
Citation: Salas Salas, A.H.; Castillo

Hernandez, J.E.; Pinzon Quintero, J.E.

Calculation of the Cosmological

Constant for the Planetary System in

Schwarzschild’s Cosmological Model.

Universe 2022, 8, 449. https://

doi.org/10.3390/universe8090449

Academic Editor: Jean-Pierre Gazeau

Received: 12 July 2022

Accepted: 22 August 2022

Published: 28 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Calculation of the Cosmological Constant for the Planetary
System in Schwarzschild’s Cosmological Model
Alvaro Humberto Salas Salas 1, Jairo Ernesto Castillo Hernandez 2,* and Jorge Enrique Pinzon Quintero 3

1 FIZMAKO Research Group, Department of Mathematics and Statistics, Universidad Nacional de Colombia
Sede Manizales, Manizales 500001, Colombia

2 FIZMAKO Research Group, Universidad Distrital Francisco José de Caldas, Bogotá 11021, Colombia
3 FIZMAKO Research Group, Universidad del Tolima, Ibagué 730001, Colombia
* Correspondence: jcastillo@udistrital.edu.co

Abstract: In this work, the static cosmological model of the Schwarzschild solution for the solar
system is proposed taking into account the cosmological constant in the equation of the general
theory of relativity (GTR) proposed by A. Einstein. We found the nonlinear differential equation
that describes the behavior of the planets around the Sun; this is solved exactly by the Jacobi
and Weierstrass elliptic functions. The obtained solution allows for us to estimate the value of the
cosmological constant knowing the perihelion of the different planets and from different mathematical
approaches; that is, the inverse problem is solved. From the obtained results, the Schwarzschild static
cosmological model for the solar system is proposed, establishing the Schwarzschild cosmological
radius and the curvature limit of the solar system. From the curvature limit, different regions are
proposed for the planets, exoplanets, and a region is predicted where the existence of new planets and
exoplanets belonging to the solar system is possible. The proposed theory of the static Schwarzschild
cosmological model may be of great interest to astronomers, cosmologists, and all those interested in
the study of the universe.

Keywords: cosmological model; Schwarzschild model; static cosmological model

1. Introduction

Albert Einstein in 1915 [1,2] formulated the general theory of gravitation (TGR),
synthesizing it in the equation

Rαβ −
1
2

Rgαβ =
8πG

c4 Tαβ (1)

He verified that his theory explained the anomaly of the perihelion of Mercury and
the curvature of light in the gravitational field of the Sun. The first exact static solution was
found by Schwarzschild [3]. This solution led to deducing two great physical phenomena in
our planetary system: the perihelion of the planet Mercury, the deviation of light rays in the
gravitational field of the Sun, establishing that spacetime in the vicinity of a gravitational
mass is curved, later experimentally demonstrated [4,5], this being a great triumph for GTG.

In the following years and recently, nonstatic solutions were found, such as those of: E.
Kasner [6–9], H.P Robertson [10], A.G Walker [11], A. Friedman [12], and G. Lemaitre [13],
which are called the Friedmann–Lemaitre–Robertson–Walker metric or FLRW cosmologi-
cal model.

In 1917, Albert Einstein [14] could not find a static universe of his original equation.
This led him to reformulate the original equation of the GTG, introducing a term called
the lambda Λ-cosmological constant, which encompass the physical structure of the static
universe. Later, in 1937, Albert Einstein rejected this idea once De sitter [15] had established
that there is a solution of Equation (1) for empty space, which represents a model of the
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expanding universe, and it was observed by Edwin Hubbles [16] in the redshift of galaxies,
suggesting that the universe was not static, and that Eddington [17] demonstrated the
expansion of the universe and that the static universe with cosmological constant was
unstable [18,19].

Rαβ −
1
2

Rgαβ −Λgαβ =
8πG

c4 Tαβ (2)

Edwin Hubbles’ discovery of the redshift, and subsequent observations of different
galaxies and supernovae yielded new results that confirmed the theory of redshift, the
discoveries of the radiation of the cosmic background, the acceleration of the universe,
the large-scale structure of the universe, dark energy, and dark matter, leading to retaking
the importance of the cosmological constant and the search for solutions to the equations
proposed by A. Einstein with the cosmological constant.

Many works studied the perihelion of Mercury [20,21] and of other planets with
constant zero and nonzero cosmology [22–25] .

This work is organized as follows: In Section 1, Einstein’s equation is solved with
the cosmological constant in vacuum with the aim that the work is complete and inde-
pendent for the reader. In Section 2 are the algebraic equations of geodesics, and the
nonlinear differential equation that describes the behavior of a planet around the Sun. In
Sections 3 and 4, the nonlinear differential equation is solved by means of the elliptic
Jacobi functions and Weierstrass elliptic function. The cosmological constant is found as
a function of the perihelion and aphelion of the planets around the Sun from different
perspectives. Lastly, an exhaustive analysis of the obtained results and their consequences
in Schwarzschild’s cosmological static model was carried out, for which A. Einstein so
yearned and sought.

2. Solution of Einstein’s Equation with the Cosmological Constant

In this section, we propose to derive the Schwarzschild metric while taking into
account the cosmological constant. For this purpose, we solve Einstein’s equation in a
vacuum while taking into account the cosmological constant

Rαβ −Λgαβ = 0 (3)

where Rαβ is the Ricci tensor, gαβ the metric tensor, and Λ the cosmological constant.
Since the Schwarzschild solution is static and isotropic, let us find the solution of (3)

of the form:
ds2 = D(r)dt2 − E(r)dr2 − F(r)r2(dθ2 + sin2 θdφ2) (4)

Now, we perform a coordinate transformation (ct, r, θ, φ)− > (ct, ρ, θ, φ) where the
new coordinate ρ is defined by the equation

ρ2 ≡ F(r)r2:

ds2 = A(ρ)c2dt2 − B(ρ)dρ2 − ρ2(dθ2 + sin2 θdφ2) (5)

The metric tensor that corresponds to the linear differential element is clearly

gαβ =


A(ρ) 0 0 0

0 −B(ρ) 0 0
0 0 −ρ2 0
0 0 0 −ρ2 sin2 θ

 (6)

This is the metric of the more general isotropic static field problem. Functions A(ρ)
and B(ρ) are still indeterminate, as is the relationship between coordinates ρ and r. When
calculating the components of Ricci tensor Rαβ = ∂ρΓρ

βα − ∂βΓρ
ρα + Γρ

ρλΓλ
βα− Γρ

βλΓλ
ρα, the

only nonzero components are:
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R00 = A(ρ)(2B(ρ)(ρA′′(ρ)+2A′(ρ))−ρA′(ρ)B′(ρ))−ρB(ρ)A′(ρ)2

4ρA(ρ)B(ρ)2

R11 =
A(ρ)(ρA′(ρ)+4A(ρ))B′(ρ)+ρB(ρ)(A′(ρ)2−2A(ρ)A′′(ρ))

4ρA(ρ)2B(ρ)

R22 = −ρB(ρ)A′(ρ)+ρA(ρ)B′(ρ)2−2A(ρ)B(ρ)
2A(ρ)B(ρ)2

R33 =
sin2(φ)(A(ρ)(ρB′(ρ)2−2B(ρ))−ρB(ρ)A′(ρ))

2A(ρ)B(ρ)2

(7)

Replacing (7) and (6) in (3), we obtain the following system of equations for A(ρ) end B(ρ):

2ρA(ρ)B(ρ)A′′(ρ)− ρA(ρ)A′(ρ)B′(ρ)− ρB(ρ)A′(ρ)2 + 4A(ρ)B(ρ)A′(ρ)2B(ρ)2 + ΛA(ρ) = 0
−2ρA(ρ)B(ρ)A′′(ρ) + ρA(ρ)A′(ρ)B′(ρ) + ρB(ρ)A′(ρ)2 + 4A(ρ)2B′2B(ρ)2 −ΛB(ρ) = 0
−ρB(ρ)A′(ρ) + ρA(ρ)B′(ρ)2 A(ρ)B(ρ)2 + 2A(ρ)B(ρ)2 − 2A(ρ)B(ρ)−Λρ2 = 0

