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Abstract: Forest measurements using conventional methods may not capture all the important
information required to properly characterize forest structure. The objective of this study was to
develop a low-cost alternative method for forest inventory measurements and characterization of
forest structure using handheld LiDAR technology. Three-dimensional (3D) maps of trees were
obtained using an iPad Pro with a LiDAR sensor. Freely-available software programs, including 3D
Forest Software and CloudCompare software, were used to determine tree diameter at breast height
(DBH) and distance between trees. The 3D point cloud data obtained from the iPad Pro LiDAR sensor
was able to estimate tree DBH accurately, with a residual error of 2.4 cm in an urban forest stand
and 1.9 cm in an actively managed experimental forest stand. Distances between trees also were
accurately estimated, with mean residual errors of 0.21 m for urban forest, and 0.38 m for managed
forest stand. This study demonstrates that it is possible to use a low-cost consumer tablet with a
LiDAR sensor to accurately measure certain forest attributes, which could enable the crowdsourcing
of urban and other forest tree DBH and density data because of its integration into existing Apple
devices and ease of use.

Keywords: diameter at breast height (DBH); forest inventory; handheld mobile laser scanning
(HMLS); image-based point cloud; iPad Pro Lidar; 3D Forest software

1. Introduction

Conventional forest measurement methods to determine tree size and density are
time-consuming and often require specialized training to estimate forest structure [1]. It is
important to develop new forest inventory measurement techniques so that forest stand
metrics can be analyzed quickly and accurately to support forest monitoring and wildlife
habitat assessment. Foresters measure tree diameter at breast height (DBH) to calculate the
amount of wood produced from trees, determine ecosystem structure, and estimate the
amount of forest inventory, which is difficult to measure directly. Frequent and widespread
use of different measurement tools ensures that tree properties are measured with accurate
reference [2]. Measurements made with calipers and clinometry are the most common
measurement methods for DBH and tree height but are time consuming and labor intensive.
For example, calipers and clinometry were used in a study of 319 trees in the Evo region in
southern Finland [3]. The standard deviation of tree DBH and height measurements were
calculated as 0.3 cm (1.5%) and 0.5 m (2.9%), respectively [3]. These results show that suc-
cessful measurements can be obtained with very few errors using traditional methods [3].
However, some factors cause human mistakes in these measurements. The determination
of DBH should be assessed at 130 cm from the ground; this distance is typically expected
to come at approximately tree breast height [2]. However, tree assessment techniques
must deal with trees with a fork between 30 and 137 cm high to accurately measure tree
biomass [2].
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There are new techniques that take advantage of laser scanning technology to char-
acterize forest habitat with light detection and ranging (LiDAR) technology, including
handheld mobile laser scanning (HMLS), terrestrial laser scanning (TLS), and airborne
laser scanning (ALS) [4]. With the widespread use of modern laser scanners, traditional
forest inventory techniques are being replaced [5]. The various laser scanning techniques
produce a virtual 3D map of forest structures using point clouds. Tree position, trunk
diameters, and tree heights can be estimated from these 3D point clouds. Many studies
have started to compare different algorithms and techniques with LiDAR systems which
allow the calculation of the forest inventory and forest habitat characterization [6,7]. In a
recent study conducted in 20 forest stands in Austria, the performance of two different
laser scanning systems, a mobile personal laser scanner (PLS) and a static terrestrial laser
scanner, was compared [1]. Because one of the most important features of PLS is that it is
handheld, studies in the sample areas were completed three times faster than TLS, but TLS
was found to provide more useful information in determining tree sizes, especially tree
diameter [7,8].

Although calculating forest inventory using LiDAR technology has many advantages,
some studies have encountered significant problems. For example, in studies performed
on a mixed stand of Sitka spruce and lodgepole pine in Kielder Forest in Northern England,
tree DBH and tree height values were acquired using three different types of terrestrial
lasers [9]. The results demonstrated that laser scanning achieved successful results when
the view of the tree from the sensors used was not blocked. It has been observed that
laser scanning data does not always give actionable and accurate results in forests with
high tree density [9]. Due to the high number of tree trunks and the thick canopy in
denser stands, the margin of error increases in the information obtained. Studies carried
out in dense forests are expected to provide better-quality information when focused on
smaller forest areas and even individual trees [9,10]. Forest characteristics are typically
determined by a combination of field measurements and remote sensing data obtained
by LiDAR technology in forest inventories [11]. In a study conducted on a sweet chestnut
(Castanea sativa) stand, a mobile laser scanner (ZEB1 device) was used to calculate tree
properties (DBH, tree height, and crown base height) [12]. In that study area, trees were
scanned by walking around each tree, and were captured as 3D point cloud data; DBH, tree
height and crown base height values were estimated from these data [12]. The researchers
found that scanning around each tree improved the detection of small-diameter trees but
was challenging to apply in dense and complex forests. Therefore, testing various types of
HMLS techniques in different densities and complexities of forests will be beneficial [12].
Prior studies have demonstrated that HMLS tools provide many advantages in forest
inventory [12]. These advantages include the low cost of the equipment required to collect
data, the minimization of the need for equipment and expert knowledge, and the ability to
collect data quickly and with high accuracy [12]. In another study, a 3D point cloud map of
a forest area was obtained using a VLP-16 LiDAR system which was subsequently used
to extract the DBH diameter [13]. The obtained 3D point cloud was processed, and the
ground point cloud was removed with a random sample consensus (RANSAC) algorithm
to facilitate the calculation of DBH [13]. The results showed that the relative error compared
to ground truth data was 2.27%, the corresponding variance was 15.09 cm, and the root
mean square error was 0.70 cm [13]. The requirement to determine tree location with GPS
was emphasized, and the idea of using unmanned aerial vehicles (UAVs) for larger areas
was suggested [13].

