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Abstract: Urban typologies allow areas to be categorised according to form and the social,
demographic, and political uses of the areas. The use of these typologies and finding similarities and
dissimilarities between cities enables better targeted interventions for improved health, transport,
and environmental outcomes in urban areas. A better understanding of local contexts can also
assist in applying lessons learned from other cities. Constructing urban typologies at a global scale
through traditional methods, such as functional or network analysis, requires the collection of data
across multiple political districts, which can be inconsistent and then require a level of subjective
classification. To overcome these limitations, we use neural networks to analyse millions of images of
urban form (consisting of street view, satellite imagery, and street maps) to find shared characteristics
between the largest 1692 cities in the world. The comparison city of Paris is used as an exemplar
and we perform a case study using two Australian cities, Melbourne and Sydney, to determine if
a “Paris-end” of town exists or can be found in these cities using these three big data imagery sets.
The results show specific advantages and disadvantages of each type of imagery in constructing urban
typologies. Neural networks trained with map imagery will be highly influenced by the structural
mix of roads, public transport, and green and blue space. Satellite imagery captures a combination of
both urban form and decorative and natural details. The use of street view imagery emphasises the
features of a human-scaled visual geography of streetscapes. However, for both satellite and street
view imagery to be highly effective, a reduction in scale and more aggressive pre-processing might
be required in order to reduce detail and create greater abstraction in the imagery.

Keywords: machine learning; urban typology; urban design; transport; health

1. Introduction

The form a city takes and the way land is allocated can have both positive and negative
consequences for population health and well-being. For example, cities with compact forms have
been found to lead to better health outcomes [1–3] and reductions in per capita emissions [4]. City
design can also be a factor in encouraging or discouraging the uptake of active transport [5] leading
to better health outcomes [6] or locking-in car dependency [7], increasing levels of air pollution [8],
obesity [9], and road trauma [10]. Due to the long time scales of urban change and the high stability of
city structures [11], we must consider current cities as both a snapshot in time but also a culmination
of years of construction. Policy-makers and urban/transport planners have an opportunity to embrace
strategies that proactively support safe active transport modes as facilitated by urban designs witnessed
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in some countries around the world. However, the rigid structure of cities makes rapid changes difficult
and changes should be undertaken with due care, as the impacts will be very long-lived [12,13].
Planning for change requires methods that can objectively compare cities while also accounting for
local context, so as to understand the associations between urban design features, transport networks,
and environmental outcomes.

Urban typologies allow a city to be “read”, linking the urban morphological form with the social,
demographic, and political uses of these spaces [14]. These grew from a theoretical basis, examining
the division of a city as well as the cities themselves as artefacts [15]. Krier [16] endeavoured to quantify
how urban space typologies could be derived, starting with basic geometric shapes (squares, triangles,
and circles), their distortions, and then their combination into composite street plans. Typologies
are also influenced by an urban area’s original development and later growth. Rossi [15] traced
city development in the Americas through two main starting points. Cities in Latin America and
New York City were based on a grid system (influenced by the Laws of the Indies [17]), while the
stereotypical Old West town originated as a main street village. Urban development evolved as cities
outgrew their (now obsolete) city walls and adapted to the industrial revolution [16]. Other theoretical
typologies considered different urban elements and scales. Argan and Rykwert [18] defined a number
of typologies based on different levels—an urban scale (the configurations of buildings), a building
scale (the constructed elements), and a detailed scale (the decorative elements on buildings). These
theoretical typologies more often described morphology rather than function.

In order to derive function-based typologies, a number of methods have been
devised. Harris [19] used occupational and employment figures to determine a city’s most
important economic activity (such as manufacturing, retail, or tourism). Other studies used economic
activity data to find similar sorts of functional typologies [20]. Finally, Bruce and Witt [21] used
a range of city statistics to group cities into clusters. While these typologies can discover a city’s
main functional use, they say nothing of a city’s urban design and its potential impact on residents’
movement patterns or modes.

Contemporary Approaches

New methods to define city typologies emerged in the 1980s and 90s with the growing availability
of databases of spatial data and increased computing power. Much of this work focused on road
infrastructure in cities, and drew from the structural sociology field, in which groups of people were
represented as part of a broader network structure. The “space syntax” of Hillier [22] established a
correlation between configurations of urban forms and variations of human interactions within it.
Other recent remote-sensing-based methods depart from the pure network analysis methods to derive
urban typologies. Nighttime light data has been used to categorise cities into stages of urbanisation
and levels of economic activities [23]. Urban metrics (road geometry, building dimensions and heights,
and vegetation heights) have also been used to classify cities into typologies of differing periods
of historical design and urban planning (i.e., 19th Century, 1950s, 1970s, etc.) [24]. Local climate
zones (LCZ) enable urban climate modelling parametrisations using metrics of building heights, street
widths, and surface types fractions to classify urban areas [25,26].

