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Abstract: Modified gravity theories can be used for the description of homogeneous and isotropic
cosmological models through the corresponding field equations. These can be cast into systems of
autonomous differential equations because of their sole dependence on a well-chosen time variable,
be it the cosmological time, or an alternative. For that reason, a dynamical systems approach offers a
reliable route to study those equations. Through a model-independent set of variables, we are able
to study all f (Q) modified gravity models. The drawback of the procedure is a more complicated
constraint equation. However, it allows the dynamical system to be formulated in fewer dimensions
than using other approaches. We focus on a recent model of interest, the power-exponential model,
and generalize the fluid content of the model.
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1. Introduction
We have an unprecedented understanding of the gravitational interaction as the main

actor in the large-scale dynamics of the Universe, being responsible for the formation and
evolution of structures on the largest scales. Einstein’s theory of General Relativity (GR)
accounts successfully for a vast array of gravitational phenomena [1–3]. Unfortunately,
the so-called dark sector, i.e., dark matter and dark energy, represents a true challenge to
an otherwise successful paradigm. The aim of solving these problems has motivated the
consideration of slight modifications of GR compatible with observations. The geometry of
the Universe is assumed to be the spatially flat Friedmann–Lemaître—Robertson–Walker
(FLRW) line element, in agreement with most current observational data [2,4,5]. The FLRW
model appears to be the best cosmological model available at the moment [6–16]. It takes the
form ds2 = −N(t)2dt2 + a(t)2δijdxidxj with scale factor a(t) and arbitrary lapse function
N(t). In what follows we can set N(t) = 1 without loss of generality, however, we note that
some modified theories of gravity might not be compatible with this choice. Modifications
of GR can help address observational tensions on the expansion rate of the universe as
given by H0, and the S8 parameter characterizing linear matter fluctuations on the scale of
8 h−1 [17–19].

Modified theories of gravity have been studied for almost as long as GR itself [20,21].
Possible modifications may bring extra geometrical structures, increase the number of
dimensions, or introduce non-linearities into the Einstein–Hilbert action which is linear
in curvature. Other options include non-minimal matter curvature couplings. The vast
majority of modified gravity models being considered to fall somewhere in the above
description [22–37].

Our work will deal with field equations that contain derivatives no higher than
second order with respect to the independent variables. Due to the specific structure of the
models, one can introduce the Hubble function so that all field equations take the form
Ei(H, Ḣ, Ψ) = 0 where we use Ψ to symbolize the presence of any matter fields. The rather
simple description covers many (if not all) second-order modified gravity theories, provided
non-minimal couplings are excluded. Let us also mention that we assume the usual matter
conservation equations hold for each fluid individually. This is an assumption on the
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modified gravity theory in question and is linked to diffeomorphism invariance, and most
models satisfy this assumption.

It is useful to cast the cosmological field equations into the form of a dynamical system,
for a comprehensive summary of past work in the field see [38] and references therein.
We briefly mention that the choice of variables can be problematic, something that is well-
known in f (R) gravity, see for instance [39–42], see also [43] for f (T) gravity. Similar to
these approaches we also tend to find complicated constraint equations when the most
useful variables are chosen. However, it is quite remarkable that we can make a significant
number of general statements about the system for arbitrary models. For example, all
possible de Sitter points can be found by the introduction of convenient functions [44].

In the following, we deal with the class of modified gravity theories referred to
generally as symmetric teleparallel gravity, or f (Q) gravity [45–47], which have similarities
with the f (G) and f (T) theories, see [35,36,45,48–50] for details. In fact, the geometric
scalars of these theories all coincide in cosmology Q = T = −G = 6H2. The cosmological
field equations of these theories read

6 f ′H2 − 1
2

f = ρ , (1)

(12H2 f ′′ + f ′)Ḣ = −1
2
(ρ + p) , (2)

and can be written as a dynamic system using standard techniques. Our formulation
allows us a simple comparison with the successful ΛCDM model. Its early-time behavior
is dominated by radiation which is a saddle (or repeller) from the dynamical systems
viewpoint, whereas the late-time asymptotic regime represents a (de Sitter) cosmological
constant-dominated attractor. The matter dominated epoch is a transient situation (saddle
point). The specific f (Q) model we will study here displays properties compatible with the
ΛCDM model.

