to the velocity dispersion as obtained from the
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Eddington equation for realistic density profiles [13]. For r → 0, the circular velocity
grows as in Equation (59) due to the central black hole field.

• WDM inside a small core of radius rA is in a quantum gas high density state, namely,
a Fermi nearly degenerate state with nearly constant density ρA. For the three galaxy
solutions, the values of rA and ρA are given by Equations (75)–(77). Notice that the
density ρA is orders of magnitude larger than its values for r > rA, where the WDM is
in the classical Boltzmann regime.

• We also give in Equations (75)–(77) the WDM mass MA inside rA. MA represents only
a small fraction of the halo or virial mass of the galaxy, but it is a significant fraction of
the black hole mass MBH . We see from Equations (75)–(77) that MA amounts to 20%
of MBH for the medium and large galaxies and 45% for the small galaxy.

3.4. Quantum Physics in Galaxies

In order to determine whether a physical system has a classical or quantum nature,
one has to compare the average distance between particles d with their de Broglie wave-
length λdB.

The de Broglie wavelength of DM particles in a galaxy can be expressed as

λdB(r) =
h

m v(r)
, (78)

where h stands for the Planck constant and v ≡
√
< v2 > is the velocity dispersion, while

the average interparticle distance d at r can be estimated as

d(r) =
(

m
ρ(r)

)1
3

(79)

Here, ρ(r) is the local density in the galaxy core.
We can measure the classical or quantum character of the system by considering

the ratio

R(r) ≡ λdB(r)
d(r)

ForR . 1, the system is of a classical dilute nature, while forR & 1, it is a macroscopic
quantum system.

By using the phase–space density Equation (55),

Q(r) =
ρ(r)
σ3(r)

,

and Equations (78) and (79), R(r) can be expressed solely in terms of the phase–space
density Q(r) as [9,10,12]

R(r) = 2 π√
3

h̄
(

Q(r)
m4

)1
3

. (80)

Inserting the phase–space density Equation (55) into Equation (80) yields, for the
ratioR(r),

R(r) = 2
√

5
( π

81

)1
3 I

5
6
2 (ν(ξ))

I
1
2
4 (ν(ξ))

= 1.513805
I

5
6
2 (ν(ξ))

I
1
2
4 (ν(ξ))

. (81)

In Figure 5, we plot log10R vs. log10(r/rh) for the three representative galaxy solutions.
Comparing now Figures 1 and 5, we see that ν(ξ) changes sign, indicating the tran-

sition from the quantum to the classical galaxy regime precisely at the same point where
R ' 1, as it must be. This result shows the power and consistency of our treatment.
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4. Systematic Study of the Thomas–Fermi Galaxy Solutions with a Central
Supermassive Black Hole

We present in this section our extensive study of the Thomas–Fermi galaxy solutions
with a central supermassive black hole.

As stated in Section 3.1, each galaxy solution with a central black hole depends only
on two free parameters: ξ0 and A defining the boundary conditions near the center (see
Equation (32)), ξ0 being the dimensionless central radius and A characterizing the central
chemical potential behavior.

We plot in Figure 6 the halo mass log10 Mh vs. A for fixed values of ξ0.
We see that the halo mass Mh increases with ξ0 at fixed A. In addition, at fixed ξ0 > 0,

Mh increases when the absolute value of A increases .
There is an important qualitative difference between galaxy solutions with a black

hole (ξ0 > 0 ), and galaxy solutions without a black hole (ξ0 = 0). In the absence of the cen-
tral black hole, the halo mass Mh monotonically decreases when A increases until Mh reaches
a minimal value, which is the degenerate quantum limit at zero temperature [9,10,12]:

Mmin
h = 3.0999× 104

(
2 keV

m

)16
5
(

Σ0 pc2

120 M�

)3
5

M�, Tmin
0 = 0, without central black hole . (82)

In the presence of a central black hole, we find that the halo mass takes as mini-
mal value

Mmin
h = 6.892× 107

(
2 keV

m

)16
5
(

Σ0 pc2

120 M�

)3
5

M� , with central black hole . (83)

This situation is clearly shown in Figure 6. The value of Mmin
h with a central black

hole is 2.2233× 103 times larger than without the black hole. Notice that the small galaxy
solution Equation (75) is just 11% larger in halo mass than the minimal galaxy Equation (83)
with a central black hole.