Building on recent advances in computing power, artificial intelligence, and urban imagery, new
approaches have been created to discover unique visual characteristics of cities and how they are used.
For example, large numbers of geo-tagged photos have been used to detect patterns of urban usage and
public perception of a number of areas’ functional and social attributes [27,28]. Place Pulse, a database
of urban imagery using crowd-sourced classifications (including safety, beauty, and liveliness) has
been built to quantify perceptions of urban areas [29,30] and inequality [31]. Doersch et al. [32] used a
large number of geo-localised street-level images to discover common visual features across a number
of cities.

Still, most methods described above require some amount of subjective classification of local
input data, the quality and availability of which can vary widely across collection or political districts.
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We propose to overcome these limitations by using neural networks to find similarities in imagery of
urban areas from Google and Baidu. This imagery offers universal coverage of satellite imagery and
maps and nearly universal coverage of street view imagery. In addition, it provides a high consistency
for map imagery (except in the case of South Korea), and street view imagery is captured using a
common methodology and equipment set. This work grows from a series of projects intended to
overcome these limitations by utilising a range of different types of imagery to allow analysis of urban
design at a global scale. The first trains neural networks to recognise specific cities with digital street
map images and to find clusters of city types and attribute the urban design’s contribution to road
trauma [10]. A second extracts block-scale metrics from maps to locate neighbourhood types [33].
Expanding on those works in this paper, we also use street view and satellite imagery, in addition to
the map imagery, to train neural networks. Paris, France is an iconic international city [34] with widely
recognisable visual elements [32], leading many cities (including Melbourne and Sydney) to claim that
they have a "Paris-end" of town [35], or are a “Paris on the [insert name of local river]” [36] (e.g., “Paris
on the Yarra”). To illustrate the advantages and disadvantages of each imagery type, we therefore
use the comparison city of Paris as an exemplar. We perform a case study using two Australian cities,
Melbourne and Sydney, and determine if a “Paris-end” of town exists or can be found in these cities
using three different types of imagery datasets, as well as determine what scales are most appropriate
with these datasets to find typologies and what types of features are best suited towards a particular
research question.

2. Methods

2.1. Neural Network

The methods applied in this study are based on artificial intelligence, and in particular deep
neural networks [37–39]. Neural network architectures that have proven to be particularly successful
at image recognition tasks are convolutional neural networks [40]. The model for image recognition
used in this study is based on the Inception V2 architecture [41,42].

2.2. Imagery Sampling

The concept employed in this study was to train a model to correctly recognise individual cities
based on examples of different types of urban imagery (street maps, satellite remote sensing, and street
view images). The resulting model could then make predictions as to where entirely new images it
was presented with were from. Specifically, the assumption was that if presented with an image of a
city that was not Paris but the model “thought” that it was, then the sample city image presumably
contained features that were “Paris-like” in nature.

A total of 1692 cities with populations of >300,000 people were initially selected for analysis [43].
Data from Google Maps and Baidu Maps were used to identify the urban form for each city in a
globally consistent framework. The sampling area for each city was chosen as a circular area aligned
to the city’s centre (as specified by United Nations [43]), where the radius r (km) of the sampling area
was determined based on the population size p according to Barthelemy [44]:

r =

√
28.27

π

(
p

300, 000

)0.85

(1)

Having identified individual cities, a two-stage sampling approach was applied. As no
standardised urban boundaries are available for all the cities evaluated in this study (and methods
to define urban boundaries are still an open research question [45–49]), we developed the following
methodology. Firstly, a sampling area extending 1.5 km from the identified city centroid [43] was set as
a baseline. As sample cities’ populations increased in size, the sampling area increased by a power of
0.85 to the proportional increase in population size [44]. Standardising the sampling area in this manner
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avoided socio-political discrepancies relating to a city’s “true” boundary and captured differences in
population density and shape between small (e.g., Wellington, New Zealand; Izmit, Turkey) and global
mega-cities (e.g., Tokyo, Japan; Delhi, India). Location sampling areas were adjusted for the earth’s
curvature [50]. Large waterbodies (e.g., oceans but not coastlines) were removed from the sampling
area, as they were not indicative of urban form .

These procedures result in a population and waterbody-adjusted circular area centred on the
city’s central coordinates, capturing the widest extent of each city while minimising the amount of
non-urban locations.

2.3. Imagery Sources

Three neural networks (see Table 1) were trained using street maps, satellite imagery, and street
view imagery from each city. Images were downloaded from each of the following sources, using
the appropriate application programming interface (API), and were randomly sampled for each city
and each network. Imagery from Sydney and Melbourne was excluded as they were included in the
evaluation dataset. All imagery was downloaded from April to August 2017 using the latest imagery
available from each.

Table 1. Neural networks trained and evaluated in this study.

Abbreviation Imagery Source

GM Google Static Maps, image type of “map”
GS Google Static Maps, image type of “satellite”
GSV-BSV Google Street View/Baidu Street View

The first neural network (referred to as GM) used Google Maps images as training material.
Images were sized 256 × 256 pixels using a zoom level of 16 (approximately 400 × 400 m). These were
obtained from the selected locations using a custom style defined with the Google Static Maps API [51]
(see Figure 1a for an example of Paris, France). The images provide a high-level abstraction of road
(black) and public transport (orange) networks, green space (green), and water bodies (blue). Any
remaining space is coded white. Due to mapping inconsistencies in South Korea, all 25 South Korean
cities were removed from the dataset, reducing the number of cities to 1665. One thousand training
images were used per city (for this neural network as well as the following two), for a total dataset of
1,665,000 images in 1665 classifications.