Characterizing forest habitats and determining the vegetation structure play important
roles in wildlife ecology [14]. With the widespread use of LiDAR technologies, relationships
between wild animal activity and forest structure have begun to be analyzed. For example,
the relationship between forest structure as determined by LiDAR scanning and bat activity
has been studied in Austrian state forests, where a 3D map of the area was created using
TLS to characterize forest habitat structure [15]. That study found a negative relationship
between forest density and the behavior of bats while they are catching their prey in
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the forest [15]. The use of LiDAR technology can reduce the time necessary to measure
vegetation cover and forest density, which are important not only for bats but also for
many other wild animal populations. Calculating the amount of vegetation, which is an
important food source for deer and other ungulates, also affects animal productivity and
density [16]. In a study conducted in the Colville National Forest, WA (USA), airborne
LiDAR obtained information about forest structure and understory biomass in 65 areas for
four years; this information was compared with field samples in the same area [17]. Even if
there are data limitations where the forest canopy is dense, LiDAR technology can estimate
some important resources for animals [17].

A newly released iPad consumer tablet includes a LiDAR sensor that works outdoors
and is much lower cost than other available LiDAR scanning devices described previously.
Data from the iPad LiDAR sensor can be used to construct 3D scenes using an application
running on the tablet. The hypothesis of the present study was that iPad LiDAR data can
be used for small forest areas to accurately evaluate the DBH and tree density (represented
by distance between trees). The objectives of this study were: (1) to test the suitability of
low-cost Apple iPad handheld LiDAR scanning to characterize forest habitat characteristics,
(2) to determine DBH and distance between trees and then compare them with the results
obtained by traditional methods, and (3) evaluate the iPad LiDAR sensor data as a method
to acquire crowd sourced forest information.

2. Materials and Methods
2.1. Study Area

The study areas comprised two different locations approximately 3.2 km apart. One
site was a small, forested stand (N 34◦40′27.0′ ′, W 82◦50′31.0′ ′) located on the Clemson
University campus; the second site was a managed forest stand located within the Clemson
Experimental Forest (N 34◦38′40.0′ ′, W 82◦48 36.0′ ′). The Clemson Experimental Forest
serves as a habitat for many bird species, more than 90 species of trees and numerous types
of wildlife on 17,500 managed acres of land [18]. The resources of the forest are used to
provide education, research, and recreation opportunities [18]. Both study areas are located
in Pickens County, in the northwest portion of South Carolina, USA (Figure 1).
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The study area in the Clemson Experimental Forest is part of a conventionally man-
aged loblolly pine forest stand (Figure 2a, Table 1). The second study area on the Clemson
University campus is a small forest stand and does not have regular silvicultural practices
(Figure 2b, Table 1).
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Figure 2. Sampling locations: (a) stand in the Clemson Experimental Forest, (b) urban forest stand
on the Clemson University Campus.

Table 1. Characteristics of the sites sampled.

Characteristics
Sampling Sites

Managed Forest Stand Urban Forest Stand

Tree species Loblolly pine Loblolly pine
Number of trees sampled 30 32

Average tree DBH 41.23 cm 49.98 cm
Slope 5.4% 10.5%

Plot size 1310 m2 1150 m2

Type of use Experimental Recreational
Ground vegetation Substantial Low

Note: DBH = diameter at breast height.

2.2. Field Measurements

Conventional field measurement results were used as a reference in this study because
of their high accuracy; physical measurements are commonly accepted as ground truth. A
tape measure was used to calculate the DBH of trees, and a laser distance meter (Auroland
DTAPE DT50) was used to measure the distance between trees [19]. To calculate the DBH
using a tape measure, the 1.30 m height above the tree base was determined first. Then, to
measure DBH, the tape measure was wrapped around the tree at the 1.30 m height. The
DBH of the tree was then determined by the formula:

d = C/π (1)

where d is the diameter of the tree (DBH), C is the circumference of the tree, and π is 3.14.
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When using a tape measure, it can be difficult for a single person to wrap the tape
completely around a tree in one step due to the large diameter of some trees. Therefore, in
these cases, measurements were made in two steps: (1) marks were placed on the average
half of the tree circumference and the starting point, and (2) a measurement was made
by wrapping the tape up to half of the tree circumference and then the second part was
measured from the starting point.

The laser distance meter was used to determine the distance between trees with an
accuracy of ±0.16 cm. This device, which can measure up to 50 m, can make reliable
measurements when there is no obstacle in front of it. In cases where the distance between
trees is high, it may not be possible to measure accurately with a tape measure. To measure
the distance between two trees, the laser distance meter is placed adjacent to one of the
trees, and the other tree was targeted. Laser light can be seen on the targeted tree.

2.3. Forest Scanning

Two different LiDAR scanning technologies, and one standard measurement method
were tested in this study, and each has different resource needs and scanning efficiencies
based on the workflow (Table 2). Forest stands were scanned with a terrestrial laser scanner
(TLS) FARO Focus m70 and an iPad Pro 2020 with an embedded LiDAR sensor to create
a 3D model of their structure (Figure 3). LiDAR scanning of small forest stands using
a standard iPad tablet and TLS was designed to determine if it is possible to scan such
forest areas accurately and to measure tree DBH and the distance between trees. LiDAR
technology is utilized in both the TLS and the iPad, but there are important differences
in how the scanning devices were used. For example, before scanning with the iPad Pro,
an optimized tree scanning plan was created. Each tree was scanned by walking around
it; therefore, planning of the scanning order was important to ensure that each tree was
scanned only once. In addition, when scanning with an iPad, it was important to follow
the scanning progress by watching the iPad screen because the scanned parts of the tree
had to be checked to ensure the tree was completely scanned. Depending on plot size and
density of ground cover, dividing a plot with tape or reflective markers may be necessary to
facilitate the scanning of an area to avoid confusion during the scanning process. Scanning
with TLS works differently than with the iPad Pro, because TLS scans automatically (there
is no need to walk around the trees). In addition, before beginning to scan with TLS,
defining the study area boundaries made it easier to detect targeted trees in the study
area because TLS has a 70-m range which meant it automatically scanned some trees that
were outside the study area (Figure 4). Natural objects (fallen trees, half-trees with broken
tops, etc., in the study area) and other objects (larger than 25–30 cm) were used as signs
to determine the boundaries of the study area and to detect targeted trees. Alternatively,
reflective targets could have been used to help delineate the TLS scan area.