2. Brief Review on the Standard Approach to the Construction of a Dynamical System
It is rarely easy to find appropriate variables to formulate modified gravity models as

dynamical systems, again see [38]. Motivations to introduce different variables can vary,
leading to distinctly different features [39–41]. Here we briefly run through the standard
approach and show how it is equivalent to our formulation in one fewer dimensions.

A typical approach takes the Friedmann Equation (1) and divides by 6 f ′H2 (where
the assumption f ′ 6= 0 must be made). This excludes trivial constant functions, but also
the case where f ′ passes through zero dynamically, which may be important. The typical
variables are

Xi =
ρi

6 f ′H2 , Y =
f

12 f ′H2 , (3)

where we are considering various matter-energy sources that may exist. As a reminder,
General Relativity of course corresponds to f (Q) = Q + 2λ0, where λ0 stands for a cosmo-
logical constant term (with appropriate dimensions). With these variables, the Friedmann
equation becomes the following constraint

∑
i

Xi + Y = 1 . (4)

The naturalness of the Friedmann constraint with this choice of variables is immediately
apparent.

The next step is to introduce an additional variable to remove the explicit dependence
on the Hubble function which would appear in the dynamical equations. A convenient
choice for this extra variable is

Z =
Q/Q0

1 + Q/Q0
=

H2/H2
0

1 + H2/H2
0

, (5)
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and clearly Z is positive and smaller than 1 for all times (that is Q = 6H2 is non-negative
and finite).

The constraint equation allows us to remove one of the independent variables so
that we are left with as many independent variables as one plus the number of matter
sources. However, this is not the end of the story: since f is a function of Q it can always be
rewritten in terms of Z for some given function. Therefore, Y can be removed altogether.
This is exactly the approach we will take in the following section. One can think of Y as
encapsulating information about the free parameters that can be found in f (such as the
important case of a cosmological constant) but which are not depicted by Z. Further details
on the meaning of this will be discussed with a specific example.

In the usual fashion, one then uses the time variable N = log a. We will not produce
the explicit form of the dynamical equations dXi/dN and dY/dN, which in the of for a
single matter source can be found in our work [35]. It can be seen that defining the function

m = 12H2(log f ′)′ , (6)

allows us to make very general statements about the stability of the system using Jacobian
N equations.

We mention again the possibility of taking advantage of the dependence between
variables Y and Z to remove one extra dimension from the system, see also [43]. To this end,
we use the fact that Y = f /(2 f ′Q), which by virtue of the chain rule along with Equation (5)
and the constraint ∑i Xi + Y = 1 allows us to write

∑
i

Ẋi = −
∂Y
∂Q

(Q0 + Q)2

Q0
Ż . (7)

We must remember throughout that Q can always be recast as a function of Z. The next
step is to use (7) to replace Ẋi in the equation where it appears. Next, the constraint
∑i Xi + Y = 1 must be used to remove Xi and then it is necessary to remember that Y is
a function of Z. This gives us a system with one fewer dimension and slightly different
equations for the evolution of the dynamical variables. It is not difficult to see the agreement
between the two approaches (with different dimensionalities), but again, we suggest the
reader to check [44].

It may at first appear that this equivalent formulation poses no benefits, as a model
needs to be specified in order to extract any useful information from the system. This,
however, is incorrect, and we shall see that even in the completely general case we can
analyze the dynamical system to some degree. Moreover, phase space and stability analysis
become much simpler in fewer dimensions, despite representing the same physics.