(a) (b) (c)

Figure 1. Sample neural network training images for (a) GM (from Paris, France [51]), (b) GS
(from Adelaide, Australia [51]), and (c) for GSV-BSV after mean shift pre-processing (from Sydney,
Australia [52]).

The second neural network (referred to as GS), used Google Maps satellite imagery obtained
through the Google Static Maps API [51]. Google Maps satellite imagery is a mosaic of cloud-free
imagery from multiple sources and acquisition times. Originally based on Landsat 7 imagery, this has
largely been replaced by Landsat 8 since 2013 and has a 15 m/pixel resolution [53]. The majority of
the imagery we used dates from March and April 2017, with the rest from 2016 and early 2017. A few
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locations (such as Iraq and Afghanistan) date back as far as 2010. Image type was set to “satellite” using
a zoom level of 16 (approximately 400 × 400 m) and image size of 256 × 256. Suitable imagery was not
available for two cities, bringing the number of cities to 1688 (also excluding Melbourne and Sydney)
and a total dataset of 1,688,000 images. Figure 1b shows a sample image, from Adelaide, Australia.

The third neural network (referred to as GSV-BSV) used street view imagery obtained through
a combination of Google Street View (GSV) [52] and Baidu Maps Street View (BSV) [54]. Google
updates their imagery periodically over a number of years. The imagery we used was approximately
split across the following time periods: 35% 2016, 20% 2015, 15% 2014, 5% 2012, 10% 2011, and 15%
including the remaining years back to 2007. Baidu street view imagery has a similar distribution and
update patterns, but its oldest imagery only dates back to 2013. One thousand images each were
sampled for the 1074 cities for which imagery was available (a total of 1,074,000 images) at a 256 × 256
resolution, a pitch of 0, a field of view of 90 degrees, and a random heading from 0 to 359 degrees.
Random headings were used to give the imagery the widest range of samples of the urban areas and
ensure that the heading itself didn’t influence the training (i.e., grid street systems always orientated in
the same direction resulting in cities only sampling up and down the centre of streets). Images inside
tunnels, indoor locations, dark locations, or otherwise unusable images were removed and replaced
by resampling.

No street view imagery of China was available through GSV, so BSV was used instead. In order to
minimise the differences between the two data sources and to minimise strong country-specific items
(e.g., text on road signs) influencing neural network training, further image processing was performed
to segment each image before use in training and evaluation. The Python module pymeanshift [55] was
used to segment each image (using a spatial radius of 6, range radius of 4.5, and minimum density of
50). The effect of mean shift segmentation is to reduce the detail in images by replacing clusters of
nearby pixels of similar colours with the mean value of those colors. Figure 1c shows an example of an
image (from Sydney, Australia), after the mean shift pre-processing step of an original GSV image,
used for the GSV-BSV training process.

Images from Sydney and Melbourne, Australia were excluded from the training data and were
instead used for evaluation. These evaluation data were sampled using a grid at locations 400 m apart
across the greater metropolitan areas, with 23,027 possible locations for Melbourne and 24,596 for
Sydney using the same API methods and at the same scales and resolutions described above for the
training data. Availability of imagery for GSV at these locations was 59.5% and 91.1%, respectively.
The sampled Melbourne area contained a much higher percentage of rural areas without roads (the
primary location for GSV imagery) than the sampled Sydney area.

2.4. Neural Network Training

The Inception V2 network was used in this study and the three networks (GM, GS, and GSV-BSV)
were trained with 256 × 256 sized imagery. The Inception network was calibrated using supervised
learning, using the city names as class labels, to enable the generated dataset to identify the name of
the city based on a supplied image. Several pre-processing steps were performed before supplying the
image to the neural network. Images were randomly cropped from 256 × 256 × 3 to Inception V2’s
native 224 × 224 × 3 resolution. No zooming was applied, the aspect ratio was kept fixed, and colour
transformations were not used. All images were normalised to [−1, 1] by subtracting a colour value of
128 from each pixel and multiplying by 1/128. To ensure good mixing, training images were randomly
allocated to batches. Validation images (25% of the 1000 training images for each city were reserved as
validation data) were transformed to 224 × 224 × 3 using central cropping.

To update weights in the neural network, a loss function was specified to quantify the extent
of any current misclassifications, namely the cross entropy calculated on the softmax layer. Model
parameters were calibrated by minimising this loss function using stochastic gradient descent with a
Nesterov momentum of 0.9. Other parameters included a batch size of 64 samples, reducing learning
rate starting at 0.9 per batch, batch normalisation, a dropout rate of 0.2 after the final average-pooling
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operations, and an L2 regularisation weight per sample of 0.0001. Each model was trained until
convergence for a total of 150 epochs, using the Microsoft Cognitive Toolkit (CNTK) [56].