Table 2. Comparison of traditional tape measurements with the iPad Pro LiDAR and a TLS system.

Requirements Tape
Measurements

Scanning Devices

iPad Pro LiDAR TLS

Set-up time NA NA 15 min (for each scan)
Required field time 95 min 35–40 min 10–15 min (for each scan)

Processing time NA 2–3 min Specialized desktop
software

Persons needed
Cost

2
$40 (USD)

1
$1000 (USD)

2
>$15,000

Note: TLS = Terrestrial laser scanner. USD = U.S. dollars.
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2.3.1. iPad Pro 2020 with LiDAR Sensor

The iPad Pro 2020 incorporates a LiDAR sensor for the first time [20], and it has
the important feature of being able to scan in outdoor environments. LiDAR technology
is typically only available in scanners costing tens of thousands of dollars or more; the
incorporation of a LiDAR scanner into a handheld consumer tablet makes it cost-effective
to evaluate LiDAR technology for wider adoption in forest characterization efforts.

The iPad Pro LiDAR sensor is a 3D time of flight (ToF) sensor that is designed to work
at short distances and scan small objects [20,21]. The LiDAR sensor in the iPad appears
to have a range of up to 5 m. In addition, many of the expected application areas of the
LiDAR sensor are still under development. For example, with the addition of LiDAR to
the iPad, software developers predict that some applications being developed by Apple
Inc. will be related to LiDAR, such as “Measure app,” and some applications to be created
in the future will also be related to LiDAR technology [22]. One of the most important
focus areas is likely around iPad LiDAR technology-supported augmented reality (AR)
applications on iPhones and iPads that allow for the measurement of environments in
3D so they can be included in AR applications [22,23]. AR applications can incorporate a
global positioning system (GPS) to detect device orientation and localize the user’s location
as well as machine vision, object recognition, and motion recognition technologies [23].

The new iPad LiDAR sensor has limitations because of its size and functional capabili-
ties. The LiDAR sensor can scan objects up to 5 m away but may not successfully scan the
objects if they are smaller than 10 cm.

2.3.2. Applications Used for Forest Scanning

The Forge application (Abound Labs, Inc., New York, NY, USA) was installed on the
iPad Pro 2020 tablet to collect the LiDAR ranging data and create the 3D forest model by
scanning trees in the study area. The Forge application is currently under development, so
the Forge–LiDAR 3D Scanner is only available for iPhone and iPad but is being upgraded to
use new LiDAR sensors available on these platforms. In this study, version 1.1.0, updated
on May 6, 2021, was used. Using the Forge application on an iPad, it took an average of
8–9 s to scan one tree during the test, depending on the accessibility of the area around the
trunk base. The data obtained were exported from the Forge application in PLY format.
The PLY format is a 3D point cloud that includes color and transparency, surface normals,
texture coordinates, and data confidence values. Although Forge was usually successful
at scanning the trees, it did have some issues. For example, the iPad can scan a tree trunk
ranging from the ground to approximately 3 m above the ground; however, it is not possible
to scan above this height because the image of the tree in the Forge application gets broken.
Although this problem does not impact the accuracy of the DBH value (taken at 130 cm
above ground height), it does make the 3D forest image appear to be disjointed because
the areas above and below 3 m of the tree trunk appear separated from one another, and
the lower portion may not appear to have contact with the forest floor.

2.3.3. Forest Field Scanning with iPad Pro 2020 Forge Application

Creating a 3D map of a forest is necessary to calculate the DBH of trees and the distance
between trees. Care was required during the scanning process because by re-scanning a
previously scanned tree from 5–6 m away, the Forge application could identify it as a new
tree and scan it as if it were two different trees (Figure 5). With the limited range of the
LiDAR sensor in the iPad Pro 2020, as noted previously, it was not possible to scan the
entire trunk of a tree with the tablet sensor (Figure 6). However, scanning up to 130 cm
in the height of the trees was sufficient to obtain the DBH. A critical part of the scanning
process was to view scanned trees in the Forge application to determine unscanned trees in
the forest. Some factors, such as ground vegetation and slope, made it difficult to walk in
the forest and more difficult to walk around the tree to scan it. In most instances, it took
an average of 9 s to scan each tree. In some cases, thorny shrubs around trees interfered
with the correct scanning of the tree and could have resulted in a high error rate, making a
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repeat scan necessary. Additionally, the distance between the trees was one of the most
important factors related to overall forest area scanning time because having large gaps
between trees increased the required time.
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As previously stated, the range of the LiDAR sensor did not exceed 5 m. Additionally,
scanning from very close distances, such as 20–30 cm, required excessive time to scan a
tree. Therefore, the optimal scanning distance was 1–2 m from each tree, if possible, given
the forest conditions. In addition, it was important that there were no obstacles, such as
branches or bushes, between the sensor and the targeted tree because these objects could
prevent an accurate scan. This problem was encountered frequently, especially in the urban
forest area. The sensor is not well suited to detecting objects smaller than 10 cm. Therefore,
if the target tree’s DBH was less than 10 cm, the tree might not be accurately scanned
by the LiDAR sensor. Using a smooth scanning motion was important because sudden
movements of the iPad direction could cause a break in the 3D image.

