
Citation: Alibakhshi, A.; Saffarian, A.;

Hassannayebi, E. Socio-Economical

Analysis of a Green Reverse Logistics

Network under Uncertainty: A Case

Study of Hospital Constructions.

Urban Sci. 2024, 8, 171. https://

doi.org/10.3390/urbansci8040171

Academic Editor: Chia-Yuan Yu

Received: 23 August 2024

Revised: 29 September 2024

Accepted: 8 October 2024

Published: 11 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Socio-Economical Analysis of a Green Reverse Logistics Network
under Uncertainty: A Case Study of Hospital Constructions
Alireza Alibakhshi 1, Amirreza Saffarian 2 and Erfan Hassannayebi 1,*

1 Industrial Engineering Department, Sharif University of Technology, Tehran 15119-43943, Iran
2 Industrial and Systems Engineering Department, University of Florida, 303 Weil Hall, P.O. Box 116595,

Gainesville, FL 32603, USA
* Correspondence: hassannayebi@sharif.edu

Abstract: This study addresses the critical issue of managing construction and demolition waste
in urban environments. Effective waste management is not only essential for minimizing costs but
also for enhancing sustainability and reducing environmental impact. In this context, the research
introduces a green reverse logistics model designed for C&D waste management, integrating both
sustainability considerations and current regulatory frameworks, such as LEED. A key innovation of
this model is the incorporation of electric vehicles for waste collection, compared to traditional diesel
vehicles, as part of the logistical process, as carbon emission is a significant concern. By evaluating
the limitations and opportunities associated with electric vehicles, alongside robust optimization
to manage uncertainties in waste collection, the model seeks to balance environmental, social, and
economic objectives. It further incorporates decision-making tools like fuzzy logic to optimize
multi-objective outcomes across various waste facilities, including separation labs, incineration
centers, recycling centers, and landfills. A case study conducted in Tehran validates the model,
highlighting the socio-economic and environmental benefits of using electric vehicles in waste
collection. Sensitivity analysis indicates that hybrid and socially focused policies perform best under
high-impact scenarios, although results can differ with varying data sets. Despite the complexity
of managing reverse logistics networks, this research provides valuable insights for supply chain
planners. It suggests potential future directions, such as the application of metaheuristic algorithms
and improved stochastic planning methods.

Keywords: green reverse logistics design; electric vehicles; hospital construction; socio-economical
analysis; green transportation

1. Introduction

The new urban lifestyle has led to the mass construction of buildings, particularly
skyscrapers, marking a new era for construction and construction management. With this
change in construction style, it is important to consider the management of waste from
demolition and construction activities, as millions of tons of solid waste will be produced
worldwide. In 2014, China produced 1130 million tons of construction waste, ranking as
the top global generator. The United States generated 534 million tons of construction
waste in the same year, including building activities, road and bridge construction, and
other construction activities [1]. Dealing with construction and destruction wastes depends
heavily on the type of material they contain. According to [2], construction and demolition
waste pertains to materials or by-products resulting from the construction process, produced
due to non-compliance with specifications, non-utilization or excessive use of resources,
and damage to resources and infrastructure. Dealing with these kinds of materials requires
different strategies. For solid waste, some non-hazardous materials can be buried in landfills,
while others should be incinerated. In modern waste management, there are different
policies around the world on how to treat solid waste. There are several approaches around
the world established to deal with construction and demolition wastes. In 2017, Umar et
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al. conducted a study focusing on active policies for construction and demolition waste
management [3]. In this research, we analyzed various policies from around the world and
found that one of the most effective approaches is to minimize waste at construction sites and
reuse materials whenever possible. However, some may argue that this policy is unrealistic
enough to significantly reduce waste, as operational costs may exceed regular operations
when focusing on waste minimization. The policies also sought efficient ways to manage
landfills and waste transportation to promote sustainable construction practices [4,5]. In
order to manage waste at construction sites, various techniques can be employed. Thermal
treatment is used to efficiently remove chlorine and organics, while stabilization is used for
cement disposal and stabilization. Separation and landfilling can be employed for recycling
and direct disposal, respectively [6]. Separation centers play a pivotal role in the waste
management of construction sites. They are capable of processing a huge number of wastes
and determining whether they are recyclable. Furthermore, these centers have an important
role in identifying hazardous materials and separating them from non-hazardous ones [7].
As the importance of efficient waste management for constructional sites is comprehended,
there is another side to the story of waste management: the environmental impact of each
policy. The key aspect of every waste disposal process is the vehicle used to transport
the waste and the amount of carbon emissions produced by it. In today’s urbanized
world, carbon footprint is a significant concern for environmental researchers. This concern
primarily focuses on trucks and other vehicles that rely on fossil fuels for operation. This is
when the advancement of electric vehicles will answer most concerns [8].