2.5. Neural Network Inference

Using the three trained models, inferences were performed using the evaluation datasets for
Melbourne and Sydney. As Melbourne and Sydney are not present in the training data, the neural
network was forced to choose the city with the most similar characteristics for each of the sampled
locations. Using these predictions, every location in both cities was determined to be “most like”
another world city from the list due to characteristics contained within the street map, satellite,
or street-view image. The neural network will calculate probabilities that an image belongs in each
classification (the city name) for each image in the dataset. We filtered out individual locations in the
following results where the highest ranked probability was lower than 50%.

3. Results

Using 25% of the training data, validation was performed on each model. The neural network
models for Google Maps (GM), Google Satellite maps (GS), and Google Street View/Baidu Street view
(GSV-BSV) reached a final accuracy of 73.2% (top five: 85.0%), 99.4% (top five: 99.97%), and 43.1%
(top five: 69.8%), respectively. These accuracies were calculated at the end of each epoch during the
training step, testing the neural network’s skill in correctly identifying the correct city out of the nearly
1700 cities (excluding Melbourne and Sydney).

The resulting predictions from model inference of the evaluation data were analysed in various
ways. First, the top 20 predicted cities for the evaluation points for each imagery dataset were calculated
(see Table 2 for GM, GS, and GSV-BSV).

3.1. Top 20 Predicted Cities

The GM (map view) neural network predictions (Table 2a) are dominated by other Australian cities
(Brisbane, Canberra, Sunshine Coast, Gold Coast, Newcastle and Lake Macquarie, Perth, and Adelaide)
as well as a number of cities from Israel, South Africa, and the United States. Alternative Australian
cities make up nearly 20% of the top 20 predictions for Melbourne and 17% for Sydney. Melbourne
and Sydney also show strong similarities with each other with the neural network considering them
similar to the same 12 cities out of the top 20 predictions.

The GS (satellite view) neural network predictions (Table 2b) show wider divergences from other
Australian cities and between Melbourne and Sydney themselves, with both often matched to Brazilian
cities. Melbourne is matched to Brazil in 11% of the evaluation locations while Sydney is matched to
Brazilian cities in 15%. Melbourne and Sydney show wider divergences from each other using the GS
network in comparison to the GM network, only having 8 of the top 20 predicted cities in common.
In diverging predictions, 4.1% of Melbourne is confused with Wellington, New Zealand, while 4.7% of
Sydney is considered similar to Sevastopol, Ukraine.

The GSV-BSV (street view) neural network predictions (Table 2c) show strong similarities between
Melbourne and Sydney. In the Melbourne evaluation, just under 18% (seven of the top nine picks)
are other Australian cities, while Sydney matched other Australian cities in 20.5% of the evaluation
locations (and were seven of the top seven picks) and spread somewhat evenly through these other
cities. In addition, 15 of the top 20 predicted cities were shared between Melbourne and Sydney.

To explore the identified differences, cities predicted for an evaluation location were plotted on
maps of Melbourne and Sydney, with the colour scheme for the plots determined by the latitude and
longitude of the predicted city. This colour scheme is shown in Figure 2. As such, in the following
figures, predicted cities in Australia will show up in shades of yellow, the rest of the Southern
Hemisphere in greens, Asia in reds, North America and Europe in blues, and the Middle East in
blue-greys.
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Table 2. Top 20 cities similar to Melbourne and Sydney. The table shows the percentage of evaluated
locations predicted to be a certain city for GM, GS, and GSV-BSV neural networks.

(a). GM

Predicted City Mel % Syd %

Brisbane, AUS 13.0 7.9
Beer Sheva, ISR 5.3 11.0
Canberra, AUS 2.6 5.7
Sunshine Coast, AUS 2.3 0.7
McAllen, USA 2.1 0.3
Valparaíso, CHL 1.0 0.7
Haifa, ISR 0.8 1.6
Gold Coast, AUS 0.8 0.5
Pretoria, ZAF 0.6 -
Newcastle, AUS 0.6 2.6
Toronto, CAN 0.6 0.4
Auckland, NZL 0.5 0.6
Perth, AUS 0.5 -
Johannesburg, ZAF 0.4 -
Philadelphia, USA 0.4 -
Jerusalem, ISR 0.2 0.8
Port Elizabeth, ZAF 0.3 -
Washington, D.C., USA 0.2 -
Southend-On-Sea, GBR 0.2 -
Virginia Beach, USA - 0.4
London, GBR - 0.3
Barcelona, ESP - 0.3
Adelaide, AUS - 0.3
Tasikmalaya, IDN - 0.3
Douala, CMR - 0.2
Hardwar, IND - 0.2

(b). GS

Predicted city Mel % Syd %

Jundiaí, BRA 7.8 10.6
Wellington, NZ 4.1 0.09
Campinas, BRA 2.4 4.0
Miami, USA 2.2 -
Adelaide, AUS 1.7 -
Provo-Orem, USA 1.3 -
Macapá, BRA 0.6 -
Gold Coast, AUS 0.5 -
Rosario, ARG 0.4 1.1
Qitaihe, CHN 0.4 -
Johannesburg, ZAF 0.4 0.05
Buenos Aires, ARG 0.3 -
Canberra, AUS 0.2 -
Mendoza, ARG 0.2 -
Juiz De Fora, BRA 0.2 0.8
Pulandian, CHN 0.2 -
Newcastle, AUS 0.2 0.2
Palma, ESP 0.2 0.08
Cape Town, ZAF 0.2 -
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Table 2. Cont.