3. Dynamical Systems Formulation
3.1. General Setup with Two Fluids

Generalizing the formulation of the problem with a reduced dimensionality we can
now tackle a two-fluid case in just two dimensions. Their energy densities will be ρ1 and
ρ2 with the equation of state parameters w1 and w2. For this discussion we leave these
equations of state parameters arbitrary, though we will later set w1 = 0 and w = 1/3. These
choices render the cosmological equations as

− f
6H2 −

ρ1

3H2 −
ρ2

3H2 + 2 f ′ = 0 , (8)

(w1 + 1)ρ1 + (w2 + 1)ρ2 + 2Ḣ( f ′ + 12H2 f ′′) = 0 . (9)

We now define the following dynamical variables

Xi =
ρi

3H2 , for i = 1, 2 , (10)

Z =
H2/H2

0
1 + H2/H2

0
. (11)
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The first two variables are non-negative, have an easily recognizable form (being simply
the standard matter density parameters Ωi) and are different from their previous counter-
parts (3) as f ′ does not appear in the denominator. There is now no dependence on f in any
of the variables. The reason for this is the ability to write any function of H as a function of
Z, with its dynamics being determined by the Friedmann constraint itself.

It is now possible to cast the Friedmann constraint as an expression that involves only
the new variables

X1 + X2 =
(

1− 1
Z

) f
6H2

0
+ 2 f ′ , (12)

where we are treating f = f (6H2
0 Z/(1− Z)) as an arbitrary function of Z.

A dual interpretation of f and f ′ is always possible in the sense that they can be seen
as functions of the scalar that governs the modified theory of gravity or as functions of H.
Whatever the case, we will always present them as functions of Z. As a consequence the
equation for X1 + X2 is also a function of Z until any particular form of f is specified. We
can therefore use this equation to eliminate either X1 or X2, making the phase space two-
dimensional.

Let us choose to eliminate X1 and consider the evolution of {X2, Z},

dX2

dN
=

3X2

m + 1

(
(w2 − w1)X2

f ′
− (w2 + 1)m− (w1 + 1)n + 2w1 − w2 + 1

)
, (13)

dZ
dN

= −3(Z− 1)Z((w1 + 1)(n− 2) + (w1 − w2)X2/ f ′)
m + 1

, (14)

where we have taken advantage of (12) and introduced the convenient functions

m(Z) :=
2Q f ′′

f ′
=

12H2
0 Z f ′′

(1− Z) f ′
, (15)

n(Z) :=
f

Q f ′
=

f (1− Z)
6H2

0 Z f ′
. (16)

It is also worth keeping in mind that f ′ is dimensionless whereas f ′′ has units of H−2
0

because f has dimensions H2
0 . For this reason, Equations (13) and (14) and m(Z) and n(Z)

are dimensionless as well.
Once a specific theoretical setting is chosen through f we are left with a closed system

of equations ready to be studied. Fortunately, some of the key features of this set of
equations do not depend on the chosen form of f , so a number of very broad conclusions
may be drawn, which adds to the interest of our analysis and approach.

3.2. Fixed Points
For this discussion we assume w1 6= w2 and (w1, w2) 6= −1, that is, two different

fluids and neither of them is a cosmological constant. There are then two families of fixed
points for the system, which we will look at individually.

The first one corresponds to the points {X2, Z} = {0, Z?}, where the second coordinate
is specified through solutions of the algebraic equation

(n(Z)− 2)(Z− 1)Z
1 + m(Z)

= 0 . (17)

Note that the locations of these points are independent of both fluid parameters w1 and
w2. The solutions where n(Z?) = 2 and m(Z∗)→ ∞ with n(Z∗) finite will be particularly
important. As such, we will name these points Pn and Pm, respectively. In the following
section we show that these points possess very particular fixed properties that are of interest
when assessing the validity of different cosmological models.
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The second family is characterised by the two points B = {X?
2 , 1} and C = {X?

2 , 0}with

X?
2 =

f ′

w2 − w1
((w1 + 1)n(Z) + w2 + (w2 + 1)m(Z)− 1− 2w1) , (18)

where X∗2 is evaluated at Z = 1 and Z = 0. Here the location does depend on the particular
values of w1 and w2, and X∗2 should be treated as a function of Z.