Electric vehicles have gained a lot of attention recently due to their ability to reduce
carbon dioxide emissions produced by diesel cars and trucks. The first prototype of
the electric-powered vehicles was introduced in 1832 by Anderson [9]. Greenhouse gas
(GHG) emissions are projected to double in the following years if current policies remain
unchanged, with transportation vehicles being a major source of GHGs [10]. Electric
vehicles are receiving significant attention for further development through governmental
policies such as tax reductions, budget allocations, and resource allocations to encourage
manufacturers and users to choose electric vehicles over diesel cars. Electric vehicles have
some limitations when used for transportation. Because they rely on batteries for operation,
their range and the availability of charging stations are significantly lower than that of
diesel vehicles. This is one of the main reasons why, despite recent advances, diesel vehicles
are still preferred [11].

The problems related to supply chain and reverse logistics are the kind of issues that
can assist industries in dealing with transportation, inventory complexities, and decision
making. The term “Supply Chain” (SC) was first used in a study in 1983 by Oliver et al. [12].
Since then, researchers have been working on designing optimized supply chains to address
existing concerns. There are two main categories of supply chain problems: deterministic
supply chain management and stochastic supply chain management. Stochastic supply
chain management is used when researchers want to mathematically model their supply
chain flows in an uncertain way to be closer to the real-world situation [13]. In stochastic
supply chain management, there is always room for improvement and consideration of
new uncertain variables. In construction sites, the problem of transporting and dealing
with waste is not deterministic, and several factors can make this process uncertain. For
instance, it is never certain how much material can be collected from each site during
construction and demolition. Dealing with uncertainties can be addressed using various
solutions such as robust optimization and scenario-based modeling. All of these solutions
can factor in uncertain events in our models.

Nowadays, SC models have improved to include multiple objectives and optimize
them all at once. For instance, common objectives include minimizing the cost of the
operation and unit for each SC model. This objective is widely used in research. Researchers
have also started adding more objectives related to sustainability and social impacts due
to the nature of the problem. However, adding these objectives can make the problem
more difficult, as they do not have the same metrics and cannot be optimized together.
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In 1970, Bellman et al. were the first to apply fuzzy environments in decision-making
to address problems with unclear boundaries. Fuzzy environments and multi-objective
decision-making (MODM) can be valuable tools for researchers to solve such problems [14].

The management of C&D waste in urban areas presents significant challenges, par-
ticularly in balancing environmental, economic, and logistical concerns. Despite the im-
plementation of waste management policies, urban centers continue to face difficulties in
minimizing the environmental impact of waste collection and disposal. One of the primary
issues is the reliance on diesel-powered vehicles for waste transportation, which increases
greenhouse gas emissions and contributes to urban pollution. To address both environmen-
tal and economic objectives, recycling plays a crucial role in the waste management process.
However, effective recycling requires specialized centers or labs to accurately assess the
recyclability and safety of waste materials. Establishing these facilities would improve
the efficiency and reliability of waste management planning, enabling more sustainable
outcomes. In this research, a new green supply chain model based on the latest waste
management policies at construction sites, such as LEED (leadership in environmental
design and green building policy), is proposed. LEED is a globally recognized certification
system that promotes sustainability in building design, construction, and operation. LEED
provides a framework for creating healthy and environmentally responsible buildings.
In the context of construction and demolition waste management, LEED encourages the
reduction, reuse, and recycling of materials to minimize landfill contributions and lower
carbon footprints. Incorporating LEED principles into waste management strategies not
only aligns with environmental goals but also supports long-term sustainability in the
construction industry [15]. This model focuses on reverse logistics and examines the envi-
ronmental impact of using electric vehicles compared to traditional diesel vehicles for waste
collection. As mentioned earlier, the model considers the limitations of electric vehicles
for transporting waste to the centers. Additionally, there are uncertainties regarding the
amount of waste collected from each site, and a robust formulation is used to address these
uncertainties. This paper makes the following contributions:

• Designing a novel reverse logistics model under uncertainty that includes separation
labs, incineration centers, recycling centers, and landfills.

• Using robust formulation to deal with uncertain constraints.
• Optimizing environmental and social impacts as well as economic aspects.
• Solving the problem in a fuzzy environment to analyze the importance of each factor.
• Analyzing the impact and disparity of using electric vehicles versus diesel in environ-

mental and economic aspects.
• Focusing on LEED policies for the recycling of construction and demolition wastes

and incorporating them into the mathematical modeling.
• Conducting a case study of constructional waste management in Tehran.
• Conducting a socio-economical analysis with respect to the environmental aspects to

choose the best strategy and scenario.