(b). GS

Predicted city Mel % Syd %

Sevastopol, UKR - 4.7
Memphis, USA - 0.6
Baaqoobah, IRQ - 0.4
Belgaum, IND - 0.2
Qazvin, IRN - 0.2
Nagasaki, JPN - 0.1
New Orleans, USA - 0.1
Malaga, ESP - 0.1
Guayaquil, ECU - 0.07
Khabarovsk, RUS - 0.06
Chiinu, MDA - 0.05

(c). GSV-BSV

Predicted city Mel % Syd %

Sunshine Coast, AUS 4.0 5.0
Perth, AUS 4.0 1.6
Adelaide, AUS 4.0 1.2
Auckland, NZL 2.7 0.8
Canberra, AUS 1.9 3.1
Newcastle, AUS 1.7 3.1
Gold Coast, AUS 1.3 3.3
Christchurch, NZL 0.9 -
Brisbane, AUS 0.8 3.2
Bonita Springs, USA 0.7 0.5
Stockton, USA 0.7 0.5
Curitiba, BRA 0.7 0.4
Cape Town, ZAF 0.7 0.4
Concord, USA 0.6 0.3
East London, ZAF 0.5 0.4
West Yorkshire, GBR 0.5 -
Teeside, GBR 0.4 -
Los Angeles, USA 0.4 -
Montevideo, URY 0.3 -
San Diego, USA - 0.9
Jacksonville, USA - 0.4
Vereeniging, ZAF - 0.4
Virginia Beach, USA - 0.4
McAllen, USA - 0.4

Figure 2. Latitude–longitude-based colour scheme for plotting neural network predictions of cities
similar to Melbourne and Sydney.
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3.2. Melbourne Evaluation

Figure 3 shows the top predicted cities (>0.1%) plotted against the Melbourne evaluation locations
for the GM neural network. Further, “Paris-like” evaluation locations within Melbourne and Sydney
are highlighted with black stars (22 in total, but five with probabilities greater than 50%). As can be
seen, Australian cities (in yellow) show strong groupings in the inner and outer suburbs while the
central business district (CBD) region shows no single strong grouping of regions or specific cities.
In Melbourne’s far outer suburbs and rural areas, a wide mix of North and South American, South
African, European, and Mid-Eastern cities (in greens blues and greys) with small localised clusters of
each can be seen. In the CBD, a few locations are predicted as Paris, and are mostly associated with
Docklands or parklands.

Figure 3. Predicted similar cities using the GM neural network (filtering out probabilities lower than
50%). Top predicted cities plotted (using Figure 2 colour scheme) for Melbourne evaluation locations
(left) and Sydney (right). Predicted Paris locations marked with black stars.

Figure 4 shows the top predicted cities (>0.1%) plotted against the Melbourne evaluation locations
for the GS neural network with “Paris-like” locations again highlighted with a black star (one location,
but 0 locations above 50% probability). Other Australian cities (yellows) show a strong grouping in the
inner and outer suburbs, while the CBD region shows no single strong grouping of regions or specific
cities but with a range of predictions including Miami, United States (blues) and Mendoza, Argentina
(greens). In Melbourne’s far outer suburbs and rural areas, a wide mix is seen of North and South
American (USA, Brazil, and Argentina), South African, European (Italy and Spain), and Mid-Eastern
(Iran and Turkey) cities with small localised clusters of each. Only a single prediction of Paris, France
was made by the GS neural network for any evaluation location in Melbourne (but not above a
50% probability).
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Figure 4. Predicted similar cities using the GS neural network (filtering out probabilities lower than
50%). Top predicted cities plotted (using Figure 2 colour scheme) for Melbourne evaluation locations
(left) and Sydney (right). Predicted Paris locations marked with black stars.

Figure 5 shows the top predicted cities (>0.1%) plotted against the Melbourne evaluation locations
for the GSV-BSV neural network. "Paris-like" locations are predicted in 13 locations (but only two with
a probability over 50%). The overall predictions are dominated by other Australian cities (yellows)
scattered widely throughout the entire greater Melbourne area. The remaining evaluation locations
show no strong groupings of any predicted countries or cities. Common predictions include cities
from South Africa (greens), New Zealand (yellows), and the United States and European countries
(blues). The CBD again shows a wide scattering of predictions with no dominant single city or country.

Figure 5. Predicted similar cities using the GSV-BSV neural network (filtering out probabilities lower
than 50%). Top predicted cities plotted (using Figure 2 colour scheme) for Melbourne evaluation
locations (left) and Sydney (right). Predicted Paris locations marked with black stars.

3.3. Sydney Evaluation

Figure 3 shows the top predicted cities (>0.1%) plotted against the Sydney evaluation locations
for the GM neural network. “Paris-like” areas are predicted in 54 locations (but only 15 above 50%
probability). Alternative Australian cities (yellows) appear in the western and southeastern suburbs,
while Mid-Eastern cities (greys) tend to appear in northern and southern suburbs. The CBD and
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central parts of the city show less single-city or regional groupings but with stronger highly localised
clusters of each. Some cities commonly represented in the CBD include waterfront cities such as Hong
Kong, London, Toulon, and Kaohsiung.