We conclude that galaxies possessing a central black hole are in the dilute Boltzmann regime
because of their large mass Mh > Mmin

h [12]. In addition, compact galaxies with Mh < Mmin
h ,

in particular, ultracompact galaxies in the quantum regime Mh < 2.3× 106 M� [12], cannot
harbor central black holes.

We plot in Figure 7 the galaxy temperature log10 T0/K vs. the characteristic central
chemical potential constant A for fixed values of ξ0.

Similarly to the halo mass Mh, the galaxy temperature T0 increases with ξ0 at fixed A.
On the other hand, at fixed ξ0 > 0, T0 increases when the absolute value of A increases.

In the absence of a black hole, the galaxy temperature T0 tends to zero for A → ∞,
while in the presence of a central black hole, we find that T0 is always larger than the
non-zero minimal value:

Tmin
0 = 0.06928

(
2 keV

m

)3
5
(

Σ0 pc2

120 M�

)4
5

K , with central black hole . (84)

The presence of the supermassive black hole heats up the dark matter gas and prevents
it from becoming an exact degenerate gas at zero temperature. The minimal mass and size
and most compact galaxy state with a supermassive black hole is a nearly degenerate state
at very low temperature as seen from Equation (84).

The mass of the supermassive black hole MBH monotonically increases with ξ0 at
fixed A. In addition, for ξ0 < 0.3, that is, for small supermassive black holes, and all A,
the galaxy parameters, such as halo mass Mh, halo radius rh, virial mass Mvir and galaxy
temperature T0, become independent of ξ0, showing a limiting galaxy solution. Only the BH
mass depends on ξ0 in this regime.

We depict in Figure 8 the black hole mass log10 MBH vs. the halo mass log10 Mh. We
see that MBH is a two-valued function of Mh. For each value of Mh, there are two possible
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values for MBH . These two values of MBH for a given Mh are quite close to each other.
This two-valued dependence on Mh is a direct consequence of the dependence of Mh on A
shown in Figure 6.

We see at the branch points on the left in Figure 8 the minimal galactic halo mass Mmin
h

Equation (83) when a supermassive black hole is present.
At fixed ξ0, as shown in Figure 8, the central black hole mass MBH scales with the halo

mass Mh as

MBH = D(ξ0) M
3
8
h ,

where D(ξ0) is an increasing function of ξ0.

• We plot in Figure 9 the halo galaxy mass log10 Mh vs. the galaxy temperature
log10 T0/K. The halo mass Mh grows when T0 increases. Colder galaxies are smaller.
Warmer galaxies are larger.
We see at the branch points in Figure 9 the minimal galaxy temperature Tmin

0 Equation (84)
when a supermassive black hole is present.

• We find galaxy solutions with central black holes for arbitrarily small values ξ0 > 0
and correspondingly arbitrarily small central BH mass. There is no emergence of a
minimal mass for the central black hole.

4.1. Universal Scaling Relations in the Presence of Central Black Holes

We plot in Figure 10 the ordinary logarithm of the halo radius log10 rh vs. the ordinary
logarithm of the halo mass log10 Mh for galaxies with central black holes of many different
masses. We see in all cases that Mh scales as r2

h. The same scaling was found in the
Thomas–Fermi approach to galaxies in absence of black holes [9,10,12].