− sin2(φ)
(
ρB(ρ)A′(ρ)− ρA(ρ)B′(ρ)2 A(ρ)B(ρ)2 − 2A(ρ)B(ρ)2 + 2A(ρ)B(ρ)

)
−Λρ2 sin2(θ) = 0

(8)

Adding the first and second equations of System (8), we have A(ρ)B′(ρ) +A′(ρ)B(ρ) =
(AB)′ = 0 . This means that:

A(ρ)B(ρ) = k1 , (9)

so that B(ρ) = k1
A(ρ)

. By placing this equation into the third equation of System (8),
we obtain:

ρA′(ρ) + A(ρ) + k1Λρ2 − k1 = 0, (10)

from where:
A(ρ) = k1 −

1
3

k1ρ2Λ +
c1

ρ
(11)

In order to determine the values of constants k1 and c1, some physical condition must
be used, which is achieved by studying the situation at the Newtonian limit. When Λ = 0,
the Newtonian potential is Φ = −GM

r ; therefore,

g00 = A(ρ) ' 1− 2GM
c2r

(12)

Comparing with (11), we see that k1 = 1 and c1
ρ = − 2GM

c2r The set of two variables
(c1, ρ) is controlled by a single equation. This means that the values of variables (c1, ρ)
are undetermined. We then need to arbitrarily determine one of the variables. The most
comfortable choice is ρ = r; consequently, c1 is equal to − 2GM

c2 . Therefore, we lastly have:

A =
1
B
= 1− 1

3
r2Λ− 2GM

c2r
(13)

Linear Differential Element (4) reads [15,26].

ds2 = (1− 1
3

r2Λ− 2GM
c2r

)c2dt2 − (1− 1
3

r2Λ− 2GM
c2r

)−1dr2 − r2(dθ2 + sin2 θdφ2), (14)

where

gαβ =


(1− 1

3 r2Λ− 2GM
c2r ) 0 0 0

0 −(1− 1
3 r2Λ− 2GM

c2r )−1 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

 (15)

3. Geodesic Equations and Equation of Motion

Let us consider the motion of a planet in the gravitational field of a much heavier body
(the Sun). The gravitational field of the center in spherical coordinates is given by Linear
Differential Element (14).
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ds2 = (1− 1
3

r2Λ− s
r
)c2dt2 − (1− 1

3
r2Λ− s

r
)−1dr2 − r2(dθ2 + sin2 θdφ2), (16)

where s = 2GM
c2 . With Metric (16), we calculate the Christoffel symbols.

Γλ
µν =

1
2

gλσ(∂µgσν + ∂νgσµ − ∂σgµν) (17)

The nonzero quantities are:

Γ0
01 = Γ0

10 = 3s−2r3Λ
−2Λr4+6r2−6sr Γ1

00 = c2(Λr3−3r+3s)(2r3Λ−3s)
18r3 Γ1

11 = −Γ0
01

Γ1
22 = r3Λ

3 − r + s Γ1
33 = 1

3 (r
3Λ− 3r + 3s) sin2 θ Γ2

12 = Γ2
21 = 1

r
Γ3

13 = Γ3
31 = 1

r Γ2
33 = − cos θ sin θ Γ3

32 = Γ3
23 = cot θ

(18)

Using the equations of geodesic lines d2xσ

dτ2 + Γσ
µν

dxµ

dτ
dxν

dτ = 0 and taking into account
the central symmetry of our problem, any plane through the center can, however, be chosen
as the plane θ = π

2 , that is, the orbit can be located in any plane through the center; we
obtain the algebraic equations from the geodesics:

2r′t′(3s−2Λr3)
−2Λr4+6r2−6rs + t′′ = 0.

c2(t′)2(Λr3−3r+3s)(2Λr3−3s)
18r3 + φ′2

(
Λr3

3 − r + s
)
+ r′′(k)− (r′)2(3s−2Λr3)

−2Λr4+6r2−6rs = 0.
2r′φ′

r + φ′′ = 0.

(19)

From the first and third equations of (19), we obtain that:

t′ =
Er

3s− 3r + r3Λ
, φ′ =

L
r2 , (20)

where E and L are the constants of integration that represent the effective energy of the
system and the angular momentum.
Dividing (14) by ds2 = c2dτ2 gives

1 = − r′2

c2
(
− 1

3 Λr(τ)2 − s
r(τ) + 1

) − r(τ)2φ′2

c2 + t′2
(
−1

3
Λr(τ)2 − s

r(τ)
+ 1
)

(21)

Replacing (20) into (21):

− L2

c2r(τ)2 −
r′2

c2
(
− 1

3 Λr(τ)2 − s
r(τ) + 1

) +
E2r(τ)2

(
− 1

3 Λr(τ)2 − s
r(τ) + 1

)
(Λr(τ)3 − 3r(τ) + 3s)2 − 1 = 0 (22)

Applying chain rule r′(τ) = dr
dϕ

dϕ
dτ , r′(τ)2 = ( dr

dϕ )
2 L2

r4 ,

− r(φ)4
(

c2
(

E2 − 9
)
+ 3ΛL2

)
− 3c2Λr(φ)6 − 9c2sr(φ)3 + 9L2r′2 − 9L2sr(φ) + 9L2r(φ)2 = 0 (23)

Using relation r(ϕ) = 1
u(ϕ)

and taking into account that s = 2GM
c2 , we obtain that

− c2E2

9L2 −
2GMu(φ)3

c2 − c2Λ
3L2u(φ)2 +

c2

L2 −
2GMu(φ)

L2 − Λ
3
+ u′2 + u(φ)2 = 0 (24)

or

− 2GMu(φ)3

c2 − c2Λ
3L2u(φ)2 −

2GMu(φ)
L2 + u′2 + u(φ)2 =

c2E2

9L2 −
c2

L2 +
Λ
3

= C (25)
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Derivating Equation (24) after simplifying (24), we obtain the equation of motion
taking into account the cosmological constant:

d2u
dφ2 + u− GM

L2 −
3GM

c2 u2 +
c2Λ

3L2u3 = 0 (26)

4. Einstein Equation for Planetary Motion

Let us consider the equation

u′′(φ) =
GM
L2 − u(φ) +

3GM
c2 u2(φ), u(0) =

1
P

and u′(0) = 0. (27)

If we take into account cosmological constant Λ, the equation is modified by adding
another term as follows:

u′′(φ) =
GM
L2 −

c2Λ
3L2u3(φ)

− u(φ) +
3GM

c2 u2(φ) = 0, u(0) =
1
P

and u′(0) = 0. (28)

Equations (27) and (28) may both be solved in closed form. However, Equation (28)
demands inverting some hyper elliptic Abelian integral and its solution is expressed in
terms of a generalized Weierstrass function, which is a difficult task. Let us solve the easier
Equation (27). Let

u(φ) =
1
P
− S + S cn2

(√
λ + µφ,

µ

2(λ + µ)

)
. (29)

Define the residual function

R(φ) = α− u(φ) + γu2(φ)− u′′(φ),

α = GM
L2 =

3AP(A+P)−2γ(A2+AP+P2)
6A2P2 , γ = 3GM

c2 .
(30)

In these formulas, A stands for the aphelion and P stands for the perihelion of the
planet. Number L corresponds to the angular momentum of the planet. We have

R(φ) = −P+P2S+P2α+γ−2PSγ+P2S2γ−2P2Sλ−P2Sµ

P2 −

(S(P−2γ+2PSγ−4Pλ))
P cn2 + S(Sγ + 3µ)cn4,

cn= cn
(√

λ + µφ, µ
2(λ+µ)

)
.

(31)

Equating the coefficients of cn0, cn2, and cn4 to zero gives an algebraic system whose
solution is easily obtained, as follows:

λ = −2γ+2γPS+P
4P , µ = − γS

3 .