With the iPad Pro, the number of trees that were scanned could be determined by
watching the iPad screen during the scanning process (Figure 7). Scanning the targeted
trees with the iPad was generally straightforward and did not require any special training.
The biggest factor that made scanning difficult was the walking conditions in the study
area. Using the iPad to scan forest trees requires the ability to walk around most of the tree
trunks. If the forest understory has thorns, bushes, tall grasses, etc., it becomes physically
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difficult to walk around and between individual trees, making the scanning challenging in
some forest conditions. The Forge application typically processed the scanned data within
1–2 min, which was subsequently saved to the iPad, and it then became available for export.
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2.3.4. Scanning a Tree with Forge from Different Distances

When scanning with the iPad, the scanning distance of the tree generally varied
between 1–3 m, but it was not clear if the accuracy varied with scanning distances. To
help understand if there was a relationship between DBH calculated from the scans and
scanning distance from the tree, a single pine tree in an open environment was scanned
with the iPad from different distances (Figure 8).
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Five different scanning distances and an additional scanning method (by zigzagging
between 2 m and 5 m) were tested. Scanning distances of 1, 1.5, 2, 2.5, and 5 m were tested
using a laser distance meter to accurately determine consistent distances from the tree.
Three scans were made at each distance, and the average of 3 scans was used to estimate
accuracy. To test the varying distance, a zigzag path was used for scanning by varying the
distance between 5 m to 2 m from the tree.

2.3.5. Terrestrial LiDAR Scanning (TLS)

A TLS FARO Focus M70 high-speed 3D laser scanner was used to compare against
the iPad LiDAR technique. The TLS scanner is portable, scans from a fixed location, and
its scanned data can be easily exported [24]. Terrestrial LiDAR scanning technology has
been used often in large forest areas. Similar to the iPad LiDAR scan, the focus of the
TLS data was to assess the accuracy of scan-derived DBH and the distance between trees.
This type of TLS technology is used by many researchers and is generally accepted as an
accurate method for measuring forest parameters [8]. Therefore, comparing TLS with iPad
and taking field measurements helped determine the relative accuracy of the iPad LiDAR
sensor compared to the standard TLS technique.

Before starting to scan with TLS, setup was required. First, the site was evaluated,
and three scanning positions were determined to capture the area of interest. Four white
spherical targets were then placed in different locations to define the boundaries of the
study area and to locate the scanned trees more easily (at least three were sufficient to be
captured by TLS in each scan). The FARO scanner tripod was installed at each scanning
location, and the scanner was attached to the tripod. After the scanner was started, the
tripod needed to be stabilized. The built-in level inclinometer was used to stabilize the
tripod. This TLS device has an approximate range of 70 m. The long-range was not
always an advantage because it scanned untargeted trees and other non-target objects in
the study area, therefore the date required editing to filter out these objects. A scan was
made from each location, for a total of three scans from three locations which were located
approximately 35–40 m from each other. Forest trees were typically as close as 3 m to the
scanner in each scan position. Each scan took about 11 min (33 min in total for three scans).
After the first scan was completed, the TLS was moved to the previously determined
second and third positions. All operations were repeated in the second and third locations,
just as in the first scan. Scanning was carried out from three different locations to find the
optional angle with most tree trunks visible in the point cloud. One of the three scans was
found to have the best overall forest representation, but the other two scans were also used
to determine the DBH of a few trees because the primary scan did not have a sufficient
point cloud to determine DBH for these trees. The scans were not combined for analysis,
which may have limited the accuracy of the related point cloud measurements.

After the areas of interest were scanned, SCENE software (FARO Technologies, Inc.)
was used to process the data. After processing, the results were exported in LAS format
from SCENE to the 3D Forest software and CloudCompare. In the 3D Forest software, the
DBH of the tree clouds was determined using the LAS data. CloudCompare was used to
measure the distance between trees. The processes performed are explained under separate
headings below.

2.4. Calculating Tree DBH and Distance between Trees

Two different software applications, 3D Forest and CloudCompare, were used to
process the point cloud data, calculate tree DBH and estimate the distance between trees.
The 3D Forest software (version 0.51) was developed in 2010 at the Department of Forest
Ecology at the Silva Tarouca Research Institute in collaboration with the Department of
Geoinformation Technologies at Mendel University in Brno in the Czech Republic to acquire
and process 3D point cloud data (“3D Forest software”) [25,26]. CloudCompare is an open-
source point cloud processing software (version used 2.12 alpha) that was developed in
Ireland in 2012 (“CloudCompare software”) [27]. The DBH of the trees (both iPad and TLS
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data) was determined using the 3D Forest software package, and the distance between
the 3D trees was calculated using CloudCompare. In 3D Forest and CloudCompare, the
same operations were performed separately on the data, including both the iPad 3D forest
structure and the TLS 3D forest structure (Figure 3).

2.4.1. Measurement Distance between Trees in CloudCompare

CloudCompare is a software package that has a range of tools to manipulate and
analyze 3D data and is freely available for both educational and commercial purposes. In
addition, CloudCompare can be used to convert 3D data types. In this study, we converted
the Forge data that was exported in PLY format to PCD format for use in the 3D Forest
software program. CloudCompare provides tools that can be used to measure the distance
between trees. PLY-formatted iPad LiDAR data were exported from the Forge application
and then imported into CloudCompare. The point picking tool was used to measure the
distance between the targeted trees in CloudCompare. This tool was used to identify
distances between multiple trees (Figure 9).
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Figure 9. Measuring distance between trees in CloudCompare software.

