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Abstract: In this paper, we studied the bouncing behavior of the cosmological models formulated in
the background of the Hubble function in the F(R,G) theory of gravity, where R and G, respectively,
denote the Ricci scalar and Gauss–Bonnet invariant. The actions of the bouncing cosmology are
studied with a consideration of the different viable models that can resolve the difficulty of singularity
in standard Big Bang cosmology. Both models show bouncing behavior and satisfy the bouncing
cosmological properties. Models based on dynamical, deceleration, and energy conditions indicate
the accelerating behavior at the late evolution time. The phantom at the bounce epoch is analogous
to quintessence behavior. Finally, we formulate the perturbed evolution equations and investigate
the stability of the two bouncing solutions.

Keywords: F(R,G) gravity; bouncing cosmology; energy conditions; stability analysis

1. Introduction

In recent astrophysics and cosmology research, instances of late-time cosmic accel-
eration supposedly witnessed by cosmological observations have compelled theoretical
cosmologists and astrophysicists to think beyond general relativity (GR) . Cosmological
observations such as those of high redshift supernovae [1], supernovae of type Ia [2,3],
cosmic microwave background radiations (CMBRs) [4,5], baryon acoustic oscillations [6],
and Planck collaboration [7] are sufficiently indicative of the accelerated expansion of the
universe. Furthermore, the cause has been speculated to be the presence of some exotic
dark energy (DE). The negative pressure indicates the violation of strong energy conditions
as well as a limitation in GR. Accordingly, in the field equations of GR, the modification
is thought to be in the geometrical part or matter part. The matter can be modified by
replacing the dynamical parameters with the DE parameters that lead to the DE models.
The modification in the geometrical part can be performed by including additional terms,
known as geometrically extended gravity models. Some recent geometrical extended gravi-
ties are F(R) gravity [8–10], F(R, T) gravity [11], F(T ) gravity [12,13], F(Q, T) gravity [14],
etc. Another such extension is made by including the Gauss–Bonnet invariant, known as
the F(R,G) gravity [15]. The next section discusses F(R,G) gravity in detail.

The standard model or Big Bang cosmology has been widely accepted as a cosmologi-
cal model and has successfully defended many intriguing universe problems. However,
regarding the issue of late-time cosmic acceleration, GR has difficulties in resolving some
early universe issues such as an initial singularity, flatness, and cosmic horizon. The in-
flationary scenario could resolve the flatness and horizon issues, but not that of initial
singularity. To date, the beginning of the universe before inflation is not known. This is
because of the attractor nature of inflation. When the inflation started, the information on
the initial singularity was lost as the initial spatial curvature was stretched away by the
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exponential expansion of inflation. The matter bounce scenario can remove the initial singu-
larity. To achieve this, new physics is required to supply the bounce, which can be obtained
by introducing new kinds of matter such as phantom or quintom fields [16], ghost conden-
sates [17,18], effective string theory actions [19], Galileons [20], and S-branes [21]. In the
matter bounce scenario, the matter controls the contraction and can generate early-density
perturbations with a nearly scale-invariant and adiabatic spectrum [22,23]. Cosmological
models before inflationary cosmology produce scale invariance and a nearly adiabatic
spectrum of cosmological perturbation that agree with the observations made in [24,25].
Under the purview of GR, the bouncing behavior cannot be achieved since it leads to
the violation of the null energy condition, which is happening because of the change in
sign of the astrophysicist rate at the bounce objective [26]. It is important to note that
the violation of the null energy condition is not inheritable from modified gravity [22] or
quantum mechanics [27]. Several such models are suggested in the literature, such as loop
quantum gravity [28,29], Ekpyrotic models [30], Pre-Big Bang [31], gravity actions with
higher-order corrections [32], braneworld scenarios [33], non-relativistic gravity [34,35],
F(T ) gravity [12], and F(Q, T) gravity [36].