S =
6γ−3P+

√
−12γ2+9P2+12γP(1−4αP)

4γP .
(32)

Then,

u(φ) =
1
P
− S + S cn2(ωφ, m), (33)

where
m = 1

2 −
3(ρ+2γ−P)

2(ρ−6γ+3P) =
2GM(A−P)

2GM(2A+P)−Ac2P .

ω = 1
2

√
P−2γ

P(1+m)
and S = 1

A −
3

2γ + 2
P .

(34)



Universe 2022, 8, 449 6 of 22

The perihelion shift is given by

∆GRT =

(
2K(m)

ω
− 2π

)
· 23668612128

π · Siederal
arc-sec/cy. (35)

Here, Siederal stands for the orbit period of the planet. Since, for small m,

4K(m)√
P−2γ

(m+1)P

− 2π ≈
2π

(
3m
√

P−2γ
P + 9m− 16

√
P−2γ

P + 16
)

(16− 3m)
√

P−2γ
P

(36)

number ∆GRT may be approximated as follows:

∆̃GRT =
47337224256(8Ac2P(1−υ)+GM(29Aυ−41A+19Pυ−7P))

υ(8Ac2P−GM(29A+19P))·Siederal arcsec/cy,

where υ =
√

1− 2γ
P =

√
1− 6GM

c2P

(37)

Another formula:

∆̂GTR =
71005836384µ

(
c2P(Q + 1) + 2µQ(Q + 5)

)
c4P2Siederal

arcsec/century, µ = GM, Q =
P
A

. (38)

Exact Value for the Perihelion Shifts

We used the following data:
Sun’s mass: M = 1.9885469241387177397120698128813396785059276218789× 1030

Gravitational constant: G = 6.6738399987961360272969834× 10−11.
Speed of light in vacuum: c = 299792458
The results are depicted in Table 1.

Table 1. Exact and approximate values for perihelion shifts.

Planet ∆GTR (Exact Value) ∆̂GTR
∣∣∆GTR − ∆̃GTR

∣∣
Mercury 42.981518799592365 42.98151983984209 1.04× 10−6

Venus 8.625078587720143 8.625078762663101 1.75× 10−7

Earth 3.8387718031722122 3.8387718587113353 5.55× 10−8

Mars 1.3508767421610324 1.3508767534274582 1.13× 10−8

Jupiter 0.062311625478272306 0.06231162564333644 1.65× 10−10

Saturn 0.013688932210705418 0.013688932230249766 1.95× 10−11

Uranus 0.0023848021538887348 0.002384802155606265 1.72× 10−12

Neptune 0.000774085957956637 0.0007740859583331821 3.77× 10−13

Pluto 0.0004175446900080054 0.0004175446900902417 8.22× 10−14

Using NASA data, we obtained the following values for perihelion shifts:
Figure 1 illustrates the way in which Mercury’s perihelion moves.
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Figure 1 illustrates the way Mercury�s perihelion moves.

Figure 1. Advance of Mercury�s perihelion.

Remark 1. Equation (27) may also be written as

du

d�
=

r
2


3

s�
u(�)� 1

A

��
1

P
� u(�)

��
3

2

� 1

A
� 1

P
� u(�)

�
: (39)

Integrating it gives

T = 2(�(1=P )� �(1=A)) =
4K

�
2GM(A�P )

2GM(2A+P )�Ac2P

�
r

P�2

P
�
1+

2GM(A�P )
2GM(2A+P )�Ac2P

� =
2
p
6AK

�
A�P

P (A�0�1)

�
p


p
A�0 � 1

; (40)

�0 =
3

2

� 1

A
� 1

P
: (41)

This formula also allows us to evaluate the perihelion shift of the planet.
Remark 2. The solution to equation (27) is also expressed in terms of the Weierstrass elliptic function } as follows :

}(�) =
1

P
� (A� P )([3P � 4
]A� 2
P )
A2P (P � 2
)

�
1 + 12P

P�2
}(�; g2; g3)
� ; (42)

where
g2 =

4
2(A2+AP+P 2)+3A2P 2�6A
P (A+P )
36A2P 2 :

g3 =
(A�2
)(2
�P )(
(A+P )�AP )

216A2P 2 :

(43)

The solution is periodic with period

T = 2

Z 1

r

dxp
4x3 � g2x� g3

; (44)

where r is the greatest real root to the cubic 4x3 � g2x� g3 = 0: This cubic has the following real roots :

x1 =


6A �

1
12 ; x2 =



6P �

1
12 ; x3 =

1
6 �


(A+P )
6AP : (45)

The greatest real root is r = x3 and so

T = 2

Z 1

x3

dxp
4x3 � g2x� g3

=

2
p
6APF

�
sin�1

�p
2
q
� (A�P )

3AP�2
P�4A


�
; 2(2A+P )
�3AP2(A�P )


�
p


p
P �A

: (46)

7

Figure 1. Advance of Mercury’s perihelion.

Remark 1. Equation (27) may also be written as

du
dφ

=

√
2γ

3

√(
u(φ)− 1

A

)(
1
P
− u(φ)

)(
3

2γ
− 1

A
− 1

P
− u(φ)

)
. (39)

Integrating it gives

T = 2(φ(1/P)− φ(1/A)) =
4K
(

2GM(A−P)
2GM(2A+P)−Ac2P

)
√

P−2γ

P
(

1+ 2GM(A−P)
2GM(2A+P)−Ac2P

) =
2
√

6AK
(

A−P
P(Aδ0−1)

)
√

γ
√

Aδ0 − 1
, (40)

δ0 =
3

2γ
− 1

A
− 1

P
. (41)

This formula also allows for us to evaluate the perihelion shift of the planet.

Remark 2. The solution to Equation (27) is also expressed in terms of Weierstrass elliptic function
℘ as follows:

℘(φ) =
1
P
− (A− P)([3P− 4γ]A− 2γP)

A2P(P− 2γ)
(

1 + 12P
P−2γ℘(φ; g2, g3)

) , (42)

where
g2 =

4γ2(A2+AP+P2)+3A2P2−6AγP(A+P)
36A2P2 .

g3 = (A−2γ)(2γ−P)(γ(A+P)−AP)
216A2P2 .

(43)
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The solution is periodic with period

T = 2
∫ ∞

r

dx√
4x3 − g2x− g3

, (44)

where r is the greatest real root to the cubic 4x3 − g2x − g3 = 0. This cubic has the following
real roots:

x1 = γ
6A −

1
12 , x2 = γ

6P −
1
12 , x3 = 1

6 −
γ(A+P)

6AP . (45)

The greatest real root is r = x3; so,

T = 2
∫ ∞

x3

dx√
4x3 − g2x− g3

=

2
√

6APF
(

sin−1
(√

2
√
− (A−P)γ

3AP−2γP−4Aγ

)
, 2(2A+P)γ−3AP

2(A−P)γ

)
√

γ
√

P− A
. (46)

For Mercury (see Table 2), we have the following value from (46):

T − 2π = 5.018176594262513× 10−7 (47)

Table 2. Planets data. From [27].

Planet A:Apelion (m) P:Perihelion (m) Siederal Period Q = P
A

Mercury 6981,7332,000 46,000,870,000 87.969089 0.658875

Venus 108,939,198,000 107,475,372,000 224.69562 0.986563

Earth 152,100,915,000 147,094,882,000 365.256622 0.967087

Mars 249,226,166,000 206,662,107,000 686.99329 0.829215

Jupiter 816,054,481,000 740,505,444,000 4334.24677 0.907422

Saturn 1,506,619,721,000 1,348,156,111,000 10,765.21936 0.894822

Uranus 3,004,984,160,000 2,735,977,617,000 30,700.24558 0.91048

Neptune 4,538,617,181,000 4,458,057,447,000 60,226.53638 0.98225

Pluto 7,377,158,662,000 7,437,141,859,000 90,631.02406 0.60147

Remark 3. Solution (29) may be trigonometrically approximated in as follows. We have the
approximation

cn(t, m) ≈cosm(t) :=
√

1+λ+µ cos
(√

1+λ+µ
1−µ t

)
√

1+λ cos2
(√

1+λ+µ
1−µ t

)
+µ cos4

(√
1+λ+µ

1−µ t
) ,

λ = − 1
µ+2

(
m + 7µ− 2mµ− µ2 + mµ2).