Note that the existence of the points and their belonging to the physical phase space
is not guaranteed. To assess this one must study the Hubble constraint for that particular
model, which can be written with the help of n(Z) as

X1 = f ′(2− n(Z))− X2 . (19)

We require that both variables X1 and X2 be positive in order to satisfy energy conditions,
along with 0 ≤ Z ≤ 1.

Lastly, we note the possibility that the dynamical equations diverge for some particular
value of Z, which occurs if m(Z) = −1 or f ′ = 0. In these cases, trajectories cannot be
extended beyond this Z coordinate and the phase space exhibits a ‘critical line’ behavior,
see [44]. For a full analysis including the existence criteria of the critical points, knowledge
of the model f (Q) is needed.

3.3. Physical Parameters of the General System
The deceleration parameter q and the effective equation of state weff can be expressed

in terms of the dynamical variables

q := − äa
ȧ2 = −1− 3

2

(
X1 + w1X1 + X2 + w2X2

)(
n(Z)− 2

)
(X1 + X2)(m(Z) + 1)

, (20)

weff :=
ptot

ρtot
= −1−

(
X1 + w1X1 + X2 + w2X2

)(
n(Z)− 2

)
(X1 + X2)(m(Z) + 1)

, (21)

where the total energy density ρtot is defined as ρtot = ρ1 + ρ2 + ρ f with ρ f representing
the additional non-GR terms

ρ f := 3H2 +
1
2

f − 6H2 f ′ . (22)

The total pressure is defined similarly ptot = p1 + p2 + p f . In Equations (20) and (21) the
variable X1 can equally be rewritten in terms of X2 and Z using the Friedmann constraint,
but a full analysis cannot be carried out until a function f is specified.

The density parameter of the additional non-GR terms will turn out to be useful later
on, which we can express in terms of our dynamical variables as

Ω f :=
ρ f

3H2 = 1− f ′(2− n(Z)) , (23)

which satisfies Ω1 + Ω2 + Ω f = 1 from the Friedmann equation. Hence we have obtained
a very neat expression representing the contributions of the modified theory beyond
GR. As previously mentioned, a more standard dynamical systems formulation would
introduce a dynamical variable for this Ω f (e.g., the Y in Section 2) but because it can be
written totally in terms of Z this is not necessary. We therefore obtain a phase space with
fewer dimensions at the expense of a more cumbersome Hubble constraint.

For the fixed points Pn satisfying n(Z) = 2 one immediately has Ω f = 1. Similarly for
points Pm, looking at the definition of m(Z) in (15), we see that if m(Z)→ ∞ whilst n(Z)
stays finite, we also obtain Ω f = 1. For these two solutions, the deceleration parameter and
equation of state are fixed to be q = weff = −1, representing a de Sitter Universe. In fact,
this is a necessary requirement for any de Sitter solution given that we have assumed
w1 6= w2 and w1, w2 6= −1. Models where n(Z) 6= 2 and m(Z) 9 ∞ for some Z in the
range (0, 1) cannot possess a de Sitter fixed point. This immediately rules out models such
as f (Q) ∝ Qα for α 6= 1/2, or f (Q) = Q + βQ2 for β ≥ 0.
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For the other fixed points B and C at {X?
2 , 1} and {X?

2 , 0}, we can also determine the
deceleration parameter and effective equation of state. For both of these points one obtains
weff = w2 and q = (1 + 3w2)/2, which is a remarkably general result independent from
the model. These results are summarized in Table 1.

Table 1. Table of critical points with fixed values of deceleration parameter q and effective equation
of state weff.

Point X2 Z q weff Requirement

Pm 0 Z? −1 −1 n(Z?) = 2
Pn 0 Z? −1 −1 m(Z?)→ ∞
B X?

2 1 1
2 (1 + 3w2) w2 X?

2 evaluated at Z = 1
C X?

2 0 1
2 (1 + 3w2) w2 X?

2 evaluated at Z = 0

Note that there may exist other fixed points at {0, Z?}, solutions to (17), which have
not been included in the Table. This is because their properties are more dependent on the
specific model and do not lead to fixed values of q or weff. Furthermore, note that we have
not yet fully discussed the existence conditions for the fixed points, and their presence in
the physical phase space depends on the Hubble constraint for that particular model. We
now move on to studying a chosen model where a full analysis can be carried out.