In bouncing cosmology, Cai [37] has observationally shown that the matter bounce
scenario allowed for a sizeable parameter space when the background energy density
was small. Shabani and Ziaie [38] have studied the classical bounce solution in F(R, T)
gravity. In the different framework of F(R, T) gravity, the matter bounce cosmology has
been widely studied [39,40]. The bouncing scenario is designed to avoid the Big Bang
singularity in the background of isotropic and anisotropic space–time examined by Agrawal
et al. [41,42]. Amani [43] has reconstructed the F(R) gravity by the redshift parameter and
has shown the bouncing behavior at the backdrop of homogeneous and isotropic space–
time. Nojiri et al. [44] have demonstrated the realization of bouncing cosmology from
unimodular F(R) gravity. Ilyas and Rahman [45] have rebuilt the model with a redshift
parameter to present the bouncing scenario in F(R) gravity. In F(T ) gravity, Amoros
et al. [46] studied the bouncing behavior from loop quantum cosmology. In F(T , B) gravity,
Caruana et al. [47] gave the cosmological bouncing solution with a power law cosmology.
We can infer that the modified theories of gravity successfully resolved the initial singularity
issue through bouncing cosmology. In the present study, we are interested in studying the
bouncing behavior within a modified F(R,G) gravity.

There are several bouncing scale factors available in the literature [48]. Among these,
the scale factor a(t) = (a0t2 + 1)n is of special significance. Through this scale factor, we
can solve the singularity issue. In our work, we have introduced this scale factor and
resolved the bounce issue. Apart from this, it has some other advantages such that the
slow roll conditions that are assumed to hold; thus, the observational indices have general
expressions regarding the slow-roll parameters in the inflationary scenario investigated
by Odintsov et al. [48]. Using modified teleparallel gravity, Karimzadeh et al. demon-
strated the possibility of achieving effective phantom behavior without adopting phantom
fields [49]. The scalar perturbation technique creates the perturbed evolution equations,
and their stability has been demonstrated by Duchaniya et al. [50].

The plan of this paper is as follows. In Section 2, we discuss F(R,G) gravity and its
field equations are presented along with the dynamical parameters. In Sections 3 and 4,
the cosmological model is constructed using the bouncing scale factor determined by the
physical parameters. Within the bouncing scenario, different dynamical parameters are
discovered. The energy conditions of the models were analyzed. A linear, homogeneous,
and isotropic perturbation computation was performed in Section 5 to assess the stability
of the model. Finally, Section 6 presents the conclusion of the work.

2. F(R,G) Gravity and Field Equations

Generalizations of F(R) and F(G) gravity are offered by higher-order
gravities [51,52]. This uses combinations of higher-order curvature invariants constructed
from the Ricci tensor Rµν and Riemann tensor Rµναβ. The F(R,G) gravity, where R and G,
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respectively, denote the Ricci scalar and Gauss–Bonnet invariant, is another modified grav-
ity theory that includes both the Ricci and Gauss–Bonnet scalars [53,54]. The motivation
behind this new gravity was to justify the evolution of the universe in the context of the
dark energy and initial singularity. The action for F(R,G) gravity is

S =
∫ √

−g
1

2κ2 F(R,G)d4x +
∫ √

−gLmd4x (1)

where Lm represents the matter Lagrangian and κ2 = 8πGN , where GN is the Newtonian
constant. The Gauss–Bonnet invariant can be expressed as G ≡ R2− 4RµνRµν + RµναβRµναβ.
Now, by varying the action in Equation (1) with respect to the metric tensor gµν, the field
equations of F(R,G) gravity can be expressed as

FRGµν = κ2Tµν +
1
2

gµν[F(R,G)− RFR] +∇µ∇νFR − gµν�FR

+ FG(−2RRµν + 4RµkRk
ν − 2Rklm

µ Rνklm + 4gkl gmnRµkνmRln)

+ 2(∇µ∇νFG)R− 2gµν(�FG)R + 4(�FG)Rµν − 4(∇k∇µFG)Rk
ν

− 4(∇k∇νFG)Rk
µ + 4gµν(∇k∇l FG)Rkl − 4(∇l∇nFG)gkl gmnRµkνm (2)

where gµν, Gµν, and ∇µ, respectively, represent the gravitational metric potential, Einstein
tensor, and covariant derivative operator associated with gµν. The covariant d’Alembert
operator, � ≡ gµν∇µ∇ν and Tµν be the ordinary matter. We denote the partial derivative
of F(R,G) with respect to R and G, respectively, as,

FR ≡
∂F(R,G)

∂R
, FG ≡

∂F(R,G)
∂G

We obtain the following equation by taking the traces of Equation (2)

3�FR + RFR − 2F(R,G) + R(�FG + 2
G
R

FG) = κ2T (3)

where T is trace of energy-momentum tensor and it is T = gµνTµν = −ρ + 3p.
Cognola et al. [55] have studied the late-time acceleration issue in modified Gauss–