The halo mass in the absence of a central black hole behaves in the Thomas–Fermi
approach as [12]

Mh = 1.75572 Σ0 r2
h , without central black hole . (85)

The proportionality factor in this scaling relation is confirmed by the galaxy data [12].
In the presence of a central black hole, we find in the Thomas–Fermi approach an

analogous relation

Mh = b Σ0 r2
h , with central black hole , (86)

where the coefficient b turns to be of order unity.
We plot in Figure 11 the coefficient b as a function of the halo mass Mh. We see that

except for halo masses near the minimum halo mass Mmin
h , b in the presence of a central

black hole takes values up to 10% below its value in the absence of a central black hole
Equation (85). For halo masses near Mmin

h , b increases, reaching values b ≤ 4. For very
large halos and central black holes, b could be as small as about 1.6.

That is, the coefficient b changes at most by a factor from 1/2 up to 2, while the halo
mass Mh varies by ten orders of magnitude. As shown by Figure 11, the coefficient b turns
out to be a two-valued function of Mh.

The coefficient b turns out to be independent of the precise value of the WDM particle
mass m. This is due to the fact that the scaling relation Equation (86) as well as Equation (85)
apply in the classical Boltzmann regime of the galaxy.

In summary, the scaling relation Equation (86) and the coefficient b turn out to be
remarkably robust.

We plot in Figure 12 the ordinary logarithm of the halo radius log10 rh versus the
ordinary logarithm of the central black hole mass log10 MBH for many galaxy solutions.
The halo radius rh turns to be a double-valued function of MBH . Remarkably, rh scales for
fixed ξ0 as

rh = C(ξ0) M
4
3
BH . (87)
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The constant C(ξ0) turns out to be a decreasing function of ξ0.

4.2. Pressure and Equation of State in the Presence of Central Black Holes

The local pressure P(r) is given by Equation (53). In Figure 13, we plot log10 P(r) vs.
log10(r/rh) for the three representative galaxy solutions. We see that P(r) monotonically
decreases with r. The pressure P(r) takes huge values in the quantum (high density) region
r < rA, and then it sharply decreases entering the classical (dilute) region r > rA.

In Figure 14, we plot log10 P(r) vs. log10 ρ(r)/ρ0 for the three galaxy solutions with
central SMBH. We see that the three curves almost coincide and that they are almost straight
lines of the unit slope. That is, the equation of state is in very good approximation of a
perfect gas equation of state. This perfect gas equation of state stems from the fact that
galaxies with central black holes have halo masses Mh > Mmin

h , Equation (83), and therefore
belong to the dilute Boltzmann classical regime [12]. The equation of state turns out to be a
local (r-dependent) perfect gas equation of state because of the gravitational interaction
(WDM self-gravitating perfect gas).

Indeed, for galaxies with central black holes, the WDM is in a quantum (highly
compact) regime inside the quantum radius rA. However, because rA is in the parsec scale
or smaller (see Equations (75)–(77)), the bulk of the WDM is in the Boltzmann classical
regime, which is consistently reflected in the perfect gas equation of state behavior.

5. Conclusions

• We presented here a novel study of galaxies with central supermassive black holes,
which shows itself as fruitful and enlightening. This framework stresses the key role of
gravity and warm dark matter in structuring galaxies with their central supermassive
black holes and provides correctly the major physical quantities to be first obtained
for the galaxy–black-hole system: the masses, sizes, densities, velocity dispersions,
and their internal physical states. This also yields a physical and precise characteriza-
tion of whether they are compact, ultracompact, low density or large dilute galaxies,
encompassed with their classical physics and quantum gas physical properties.

• We thus found different regions structuring internally the halo of the galaxy from the
vicinity of the supermassive central black hole region to the external regions or virial
radius. For all galaxies harboring a central black hole, there is a transition from the
quantum to the classical regime going from the more compact inner regions, which
are in a quantum gas state, to the classical dilute regions in a Boltzmann-like state.
This is accompanied by a decreasing in the local temperature from the central warmer
regions to the colder external ones. The SMBH heats the DM near around and prevents
it from becoming exactly degenerated at zero temperature. Although the inner DM
quantum core is highly compact in a nearly degenerate quantum gas state, it is not
at zero temperature. Inside r . 3 rh, the halo is thermalized at a uniform or slowly
varying local temperature T0, which tends to the circular temperature Tc(r) at r ∼ 3 rh.