µ =
40m2(27m2−128m+128)

2409m4−29600m3+111520m2−163840m+81920 .

(48)

Then, the approximate trigonometric solution to I.V.P. (27) reads

utrigo(φ) =
3

2γ −
1
P −

1
A +

(
1
A −

3
2γ + 2

P

)
cos2

m(ωφ).

m = 2GM(A−P)
2GM(2A+P)−Ac2P , ω = 1

2

√
P−2γ

P(1+m)
, γ = 3GM

c2 .

(49)

Solution (49) is periodic with period

Ttrigo =
π

ω

√
1− µ

1 + λ + µ
(50)
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For the Mercury data (see Table 2), we have

∆GRT ≈ (Ttrigo − 2π) · 23668612128
π · Siederal

= 42.98145640188336 arcsec/cy (51)

The trigonometric solution is highly accurate.

5. Contribution of the Cosmological Constant

Let us consider I.V.P. (28). The equation may be written in the form

u′′(φ)− α + β

u(φ)3 + u(φ)− γu(φ)2 = 0, u(0) = 1/P and u′(0) = 0.

α = GM
L2 , β = c2Λ

3L2 , γ = 3GM
c2 .

(52)

Next, we multiply the equation u′′(φ)− α + β

u(φ)3 + u(φ)− γu(φ)2 = 0 by u′(φ) and
then we integrate it with regard to φ to obtain

1
2

u′(φ)2 − αu(φ)− β

2u(φ)2 −
1
3

γu(φ)3 +
u(φ)2

2
= C, (53)

C is the constant of integration. Letting φ = 0 and taking into account conditions u(0) =
1/P and u′(0) = 0 gives

C = − γ

3P3 −
βP2

2
+

1
2P2 −

α

P
. (54)

On the other hand, let φA be the angle for aphelion position. Then, u(φA) = 1/A and
u′(φA) = 0 so that

C = − γ

3P3 −
βP2

2
+

1
2P2 −

α

P
= − γ

3A3 −
A2β

2
+

1
2A2 −

α

A
. (55)

From (55),

α =
GM
L2 =

3AP(A + P)
(

A2βP2 + 1
)
− 2γ

(
A2 + AP + P2)

6A2P2 . (56)

The angular momentum of the planet now depends on the contribution of the cosmo-
logical constant:

L2 =
A2P2(6GM− Ac2ΛP(A + P)

)
3AP(A + P)− 2γ(A2 + AP + P2)

. (57)

From (53)–(56),

(
du
dφ

)2
=

2γ
(

u− 1
A

)(
1
P − u

)(
−u3 + 3AP−2Aγ−2Pγ

2APγ u2 − 3AP(A+P)β
2γ u− 3APβ

2γ

)
3u2 (58)

The solution to (58) is a periodic function with period

TΛ = 2

√
3

2γ

∫ 1/P

1/A

udu√(
u− 1

A

)(
1
P − u

)(
−u3 + 3AP−2Aγ−2Pγ

2APγ u2 − 3AP(A+P)β
2γ u− 3APβ

2γ

) . (59)

6. Estimation of the Value of the Cosmological Constant
6.1. First Approach

Our aim is to find a value for Λ, such that the value of TΛ is as close as possible to
value T given by (40). To this end, assuming a positive cosmological constant, we obtain a
range for Λ, say 10−k ≤ Λ ≤ 10−m. Then, we evaluate (59) for m = 1, 2, . . . , k. We obtain
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a list of pairs (j, T10−j) that allows us to construct an interpolating function object. This
function is denoted with Ψ. The next step consists of minimizing the quantity (Ψ(x)− T)2

on the interval 10−k ≤ x ≤ 10−m. Let k = 56 and m = 30, so that 10−56 ≤ Λ ≤ 10−30. For
Mercury data our calculations produced the optimal value Λ+ = 4.42355× 10−44. On the
other hand, assuming a negative cosmological constant value, we obtained the optimal
value Λ− = −7.41311× 10−42; see Table 3.

Table 3. NASA data.

4.1 Exact value for the perihelion shifts.

We will use the following data :
Sun�s mass : M = 1:9885469241387177397120698128813396785059276218789� 1030
Gravitational constant : G = 6:6738399987961360272969834� 10�11:
Speed of the light in the vacuum : c = 299792458

Planet A : Apelion (meters) P : Perihelion (meters) Siederal Period Q = P
A

Mercury 69817332000 46000870000 87:969089 0:658875
Venus 108939198000 107475372000 224:69562 0:986563
Earth 152100915000 147094882000 365:256622 0:967087
Mars 249226166000 206662107000 686:99329 0:829215
Jupiter 816054481000 740505444000 4334:24677 0:907422
Saturn 1506619721000 1348156111000 10765:21936 0:894822
Uranus 3004984160000 2735977617000 30700:24558 0:91048
Neptune 4538617181000 4458057447000 60226:53638 0:98225
Pluto 7377158662000 7437141859000 90631:02406 0:60147

Table 1. Planets data. From [24]

The results are depicted in Table 2.

Planet �GTR (Exact Value) �̂GTR

����GTR � ~�GTR

���
Mercury 42:981518799592365 42:98151983984209 1:04� 10�6

Venus 8:625078587720143 8:625078762663101 1:75� 10�7

Earth 3:8387718031722122 3:8387718587113353 5:55� 10�8

Mars 1:3508767421610324 1:3508767534274582 1:13� 10�8

Jupiter 0:062311625478272306 0:06231162564333644 1:65� 10�10

Saturn 0:013688932210705418 0:013688932230249766 1:95� 10�11

Uranus 0:0023848021538887348 0:002384802155606265 1:72� 10�12

Neptune 0:000774085957956637 0:0007740859583331821 3:77� 10�13

Pluto 0:0004175446900080054 0:0004175446900902417 8:22� 10�14

Table 2. Exact and Approximate Values For Perihelion Shifts

Usind NASA data we got the following values for perihelion shifts :

Table 3. Nasa data

6

A:Apelion (m) P:Perihelion (m) Siederal Period ∆̂GTR

Mercury 69.817 × 109 46.002 × 109 87.968 42.9814956752253

Venus 107.476 × 109 108.939 × 109 224.701 8.62485450672991

Earth 147.092 × 109 152.099 × 109 365.242 3.838987490384246

Mars 249.229 × 109 206.617 × 109 686.980 1.351057133139973

Jupiter 816.618 × 109 740.522 × 109 4332.589 0.062314275340345

Saturn 1514.504 × 109 1352.555 × 109 10,759.22 0.012639384845858

The confidence interval for Table 4 is:

Λ Λ+ Λ−
∆Λ {−1.4× 10−37, 2.3× 10−37} {−1.4× 10−37, 2.3× 10−37}

Table 4. Estimation of the cosmological constant using the first approach.

Planet Λ+ Λ−

Mercury 6.56145× 10−38 −7.94328× 10−45

Venus 3.03249× 10−37 −10−46

Earth 4.22357× 10−38 −1.2× 10−46

Mars 3.8824× 10−47 −3.98× 10−39

Jupiter 2.02148× 10−40 −1.2× 10−48

Saturn 3.11889× 10−41 −1.2× 10−49

Uranus 3.98107× 10−42 −10−50

Neptune 1.58489× 10−42 −1.26× 10−51

Pluto 5.12861× 10−44 −2.5× 10−51

6.2. Second Approach

Integral (59) is hard to evaluate, so we give an approximate analytical expression.
Assume a positive cosmological constant Λ = Λ+. We have

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u− 3APβ
2γ <

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u <

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u2 =

u2(δ1 − u), where
δ1 = 3AP−2Aγ−2Pγ

2APγ − 3AP(A+P)β
2γ . Then

u√
−u3+ 3AP−2Aγ−2Pγ

2APγ u2− 3AP(A+P)β
2γ u− 3APβ

2γ

> 1√
δ1−u .