Bonnet gravity and shown that this kind of model can experience the transition from
deceleration to acceleration. In Refs. [56,57], the stability criteria for scalar and tensor
perturbations in F(R,G) gravity were investigated. Furthermore, Felice et al. [58] have
derived the propagation speed for both odd-type and even-type perturbations in F(R,G)
gravity. Makarenko et al. [59] developed a phantom-type cosmological model in F(R,G) gravity
that does not lead to a future singularity. Laurentis et al. [60] have studied cosmological inflation
and indicated the emergence of two double inflationary scenarios. Martino et al. [61] traced
the cosmic history in F(R,G) gravity and showed that it could lead gravity from ultraviolet to
infrared scales. We consider the isotropic flat FLRW metric as

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (4)

where the scale factor a(t) measures the expansion rate of the universe, and it appears
that the expansion becomes uniform in the spatial directions. Using Equation (4), the Ricci
scalar R and Gauss–Bonnet term G can be expressed in Hubble term, H = ȧ

a , as

R = 6
(

ä
a
+

ȧ2

a2

)
= 6(Ḣ + 2H2) G = 24

äȧ2

a3 = 24H2(Ḣ + H2) (5)

We consider the energy-momentum tensor in the form of perfect fluid as

Tµν = (ρ + p)uµuν + pgµν (6)
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where ρ and p are, respectively, the matter energy density and pressure. The observer uµ

with uµ is the time-like four-velocity vector of the cosmic fluid satisfying uµuµ = −1 for the
space–time Equation (4) and energy-momentum tensor Equation (6). The F(R,G) gravity
field equations Equation (2) can be obtained as

3H2FR = κρ +
1
2
[RFR + GFG − F(R,G)]− 3HḞR − 12H3 ḞG , (7)

2ḢFR + 3H2FR = −κp +
1
2
[RFR + GFG − F(R,G)]− 2HḞR − F̈R − 4H2 F̈G − 8HḢḞG − 8H3 ḞG (8)

An over-dot represents an ordinary derivative with respect to cosmic time t. The
energy density and matter pressure can be obtained if the functional F(R,G) has some
explicit form. Thus, here we have assumed the quadratic form of F(R,G) [60] as,

F(R,G) = R + αR2 + βG2, (9)

where α and β are pairing constants. The linear component in F(R,G) is included to
generate the correct weak field limit. We analyzed the R2 model with a correction that
introduces extra degrees of freedom owing to the inclusion of the Gauss–Bonnet component.
Because the linear one does not contribute, the term G2 is the first important term in G in
the above Lagrangian.

The dynamical parameter’s behavior can be analyzed if we express these in terms of
cosmic time. Since our objective is to avoid the initial singularity, we need to constrain
the Hubble parameter that supports bouncing behavior. In bouncing cosmology: (i) At
the bouncing epoch, the Hubble parameter vanishes, the deceleration parameter becomes
singular, and the scale factor contracts to a non-zero finite value; (ii) From the bouncing
point, the Hubble parameter changes sign, and the null energy conditions are violated;
(iii) After the bounce, the slope of the scale factor increases and the Hubble parameter,
respectively, is negative and positive during matter contraction and expansion phases.
Keeping these properties of bouncing cosmology in mind, we consider two scale factors in
the following sections that support these behaviors.

3. Bouncing Model I

In this section, we consider the scale factor as a(t) =
(
1 + 3

4 χt2) 1
3 , where χ is the scale

factor parameter and can be constrained on an observational and physical basis [62,63].
The corresponding Hubble parameter that measures the rate of expansion of the universe
and the deceleration parameter that decides the accelerating or decelerating behavior of
the universe can be, respectively, given as

H(t) =
2χt

3χt2 + 4
, q =

1
2
− 2

χt2 (10)

The Hubble parameter increases from the early universe and vanishes at the epoch
t = 0; then, it further increases, as expected in the bouncing behavior (Figure 1 (left
panel)). A negative or positive value of q signifies, respectively, the accelerating and
decelerating behavior of the universe. In Figure 1 (right panel), the time evolution of the
deceleration parameter, which is independent of the model parameter, has been shown for
three representative values of the scale factor parameter χ. The deceleration parameter is
symmetric with regard to the bouncing time t = 0. If χ > 0, q becomes negative and hence
shows the accelerating behavior, i.e., χt2 < 4.
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Figure 1. Behavior of Hubble parameter (left panel) and deceleration parameter (right panel) versus
cosmic time t.