• We formulated the problem of galaxy structure with central supermassive black holes
in the WDM Thomas–Fermi approach and found the main physical magnitudes and
properties of the galaxy plus black hole system. We solved the corresponding equa-
tions and boundary conditions, found three representative families of realistic galaxy
solutions (small, medium and large size galaxies) with central supermassive black
holes, and provided a systematic analysis of the new quantum and classical physics
properties of the system. The approach naturally incorporates the quantum pressure
of the self-gravitating dark matter fermions, showing its full power and clearness
to treat the galaxy plus supermassive black hole system. The realistic astrophysical
masses of supermassive black holes are naturally obtained in this framework.

• We found the main important physical differences between galaxies with and without
the presence of a central black hole. In the presence of a central black hole, both the
quantum and classical behaviors of the dark matter gas do co-exist generically in any
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galaxy from the compact small galaxies to the dilute large ones, and a novel galaxy
halo structure with three regions show up.

• The transition from the quantum to classical regime occurs at the point rA, where
the chemical potential vanishes and which is, in addition, precisely and consistently,
the point where the particle wavelength and the interparticle distance are equal
(their ratio being a measure of the quantum or classical properties of the system).
The quantum radius rA is larger for the smaller and more compact galaxies and
diminishes with increasing galaxy and black hole masses for the large dilute galaxies.
The WDM mass MA inside the quantum galaxy radius rA represents only a small
fraction of the halo mass Mh or virial mass of the galaxy, but it is a significant fraction
of the black hole mass MBH . MA amounts to 20% of MBH for the medium and large
galaxies and 45% for the small galaxies.

• The minimal mass Mmin
h that a galaxy should have in order to harbor SMBHs was

found, which shows, among other features, why compact or ultracompact galaxies (in
the range 104 M� < Mh < 107 M�) cannot harbor necessarily central black holes.

• Novel universal scaling relations in the presence of a central supermassive black
hole were derived: black hole mass MBH , halo radius rh and halo mass Mh relations.
The black hole mass MBH turned out to be a two-valued function of the halo mass Mh
and size rh, and we found the local pressure and equation of state of the galaxy–black-
hole system and its different regimes.

• A more detailed quantitative account of the main features and results of this paper is
presented in the Introduction, Section 1.

• The circular velocities, galactic rotation curves in the WDM halo with central SMBH are
discussed, self-consistently computed and plotted in Section 2, Equations (56)–(59), (63)
and (64) and Figure 4 of this paper, together with the obtained velocity dispersions.
These results are presented for the three family of galaxy solutions with SMBHs
obtained here with this approach: small or dwarf galaxies, medium galaxies and
large galaxies. They remarkably encompass the other relevant physical magnitudes
obtained for these systems in this paper with the same approach. Toward the central
regions, the circular velocity grows as in Equation (59) due to the central black hole
field. As seen from Figure 4, the dispersion velocity is constant in the Boltzmann
(outer or classical) region and in the quantum (inner or compact) region, indicating
WDM thermalization. For r > rh, the circular velocity tends to the velocity dispersion.
Remarkably, this result confirms the same behavior we obtained independently with a
different approach (the inverse problem or the Eddington integral equation for galaxies
which we developed in Ref. [13]), namely, given the observed density profiles as input,
the velocities, pressure and other galaxy magnitudes are obtained and analyzed
as output. The observed density profiles being, by definition, real realistic data,
the obtained results from them are valid, realistic magnitudes. Moreover, another
robust verification of the kiloelectron volt WDM Thomas–Fermi approach is the
10 independent sets of observational data we used in Ref. [11] for galaxy masses from
5 × 109M� to 5 × 1011M�. And also for many other different observational data
sets [48–60]. The theoretical and observational rotation curves do agree. In addition,
they agree extremely well with the observational rotation curves described by the
empirical Burkert profile for r ≥ 2rh (they differ from each other by only 2.4 percent).
These results show the success of the kiloelectron volt WDM Thomas–Fermi approach
to correctly describe the galaxy structures.