(60)
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On the other hand, since u ≥ 1/A, u−1 ≤ A, −u−1 ≥ −A and−u−2 ≥ −A2, and then

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u− 3APβ
2γ =

u2
(
−u + 3AP−2Aγ−2Pγ

2APγ − 3AP(A+P)β
2γ u−1 − 3APβ

2γ u−2
)
≥

u2
(
−u + 3AP−2Aγ−2Pγ

2APγ − 3AP(A+P)β
2γ A− 3APβ

2γ A2
)
=

u2(δ2 − u), where
δ2 = 3AP−2Aγ−2Pγ

2APγ − 3AP(A+P)β
2γ A− 3APβ

2γ A2. Then

u√
−u3+ 3AP−2Aγ−2Pγ

2APγ u2− 3AP(A+P)β
2γ u− 3APβ

2γ

≤ 1√
δ2−u .

(61)

From (60) and (61), we obtain

1√
δ1 − u

≤ u√
−u3 + 3AP−2Aγ−2Pγ

2APγ u2 − 3AP(A+P)β
2γ u− 3APβ

2γ

<
1√

δ2 − u
, (62)

Then, taking into account (59), we have estimates

F(δ1) ≤ TΛ+ < F(δ2), (63)

where

F(δ) := 2

√
3

2γ

∫ 1/P

1/A

du√(
u− 1

A

)(
1
P − u

)
(δ− u)

=
2
√

6AK
(

A−P
P(Aδ−1)

)
√

γ
√

Aδ− 1
. (64)

Then,

TΛ+ ≈
1
2
(F(δ1) + F(δ2)). (65)

Equating (40) and (65), we obtain the required equation to determine Λ+.
On the other hand, suppose that Λ = Λ− is negative. Then, since u > u2,

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u− 3APβ
2γ >

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u >

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u2 =

u2( 3AP−2Aγ−2Pγ
2APγ − 3AP(A+P)β

2γ − u) =

u2(δ4 − u), δ4 = 3AP−2Aγ−2Pγ
2APγ − 3AP(A+P)β

2γ .

(66)

so that
u√

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u− 3APβ
2γ

<
1√

δ4 − u
(67)

Now, since u−1 ≤ A,

−u3 + 3AP−2Aγ−2Pγ
2APγ u2 − 3AP(A+P)β

2γ u− 3APβ
2γ =

u2
(
−u + 3AP−2Aγ−2Pγ

2APγ − 3AP(A+P)β
2γ u−1 − 3APβ

2γ u−2
)
≤

u2
(
−u + 3AP−2Aγ−2Pγ

2APγ − 3AP(A+P)β
2γ A− 3APβ

2γ A2
)
=

u2(δ3 − u), where
δ3 = 3AP−2Aγ−2Pγ

2APγ − 3AP(A+P)β
2γ A− 3APβ

2γ A2.

(68)
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We obtained the following estimates:

1√
δ3 − u

≤ u√
−u3 + 3AP−2Aγ−2Pγ

2APγ u2 − 3AP(A+P)β
2γ u− 3APβ

2γ

(69)

Using (68) and (69), and taking into account (59)–(64) we have:

F(δ3) ≤ TΛ− < F(δ4). (70)

The equation for Λ− is 1
2 (F(δ3) + F(δ4)) = T, where T is found from (40).

7. Approximate Analytical Solution to the Motion Equation with a Nonzero
Cosmological Constant
7.1. First Solution Method

Since Λ is small,

u3 +
3AP− 2Aγ− 2Pγ

2APγ
u2 − 3AP(A + P)β

2γ
u− 3APβ

2γ
≈ u3 +

3AP− 2Aγ− 2Pγ

2APγ
u2 − 3AP(A + P)β

2γ
u2. (71)

Then , Hard Ode (58) may be approximated by the ode(
du
dφ

)2
= 2γ

3

(
u− 1

A

)(
1
P − u

)
(δ− u), where

δ = 3AP−2Aγ−2Pγ
2APγ − 3AP(A+P)β

2γ , β = c2Λ
3L2 .

L2 =
A2P2(6GM−Ac2ΛP(A+P))

3AP(A+P)−2γ(A2+AP+P2)
.

(72)

The exact solution to Ode (72) given initial conditions u(0) = 1/P and u′(0) = 0 is
given by

u(φ) = δ +

(
1
P
− δ

)
nd

(√
γ(Aδ− 1)

6A
φ,

A− P
P(Aδ− 1)

)2

(73)

Let us compare this solution with the numerical solution to equivalent Ode (28) for
Mercury data assuming the value of Λ = 10−46, see Figure 2.

7 Approximate Analytical solution to the motion equation with a non zero Cos-
mological Constant.

7.1 First Solution Method.

Since � is small,

u3 +
3AP � 2A
 � 2P


2AP

u2 � 3AP (A+ P )�

2

u� 3AP�

2

� u3 + 3AP � 2A
 � 2P


2AP

u2 � 3AP (A+ P )�

2

u2: (71)

Then , the hard ode (58) may be approximated by the ode�
du
d�

�2
= 2


3

�
u� 1

A

� �
1
P � u

�
(� � u) ; where

� = 3AP�2A
�2P

2AP
 � 3AP (A+P )�

2
 , � = c2�
3L2 .

L2 =
A2P 2(6GM�Ac2�P (A+P ))
3AP (A+P )�2
(A2+AP+P 2) :

(72)

The excat solution to the ode (72) given the initial conditions u(0) = 1=P and u0(0) = 0 is given by

u(�) = � +

�
1

P
� �
�
nd

 r

(A� � 1)

6A
�;

A� P
P (A� � 1)

!2
(73)

Let us compare this solution with the numerical solution to the equivalent ode (28) for Mercury data assuming the value � = 10�46.

Figure 2. Comparison between semi analytical (73) and numerical solution to the ode (28)

We see that our semi analytical solution is high accurate. Observe also that the semi analytical solution involves the cosmological
constant. This also o¤ers another way to estimate the value of the Cosmological Constant. As a matter of fact, the period of the
semi-analytical solution reads

T� = 2
K
�

A�P
P (A��1)

�
q


(A��1)
6A

(74)

Then, the equation for � will be

T� = 2

s
6A


(A� � 1)K
�

A� P
P (A� � 1)

�
= T :=

4K
�

2GM(A�P )
Ac2P�2GM(A+2P )

�
q
1� 2GM(A+2P )

Ac2P

(75)

Since the value of m = A�P
P (A��1) is small, we may use the following approximation :

2K(m) $
1� 5m

16

1� 9m
16

�: (76)

11

Figure 2. Comparison between semianalytical (73) and numerical solutions to the ode.
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Our semianalytical solution was highly accurate and involved the cosmological con-
stant. This also offers another way to estimate the value of the cosmological constant. As a
matter of fact, the period of the semianalytical solution reads

TΛ = 2
K
(

A−P
P(Aδ−1)

)
√

γ(Aδ−1)
6A

(74)

Then, the equation for Λ is

TΛ = 2

√
6A

γ(Aδ− 1)
K
(

A− P
P(Aδ− 1)

)
= T :=

4K
(

2GM(A−P)
Ac2P−2GM(A+2P)

)
√

1− 2GM(A+2P)
Ac2P

(75)

Since the value of m = A−P
P(Aδ−1) is small, we may use the following approximation:

2K(m) $
1− 5m

16

1− 9m
16

π. (76)

Then,

TΛ =

√
6π
√

A(A(16δP− 5)− 11P)
√

γ
√

Aδ− 1(A(16δP− 9)− 7P)
= T, (77)

from where

256A3P2T2γδ3 − 96A2P
(
16APπ2 + 3AT2γ + 5PT2γ

)
δ

+3A
(
320A2Pπ2 + 704AP2π2 + 27A2T2γ + 138APT2γ + 91P2T2γ

)
δ2

−150A3π2 − 660A2Pπ2 − 726AP2π2 − 81A2T2γ− 126APT2γ− 49P2T2γ = 0.
(78)

Solving this cubic, we obtain the value for δ. Then, from (72),

Λ =
6µQ2(2γδP− 3P + 2γ(Q + 1))

c2P2(Q + 1)(2γ + 2γδP2 + 2γ(Q + 1)(P + Q)− 3P(P + Q + 1))
, Q :=

P
A

. (79)

We may go further using other approximates for K(m). For example,

K(m) $
π
(
409m2 − 3984m + 4864

)
1025m2 − 5200m + 4864

(80)

This approximation gives us the following quintic for δ:

C0δ5 + C1δ4 + C2δ3 + C3δ2 + C4δ + C5 = 0, (81)

where
C0 = 23658496A5γP4T2. (82)

C1 = −155648A4P3
(

912π2 AP + 325AγT2 + 435γPT2
)

.