Substituting the Hubble parameter Equation (10), the dynamical parameters
Equations (7) and (8) can be expressed as

ρ =
1
η8

(
12χ2η4(t2η2 − 54αχt2(χt2 + 8)− 96α) + 18, 432βχ6t4(χt2(23χt2 − 168) + 48)

)
,

p =
1
η8

(
6144βχ5t2(χ2t4(207χt2 − 2384) + 2736χt2 − 384

)
− 16χη6

)
−216αχ2

η4

(
χt2(3χt2 + 40)− 16

)
(11)

The equation of state (EoS) parameter ω = p
ρ can be obtained from Equation (11) as

ω =
6144βχ5t2[χt2(χt2(207χt2−2384)+2736)−384]+8χη4[−27αχ(χt2(3χt2+40)−16)−2η2]

12χ2η4[t2η2−54αχt2(χt2+8)−96α]+18,432βχ6t4[χt2(23χt2−168)+48] , (12)

where η = 3χt2 + 4. In Figure 2 (left panel), the behavior of energy density has been
shown with three representative values, namely χ = 0.15, 0.155, 0.16. There is a sharp
increase in energy density immediately after the bounce, and after some time, it starts
decreasing. The behavior remains the same both before and after the bounce. The EoS
parameter Figure 2 (right panel) remains mostly in the phantom region in the time range
of t ∈ (−2, 2). When the bouncing epoch occurs, the acceleration should be such that
the Hubble parameter Ḣ > 0 is satisfied, which favors the phantom behavior. The EoS
parameter for a bouncing model evolves in the phantom zone and crosses the phantom split
ω = −1 at least twice, once before and once after the bounce [64]. When the dynamical
aspect of the EoS parameter has been studied, it evolves from a lower negative value,
crosses the phantom split, and reaches a minimum in the phantom-like region at the
bouncing epoch. The same behavior can be observed in Figure 2 (right panel).

χ = 0.15

χ = 0.155

χ = 0.16

-3 -2 -1 0 1 2 3

0.030

0.035

0.040
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0.065

t

ρ

χ = 0.15

χ = 0.155

χ = 0.16

-3 -2 -1 0 1 2 3

-8

-6

-4

-2

0

t

ω

Figure 2. Behavior of energy density (left panel) and EoS parameter (right panel) versus cosmic
time t for α = −0.30, β = 0.15.
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The phantom ω < −1 [65], quintessence −1 < ω ≤ 0 [66], and the quintom ω cross
−1 are three prominent classes of scalar-field dark-energy models accessible in the literature
to explore the dark energy features of the model. The quintom scenario can be used to
travel from the phantom to the quintessence realm. The model can transition from ω > −1
to ω < −1 since the EoS value is time-dependent [67].

The energy conditions assign the underlying causal and geodesic structure of space–time.
Any geometrical extension of GR has to deal with the standard energy conditions [68,69].
Violating certain energy conditions is essential in the extended theories and bouncing
cosmology. Hence, we present here null energy condition (NEC)—ρ + p ≥ 0; a weak
energy condition (WEC)—ρ ≥ 0; ρ + p ≥ 0; a strong energy condition (SEC)—ρ + 3p ≥ 0;
and a dominant energy condition (DEC)—ρ − p ≥ 0. These energy conditions are not
independent since WEC⇒ NEC, SEC⇒ NEC, DEC⇒WEC, as we notice that all other
pointwise energy conditions will also be violated if the NEC is violated [22]. For Model I,
the energy conditions can be derived using Equations (7) and (8) as

ρ + p =
4χη4[(3χt2−4)η2−36αχ(9χ2t4+96χt2−16)]+24,576βχ5t2[χt2(χt2(69χt2−722)+720)−96]

η8 , (13)

ρ + 3p =
36,864βχ5t2[χt2(χt2(115χt2−1276)+1392)−192]+12χη4[(χt2−4)η2−24αχ(9χt2(χt2+12)−32)]

η8 , (14)

ρ− p =
4χη4[288αχ(3χt2−4)+η3]−12,288χ5βt2[χt2(χt2(69χt2−940)+1296)−192]