• We first investigated pure WDM galaxies with their central black holes because DM
is, on average, the over-dominant component in galaxies, and it is reasonable then to
investigate first the effects of gravity plus WDM. This is thus a first approximation,
more precisely the zero order of a first approximation in which the visible matter
component, baryons, can be incorporated to provide a most accurate and complete
picture. We observed that these zero order results found here are already realistic, very
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good and robust results, and they set the basis and the direction for improvements
and a more complete understanding.

• Baryons will provide corrections to this picture and will allow to study other processes
in which ordinary matter naturally plays a role as the gas and star components,
but baryons will not change drastically the pure WDM results found here, which
are the structural galaxy and black hole properties, masses, sizes, their scaling and
relations, density profiles, the classical and quantum natures of the halo regions and
their physical, high-density, medium-density or dilute states, the halo thermalization
and virialization.

• This predictive theory and the obtained classes of solutions include very well the dif-
ferent galaxy types through their generic and important physical quantitive properties,
such as the pressure, density, equation of state, mass, halo structure, and central black
holes. Thus, we have primarily three galaxy classes: large dilute galaxies, intermediate
galaxies, and small compact galaxies, whatever their astronomical empirical/historical
name. The Milky Way galaxy is one of the galaxies in the large dilute galaxy class
we found with all the specific properties of this class, mass, structure and central
SMBH. Messier 87 is a larger (“supergiant”) galaxy within the large class of galaxies
we found, hosting, consequently, a bigger central SMBH (M87).

• As explained in the paper, the central quantum WDM gaz is relevant for the presence
of the obtained central non-cusped cores and their correct sizes, and for the presence
of the central SMBHs and their realistic mass values without any ad hoc prescription.
Recall, for instance, Figure 3 of the paper, which displays the density ρ(r) normalized
at the influence radius ri, vs. r/rh for the three family of galaxy solutions with
central SMBHs we found, large dilute galaxies, intermediate galaxies, and small
compact galaxies, covering the different types of galaxies with their central SMBHs.
The Milky Way is within the large dilute galaxy class we found with all the characteristic
properties of this class: mass, structure and central SMBH, namely MBH = 4.100×
106M�, galaxy mass M = (0.8− 1.5)× 1012M� and rh = 580 + /− 120 kpc). Notice
that in the quantum WDM gas region r < rA, the density is constant, clearly exhibiting
a plateau behavior corresponding to the quantum macroscopic Fermi DM gas behavior
in such a region. Figure 3 shows that the local density behavior is dominated by
the black hole for r . ri. Coherently, for ri . r . rh, the WDM gravitational field
dominates over the black hole field, and the galaxy core shows up. For medium and
large galaxies, such as the Milky Way, the core is seen as a plateau. At the same time,
the chemical potential is negative for r > ri > rA and the WDM is a Boltzmann gas in
this region.
The first or primary “signatures” are the set of galactic physical magnitudes and
structural properties: sizes, masses, cored density profiles and their correct sizes.
In particular, dwarf galaxies appear to be a full quantum macroscopic system. Dwarf
galaxies are really interesting to observe in this respect, as tracers of the quantum
kiloelctron volt WDM nature in nearly degenerated states, their temperatures and
properties. These are important features all found and provided by the same and one
single approach, without tailored prescriptions, and without considering different
approaches for each of the different computed magnitudes. Therefore, these are all
“signatures” for this approach.
These results consistently encompass the ones shown in Figure 2: the derivative of
the chemical potential vs. (r/rh) for the three families of galaxy solutions with central
SMBH. For r . ri, the behavior is dictated by the central black hole. For r > ri, they are
dominated by the WDM and in this region exhibit a similar behavior to the Thomas-
Fermi galaxy solutions without a central SMBH [9–12]. For galaxies with central black
holes, the WDM is in a quantum (highly compact) regime inside the quantum radius
rA. Because rA is in the parsec scale or smaller (see Equations (75)–(77)), the bulk of
the WDM is then in the Boltzmann regime, e.g., Figures 13 and 14. In the quantum
gas (dense) region, the equation of state becomes steeper than the perfect gas. Notice
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the huge values of P(r) in the quantum (high density) region r < rA and its sharp
decrease entering the classical (dilute) region r > rA, all consistent with the other
results we found.