C2 = 256A3P2
(

908352π2 A2P + 144575A2γT2 + 1309632π2 AP2 + 501250AγPT2 + 278335γP2T2
)

. (83)

C3 = −32A2P
(

3722064π2 A3P + 333125A3γT2 + 14356320π2 A2P2 + 2470425A2γPT2+
8537424π2 AP3 + 3544575AγP2T2 + 1045155γP3T2

)
. (84)

C4 = A
(

19553472π2 A4P + 1050625A4γT2 + 179551680π2 A3P2 + 17117500A3γPT2 + 279850560π2 A2P3+
53377350A2γP2T2 + 88848192π2 AP4 + 40032700AγP3T2 + 6714305γP4T2

)
. (85)
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C5 = −1003686π2 A5 − 15538728π2 A4P− 1050625A4γT2 − 66467748π2 A3P2 − 6457500A3γPT2 − (86)

48971688π2 A2P3 − 11334950A2γP2T2 − 9969126π2 AP4 − 4340700AγP3T2 − 474721γP4T2.

Solving the quintic, we obtain one or more estimates for Λ. Let us evaluate the Λ
using Formula (79) for Mercury. The cubic resolvent reads

−3.224134057504410567808405× 1061δ3 + 1.0917240150709210311767171311214× 1058δ2−
3.6333609324359012885422051569104× 1047δ + 3.0230424838943767016875726381236× 1036 = 0.

(87)

Its roots are:

δ1 = 1.66403214678195905033219994× 10−11.
δ2 = 1.66406282054722562545891615× 10−11.
δ3 = 0.0003386099610925325989588409.

(88)

The values of Λ from (79) are:

Λ1 = 2.3818552552068309770172818× 10−29. (89)

Λ2 = 2.3818552552068309770172040× 10−29 (90)

Λ3 = 2.574519419707803× 10−43 (91)

Using the quintic, we obtain the negative value

Λ = −1.0241093318102231833808× 10−47 (92)

The algebraic approach may give either positive or negative estimates for the cosmo-
logical constant. Letting Λ = 2.5× 10−43, we obtain the following polar plot (Figure 3) for
Mercury’s trajectory using the numerical solution to Ode (28).

We see that the algebraic approach may give either positive or negative estimates for the cosmological constant. Letting � =
2:5� 10�43 we obtain the following polar plot for Mercury�s trajectory using the numerical solution to the ode (28).

Figure 3. Mercury�s trajectory using the ode (28) with � = �+ = 2:57� 10�43: (93)

After many calculations to obtain � estimates we found the following interesting fact. The number � in equation (72) is very close
to � = 1=2953 for all planets in the solar system. The mean of these values was found to be

� = 0:000338609988014895212199968489565:

Mercury � = 0:000338609961092532513876607325187
Venus � = 0:000338609978670453457775396666207
Earth � = 0:000338609983781427330631896843727
Mars � = 0:000338609988303106856661478518689
Jupiter � = 0:000338609994578505351780356447122
Saturn � = 0:000338609995748851561048198277604
Uranus � = 0:000338609996456062380901924635523
Neptune � = 0:000338609996709698414518729947531
Pluto � = 0:000338609996793419042605127744494

Table 5. The � value in Eq. (72)

This implies that p
6K

�
A�P

P (A��1)

�
q


�
� � 1

A

� =
2K

�
2(A�P )�

2(2A+P )��Ac2P

�
q
1� 2�(2A+P )

Ac2P

, � = GM: (94)

That is, the planets are related to the curve (94) in the A� P plane. This allows us to predict the value of the aphelion given the
perihelion and vice-versa. Indeed, if we are given the aphelion, we simply solve the trascendental equation (94) for the perihelion.
On the other hand, the fact that � is almost a constant tells us that � de�ned by (79) must be indeed a constant !. This justi�es

13

Figure 3. Mercury’s trajectory using Ode (28) with Λ = Λ+ = 2.57× 10−43.
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After many calculations to obtain Λ estimates, we found the following interesting fact.
Number δ in Equation (72) was very close to δ = 1/2953 for all planets in the solar system.
The mean of these values was

δ = 0.000338609988014895212199968489565.

This implies that

√
6K
(

A−P
P(Aδ−1)

)
√

γ
(

δ− 1
A

) =
2K
(

2(A−P)µ
2(2A+P)µ−Ac2P

)
√

1− 2µ(2A+P)
Ac2P

, µ = GM. (93)

That is, the planets are related to Curve (93) in the A− P plane. This allows for us
to predict the value of the aphelion given the the perihelion and vice versa. Indeed, if we
are given the aphelion, we simply solve transcendental Equation (93) for the perihelion.
On the other hand, the fact that δ is almost a constant tells us that Λ defined by (79) must
indeed be a constant !. This justifies the name ’cosmological constant’; see Figure 4.the name �cosmological constant�. See Figure 4.

Figure 5. The curve (94)

7.2 Second Solution Method.

Let

F (u) = �u3 + 3AP � 2A
 � 2P

2AP


u2 � 3AP (A+ P )�
2


u� 3AP�
2


, � =
c2�

3L2
: (95)

Let us introduce the following notations :

d0 = �
3AP�

2

, d1 = �

3AP (A+ P )�

2

, d2 =

3AP � 2A
 � 2P

2AP


(96)

For a positive �, The cubic d0 + d1u+ d2u2 � u3 = 0 has two small real roots of opposite signs. For a negative � we have only one
positive real root and the other two roots are imaginary and small in magnitude. This allows us to make the approximation

F (u) � u2
�
d42 + 3d1d

2
2 + 2d0d2 + d

2
1

d32 + 2d1d2 + d0
� u
�
: (97)

Then, the hard ode (58) is replaced with the easy ode�
du

d�

�2
=
2


3

�
u� 1

A

��
1

P
� u
��

d42 + 3d1d
2
2 + 2d0d2 + d

2
1

d32 + 2d1d2 + d0
� u
�

(98)

so that, in view of (64) ,

T� � 2

r
3

2


Z 1=P

1=A

duq�
u� 1

A

� �
1
P � u

�
(� � u)

; (99)

� =
d42 + 3d1d

2
2 + 2d0d2 + d

2
1

d32 + 2d1d2 + d0

14

Figure 4. Curve (93).
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7.2. Second Solution Method

Let

F(u) = −u3 +
3AP− 2Aγ− 2Pγ

2APγ
u2 − 3AP(A + P)β

2γ
u− 3APβ

2γ
, β =

c2Λ
3L2 . (94)

Let us introduce the following notations:

d0 = −3APβ

2γ
, d1 = −3AP(A + P)β

2γ
, d2 =

3AP− 2Aγ− 2Pγ

2APγ
(95)

For a positive Λ, the cubic d0 + d1u+ d2u2− u3 = 0 has two small real roots of opposite
signs. For a negative Λ , we have only one positive real root, and the two other roots are
imaginary and small in magnitude. This allows for us to perform the approximation

F(u) ≈ u2

(
d4

2 + 3d1d2
2 + 2d0d2 + d2

1
d3

2 + 2d1d2 + d0
− u

)
. (96)

Then, hard Ode (58) is replaced with easy ode(
du
dφ

)2
=

2γ

3

(
u− 1

A

)(
1
P
− u

)(
d4

2 + 3d1d2
2 + 2d0d2 + d2

1
d3

2 + 2d1d2 + d0
− u

)
(97)

so that, in view of (64),

TΛ ≈ 2

√
3

2γ

∫ 1/P

1/A

du√(
u− 1

A

)(
1
P − u

)
(δ− u)

, (98)

δ =
d4

2 + 3d1d2
2 + 2d0d2 + d2

1
d3

2 + 2d1d2 + d0

The required equation to estimate the Λ is then

2

√
6A

γ(Aδ− 1)
K
(

A− P
P(Aδ− 1)

)
=

4K
(

2GM(A−P)
Ac2P−2GM(A+2P)

)
√

1− 2GM(A+2P)
Ac2P

. (99)

For Mercury data, the estimated value using (99) is Λ+ = 6.51× 10−52. For Pluto,
Λ− = −2.83× 10−52 . For data [25] P = 46005766800, A = 69818681600, the estimated
value using Formula (99) is Λ = −3.52× 10−51.