4. Applications to f (Q) Models
4.1. Anagnostopoulos et al. Model

The power-exponential model proposed by Anagnostopoulos et al. in [51] displays a
number of interesting features and was shown to pass a variety of observational tests [51,52].
In particular, the authors studied the model against Supernovae type Ia (SNIa), Baryonic
Acoustic Oscillations (BAO), cosmic chronometers (CC), and Redshift Space Distortion
(RSD) data and found that it is comparable, and for some datasets preferable, to the ΛCDM
model. Moreover, it immediately passes early universe constraints. As such, it has been
shown to be a genuine alternative to the ΛCDM concordance model and worthwhile
studying from a dynamical systems perspective.

The model is given by the function

f (Q) = Qeλ
Q0
Q , (24)

with the single free parameter λ. A dynamical systems analysis was recently performed for
this model in [53]. There the authors studied the background and perturbation equations
of a universe with a single fluid matter component (w = 0), and the subsequent phase
space was three-dimensional. It is interesting to then study this model in our reduced
dimensionality formulation with an additional matter fluid component, which will turn
out to be two-dimensional. Moreover, the reduced dimensions in our approach will turn
out to make the stability analysis much simpler to compute.

In the limit that λ vanishes the model (24) reduces to GR without a cosmological
constant. It does not however have a direct ΛCDM limit. When the parameter λ is small,
to first order the function behaves like GR with a cosmological constant term Q0λ, and this
behavior will be observed in the phase space analysis. The sign of the parameter λ leads
to different phase spaces, and so we will investigate both cases. We will also assume that
λ 6= 0, as this trivially leads back to GR.

The system is described by the dynamical Equations (13) and (14) along with Hubble
constraint (19), with the functions n(Z) and m(Z) taking a remarkably simple form

n(Z) =
Z

Z + λ(Z− 1)
, (25)

m(Z) =
2(Z− 1)2λ2

Z(Z + λ(Z− 1))
. (26)
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The f ′ term written explicitly in terms of the variable Z is

f ′(Q) = (Z + λ(Z− 1))
e−λ(Z−1)/Z

Z
. (27)

The fixed points are solutions to Equations (17) and (18), which can be easily solved us-
ing the exact forms of n(Z), m(Z) and f ′ given above. The first family of solutions along the
X2 = 0 line with Z = Z∗ are the points A = {0, 1}, Pm = {0, 0} and Pn = {0, 2λ/(1 + 2λ)}.
Point A is an additional solution to the algebraic Equation (17) with properties that could
not be determined in general, therefore it was left out of Table 1. The critical point Pm
satisfies m(Z)→ ∞ with n(Z) = finite, whilst the point Pn is a solution to n(Z) = 2. Hence
these two points describe de Sitter attractors, as explained in the previous section and in
Table 1.

The second set of solutions from Equation (18) include the point B = {1, 1} and a
conditional point C at {0, 0} which requires λ < 0. However, we will ignore this final
point because it coincides with Pm. Point B is the ρ2 matter-dominated point. Note again
that we have not yet assessed the validity of any of the fixed points; only those satisfying
(X1,X2) ≥ 0 and 1 ≥ Z ≥ 0 are physically meaningful, for which we will need to use the
Hubble constraint.

The Hubble constraint (19) can be written explicitly in terms of the variables as

X1 + X2 = e−λ
(

Z−1
)

/Z
(

1 +
2λ(Z− 1)

Z

)
. (28)