• In all the obtained results, and in the Introduction, we carefully compared the results
and solutions we obtained in this paper for galaxy systems with a central black hole
and without a central black hole. From our results here, we recover, in particular,
the galaxy structures, the cores of quantum WDM and their right sizes, the velocity
dispersions, the scaling relations, the equation of state and the other related results in
the absence of black holes, which we already discussed in our previous works [9–13]
in which the careful check for rotation curves, masses, scaling relations, velocities, are
in full agreement with observations for the whole set of properties.
Cored density profiles and their right size, halo masses, are in full agreement with
the observations. The quantum DM nature in the central regions is not an exotic
property: it is the quantum nature of the degenerate or nearly degenerate gaz of
DM particles. Interaction is fully gravitational, namely, a self-gravitating and self-
consistent WDM gas. The first or primary “ signatures” are, therefore, the set of
galactic physical magnitudes and structural properties—the sizes, masses, central
cored profiles, velocity distributions, and surface density we found and confronted
to real astronomical observations. Other effects, such as the influence of such DM
structures, could in turn exert on the propagation of generated gravitational waves,
on the accretion processes, which are superimposed effects, or on the secondary dark
matter processes or secondary signatures, a problem which would require individual
analysis and is clearly beyond the scope of the present paper, which is devoted to
the primary dark matter effects, namely the dark matter galactic structures. Those
secondary effects, such as the orbits, diffusion and absorption in the different regions
and regimes around the BH require the interaction in propagation with other non
dark matter components, as electromagnetic effects and accretion plasmas are not the
subject of this paper.

• For the primary objectives of obtaining the galaxy structural magnitudes, e.g., the real-
istic astrophysical masses of the galaxies, the realistic SMBH central masses, their sizes,
velocities, cored density and pressure profiles, the Newtonian treatment is largely
enough. Recall that the Thomas–Fermi approach is a statistical many body approach.
Near the black hole horizon, there will appear effects of spiraling, orbiting, or a glory
effect (180 degrees backscattering) but it does not truly affect the properties and mag-
nitudes of the galaxy–black-hole system (and this paper is not devoted to test GR
black hole, horizon or baryonic effects). The values of the relevant radii are as follows
(besides the halo radius): the quantum galaxy radius rA, the BH influence radius ri,
and the horizon black hole radius rSchw

BH are given by Equations (75)–(77). The horizon
radius is always extremely small with respect to the other radii. For galaxies with
virial masses from 1016 to 107M�, rA runs between 0.07 and 1.90 pc, respectively
(as shown in Section 3.3), while the horizon radius of the central black hole runs
from 10−4 to 10−8 pc for such range of galaxy masses, respectively; ri is larger than
rA:ri > rA >> rSchw