η8 (15)

The Gauss–Bonnet invariant is an important component in this extended gravity,
which can also be expressed in terms of the Hubble parameter. Since we are investigating
the model with a known scale factor, the behavior of G must also be observed. Figure 3
(left panel) shows the bouncing behavior of the Gauss–Bonnet invariant, which entirely
remains in the positive domain. It is symmetrical and reaches a peak immediately after the
bounce in both positive and negative time zones. Subsequently, it decreases after attaining
the peak at t ≈ ±1.55. The behavior of energy conditions shows the violation of ρ + 3p and
ρ + p at the bounce; however, it satisfies the ρ− p. The ρ + p decreased and kept falling to
a negative value in the negative cosmic time domain and increased from negative values
in the positive cosmic time domain. At the bounce epoch, the null energy condition is
violated, and the apparent phenomenon means that the strong energy conditions are also
violated; nonetheless, it has been observed that it is violated throughout the universe’s
evolution. Hence, the model validates the bouncing behavior in F(R,G) gravity.

χ = 0.15

χ = 0.155

χ = 0.16

-3 -2 -1 0 1 2 3

0.000

0.002

0.004

0.006

0.008

0.010

t
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-0.2

0.0

0.2

t

ρ
+
p
,

ρ
+
3p

,
ρ
-
p

Figure 3. Behavior of Gauss–Bonnet invariant (left panel) and energy conditions (right panel) versus
cosmic time t. The parameters values are α = −0.30, β = 0.15.

In any theory of gravity, the geometrical parameters play a major role in analyzing
the model. Apart from Hubble and deceleration parameters, there are other geometrical
parameters such as the jerk parameter (j) and snap parameter (s). The jerk parameter
decides the rate of acceleration change, and the snap parameter measures the jerk rate. The
deceleration parameter is insufficient to account for the entirety of cosmic dynamics; hence,
the sign of j is vital to observe whether the universe changes during evolution. To note,
a positive jerk parameter indicates the change in the expansion of the universe at some
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point in its evolution. The (j, s) pair known as the state finder pair [70,71] can be used to
distinguish between different dark energy models and can be obtained for the bouncing
scale factor as

j = q + 2q2 − q̇
H

= 1− 12
χt2 ,

s =
j− 1

3(q− 1
2 )

=
12
(
7χt2 − 2

)
χ2t4 − 7

2
(16)

In Figure 4, both the jerk and snap parameters show similar behavior with singularity
appearing at the bounce epoch t = 0. In the negative and positive time zones, both are,
respectively, showing decreasing and increasing behavior. Nonetheless, it evolves from the
ΛCDM behavior (j = 1) in both the negative and positive time zones. A snap parameter,
which is determined via the fourth derivative of the scale factor, exhibits the same behavior
but departs from the mandated ΛCDM behavior (s = 0).
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Figure 4. Symmetric behavior of the jerk parameter (above left panel) and snap parameter (above
right panel) versus cosmic time t. The jerk (below left panel) and snap (below right panel) parame-
ter in positive time domain.

4. Bouncing Model II

As a second model, we consider another bouncing scale factor in the form a(t) =
(γ

λ + t2) 1
2λ ,

where γ and λ are the parameters of the scale factor, and on a physical basis, these can be
constrained [72]. The corresponding Hubble and deceleration parameters are

H =
t

γ + t2λ
, q = −1 + λ− γ

t2 (17)

We can observe from Equation (17) that, at t = 0, the Hubble parameter vanishes
and the deceleration parameter becomes constant (−1 + λ) at t → ∞. Subsequently, the
acceleration or deceleration behavior lies with the value of λ, i.e., for λ < 1, the model
accelerates and decelerates for λ > 1. Furthermore, we can say that the acceleration
behavior lies with the expression (λ < γ

t2 + 1), and the model decelerates for (λ > γ
t2 + 1).