In some situations, such as areas with high forest density and excessive ground cover,
it was difficult to measure the distance between two trees. With the data obtained by TLS,
the crowns of the trees sometimes prevented a clear view of a path between a tree pair.
Therefore, functions in the CloudCompare software were used to remove point clouds
representing tree crowns as well as other unnecessary 3D images, such as unselected trees,
electricity poles, etc., to provide a better view to measure the distance between trees.

2.4.2. Determining DBH from LiDAR Point Cloud Tree Scans

The 3D Forest software package provides many different measurement tools to de-
velop metrics for forest inventory from 3D data. Forest DBH measurements were estimated
using the point cloud data from both the iPad Pro and TLS in 3D Forest. Data collected by
the iPad Pro did not include a coordinate system as it was not necessary to measure DBH
and distances between trees. Therefore, the NoMATRIX option was used so that the data
could be measured. The 3D Forest software package provides a workflow that makes it
possible to measure tree DBH from an imported point cloud dataset (Figure 10).
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Figure 10. TLS data imported into 3D Forest prior to segmentation.

The same set of procedures were used for both TLS data (LAS format) and iPad data
(PCD format) from the Terrain menu in 3D Forest. The first step was to divide the cloud
data into two separate parts: a vegetation cloud and a terrain cloud. The most important
reason for this was to obtain the vegetation cloud, which could be used to select individual
trees for DBH measurements. The terrain from octree method, which divides the input
point cloud into 10 cm cubes and classifies the points with the lowest height (z-value) as
ground points, was used to successfully separate ground points from vegetation points.
(Figure 11).
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To measure the DBH values of the trees in the vegetation point cloud, each tree was
divided into a file with a single tree for measurement. All points that did not belong to the
target tree in the point cloud could be manually deleted (Figure 12).

After the target tree cloud was saved, the vegetation cloud appeared again to enable
the continuation of manual tree selection; however, the previously selected tree appeared
with a random color (Figure 13) which allowed a sequential process to select the point
cloud associated with each tree. The “position lowest point” process in 3D Forest software
allowed the manual placement of points on each target tree that represented the tree base
with a white sphere (Figure 14). The DBH of each target tree was determined using the
randomized Hough transformation in the 3D Forest software that used 200 interactions to
estimate the DBH by searching for the center of the circle that represents tree diameter [28]
at 1.3 m from the tree base. After the DBH was calculated, there was a red ring and a
number showing the DBH value of the tree at the height of 1.30 m (Figure 15). In addition,
DBH values could be viewed in the attribute table in 3D Forest.
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3. Results
3.1. Comparison of Methods Used to Determine DBH and Distance between Trees

In the present study, DBH results of selected trees and the distance between trees were
obtained by three different techniques: iPad, TLS, and conventional field measurement
equipment. Among these three, TLS was the quickest method to measure tree parameters
compared with iPad Pro LiDAR scanning and hand-measuring with a tape measure or
laser distance sensor. However, field measurement of DBH with a tape measure or distance
measurement with a laser distance meter was the most reliable way to get accurate results.
Therefore, in comparison with the LiDAR estimates, the field measurement was used as a
reference. A summary of the field measurements is found in Table 3.

Table 3. Field plot characteristics.

Measurements
Sampling Sites

Managed Forest Stand Urban Forest Stand

Number of trees sampled 30 32
Average tree DBH 41.2 cm 49.9 cm

Minimum DBH 31.5 cm 22.9 cm
Maximum DBH 59.7 cm 84.4 cm

Average distance between trees 7.9 m 4.2 m
Minimum distance between trees 2.25 m 0.88 m
Maximum distance between trees 15.7 m 7.6 m

Notes: DBH = diameter at breast height. Minimum distance between trees indicates the closest distance between
any two trees in a plot. Maximum distance shows largest distance between any two trees in a plot.

3.1.1. Comparison of DBH in an Urban Forest Area (Clemson Campus)

The DBH was measured using two different methods (iPad and tape measure) in
the urban forest area. Graphs show a comparison of iPad DBH estimates with field
measurement of DBH in the urban forest (Figure 16). For 32 trees total, the overall iPad
DBH residual error is 2.4 cm (Figure 16b) and the root mean square error (RMSE) is 2.9 cm.
According to the field measurement, the lowest DBH value was 14.2 cm, while the highest
DBH value was 75.3 cm, and the overall average DBH value of 32 trees was measured as
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49.9 cm. Similar residual errors appear in each DBH size, so there does not seem to be a
relationship between DBH size and residual error.
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3.1.2. Comparison of DBH from iPad and TLS vs. Tape Measure DBH in a Managed
Forest Stand

DBH values in the managed forest stand in the Clemson Experimental Forest were
measured using three different methods (iPad, TLS, and the traditional tape measurement
method). Figure 17 shows a comparison of iPad DBH estimates with field tape measure-
ments. The TLS DBH estimates compared with field tape measurements is shown in
Figure 18. This study was carried out on 30 trees in total, with the lowest tree DBH being
32 cm, while the highest DBH was 50 cm. Based on field measurements, DBH estimates
from the LiDAR values were typically similar, with an average DBH of 41.2 cm. Comparing
the two LiDAR scanning methods, iPad DBH residual appears to be lower compared to
TLS residuals, which had a higher variation. With iPad having a DBH mean residual of
1.9 cm, the TLS DBH mean residual was 4.8 cm. It is possible to see similar differences in
RMSE. TLS and iPad RMSE were 6.1 cm and 2.5 cm, respectively (Figures 17b and 18b). The
TLS DBH residuals could have been artificially high because this study did not combine
multiple TLS scans.

Urban Sci. 2021, 5, x FOR PEER REVIEW 15 of 22 
 

  
(a) (b) 

Figure 16. A DBH comparison between iPad LiDAR-derived and field measured data in an urban 
forest: (a) regression plots for DBH from iPad LiDAR, and (b) residuals for the estimated field 
measured DBH. 