7.3. Third Approach

We may proceed quite differently in order to estimate the Λ value. Let uapp(φ) be
some approximate solution to I.V.P. (27), for example, u = utrigo. Then, replacing u with
uapp in (58) gives

Λ(φ) = f (φ) :=

L2
0uapp(φ)2

(
3AP

((
Auapp(φ)− 1

)(
Puapp(φ)− 1

)
− APu′app(φ)

2
)
−

2γ
(

Auapp(φ)− 1
)(

Puapp(φ)− 1
)(

APuapp(φ) + A + P
) )

A2c2P2
(

Auapp(φ)− 1
)(

Puapp(φ)− 1
)(
(A + P)uapp(φ) + 1

) . (100)

Then, we take

Λintegral = Λ(A, P) =
1
T0

∫ T0/2

−T0/2
f ′(φ)dφ. (101)

See Table 5 for the different Λ estimates.
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Table 5. δ value in Equation (72) .

Mercury δ = 0.000338609961092532513876607325187
Venus δ= 0.000338609978670453457775396666207
Earth δ = 0.000338609983781427330631896843727
Mars δ = 0.000338609988303106856661478518689

Jupiter δ = 0.000338609994578505351780356447122
Saturn δ = 0.000338609995748851561048198277604
Uranus δ = 0.000338609996456062380901924635523

Neptune δ = 0.000338609996709698414518729947531
Pluto δ = 0.000338609996793419042605127744494

Predicted value for Λ+:

Arithmetic Mean: Λ+ = 2.87× 10−44.
Geometric Mean: Λ+ = 1.25× 10−52 (102)

Predicted value for Λ−:

Arithmetic mean: Λ− = −7.25× 10−44.
Geometric mean: Λ− = −1.01× 10−52 (103)

Confidence interval for Table 6:

Λ Λ+ Λ−
∆Λ {−1.3× 10−43, 1.9× 10−43} {−4.8× 10−43, 3.3× 10−43}

Table 6. Estimation of the cosmological constant using the second and third approaches.

Planet Λ+ Λ− Λintegral

Mercury 2.58× 10−43 −1.02× 10−47 4.18351× 10−37

Venus 6.34× 10−49 −6.51× 10−43 5.54028× 10−38

Earth 1.05× 10−49 −4.26× 10−45 1.45838× 10−38

Mars 4.0× 10−51 −5.35× 10−45 −2.22584× 10−39

Jupiter 3.33× 10−53 −2.46× 10−55 −2.62516× 10−41

Saturn 5.08× 10−55 −3.45× 10−60 −2.53073× 10−42

Uranus 2.8× 10−55 −5.33× 10−59 1.42783× 10−43

Neptune 4.13× 10−56 −2.00× 10−59 2.13098× 10−44

Pluto 1.38× 10−56 −8.303× 10−60 3.78788× 10−45

8. Analysis and Discussion

We obtained the estimated values for the cosmological constant, and we compared
our results with that obtained in [25]. The nonlinear differential equation in [25] taking into
account the cosmological constant reads(

du
dφ

)2
=

2GM
c2u(φ)2

(
u(φ)− 1

A

)(
1
P
− u(φ)

)(
d0 + d1u(φ) + d2u(φ)2 − u3(φ)

)
, (104)

where
d0 =

c2(A2(c2P−2GM)+AP(c2P−2GM)−2GMP2)
2AGMP(Ac2ΛP(A+P)+6GM)

Λ.

d1 =
c2(A+P)(A2(c2P−2GM)+AP(c2P−2GM)−2GMP2)

2AGMP(Ac2ΛP(A+P)+6GM)
Λ.

d2 = c2

2GM −
1
A −

1
P .

(105)
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In the case when Λ = 0 the exact solution is

u(φ) =
c2

6GM
+

2c2

GM
℘(t + t0; g2, g2),

where

g2 = g2 = A2c4P2−6A2c2GMP+12A2G2 M2−6Ac2GMP2+12AG2 M2P+12G2 M2P2

12A2c4P2 .

g3 = g3 =
(Ac2−6GM)(c2P−6GM)(Ac2P−3AGM−3GMP)

216A2c6P2 .

t0 = ℘−1
(

GM
2c2

(
1
P −

c2

6GM

)
; g2, g2

)
The solution is periodic, and its period is given by

T =
4K
(

2GM(A−P)
Ac2P−2GM(A+2P)

)
√

1− 2GM(A+2P)
Ac2P

.

In [25] authors use the following data:

P = 45997620600, A = 69820729300. (106)

The perihelion shift for these data is 42.9825 arc-sec/century. The value in [25] was
=42.9817 arc-sec/century. On the other hand, for the data in [25],

P = 46001260500, A = 69817089400. (107)

The perihelion shift for these data is 42.9814 arc-sec/century. The value in [25] is
42.9805 arc-sec/century. The authors in [25] used the data

P = 46010448900, A = 69807901000. (108)

For these data, the perihelion shift is 42.9784 arc-sec/century. The value in [25] is
=42.9776 arc-sec/century.
Using Mercury data in Table 2, we obtain a perihelion shift of 42.9815 arc-sec/century.
In the case when Λ 6= 0, cubic d0 + d1u + d2u2 − u3 = 0 has two roots very close to zero.
Then, we may use the approximation

d2u2 + d1u + d0 − u3 ≈
(

d0
(
d2

2 + d1
)

d3
2 + 2d1d2 + d0

+

(
d2

1 + d2
2d1 + d0d2

)
d3

2 + 2d1d2 + d0
u + u2

)(
d4

2 + 3d1d2
2 + 2d0d2 + d2

1
d3

2 + 2d1d2 + d0
− u

)
(109)

For example, let Λ = −10−56, P = 46005766800, A = 69818681600 as in [25]. We have:

d0 + d1u + d2u2 − u3 = (u− 3.6156749990681577× 10−25)
(u + 3.6156749990680067× 10−25)
(0.0003386099606939169 − u).

(110)

On the other hand, the right-hand side of (109) is written as

(u− 3.6156749990681577× 10−25)(u + 3.6156749990680067× 10−25)(0.00033860996069391686− u) (111)

Using these facts and taking into account that
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1
u2

[
d0(d2

2+d1)
d3

2+2d1d2+d0
+

(d2
1+d2

2d1+d0d2)
d3

2+2d1d2+d0
u + u2

]
≈ 1

A2

[
d0(d2

2+d1)
d3

2+2d1d2+d0
+

(d2
1+d2

2d1+d0d2)
d3

2+2d1d2+d0
· 1

A + 1
A2

]
:= N

(112)

hard Ode (104) may be replaced with easy ode(
du
dφ

)2
= D

(
u(φ)− 1

A

)(
1
P
− u(φ)

)(
d4

2 + 3d1d2
2 + 2d0d2 + d2

1
d3

2 + 2d1d2 + d0
− u(φ)

)
. (113)

The exact solution to Ode (113) is

u(φ) =
1
P
+

3(P− A)(δP− 1)

P(AδP− 2A + P)
(

1 + 12AP
D(AδP−2A+P)℘(t; g2, g3)

) , (114)

where
D = 2GMN

c2 ,

δ =
d4

2+3d1d2
2+2d0d2+d2

1
d3

2+2d1d2+d0
.

g2 =
D2(A2δ2P2−A2δP+A2−AδP2−AP+P2)

12A2P2 .

g3 = D3(AδP+A−2P)(AδP−2A+P)(2AδP−A−P)
432A3P3 .