The requirement that our matter fluids have positive energy density leads to physical
bounds on the phase space. In particular, one notes that for positive λ our fluid density
parameters take the maximum value of one, whilst for negative λ we instead obtain
(X1, X2) ≤ 2√

e ≈ 1.21. This situation, where the density parameters can be greater than one,
can be understood in physical terms by considering the modified density parameter Ω f in
Equation (23). For positive λ the density parameter is non-negative, and from the Hubble
equation Ω1 + Ω2 + Ω f = 1 we can conclude that Ω1 + Ω2 ≤ 1. However, for negative λ

we instead have the minimum of Ω f = 1− 2√
e , which leads to Ω1 + Ω2 ≤ 2√

e .
Using (28) we can determine X1 at each of the fixed points, as well as the conditions

for the point to be part of the physical phase space. The points A and B are always
present irrespective of λ. The de Sitter points Pm and Pn require λ < 0 and λ > 0
respectiely. It is also interesting to note that all of the fixed points, their locations and their
existence criteria are independent of the specific fluid equation of state. The deceleration
parameter and effective equation of state can be evaluated at each of the fixed points using
Equations (20) and (21). Lastly, linear stability theory has been applied to the fixed points,
which can be found in Appendix A. In this formulation points A, B and Pn are hyperbolic
and Pm is nonhypebolic. However, we show in Appendix A that Pm acts as the late-time
attractor within the physical phase space (λ < 0). These results are collated in Table 2.

Table 2. Table of fixed points for the Anagnostopoulos et al. model.

Point X1 X2 Z q weff Existence Conditions Stability

A 1 0 1 1
2 (1 + 3w1) w1 none Saddle

B 0 1 1 1
2 (1 + 3w2) w2 none Unstable

Pm 0 0 0 −1 −1 λ < 0 Nonhyperbolic
Pn 0 0 2λ/(1 + 2λ) −1 −1 λ > 0 Stable

4.2. Phase Space Analysis
Next, we will fix the equations of state of our two fluid components to be w1 = 0

and w2 = 1/3, representing matter and radiation. The phase portraits for this model with
positive and negative values of the free parameter λ are shown in Figure 1. The absolute
value of the free parameter is chosen to be |λ| = 0.371, as this was shown in [51] to be the
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most consistent with observational constraints. The bordered region highlights the physical
phase space and the red overlay represents regimes where the expansion of the Universe is
accelerating q < 0.

(a) (b)
Figure 1. Phase portraits for the Anagnostopoulos et al. model (24). The physical phase space is
within the bordered region whilst the red region represents accelerated expansion. (a) Phase space
with positive λ. (b) Phase space with negative λ.

It is somewhat expected that for positive λ the qualitative results should be the same
as GR with a positive cosmological constant, as the dynamics are similar to ΛCDM for
this parameter value [51,53]. Comparing the phase portrait in Figure 1a to that of GR
with a cosmological constant, which can be found in our previous work using the same
dynamical systems formulation [44], reveals that the qualitative features are indeed the
same. The phase space contains an early radiation-dominated repeller, point B, a matter
dominate saddle, point A, and a late-time de Sitter attractor, point Pn. Stability analysis
indeed verifies that point B is unstable, A is a saddle and Pn is stable.

For the case of a negative parameter λ, see Figure 1b, the phase space is similar but
distinctly different. The fixed points of the system remain the same except point Pm at {0, 0}
replaces Pn at {0, 2λ/(1 + 2λ)}. The new de Sitter point Pm possess the same properties as
Pn, refer to Tables 1 and 2. The obvious difference is that the physical phase space extends
outwards beyond X2 = 1. As previously explained, this is due to the modified density
parameter Ω f having a negative lower bound for λ < 0. This leads to a noticeably different
evolution of the density parameters and physical parameters q and weff.

In Figure 2, the evolution of the matter and radiation density parameters Ωm = X1,
Ωr = X2, the deceleration parameter q and the effective equation of state weff are shown
for both phase spaces. Figure 2a shows the evolution for λ > 0 of a trajectory following a
heteroclinic orbit from points B→ A→ Pn, whilst Figure 2b follows the heteroclinic orbit B
→ A→ Pm for λ < 0. The dashed lines represent the evolution of these parameters for GR
with a positive cosmological constant, f (Q) = Q + 2ΛQ0 = 6H2 + 12H2