Figure 4 shows the top predicted cities (>0.1%) plotted against the Sydney evaluation locations
for the GS neural network. The overall predictions are dominated by cities in Brazil and other South
American locations (greens) in the north, west, and central regions, and Ukraine (blues) in the south.
Other Australian cities are only predicted in a few locations around the city. In the CBD, predictions
continue to be dominated by Brazilian cities with some more scattered predictions of cities from Japan,
Haiti, and Mexico. No predictions of Paris, France were made by the GS neural network for any
evaluation location in Sydney.

Figure 5 shows the top predicted cities (>0.1%), plotted against the Sydney evaluation locations
for the GSV-BSV neural network. Six “Paris-like” locations were predicted (but none with probabilities
greater than 50%). The results are very similar to the Melbourne evaluation. Again, the overall
predictions are dominated by other Australian cities scattered widely throughout the entire greater
Sydney area. The remaining predicted results show no strong groupings of any predicted countries or
cities but some of the common predictions include cities from the United States, New Zealand, South
Africa, and a number of European countries. The CBD shows a similar scattering of predictions with
no single city or country dominating. A summary of the predicted “Paris-like” locations across all
three neural networks for each city is presented in Table 3.

Table 3. How much are Melbourne and Sydney like Paris? The table shows neural network results,
both unfiltered and filtered (where predictions with probabilities less than 50% are removed).

Melbourne Sydney
Neural Network Matches % Matching Matches % Matching

GM 22 0.1 54 0.22
GM (filtered < 50%) 5 0.02 15 0.06
GS 1 0.00004 0 0
GS (filtered < 50%) 0 0 0 0
GSV-BSV 13 0.06 6 0.04
GSV-BSV (filtered < 50%) 2 0.01 0 0

3.4. What Cities Are Similar to Paris?

Utilising the confusion each neural network recorded in correctly identifying each city, using
an approach from Thompson et al. [10], we identified which other cities shared similar features with
Paris. A confusion matrix [57] was generated for each neural network and cities were ranked by the
frequency that each was incorrectly identified as Paris.

The GM neural network, which achieved an accuracy of 73.2%, most commonly misidentified the
following cities as Paris, ranked in order of decreasing frequency: London, GB, Berlin, DE, New York,
US, Rome, IT, Los Angeles, US, Tokyo, JP, Zurich, CH, Istanbul, TR, Brasília, BR, and Munich, DE.

The GSV-BSV neural network, which achieved an accuracy of 43.1%, most commonly
misidentified the following cities as Paris, ranked in order of decreasing frequency: Toulouse,
Lyon, Rouen, Saint-tienne, Strasbourg, Bordeaux, Lille, Montpellier, Douai-Lens, Grenoble, Nantes,
Valenciennes, Tours, and Toulon (all in France).

The GS neural network, which achieved a final trained accuracy of 99.4%, confused no other cities
with Paris. In order to add some confusion, we rolled back to an earlier training iteration. At epoch 50,
the neural network achieved an accuracy of 74.5% (top five: 92.7%) and most commonly misidentified
the following cities as Paris, ranked in order of decreasing frequency: New York, US, Vancouver, CA,
Karlsruhe, DE, Brisbane, AU, Colorado Springs, US, Genova, IT, Lisbon, PT, and Montpellier, FR.
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4. Discussion

In this study, we used the question of “Is there a ‘Paris-end’ of Melbourne or Sydney” as a means
of answering a broader, more important question of how the use of three different sources of available
imagery might be used to identify urban typologies. There are a number of different ways to look at
the large number of results resulting from the three different large datasets. Figures 3–5 contain an
implicit assumption embedded in the colour scheme that geographically close locations are similar.
While this is true for the cities that are like Paris (in Section 3.4) for the GSV-BSV neural network, it
is not the case for the other two neural networks. Conversely, the figures show that Melbourne and
Sydney (for the GM and to a lesser extent the GS neural network) show localised clustering of locations
that are similar to other (geographically similar) cities while the GSV-BSV network shows little of this
localised clustering across Melbourne and Sydney.

In looking at the few locations that are deemed to be “Paris-like”, there are a number of common
characteristics that stand out. A gallery of all of the images for Melbourne and Sydney that the GM
neural network found were similar to Paris are presented in Figures 6 and 7. There are a number of
common elements in these images. Many show large parklands (in green) embedded in the cities.
Orange lines of public transport (rail and tram) are also prominent as well as large water bodies (in
blue). Large arterial and trunk roads run near smaller (often curving) local roads; however these local
roads tend to still be larger and do not reach the small intricate layouts of many Asian cities. In addition,
among the cities misidentified as Paris by the neural networks, large Western European and US cities,
including London, Berlin, New York, and Rome, also feature large numbers of these elements.