3.1.2. Comparison of DBH from iPad and TLS vs. Tape Measure DBH in a Managed For-
est Stand 

DBH values in the managed forest stand in the Clemson Experimental Forest were 
measured using three different methods (iPad, TLS, and the traditional tape measurement 
method). Figure 17 shows a comparison of iPad DBH estimates with field tape measure-
ments. The TLS DBH estimates compared with field tape measurements is shown in Fig-
ure 18. This study was carried out on 30 trees in total, with the lowest tree DBH being 32 
cm, while the highest DBH was 50 cm. Based on field measurements, DBH estimates from 
the LiDAR values were typically similar, with an average DBH of 41.2 cm. Comparing the 
two LiDAR scanning methods, iPad DBH residual appears to be lower compared to TLS 
residuals, which had a higher variation. With iPad having a DBH mean residual of 1.9 cm, 
the TLS DBH mean residual was 4.8 cm. It is possible to see similar differences in RMSE. 
TLS and iPad RMSE were 6.1 cm and 2.5 cm, respectively (Figures 17b and 18b). The TLS 
DBH residuals could have been artificially high because this study did not combine mul-
tiple TLS scans. 

  
(a) (b) 

Figure 17. Forest stand measurements: (a) DBH comparison between iPad LiDAR to field meas-
urements (tape measure). (b) Regression plots for DBH from iPad LiDAR data residuals for the 
estimated DBH. 

Figure 17. Forest stand measurements: (a) DBH comparison between iPad LiDAR to field measurements (tape measure).
(b) Regression plots for DBH from iPad LiDAR data residuals for the estimated DBH.



Urban Sci. 2021, 5, 88 16 of 22Urban Sci. 2021, 5, x FOR PEER REVIEW 16 of 22 
 

  
(a) (b) 

Figure 18. Forest stand measurements: (a) DBH comparison between TLS to field measurements 
(tape measure). (b) Regression plots for DBH from TLS residuals for the estimated DBH. 

3.1.3. Comparison of Distance between Trees from iPad vs. Conventional Method (Laser 
Distance) in the Urban Forest Area 

Graphs show a comparison of iPad distance estimates with field measured distance 
(Figure 19). In this study, 31 different distances were obtained from 32 trees. The longest 
distance between trees in the study area was 8.1 m; the shortest distance was measured as 
0.8 m. The general average of the distances between the trees was 4.2 m. The mean residual 
error was 0.21 m, with an RMSE of 0.25 m. There were similar residual errors at each 
distance, so there was no relationship between distance and residual error, but there was 
a bias of about 0.2 m with the iPad sensor measurements (Figure 18b). 

  
(a) (b) 

Figure 19. Distance comparison between iPad LiDAR and a conventional measurement method 
(laser distance meter) in an urban forest: (a) regression plots for the distance between trees meas-
ured using iPad LiDAR and laser distance meter, and (b) residuals for the estimated field meas-
ured distance. 

3.1.4. Comparison of Distance between Trees from iPad and TLS vs. a Laser Distance 
Meter in the Managed Forest Stand 

Figure 19 shows a comparison of iPad distance estimations and TLS distance estima-
tions, each with a separate field measurement, for the forest stand. Twenty-nine different 
distances were obtained from a total of 30 trees. The distance between the trees is similar 
in this managed forest stand, and based on the field measurements, the average distance 

Figure 18. Forest stand measurements: (a) DBH comparison between TLS to field measurements (tape measure).
(b) Regression plots for DBH from TLS residuals for the estimated DBH.

3.1.3. Comparison of Distance between Trees from iPad vs. Conventional Method (Laser
Distance) in the Urban Forest Area

Graphs show a comparison of iPad distance estimates with field measured distance
(Figure 19). In this study, 31 different distances were obtained from 32 trees. The longest
distance between trees in the study area was 8.1 m; the shortest distance was measured
as 0.8 m. The general average of the distances between the trees was 4.2 m. The mean
residual error was 0.21 m, with an RMSE of 0.25 m. There were similar residual errors at
each distance, so there was no relationship between distance and residual error, but there
was a bias of about 0.2 m with the iPad sensor measurements (Figure 18b).
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tions, each with a separate field measurement, for the forest stand. Twenty-nine different 
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Figure 19. Distance comparison between iPad LiDAR and a conventional measurement method (laser distance meter) in an
urban forest: (a) regression plots for the distance between trees measured using iPad LiDAR and laser distance meter, and
(b) residuals for the estimated field measured distance.

3.1.4. Comparison of Distance between Trees from iPad and TLS vs. a Laser Distance
Meter in the Managed Forest Stand

Figure 19 shows a comparison of iPad distance estimations and TLS distance estima-
tions, each with a separate field measurement, for the forest stand. Twenty-nine different
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distances were obtained from a total of 30 trees. The distance between the trees is similar
in this managed forest stand, and based on the field measurements, the average distance
was 7.9 m. The iPad estimated distance and TLS estimated distance plots are similar to
each other (Figure 20a,c). The mean distance residual error of the TLS was 0.41 m, while
the iPad mean distance residual was 0.38 m. In addition, TLS and iPad were found to have
similar RMSE of 0.56 m and 0.59 m, respectively (Figure 20b,d). According to the iPad
residual graph (Figure 19b), residual error increases at distances above 10 m.
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3.2. Comparison of iPad LiDAR Scans from Different Distances

To compare the accuracy of iPad scanning based on the distance to the tree, an
experiment was designed to determine accuracy of DBH measurements (Figure 8). For this
test, a single pine tree in an open area was measured with a tape measure to determine
its DBH (40.8 cm). It was then scanned from each of several different distances (1 m,
1.5 m, 2 m, 2.5 m, 5 m, and variable distances) with the iPad LiDAR sensor. Each scan was
repeated three times, and the DBH was determined as detailed previously (Table 4).