0 Λ with Λ = |λ|.
We have chosen Λ to equal λ such that the de Sitter point Pn of GR and the de Sitter point
Pn of the Anagnostopoulos model (with positive λ) take the same values. It is interesting
to note that for f (Q) = Q + 2ΛQ0 the fixed points are exactly the A, B and Pn given in
Table 2 with λ replaced by Λ. For the case where the free parameter λ is negative, the same
matching cannot be done because the point Pm does not exist for GR with a cosmological
constant. This can be seen from the function n(Z) = 1− 2Λ + 2Λ

Z and m(Z) = 0. The point
Pm cannot exist because it requires m(Z)→ ∞, see [44] for more details.
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Ωm

Ωr

weff

q

Ωm
GR

Ωr
GR

weff
GR

q
GR

(a)

Ωm

Ωr

weff

q

Ωm
GR

Ωr
GR

weff
GR

q
GR

(b)
Figure 2. Evolution of density parameters Ωm, Ωr, effective equation of state weff, and deceleration
parameter q for GR with a positive cosmological constant (dashed) and Anagnostopoulos et al. model
(solid line). (a) Evolution for positive λ. (b) Evolution for negative λ.

The background evolution of the model with positive λ can be seen to match very
closely with its GR counterpart, given the same initial conditions. For the negative λ case in
Figure 2b, a sharp spike in the matter density parameter can be noted before approaching
the de Sitter point with weff = −1.

Overall, the dynamical system analysis gives a good understanding of the background
dynamics of the Anagnostopoulos et al. model for both signs of the free parameter λ.
In the positive λ case, the fixed points and stability of the system match what is found
for GR with a positive cosmological constant. In fact, from a qualitative point of view,
these models are identical. For the negative λ case, the fixed points of the system have the
same properties but it is interesting to note the different physical phase space as well as the
different evolutions for the density parameters.

5. Summary
We have presented a dynamical systems formulation that is well suited to the cosmo-

logical equations arising in various modified gravity theories, with f (Q) being the focus of
this work. Once a model function f has been specified, the drawback of a more complicated
constraint equation is indeed present but of little significance. This is especially true due to
the clarity gained when dealing with a two-dimensional as opposed to a three-dimensional
phase space (and similarly for higher-dimensional analogs). This same approach can easily
be generalized to include additional degrees of freedom represented by additional dynami-
cal variables. For example, the inclusion of extra matter sources, scalar fields, or non-zero
spatial curvature could be easily realized within our formulation, see for instance [38].
The use of the functions m(Z) and n(Z) introduced in Equation (15) and (16) is particularly
adept at assessing the validity of models, as the existence of late-time de Sitter points can
be established almost immediately.
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For the recently proposed f (Q) model by Anagnostopoulos et al. [51], we analyzed the
phase space for a universe comprised of two fluid components, matter and radiation. This
complements the previous dynamical systems analysis performed on this model for matter
and matter perturbations for a positive value of the free parameter [53]. Indeed, for positive
λ we reproduced the dynamics of ΛCDM. This is perhaps to be expected from the series
expansion of the function f for small λ, with the leading order terms being Q + Q0λ, which
is exactly the Lagrangian of GR plus a cosmological constant.

However, we also find the surprising result that a negative value of the parameter
leads to a qualitatively similar dynamical system. In particular, it is interesting to note that
a negative value of the parameter λ in fact still acts as a positive cosmological constant,
leading to a late-time de Sitter point within the phase space. This was determined by
studying the functions n(Z) and m(Z), Equation (25) and (26), which took a remarkably
simple form for this model.

The results of the dynamical systems analysis for the Anagnostopoulos et al. [51]
model show that at the background level, it passes cosmological observational constraints,
displaying the correct evolutionary behavior of the matter density parameters and the
effective equation of state. Namely, for any non-zero value of the parameter λ, there exists
an early-time radiation-dominated point, a matter saddle, and an accelerating de Sitter
attractor. This study, the first to use both matter and radiation sources, gives more reason
to continue to investigate this model in the future.