Figure 5 shows the graphical behavior of both parameters. Both parameters support the
bouncing behavior. There are limited changes observed in the deceleration parameter
with the representative values of the scale factor parameter γ. Now, with the form of the
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Hubble parameter Equation (17), the energy density and matter pressure can be calculated,
respectively, from Equations (7) and (8) as

ρ =
1
κ2

(
3H2 + 108αḢH2 − 18αḢ2 − 288βH8 + 1728βḢH6 + 864βḢ2H4 + 36αHḦ

+576βḦH5) (18)

p =
1
κ2

(
− 2Ḣ − 3H2 − 54αḢ2 − 108αḢH2 + 288βH8 − 960βḢH6 − 4320βḢ2H4

−72αHḦ − 12α ˙̈H − 1152βḦH5 − 1152βH2Ḣ3 − 1536βḢḦH3 − 192β ˙̈HH4) (19)

where

Ḣ =
1

γ + t2λ
− 2t2λ(

γ + t2λ
)2 ,

Ḧ =
8t3λ2(

γ + t2λ
)3 −

6tλ(
γ + t2λ

)2 ,

˙̈H = − 48t4λ3

(γ + t2λ)4 +
48t2λ2

(γ + t2λ)3 −
(6λ)

(γ + t2λ)2

From the above Equations (18) and (19), the EoS parameter can be obtained as ω = p
ρ .

γ = 1.15

γ = 1.2

γ = 1.25
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q

Figure 5. Behavior of the Hubble parameter (left panel) and deceleration parameter (right panel)
versus cosmic time t with λ = 1.01.

To maintain positive energy density (left panel) during the entire evolution, the mini-
mum matter geometry coupling scale factor parameter γ should be restricted to a positive
value. The current model is depicted in Figure 6 for three representative values of the scale
factor parameter, namely γ = 1.15, 1.20, 1.25. The phantom phase at −0.39 < t < 0.39 is
shown in the EoS parameter (right panel). The energy density becomes a positive number
for these values in both the positive and negative time domains. The bouncing epoch
acceleration should be such that the Hubble parameter Ḣ > 0 is satisfied, favoring the
phantom behavior of the model. Near the bounce, the EoS parameter is well shaped, and
there are noticeable variations in the depth of the well as the value of γ changes. The EoS
parameter evolves from the phantom area on both sides of the bouncing epoch, and as it
travels away from the bouncing era, the model passes through the CDM line and remains
in the quintessence phase. In both the negative and positive time zones, similar behavior
has been observed in the evolution of the EoS curve.

The graphical behavior of the Gauss–Bonnet invariant and the energy conditions are
shown in Figure 7. The bouncing behavior observed for the invariant, the violation of ρ+ 3p
and ρ + p, and satisfaction of ρ− p was also obtained. The behavior of the Gauss–Bonnet
term is visible, and the energy conditions are symmetric with regard to the bouncing epoch
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t = 0. In the negative cosmic time domain, it decreased and continued to be negative, while
in the positive cosmic time domain, it increased from negative values. It expands, even
more, showing that, at t ∈ (−0.648, 0.648), it violates the ρ + p. Furthermore, given the
ρ + 3p, it lowers and decreases in the negative cosmic time domain at the bounce epoch.
In contrast, it constantly increases in the positive cosmic time domain. The null energy
condition is violated at the bounce epoch, and the apparent phenomenon is that the strong
energy condition is also violated at the bounce epoch; however, it has been observed that it
is violated throughout the evolution of the universe.
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Figure 6. Behavior of energy density (left panel) and EoS parameter (right panel) versus cosmic
time t, λ = 1.01.
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Figure 7. Behavior of Gauss–Bonnet invariant (left panel) and energy conditions (right panel) versus
cosmic time t, α = −0.30, β = 0.15 and λ = 1.01.

The (j, s) diagnostic pair can be calculated as

j =
(2λ− 1)

(
t2(λ− 1)− 3γ

)
t2 ,

s = −
(2λ− 1)

[
3γ2 + 6γt2(1− 3λ) + t4(λ− 1)(3λ− 1)

]
t4 (20)

In Figure 8, we plotted that the jerk and snap parameters are symmetric about the
bouncing time t = 0, which attains negative values. There is a unique bounce at the
bouncing epoch for the jerk parameter, which is the third derivative of the scale factor.
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Figure 8. Symmetric behavior of the jerk parameter (above left panel) and snap parameter (above
right panel) versus cosmic time t. The jerk (below left panel) and snap (below right panel) parame-
ter in positive time domain with λ = 1.01.