The rest of the paper is structured as follows: the literature on green supply chains is
reviewed in Section 2. Then, the mathematical formulation and methodology of the paper
are explained in Section 3. Section 4 provides numerical results of the proposed model in a
case study in Tehran, and in Section 5, the results are discussed, and managerial insights
are mentioned. Also, potential future research is mentioned in Section 5.

2. Literature Review

This section covers two main ideas. First, it explores the existing literature on supply
chain management and green supply chain management. Then, it delves into the existing
literature on electric vehicles and their role in transportation and logistics, especially in waste
management. Table 1 compares this paper to the closest literature in C&D waste management,
and the literature on sustainable supply chains and the use of electric vehicles in the supply
chain will be scrutinized in the following subsections.
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Table 1. Literature on the C&D waste management supply chain and comparison with this study.

Objective Parameter Type Aspects Soloution Approach Model Transportation Vehicle
Paper

Multi Single Deterministic Stochastic Economical Social Environmental Policy Exact Hueritics MILP MINLP Electric Diesel

Lin et al. (2020) [16] ! ! ! ! ! ! !

Hannan et al. (2018) [17] ! ! ! ! ! ! !

Pan et al. (2020) [18] ! ! ! ! ! !

Ahmed et al. (2021) [19] ! ! ! ! ! !

Shi et al. (2020) [20] ! ! ! ! ! ! !

Yu et al. (2017) [21] ! ! ! ! ! ! !

Liu et al. (2024) [22] ! ! ! ! ! ! ! !

Halvorsen et al. (2023) [23] ! ! ! ! ! ! !

This Paper ! ! ! ! ! ! ! ! !
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2.1. Reverse Logistics, Supply Chain Management, and Sustainability

In the last decade, numerous researchers have worked on the sustainability of supply
chain network design, considering various aspects and factors of context-based supply
chains to optimize the network. Akçalı et al. conducted a literature review paper on
reverse logistics up until 2008. They scrutinized the methodological contributions and new
characteristics observed in reverse logistics and closed-loop supply chain networks [24].
In 2009, Seuring and Müller conducted a comprehensive review of sustainable supply
chain management literature, analyzing 191 papers published between 1994 and 2007. The
authors observed that most research is concentrated on environmental or “green” issues,
with limited attention to the social dimension and the integration of all three pillars of
sustainability: economic, environmental, and social [25]. In 2010, Nagurney et al. presented
an analytical framework for supply chain network design. In their research, they aimed to
minimize the operational and fixed costs of the network, reduce greenhouse gas emissions,
and conduct numerical examples to validate their models. This research involved elements
of multi-criteria decision-making as well as rigorous modeling [26]. Sarkis et al. explored
the strategic role of reverse supply chain logistics in enhancing the reclamation, reuse,
and recycling of products at the end of their life cycle, with an emphasis on minimizing
landfill use, fuel consumption, and associated costs. While much of the existing research in
reverse logistics has focused on economic and environmental sustainability, the social and
ethical dimensions remain underexplored. In response to this gap, the authors propose a
framework that links social sustainability indicators with reverse logistics practices, provid-
ing a comprehensive profile of reverse logistics for social sustainability. By incorporating
international case studies, the paper offers practical insights and concludes with recom-
mendations for future research, encouraging a more holistic approach to sustainability in
reverse logistics [27]. Pishvaee et al. introduced a new robust optimization framework
to address input data uncertainty. They aimed to consider the business potential of the
closed-loop supply chain and employed mixed integer linear programming to model the
network. The optimization model also factored in transportation costs. Finally, they tested
their network using various problem instances of different sizes [28]. In 2012, Pishvaee et al.
developed a multi-objective fuzzy optimization network. This time, they took the environ-
mental impacts of the designated supply chain into consideration. The goal of this network
was to minimize costs and environmental impacts, such as pollution. The methodology
used for this research was life cycle assessment. Finally, a real case study was used to
evaluate this sustainable supply chain network [29]. Ramezani et al. offered a compre-
hensive optimization model that includes both forward and reverse logistics processes
and is applicable to a wide range of industries, including electronics, digital equipment,
and vehicles. Given the strategic and sensitive nature of logistic network design, which is
both time-consuming and costly, the robust optimization approach solves these problems
by taking into account a limited number of scenarios to account for uncertainty [30]. In
2014, Zhang et al. used an industrial case study to develop a novel supply chain network
in which they included economic, environmental, and social impacts as deciding factors
to optimize. For the results, they found out that there is a trade-off between decreasing
costs and lead time. For this network, they tried multi-objective optimization, and they
prioritized the improvement of environmental performance [31].