Table 4. Evaluating iPad LiDAR performance from various distances.

Measurement and Statistics
Scan Distance Zigzag Scan Pattern

1.0 (m) 1.5 (m) 2.0 (m) 2.5 (m) 5.0 (m) (2 to 5 m)

Average DBH (cm) 39.8 39.6 41.0 38.0 34.3 37.0
Absolute residual error (cm) 1.0 1.2 0.2 2.8 6.5 3.7
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4. Discussion
4.1. Ability of iPad LiDAR to Determine DBH and Tree Distance in Forest Stands
4.1.1. Evaluation of the iPad LiDAR Sensor for Measuring DBH

This study found that the DBH estimated from the iPad Pro LiDAR had nearly a 1:1
relationship with the field-measured DBH in both the managed forest stand and the urban
forest area (Figures 16a and 17a). The DBH of the scanned trees had average residual
differences of 1.9 cm and 2.4 cm in the forest stand and the urban forest area, respectively
(Figures 16b, 17b and 19b) when compared with the DBH based on field measurements
with a tape measure. The DBH of trees scanned by the iPad usually had a residual error of
1–2 cm; however, DBH differences of 5–6 cm was observed in some trees. An evaluation of
the error of DBH measurement at various differences (Table 4) found that there was greater
error at the detection limit of the iPad LiDAR sensor (5m), with greatly reduced error at
a 2 m scanning distance. This could help in understanding the variation in accuracies
seen in this study. A visual examination of the iPad scans associated with trees with much
higher-than-average residuals in DBH estimation (5–6 cm) (Figures 16b and 17b), found
that that there were bushes around these trees that prevented accurate scanning by the
iPad. This indicates that errors in DBH scanning accuracy are most often because of a lack
of line-of-sight visibility between the iPad LiDAR sensor and the tree at 1.3 m above the
ground and not because of errors with the tree scanning. Additionally, an examination of
the 3D forest structure data found that if 20–25% of the tree trunk was covered by ground
vegetation, it did not significantly affect the success of the scanning. However, if 60–70% of
the tree trunk was covered by this vegetation, it typically caused an increase in the error
rate (Figure 21). In addition, no relationship was observed between these results and the
size of the DBH of the trees, so there does not appear to be any systematic scanning error
associated with larger or smaller diameter trees within the context of this study.
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4.1.2. Evaluation of the iPad LiDAR Sensor for Measuring Distance between Trees

This study also examined if the iPad LiDAR sensor could accurately measure the 3D
structure of the forest for future efforts to determine tree density or wildlife habitat based
on a scan. Evaluating the accuracy of distance between trees was studied, compared with a
more conventional method using a laser distance measurement device, to determine the
accuracy of tree distance measurements. In this study, the distance between trees reached a
maximum of 8.1 m in the urban forest area, while in the managed forest stand, it reached a
maximum of 19–20 m. The average residual difference in distance between the trees was
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0.38 m and 0.21 m in the forest stand and the urban forest area, respectively (Figures 17b,
19b and 20b).

Some or all of these differences may be attributed to field measurement errors be-
cause of the difficulty of holding the laser distance device level. While overall, the iPad
provided reasonable accuracy for distance measurements between trees, the error differ-
ence increased to 1.1–1.3 m when the distance between the trees exceeded 10 m in the
forest stand (Figure 20b). When the distance between trees exceeded 10 m, the residual
error increased to over 1 m. There are possible explanations for this issue. If there are
large distances between trees, the iPad may lose the relative position of the trees. Also,
extensive ground cover between areas with sparse tree density may interfere with the
ability to smoothly move the tablet between the trees, which could cause errors in the Forge
application placement of trees.

4.2. Comparison of TLS and iPad
4.2.1. Comparison of the DBH between TLS and the iPad in the Forest Stand

This study used TLS and an iPad in the small forest area and then compared them with
field measurements to evaluate their accuracy for forest metric determination. Studies have
previously found that TLS is a reliable method to determine physical tree properties for
forest inventory [5]. In the forest stand, the mean TLS residual error for DBH estimation was
4.8 cm compared with field measurements taken with a tape measure (Figure 18b). The TLS
DBH typically had lower accuracy compared to the ground truth in the relationship plot
(Figure 18a). It also appeared that the diameter of the trees had no effect on TLS residuals.
Based on field measurements, there were 10–11 cm differences between field measurements
and 3D forest estimates with the TLS data appeared for some trees (Figure 18b). While
the DBH obtained from the iPad had a 1–2 cm error (Figure 17b) in the residual graph
compared with the field measure, the TLS usually had a 4–8 cm error in the residual graph
(Figure 18b). According to these results, the iPad was a more accurate method to estimate
DBH compared with using the single point acquired TLS data. The reason why TLS data
failed to determine DBH compared with the iPad may be explained by the way that some
trees in the 3D point cloud representations created by TLS had insufficient point clouds
at a tree height of 1.30 m. The accuracy of the TLS measurements would have likely been
higher if multiple scans were combined before DBH and tree distance measurements were
estimated. This can easily occur with the fixed location TLS scanning because some trees
block other trees, which can prevent the scanning of trees that are not directly in the line of
sight of the scanning LiDAR sensor. These partially blocked trees have insufficient point
clouds (especially at 1.30 m), which increases the DBH estimation error rate increases.
These errors can be reduced by combining multiple TLS scans from different positions
to limit the number of blocked scans. While this study used three TLS scans, it did not
combine the scans for analysis but instead picked out the best scan for a particular set of
trees to be evaluated which likely reduced the accuracy of the presented TLS analysis.