In summary, the approach taken leads to a number of model-independent results,
which would be especially interesting to investigate in more detail. The moral behind
the approach can ultimately be traced to the dynamical systems formulations of GR:
for each matter source ρi we introduce the corresponding density parameter Ωi as a
variable. We then introduce one additional variable related to the remaining terms in the
Hubble constraint in order to close the system, for which we chose the Hubble function
H. In second order modifications, such as f (T) and f (Q) gravity, we have shown that
this same prescription works for all models. This is in contrast to most of the dynamical
systems formulations used in modified gravity. In the future it would be interesting to
further study promising alternatives to the ΛCDM model using such a formulation. It
would also be interesting to search for models that satisfy current observations yet exhibit
a different and more complex fixed point behavior to GR, which could lead to qualitatively
different predictions.
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Appendix A. Stability Analysis of Anagnostopoulos et al. Model
Here we apply linear stability theory to each of the fixed points in Table 2 for the

model f (Q) = Q exp(λQ/Q0) considered in Section 4. Where linear stability theory fails,
we look to see what can be said about the nature of the fixed points by examining the
autonomous equations and constraints directly.

For point A {0, 1} we obtain the eigenvalues

λA
1 = 3(w1 − w2) , λA

2 = 3(1 + w1) . (A1)
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The point is therefore a saddle for w1 < w2 or unstable for w1 > w2, as the second eigen-
value is always positive due to the assumption that w1 > −1. Point B {1, 1} has eigenvalues

λB
1 = 3(w2 − w1) = −λA

1 , λB
2 = 3(1 + w2) , (A2)

which is unstable for w1 < w2 or a saddle point for w1 > w2. Again, the second eigenvalue
is always positive. Due to the freedom in the ordering of our matter fluids ρ1 and ρ2,
we choose w1 < w2 without loss of generality such that point A is a saddle and point B
is unstable.

Point Pn {0, 2λ/(1 + 2λ)} has eigenvalues

λPn
1 = −3(1 + w1) = −λA

2 , λPn
2 = −3(1 + w2) = −λB

2 , (A3)

and is therefore always stable. This is the stable late-time de Sitter point of the system.
Point Pm has eigenvalues

λPm
1 = 0 , λPm

2 = −3(1 + w2) = −λB
2 , (A4)

therefore methods beyond linear stability theory must be used to fully determine the stability.
A closer look at the nonhyperbolic point is shown in Figure A1, as well as the physically

allowed values of X2 and Z as determined from the Hubble constraint (28). Recall that
we require λ < 0 for the existence of this point. Despite the fact that the point appears to
be mathematically unstable, with trajectories moving away from the point in Figure A1,
the Hubble constraint can be used to determine the fate of trajectories within the physical
phase space. The boundary of the physical phase space is described by the equations

X2 = eλ
(

1
Z−1

)(
1 +

2λ(Z− 1)
Z

)
, with X2 ≥ 0 , 0 ≤ Z ≤ 1 , λ < 0 . (A5)

As Z approaches zero (from above) X2 goes to zero. One can also show that for all X2 ≥ 0
trajectories always travel in the negative Z direction whilst Z is between 0 and 1. This can
be most easily seen by substituting the expression for X2 on the physical boundary (A5)
into the autonomous equation dZ/dN. This resulting equation is

dZ
dN

= −
3(1 + w2)Z2(1− Z)

(
Z− 2λ(1− Z)

)
Z2 + 2λ2(Z− 1)2 − λZ(1− Z)

, (A6)

where the equation of state w2 > −1. All terms in the numerator and denominator are
positive for λ < 0, therefore dZ/dN is negative and trajectories on the boundary approach
the origin.

Following the same logic, the same result can be shown for the general equation
dZ/dN with λ < 0. We can therefore conclude that all physical trajectories satisfying the
Hubble constraint travel towards and terminate at the origin, point Pm. This is because
trajectories do not cross the boundary, and must end at Z = 0 which is only allowed at
X2 = 0. This indeed matches what can be seen from the phase portraits, Figures 1b and A1,
and the numerical solutions in Figure 2b.

Figure A1. Nonhyperbolic fixed point Pm.
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