Defining key indicators and good decision variables is one of the most important
factors for good research. In 2017, Sangwan conducted a novel study to determine good
decision variables and indicators for reverse logistics problems. This research proposed
locations, capacities, and collection methods as good decision variables and noted that the
interactions between activities could be good indicators for these kinds of networks [32]. In
2018, Bal et al. proposed a novel goal-programming approach to solve electronic equipment
waste management, considering its legal, economic, environmental, and social aspects.
The core aspect of this study was focusing on household appliances and transporting
them to recycling centers to extract and reuse the raw materials from them. This paper
was the first in the literature to try to consider real conditions and legalization in its op-
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timization model [33]. In an effort to make their work more closely resemble real-world
conditions, the researchers aimed to account for uncertainty in mathematical modeling.
There are various approaches to optimizing models when dealing with uncertainty. In 2020,
Zarbakhshnia et al. developed a network under uncertainty to address the reverse logistics
problem characterized by uncertain demands. Their design takes into consideration the
environmental and social impacts of optimizing this network. This research was modeled
using probabilistic mixed-integer linear programming, and the researchers employed the
non-dominated sorting genetic algorithm to solve it [34]. In 2021, a case study was con-
ducted in Slovakia that prioritized the protection of natural resources and the elimination
of environmental barriers. This study thoroughly focused on the environmental aspects of
reverse logistics in Slovakia, taking into consideration environmental policies and the lack
of financial resources [35].

In recent years, the uncertain reverse logistics model for specific industries has gained a
lot of attention among researchers. Nowadays, supply chain planners are trying to propose
new networks based on specific applications instead of proposing general networks. In
2022, Gholizadeh et al. designed sustainable reverse logistics in the polystyrene appliance
industry. They considered the demands and recovery rate to be uncertain and optimized
the network with the help of the robust optimization method. Some heuristics were used to
solve this problem, such as genetic and simulated annealing. One of the differences between
this study and most of the studies in the literature was the use of non-linear programming in
their methodology [36]. As of 2024, several researchers have designed innovative networks.
For example, Shi et al. designed a network that used electric vehicles to transport kitchen
waste. Robust optimization and scenario analysis were used to optimize the capacity of this
model [37]. Another study by Najm et al. used robust optimization for electrical reverse
logistics in a case study. This multi-objective optimization problem was solved in a fuzzy
environment to balance the objective function between social, environmental, and economic
aspects [38].

2.2. Electric Vehicles in Green Supply Chain and Logistics Networks

Electric vehicles are one of the essential components of green supply chains and
reverse logistics networks as they do not emit any CO2 or any other GHGs. However, these
vehicles have always had some drawbacks, such as the significantly lower distance they can
cover with one charge compared to diesel cars. There has been a lot of research regarding
the use of electric vehicles in reverse logistics and green supply chains. In 2015, Lloyd et al.
designed a supply chain network in Tunisia for vaccine delivery with the aim of net-zero
power usage. This research addressed scaling and implementation as the challenges for
using electric vehicles to transport vaccines [39]. In 2016, Duarte et al. researched alternative
solutions in urban mobility and addressed electric vehicles as an effective way to overcome
environmental concerns in urban logistics. This research took place in Lisbon and used
real data to obtain operational patterns [40]. In 2017, Wątróbski et al. attempted to address
urban logistics planning and environmental concerns by implementing a multi-criteria
decision-making framework. This study involved ecological footprints and used TOPSIS
as the methodology to solve the problem [41].

With the advancement of electric vehicles, an increasing number of researchers are
utilizing electric vehicles in their studies to develop more sustainable logistic networks and
replace traditional vehicles. Location and vehicle routing problems have always been im-
portant for optimizing logistics networks, and in recent years, routing problems involving
electric vehicles have gained significant attention. In 2018, Schiffer et al. designed a location
routing problem considering the uncertainty of demand and service time windows. In this
research, they addressed the criteria for using electric fleets and charging stations [42]. In
2020, Zhao et al. attempted to address the urban cold logistics problem by developing a
network and electric vehicle routing system that considers changing traffic conditions. They
applied adaptive ant colony metaheuristics optimization to minimize the total distribution
cost, improve cold chain logistics performance, and factor in economic and fresh value
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loss costs [43]. Akram et al. made a significant contribution to the study of battery state
changes by considering reverse logistics networks. Their research utilized the Markov
chain steady-state census model to analyze reverse logistics processes. The study also
examined the economic benefits of recycling and extending battery lifespan [44].