5. Scalar Perturbations

Under linear homogeneous and isotropic perturbations, we shall investigate the
stability of the bouncing cosmological models obtained in F(R,G) gravity [54]. We shall
use the pressureless dust FLRW background with a general explanation of H(t) = H0(t).
The matter fluid is in the form of a perfect fluid with a constant EoS such that pm = ωρm
and the matter-energy density ρm obeys the standard continuity equation:

ρ̇m + 3H(1 + ω)ρm = 0, (21)

Solving the continuity Equation (21), the evolution of the matter-energy density can
be described in terms of this specific solution

ρm0(t) = ρ0e−3(1+ωm)
∫

H0(t)dt (22)

The isotropic deviation of the baseline Hubble parameter and the matter over density
is represented by δ(t) and δm(t), respectively. Now, we define the perturbation for the
Hubble parameter and energy density as follows

H(t) = H0(t)(1 + δ(t)) ρm(t) = ρm0(1 + δm(t)), (23)

We consider the Hubble parameter and the energy density around the arbitrary
solutions H0(t) as perturbations [54]. We shall perform the perturbation analysis on the
solution H(t) = H0(t), so that the function F(R,G) may be represented in the powers of R
and G as

F(R,G) = F0 + F0
R(R− R0) + F0

G(G − G0) +O2, (24)

where the subscript 0 means the values of F(R,G) and its derivatives FR and FG are eval-
uated at R = R0 and G = G0. Although only the linear terms of the induced perturba-
tions are examined, the O2 term contains all terms proportional to R and square of G or
higher powers that will be included in the equation and are ignored. Thus, by substituting
Equations (23) and (24) in the FLRW background Equation (5) and the continuity
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Equation (21), we obtain the perturbation equations in terms of δ(t) and δm(t) in the
form of the following differential equations

c2δ̈(t) + c1δ̇(t) + c0δ(t) = cmδm(t), (25)

The coefficients c0, c1, c2, and cm (see Appendix A) are explicitly dependent on the
background of the F(R,G) solution and its derivatives. In addition, once the matter
continuity Equation (21) is disturbed by expressions, a second perturbed equation is
formed from Equation (23). Thus,

δ̇m(t) + 3H0(t)δ(t) = 0. (26)

δ(t) =
−1
2

δm(t) ∝ a(t)
3
2 (27)

We framed the model based on the functional F(R,G) = R + αR2 + βG2. If we assume
that GR will be retrieved from the current model at some point, we may have to ignore
the contributions from the higher derivatives of the functional F(R,G). Thus, using the
perturbation approach in the equivalent FLRW equation, we obtain

−18H0(t)2
(

16F0
GGH0(t)4 + F0

RR

)
δ̈(t)− 18H0(t)

(
− 48F0

GGH0(t)6 − 80F0
GGH0(t)4Ḣ0(t)

−3F0
RRH0(t)2 − F0

RRḢ0(t)
)
δ̇(t) + 6

[
12H0(t)4(F0

RR − 36F0
GG Ḣ0(t)2) + 192F0

GGH0(t)8

−1008F0
GGH0(t)6Ḣ0(t)− 288F0

GGH0(t)5Ḧ0 − H0(t)2(F0
R + 21F0

RRḢ0)

−6F0
RRH0(t)Ḧ0(t) + 3F0

RRḢ0(t)2]δ(t) = κ2ρm0δm(t), (28)

This is an algebraic relationship between geometrical and matter perturbations. As
a result, matter perturbations ultimately dictate the whole perturbation surrounding a
cosmological solution in GR. Now, we shall carry out the stability analysis for the two
models discussed as presented in Section 5.

The stability analysis of the model based on both bouncing scale factors is shown in
Figures 9 and 10. The visual assessment of the stability of the model is shown in both
figures. For the chosen values of the parameters, the linear perturbations in the Hubble
parameter and the energy density decrease as time passes; hence the stability of the model
has been ensured.
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Figure 9. δ(t) (left panel) and δm(t) (right panel) versus cosmic time for Model I. The parameter
scheme: α = −0.30, β = 0.15, χ = 0.15, ρ0 = 1.2.