The GM neural network makes predictions based on mapping imagery, capturing characteristics
such as the mix and detail of public transport, green space, water bodies, and the road network
structure. This includes whether the roads are grid-like, the mix of arterial vs. neighbourhood roads,
and their integration with the rest of the urban form. Seven Australian cities were included in the
training data (Perth, Brisbane, Sunshine Coast, Gold Coast, Newcastle and Lake Macquarie, Canberra,
and Adelaide) and likely share many common planning and design standards with Sydney and
Melbourne, influencing the neural network’s predictions.

Figure 6. Gallery of “Paris-like” locations in Melbourne using the GM neural network.

Figure 7. Gallery of “Paris-like” locations in Sydney using the GM neural network.

Using the GS neural network, none of the evaluated locations for Sydney and only one location
for Melbourne were predicted to be "Paris-like". From an overhead remote sensing point of view, there
is therefore nothing about either Melbourne or Sydney that shares similar visual characteristics with
Paris, or at least there are many other cities that are more similar to Paris than Melbourne and Sydney.
The GS network is more strongly influenced by larger natural and topographical features than the GM
network. Outside of the immediate city centres, both Melbourne and Sydney are highly vegetated,
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with large percentages of the built-form concealed under tree canopies and having to conform to
topography. The colours of the vegetation and soils as well as how the urban form is mixed into
the canopies, hillsides, waterways and oceans are highly influential. Melbourne is built around a
bay and around a north–south spine of hills, while Sydney is built around the open ocean and ocean
waterways as well as hilly terrain throughout the metro area. Some potential limitations in the dataset
can be seen in Figure 4. A strong north–south gradient through the plot of the Melbourne predictions
suggests that the neural network detected some artefacts of the satellite imagery gathering process,
such as different acquisition times of the imagery, that were not apparent to human observation.
The satellite imagery also shows some disadvantages in discovering typologies through a confusion
matrix approach. The final trained neural network was too accurate. Finding similarities requires
some level of confusion; thus in order to find cities similar to Paris, the neural network had to be rolled
back to an earlier, less accurate iteration.

Finally, as the GSV-BSV neural network only picked Paris (at over a 50% probability) for 0.01%
of the evaluated locations for Melbourne and 0% for Sydney. We can be confident that from a visual
street-level view, there is almost nothing about either Melbourne or Sydney that is visually similar
to Paris using this type of imagery. Of the images for Melbourne, only two (out of 13) were picked
with a probability of over 50% (and none out of six for Sydney). With the GSV-BSV network (galleries
of “Paris-like” images for Melbourne and Sydney are shown in Figure 8), smaller details of the cities
will influence predictions. At this level of imagery, many of the natural features influential in the GS
network (e.g., types and colours of vegetation or soil) will be important, but smaller details will also
weigh in, such as building architecture, the width (or absence) of nature strips or sidewalks, and an
overall density of streetscape features. Other influential characteristics are features that are in the
urban areas but are not part of the permanent built form. For example, white vans feature in a number
of images in the galleries of Paris-like predictions. At this level of imagery, the neural network will be
potentially influenced as much by how the urban form is being used (especially how it is used at the
time the images are captured) as the form itself. This shows the importance of taking steps in some
circumstances to construct abstract features from the source images (e.g., road networks and green
space for GM or image segmentation for GSV-BSV). Even with these measures, some caution should
be taken with this type of imagery. The rather low accuracy rate for GSV-BSV (43.1%, top five: 69.8%)
indicates that larger training datasets or perhaps fewer classification classes are needed with this type
of complex imagery. When the low accuracy is analysed with a confusion matrix, it is found that the
other cities that are confused for Paris are most often other French cities. This suggests that this group
of similar French cities might form a better basis for a typology classification than the single city Paris.
It also suggests that care is needed to balance the mix of accuracy and confusion. While the highly
accurate GS neural network was unable to misidentify cities, the GSV-BSV neural network was better
suited to find similarities through confusion.

Figure 8. Gallery of “Paris-like” locations in Melbourne (A and B) and Sydney (C) using the GSV-BSV
neural network.
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Using the GM neural network approach, urban form can be evaluated. Map characteristics
that are influential in grouping cities with a particular typology include extents and types of public
transportation, urban green space, road network structure, water body inclusion and integration,
amounts of informal unplanned open space, and density and topology influences on city structure.
Some of the features included in the GM imagery that made cities “Paris-like” were a higher density of
trains and trams, large broad sections of urban green space, and an integration of urban green space
and waterways. Of course, while Paris was selected as the comparison city of choice, the technique
makes it possible to typify the characteristics of any global city where similar imagery is available.

In Thompson et al. [10] and Nice et al. [33], highly abstract map imagery was found to lend itself to
finding similarities between cities and identifying clusters of similar cities or inner-city neighbourhoods,
as well as associations due to different urban typologies with outcomes to public health, such as road
trauma or pollution levels. This type of imagery fits in well with the first urban typology scale of
Argan and Rykwert [18], the arrangements of streets and buildings in urban areas.