4.2.2. Comparison of the Distance between Trees among TLS and iPad

The calculation of distances between trees was also evaluated with 3D forest data
from TLS and iPad. After scanning the trees using TLS, the residual value of the distance
between the trees was determined to be 0.41 m on average (Figure 20d). The points where
the distance between the trees was between 5 m and 10 m had the lowest error when
looking at the plot (Figure 20c); when the distance between the trees exceeded 15 m, the
best fit line moved away from the 1:1 line (Figure 20c), and the residual difference increased.
It is important to note that the TLS error could have likely been reduced if multiple scans,
from different angles, were combined.

4.3. How Successful Is the iPad in Scanning from Different Distances?

The evaluation of LiDAR from fixed and variable distances can help understand the
best practices for accuracy in a forested environment. Based on the scans at 1, 1.5, 2, 2.5,
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and 5 m, the residual errors were 1 cm, 1.2 cm, 0.2 cm, 2.8 cm, 6.5 cm, respectively, while
the residual error of the zigzag was 3.7 cm. The lowest residual error (0.2 cm) was obtained
with scanning from a 2 m distance to the targeted tree, while the highest error (6.5 cm) was
obtained from scanning from a 5 m distance to the targeted tree, which is not surprising
considering it is near the edge of the range of the LiDAR sensor. The 2m range may be
the optimal distance for scanning. In addition, the residual error (3.7 cm) obtained in the
zigzag (2 m to 5 m) scan shows that irregular movements during the scan decreased the
scanning accuracy.

4.4. Future Application of iPad LiDAR for Crowdsourced Data Aquisition

The use of the LiDAR system for evaluating forests is steadily increasing. Multiple
researchers have successfully used LiDAR in forestry by using various types of LiDAR
scanning (TLS, PLS, ALS, etc.) [1,7]. However, since these systems are generally expensive,
field-based LiDAR systems have found very limited use in many areas and countries. The
iPad LiDAR sensor does have limitations, such as having a range of 5 m, but could be
used for the accurate evaluation of DBH and forest density in small forest stands, and
provides a unique potential to enable crowdsourcing of critical urban forest and forest
metrics. The LiDAR system is being integrated into both phone and iPad Apple devices, so
the availability of these devices could serve to democratize and allow crowdsourcing of
urban forest and forest areas scans. Crowdsourcing spatial data has the potential to greatly
improve scientific knowledge by enabling the public to collect data [29]. For example,
crowdsourced tree density and DBH data could be combined with remote sensed tree
height data (e.g., aerial LiDAR or photogrammetry) to better estimate tree carbon storage
in urban forest and other forest areas. One of the main limitations of aerial LiDAR scanning
is the inability to measure tree DBH and accurate distance between tree heights compared
with mobile LiDAR scanning systems [30]. There are two distinct parts of forest data
capture and metric determination with the iPad data. The data collection aspect requires
little training and could be crowdsourced and uploaded to a repository where the analysis
for DBH and forest density could be performed or automated by domain experts.

5. Conclusions

This study demonstrates the use of a consumer tablet with an embedded LiDAR sensor,
with a companion tablet software application and processing methodology to estimate
DBH accurately and rapidly, and the distance between trees for small forest stands. In the
research, a 3D forest structure was created with the iPad Pro LiDAR sensor used to measure
tree attributes based on the collected point cloud data. The accuracy of the iPad Pro was
compared with TLS and field measurement methods, however, the accuracy of the TLS
results was likely impacted by using only one scan instead of fusing multiple scans, and
the distance from the TLS scanner to the tree when compared with the close-proximity iPad
LiDAR scan. In the study, while the DBH of the 3D trees was determined with the 3D Forest
software, the distances between the trees were measured with the CloudCompare software.
While obtaining data from working areas with iPad LiDAR is faster than the conventional
field measurements methods, it takes longer than scanning with a TLS system. The most
significant disadvantage of the iPad Pro is that it has a range of up to 5 m, especially when
compared with TLS, which has a range of 70 m. The iPad data were obtained from the
forest stand and the urban area, which had an estimated mean residual error of 1.9 cm and
2.4 cm, respectively. In addition, in the study, the distances between trees were estimated
with a mean residual error of 0.21 m and 0.38 m for the urban area and the forest stand,
respectively. Analysis of the iPad LiDAR data provides accurate results in both the forest
and urban forest study areas when compared with field measurement techniques. Use
of the iPad system to characterize small forest areas has both limitations and advantages
to other manual field sampling and LiDAR scanning systems. Two important limitations
to note is that the iPad system cannot typically be used to determine tree height, and
it can be difficult to scan trees in areas with significant groundcover. Tree height is a
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critical forest metric that would have to be acquired through a separate measurement
technique (separate LiDAR distance sensor, aerial LiDAR data, etc.) to allow the iPad to
replace existing methods. The iPad LiDAR is much lower cost compared with other LiDAR
systems, which may increase the use of LiDAR for urban forest and forest characterization.
The Apple LiDAR system is rapidly becoming available on millions of devices which could
allow for crowdsourcing of forest areas scans because the use of this system requires little
to no training. An additional advantage of the iPad system compared with manual tree
measurement techniques is that the result of the scan is an accurate 3D representation of
the trees that could be used to evaluate aspects of forest density not possible with manual
methods. However, it is not practical to employ the iPad LiDAR system in large forest
areas because of the time required to scan each tree, and this technique may be best suited
for urban environments which commonly have less ground cover vegetation between trees,
making it easier to navigate when scanning. The iPad system does not directly replace
advanced LiDAR scanning systems and manual plot methods, but because if it’s ease of
use, accuracy, and low cost, it could become a valuable tool in resource limited countries in
both forest and urban areas.
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