BH . The important point in order to account for both the realistic
galaxy and their central SMBH masses, their sizes, velocities, pressure profiles, density
profiles and the core sizes, is the DM nature: kiloelectron volt WDM with its quantum
and its relativistic treatment.
Newtonian black holes have many common properties with general relativity black
holes, and most importantly, they both have the same size. Recall that Newtonian
and post-Newtonian approximation have proven to be remarkably effective, even in
describing strong-field systems and astrophysical black hole systems (e.g., binary bhs)
in spiraling toward a final merger (e.g., Ref. [61] and references therein). Of course,
a fully GR treatment is needed to account for a causal space–time structure, central
classical space–time curvature singularity, and precise tests of GR of the horizon or of
the “no hair theorems”, for which inner orbits at milliparsec (mpc) distances need to be
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considered but not for the magnitudes of the galactic masses, sizes, or of their central
SMBHs. The GR treatment minimally affects the obtained huge mass magnitude
values. A high merit of the kiloelectron volt WDM approach is that it accounts
naturally (with dark matter only) for the realistic astrophysical masses, sizes, density
and velocity profiles, rotation curves, equation of state and structural properties of
both galaxies and their central SMBHs.

Author Contributions: Conceptualization, H.J.d.V. and N.G.S. All authors have read and agreed to
the published version of the manuscript.
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Appendix A. Analytic Evaluation of the Density and the Pressure

The density and the pressure were expressed in Section 2 in terms of the integrals

I2(ν) = 3
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We evaluate in this Appendix the integrals I2(ν) and I4(ν) in the limits ν � 1 and
ν� −1 corresponding to the quantum and classical regimes, respectively.

Appendix A.1. The Quantum (High Density) Regime

In order to evaluate the integrals Equation (A1) in the ν� 1 regime it is convenient to
change the integration variable y into z defined as

z ≡ τ



√

1 +
2 y2

τ1
− 1


− ν . (A2)

The density integral I2(ν) takes then the form

I2(ν) =
∫ ∞
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) 3
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It is convenient to split the integral Equation (A3) into two pieces

∫ ∞

−ν
=
∫ 0

−ν
+
∫ ∞

0
.

Equation (A3) can then be recast as

I2(ν) =
∫ ν

0
h2(z) dz +

∫ ∞

0

dz
ez + 1

[h2(ν + z)− h2(ν− z)] , (A4)

where small terms of the order e−ν have been neglected.
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The integral in the first term of Equation (A4) giving the dominant behavior of I2(ν)
for ν� 1 can be computed in closed form with the result
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Expanding the integrand of the second term of Equation (A4) in powers of z and
integrating term by term yields the subdominant terms of I2(ν) for ν� 1 as an expansion
in inverse powers of ν
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We finally obtain from Equations (A4)–(A6)
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where we used Equation (A3).
The pressure integral I4(ν) can be treated analogously to the density integral I2(ν)

using the integration variable z Equation (A2)
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Proceeding as above for I2(ν), we obtain

I4(ν) =
∫ ν

0
h4(z) dz +

∫ ∞

0

dz
ez + 1

[h4(ν + z)− h4(ν− z)] , (A8)

where small terms of the order e−ν have been neglected and the dominant contribution
becomes
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The subdominant terms of I4(ν) for ν� 1 follow by expanding as in Equation (A6)
and we finally obtain from Equations (A8) and (A9)
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Appendix A.2. The Classical Boltzmann Regime

In the classical Boltzmann regime ν � −1 and because eν � 1, the Fermi–Dirac
distribution can be approximated by the exponent of the Boltzmann distribution
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Inserting Equation (A11) into Equation (A1) for I2(ν) yields
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where Kn(τ) stands for the Bessel functions of imaginary argument n = 2, 4.
Because τ � 1, Equation (A12) can be approximated as

I2(ν)
ν�−1 , τ�1

=
3
4
√

π eν
(τ1

τ

) 3
2
[

1 +
27
8 τ

+O
(

1
τ2

)]
+O

(
e2 ν
)

. (A13)

The pressure integral I4(ν) can be computed analogously by inserting Equation (A11)
into Equation (A1) for I4(ν)
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For τ � 1 we obtain the simpler expression:
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