Using satellite imagery, natural features and the colour characteristics of rooftops, streets, soil,
and vegetation feature predominantly in classifying locations within a particular typology. In Figure 9A,
satellite imagery of Melbourne shows a number of colour and terrain similarities with the GS top six
predictions, namely Adelaide, Australia; Campinas, Brazil; Jundiaí, Brazil; Miami, USA; Provo, USA;
and Wellington, NZ (all shown in Figure 9). This perhaps shows that natural characteristics are more
influential to what the GS neural network considers to make cities similar than the characteristics of
built urban form highlighted by the GM model.

Figure 9. Satellite imagery of Melbourne, Australia (A), Adelaide, Australia (B), Campinas, Brazil
(C), Jundiaí, Brazil (D), Miami, USA (E), Provo, USA (F), and Wellington, NZ (G) [51]. Note that
the training imagery for the GM network was captured at a 400 × 400 m resolution (see Figure 1), not
at the city-wide scale depicted here.

The satellite imagery fits less well into a particular Argan and Rykwert [18] scale. The area covered
by the imagery is identical to the map imagery (400 × 400 m), capturing the road and building structure
of each area. However, the imagery also contains information suitable for generating typologies based
on the constructed elements scale as well as the decorative elements of the area (from a vertical vantage
point). To create stronger typologies, additional steps will likely be needed to push the typologies
towards one or the other scales. Analysis of areas smaller than 400 × 400 m can allow details more
relevant to the building or decorative scales to be emphasized. However, this might require higher
resolution imagery than the 15 m resolution imagery provided by Google to ensure sufficient detail.
To better capture the street and building structure, pre-processing could be applied (edge detection,
mean shifts, or other computer vision techniques) to force a stronger emphasis on the urban structure
rather than the details. Further additional work could be performed, such as deconstructing and



Urban Sci. 2020, 4, 27 15 of 18

reconstructing imagery, removing features (such as automotive traffic, leaving only structures), and, for
targeted outcomes (such as health and social capital), using generative adversarial networks [58],
enabling comparative hypothetical typology scenarios.

Finally, in examining the results from the GSV-BSV neural network, this micro-scaled level of
imagery would arguably capture the visual geography of the streetscape; what most people would say
captures that which “makes Paris looks like Paris”. This imagery fits well into the detailed/decorative
Argan and Rykwert [18] scale. However, as Doersch et al. [32] found in trying to answer the same
question, overall this answer is not based on a small number of famous iconic landmarks (e.g., the
Eiffel Tower or the Louvre), but on an array of widespread, smaller features. These features include
elements such as cast-iron railings on balconies, grid-like balcony arrangements, distinctive street signs,
streetlamps on pedestals, window balustrades, Parisian doorways, six-story Haussmann apartment
buildings, and vegetation differences [59]. Of all these micro-scaled visual elements, neither Melbourne
nor Sydney contain enough to truly have a “Paris-like” district.

Additionally, as found in this study, the characteristics that make up a city on a visual street
view level are a complex mix. This not only includes bigger structural details, such as buildings,
roads, cars, vegetation, and street furniture, but also smaller less-apparent details, such as colours,
weather conditions, road markings, and thousands of other small details. The complexity of this
imagery and the subsequent low accuracy of the neural networks in identifying individual cities using
it indicates that further steps are needed to use this type of imagery reliably. These steps can include
training using a smaller pool of cities and using a smaller set of classifications to allow focus on more
subtle differences. In addition, more aggressive preprocessing (beyond the mean shift segmentation
preprocessing we used) might be needed to further reduce the complexity of the imagery, using
techniques such as foreground/background subtraction or inpainting to remove detail from the images
less relevant to the intended typology goal.

This project’s intended goal was to demonstrate the ability of this new methodology to compare
and cluster entire cities based on the summation of smaller localised details of urban form. As such,
the imagery sampling collected imagery from the entire wider city and was not restricted to the
perhaps more distinctive city centres. The results reflect that focus and show one of the strengths
of this technique, allowing comparisons between entire cities as a whole and allowing linkages to
datasets (health, transportation, etc.) that exist at city levels. However, this also demonstrates that
appropriate consideration needs to be paid to the goals of a particular analysis, and that, for example,
identifying distinctive city centres in other cities might require adjustment of the sampling radius for
the training data.

Future work is planned to vary these techniques and further evolve the insights gained. Inner-city
comparisons will sample imagery from within cities and help answer questions such as does (wider)
Paris look like (the iconic districts of) Paris? Conversely, removing all the other Australian cities from
the training data will allow comparisons to be made on a strictly international basis. Cross-comparisons
can also assess similarities between individual cities under different contexts (e.g., varying which other
cities are included in the pool of comparison cities). Further work, based on Thompson et al. [10], will
use a confusion matrix/graph-based approach to find clusters of urban design types, based on their
levels of similarity between the cities, and apply these typologies to outcomes related to public health
(such as road trauma, pollution levels, and likeliness to engage in active transport.).

5. Conclusions

This analysis revealed a number of exciting possibilities for using neural networks to analyse
urban form. Using this method, any city in the world can now find other cities similar to itself with
easily obtained and globally consistent imagery. This methodology can be used to look at many
different aspects of cities and understand what elements of their urban design leads them to work
in different ways and allow accounting for local context when applying successful policies from
other cities.
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6. Data Availability

Datasets and trained neural networks are available from the corresponding author upon request.
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