(115)

Solution (113) is periodic, and its period equals

TΛ = 2
∫ ∞

r

1√
4x3 − g2x− g3

= 2

√
P

D(δP− 1)
K
(
− A− P

A(Pδ− 1)

)
, (116)

where r is the greatest real root to cubic 4x3 − g2x− g3 = 0. Observe that

4x3 − g2x− g3 =

(
x +

D(A(1 + Pδ)− 2P)
12AP

)(
x +

D(P(1 + Aδ)− 2A)

12AP

)(
x− D(2APδ− A− P)

12AP

)
. (117)

The required equation to determine Λ is

2

√
P

D(δP− 1)
K
(

A− P
A(1− Pδ)

)
= T :=

4K
(

2GM(A−P)
2GM(2A+P)−Ac2P

)
√

1− 2GM(2A+P)
Ac2P

(118)

The authors in [25] gave the predicted values Λ− = −10−55 and Λ+ = 1056 for the
data

P = 46005766800, A = 69818681600. (119)

On the other hand, the predicted values for Λ solving (118) for data (119) are

Λ+ = 3.0849194019988974× 10−45 and Λ− = −1.8381582529562642× 10−45 (120)

Now, using the method in previous sections, we obtained the following estimates for
Data (119) in [25]

Λ+ = 1.024× 10−47 and Λ− = −2.58× 10−43 (121)

Lastly, for the other planets, the estimates for Λ by solving (118) are summarized in
Table 7:
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Table 7. Theoretical values for Λ .

Planet Λ+ Λ−

Mercury 3.09× 10−45 −1.83× 10−45

Venus 2.64× 10−48 −2.56× 10−47

Earth 1.46× 10−47 −2.12× 10−46

Mars 8.71× 10−48 −7.56× 10−32

Jupiter 9.98× 10−49 −1.885× 10−33

Saturn 8.01× 10−50 −2.74× 10−51

Uranus 2.23× 10−51 −1.99× 10−50

Neptune 2.18× 10−37 −9.1× 10−51

Pluto 3.68× 10−51 −4.66× 10−36

Confidence interval for Table 7:

Λ Λ+ Λ−
∆Λ {−1.1× 10−37, 1.6× 10−37} {−5.5× 10−32, 3.8× 10−32}

The different previous approaches show that the cosmological constant takes different
values, both positive and negative, which leads to establishing that the static cosmological
model is unstable and antisymmetric. Due to the difference in the perihelion for each
planet, the cosmological constant is different for each one, which implies that the trajectory
of the planets must be antisymmetric, that is, elliptical.

The Schwarzschild radius for the Sun is rS = 2GM
c2 = 2.7 km. Taking into account the

cosmological constant, the Schwarzschild radius is obtained by solving the following cubic
equation for r.

1− 1
3

r2Λ− 2GM
c2r

= 0. (122)

Solving (122), we obtain that rSΛ = 4.1 km. Both radii are inside the Sun.
The region of spacetime due to the gravitational field of the Sun is obtained from

1− 1
3

r2Λ− 2GM
c2r

= 1, (123)

from where rlim = 5.1× 1010 Km = 340 UA.
Between the planet Pluto and the edge of the curved space, an area of the curved

spacetime region originates that allows for, in Schwarzschild’s cosmological model, pre-
dicting the existence of new planets (planetoids X). Among those catalogued planets are:
Kuiper, whose distance to the Sun is 30 AU; Quaoar, 43.4 AU; Makameke, 45.8 AU; Sedna,
88.5 AU; Eris, 98.3 AU; and V774104, 103 AU.

This limit was calculated for the cosmological constant obtained for Mercury
Λ = 6.56145× 10−38m−2.

After the boundary of the curved spacetime, a region of Minkowski plane spacetime
originates.

From Schwarzschild’s stationary cosmological model (Figure 5), it follows that the
planets are in the region of spacetime curved due to the Sun; therefore, each planet follows
a stationary geodesic trajectory. All of the above are represented in the following graph.



Universe 2022, 8, 449 21 of 22

From the di¤erent previous approaches it is observed that the cosmological constant takes di¤erent values both positive and
negative, this leads to establish that the static cosmological model is unstable and antisymmetric. Due to the di¤erence of the
perihelion for each planet, the cosmological constant is di¤erent for each one of them, which implies that the trajectory of the
planets must be antisymmetric, that is elliptical.

As is well known, that the Schwarzschild radius for the Sun is rS = 2GM
c2 = 2:7Km, now taking into account the cosmological

constant the Schwarzschild radius is obtained by solving the following cubic equation for r.

1� 1
3
r2�� 2GM

c2r
= 0: (123)

Solving (123)we obtain that rS� = 4:1Km. Both radius are inside the Sun.
The region of space-time due to the gravitational �eld of the Sun, is obtained from.

1� 1
3
r2�� 2GM

c2r
= 1; (124)

from where rlim = 5:1� 1010Km = 340UA:
Between the planet Pluto and the edge of the curved space, an area of the curved space-time region originates which allows, in
Schwarchild�s cosmological model, to predict the existence of new planets (planetoids X) . Among those cataloged as said planets
are: Kuiper whose distance to the Sun is 30 AU, Quaoar 43.4 AU, Makameke 45.8 AU, Sedna 88.5 AU, Eris 98.3 AU, V774104
103UA.
This limit was calculated for the cosmological constant obtained for Mercury � = 6:56145� 10�38m�2:
After the boundary of the curved space-time a region of Minkowski plane space-time originates.
From Schwarchild�s stationary cosmological model it follows that the planets are in the region of space-time curved due to the Sun,
therefore each planet follows a stationary geodesic trajectory. All of the above is represented in the following graph.

Figure 6. Schwarchild´s cosmological model (125)

In the static cosmological model of Schwarchild the cosmological constant according to the results obtained in table 4 and 6,
which were obtained by di¤erent approaches, it is observed that in the planetary system the cosmological constant is unstable. In
order to understand this e¤ect of instability in the static cosmological model, it is necessary to take into account the e¤ects of the
acceleration due to the big bang until reaching the current static state.
Finally, the instability e¤ect of the cosmological constant leads to the �uctuation of the limit radius of the curved space-time,

a¤ecting the stability of the curvature region.

18

Figure 5. Schwarzschild’s cosmological model .

The static cosmological model of Schwarzschild, the cosmological constant according
to the results obtained in Tables 4 and 6, which were obtained by different approaches,
shows that, in the planetary system, the cosmological constant is unstable. In order to
understand this effect of instability in the static cosmological model, it is necessary to take
into account the effects of the acceleration due to the Big Bang until the current static state
is reached.

Lastly, the instability effect of the cosmological constant leads to the fluctuation of the
limit radius of the curved spacetime, affecting the stability of the curvature region.

9. Conclusions

In this work, the equation of Einstein’s general theory of relativity for vacuum was
solved. Taking into account the cosmological constant, the nonlinear differential equation
that describes the movement of the planets was constructed and exactly solved.

Solving the inverse problem, different theoretical estimates were obtained to calculate
the value of the cosmological constant. The obtained results were compared with those
of other authors, both theoretical and experimental. In the Schwarzschild cosmological
radius rSΛ = 4.1 km, and the radius limit of the curvature of the gravitational field of the
solar system rlim = 5.1× 1010 Km = 340 UA were obtained, and the existence of several
regions was discovered, which were classified into: planetary curvature region, exoplanet
curvature region, and the prediction region of the existence of new exoplanets.

The proposed methodology can be of great interest to astronomers, cosmologists,
nonlinear physics researchers, and all those interested in the study of the universe.
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