The model (9) can be substituted in Equations (25) and (26) to obtain the essential
perturbation equations for bouncing Model I. Figure 9 depicts the numerical scheme and
evolution of δ(t) and δm(t). The figures indicate the oscillating behavior of δ(t) and δm(t),
but the oscillations of δ(t) and δm(t) do not decay in the future. As a result, solutions are
unstable since the complete perturbation surrounding a cosmological solution is defined
entirely by matter perturbations. Figure 10 presents a graphical representation of the
dynamical stability of the bouncing Model II. It demonstrates that δ(t) and δm(t) decay
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and yet indicate consistent behavior at later times. As a result, Model II is stable at later
times. Throughout the evolution, the model remains stable for typical parameter values as
δ(t) and δm(t) decrease and approach zero at a later time. We have investigated the linear
homogeneous perturbation behaviors for the two bouncing models. The perturbation’s
progressive oscillating and decreasing behaviors exemplified the dynamical stability of the
model with the increase in time, respectively, for the Model I and Model II.
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Figure 10. δ(t) (left panel) and δm(t) (right panel) versus cosmic time for Model II. The parameter
scheme: α = −0.30, β = 0.15, λ = 1.01, ρ0 = 1.2.

6. Conclusions

This paper investigated the cosmological behavior of a class of modified Gauss–
Bonnet gravity models with two bouncing scale factors presented in the F(R,G) theory of
gravity. A specific functional form was chosen where the Ricci scalar and Gauss–Bonnet
invariant are in quadratic form. Interestingly, the Gauss–Bonnet invariant for both the
models shows the bouncing behavior. The violation of SEC and NEC, as prescribed for
bouncing models, is achieved. The EoS parameter exhibits phantom-like behavior at the
bounce point, then passes through the ΛCDM line before exhibiting quintessence-like
behavior as we move away from the bounce point. The negative q in the models shows
the accelerating behavior and the value of the EoS parameter to be well within the current
cosmological observations. Finally, we examined the stability of the F(R,G) model while
accounting for the bouncing scale factor. For the Hubble parameter and energy density, we
applied linear homogeneous perturbations. It is discovered that F(R,G) gravity does not
produce stable results for acceleration eras while failing to regenerate radiation and matter-
dominated eras for both bouncing models. Figure 9 shows the oscillating behavior of δ(t)
and δm(t); however, the oscillations of δ(t) and δm(t) do not decay in the future. As a result,
the solutions are unstable since the whole perturbation around a cosmological solution
is exclusively determined by matter perturbations. Figure 10 represents the dynamical
stability of bouncing Model II. This shows that δ(t) and δm(t) decrease, but it also indicates
consistent behavior at later times. As a result, Model II is stable at later times.
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Appendix A

1
6

c0 = −18, 432H10
0 Ḣ0F0

3G + 3Ḣ2
0 F0

RR + 192H8
0(F0
GG − 24Ḣ0(3F0

RGG + 5F0
3G Ḣ0))

+48H6
0

(
2F0

RG − 3Ḣ(7F0
GG + 24F0

RRG + 88F0
RGG Ḣ0 + 48F0

3G Ḣ2
0)
)

+12H4
0

(
F0

RR − 4Ḣ0(7F0
RG + 6F0

3R + 3Ḣ0(3F0
GG + 14F0

RRG + 16F0
RGG Ḣ0))

)
−H2

0

[
F0

R + 3Ḣ0(7F0
RR + 8Ḣ0(2F0

RG + 3F0
3R + 6F0

RRG Ḣ0))
]
− 4608H9

0 Ḧ0F0
3G

−3456H7
0 Ḧ0(F0

RGG + F0
3G Ḣ0)− 288H5

0 Ḧ0(F0
GG + 3F0

RRG + 7F0
RGG Ḣ0)

−6H0Ḧ0(F0
RR + 3F0

3RḢ0)− 24H3
0 Ḧ0(4F0

RG + 3(F0
3R + 5F0

RRG Ḣ0)),

c1 = −18H0
[
1536H8

0 Ḣ0F0
3G − F0

RRḢ0 − 48H6
0

(
F0
GG + 8Ḣ0(3F0

RGG + 2Ḣ0F0
3G)
)

−384H7
0 Ḧ0F0

3G − 8H4
0

(
3F0

RG + 2Ḣ0(5F0
GG + 18F0

RRG + 24Ḣ0F0
RGG)

)
− 3H2

0
(

F0
RR

+8Ḣ0(F0
RG + F0

3R + 2F0
RRG Ḣ0)

)
− 288H5

0 Ḧ0F0
RGG − 72H3

0 Ḧ0F0
RRG − 6H0Ḧ0F0

3R
]
,

c2 = −18H2
0(16F0

GGH4
0 + 8F0

GRH2
0 + F0

RR),

cm = κ2ρm0(t).
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