Recently, researchers have been focusing on developing effective policies to encourage
business owners to use electric cars. In 2022, Zhao et al. conducted a study on dynamic
subsidy policy adjustments using a game model. They proposed feasible management
solutions for governments and enterprises to encourage the use of electric vehicles in cold
chain logistics [45]. Butt et al. explored the critical role of reverse logistics in advancing the
circular economy, emphasizing the need for contemporary business models to integrate
social, economic, and environmental objectives. Through a multiple case study approach
involving 40 semi-structured interviews with reverse logistics specialists from the four
largest retailing firms in the United Arab Emirates (UAE), the study highlights several ways
in which reverse logistics contribute to a circular economy [46]. Recent studies have high-
lighted the importance of mobile renewable energy charging stations in promoting electric
vehicle adoption and reducing fossil fuel reliance. A two-stage stochastic programming
approach, supported by differential evolutionary (DE) and DE Q-learning (DEQL) algo-
rithms, has proven effective in optimizing the location and management of these stations,
with DEQL demonstrating superior performance in reducing operational costs and carbon
emissions [47]. In 2024, Li et al. conducted a study where they designed an optimization
model for electric vehicles in sustainable logistics. They utilized several meta-heuristics to
solve the optimization mathematical model and applied this model in the context of a cold
supply chain [48].

3. Problem Definition

The literature review highlighted the recent research focus on C&D waste management.
With the current situation of construction sites in big cities, it is essential to design an
efficient supply chain network. This research aims to develop a reverse logistics network
to efficiently collect and transport construction waste to specialized facilities for sorting
into recyclable and non-recyclable materials. In the initial phase of this network, there
are multiple construction sites, and trucks and low-capacity vehicles are responsible for
collecting waste based on their designated capacity. The vehicles used in this research are
assumed to operate using only electric power sources; however, it is important to note that
this assumption has some limitations, which are addressed in the MILP formulation.

After collecting and transporting the materials, there are three options for where they
can go. The first option is for recyclable materials. These materials will be taken to the
recycling center based on the current policy. These policies are effective when the amount
of recyclable material exceeds the minimum threshold set by the policy. For example, if
70 percent of the material is recyclable, we can choose policies with a threshold below
70 percent. In addition to these recycling centers, there are two other options for waste
disposal: incineration centers and landfills. This model helps to choose between them based
on their distances, costs, and capacity. Incineration centers naturally have more capacity
than landfills, but their costs are higher. Landfills also have a drawback related to their
distance from city laboratories. Distance plays a significant role in our decision-making
since we use electric vehicles and trucks.

This research considered the economic, environmental, and social factors in the
decision-making process. The economic aspect of this issue is related to the fixed and
operational costs of each processing center, as well as the operational costs of electric
vehicles and trucks. The environmental impacts, however, have two stages in this research.
In the first stage, the power consumption is calculated for transportation, and in the second
stage, the model is solved with the assumption and consideration of diesel vehicles. This
comparison will show how much the environment can benefit from using electric vehicles.
In the later stages of this research, a thorough analysis will be conducted to illustrate
uncertainty’s impact on the mathematical formulation’s objective functions. Since this
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problem involves three main objective functions, the research will employ an interactive
fuzzy approach to manage the trade-offs between the decision-makers’ goals. The overall
scheme of this research is explained in Figure 1.

Figure 1. Overview of the methodology and experiments of this study.

For a better understanding, Figure 2 presents an overview of the reverse logistics. In
this reverse logistics network, decision-makers at construction sites and laboratories can
use electric vehicles, electric trucks, or a combination of both if the capacity is not exceeded.
For example, a construction site could choose to have three electric vehicles and two electric
trucks to transport their waste based on the predetermined goals set by objective functions.
The uncertainty of this network lies under the collectable wastes generated by each site.
Robust reformulation helps to deal with this uncertainty and analyze worst-case scenarios.
This section has three main subsections: the first subsection will introduce the parameters,
sets, variables, and the mathematical formulation of this problem in an integer linear form.
The second section is dedicated to the reformulation of the uncertain constraints based on
the robust optimization method. Finally, in the last section, an interactive fuzzy method is
introduced to optimize this multi-objective problem.
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Figure 2. Illustration of the proposed reverse logistics network.

3.1. Mixed integer linear formulation

In this section, we will present the notations, sets, parameters, and the main mixed
integer linear formulation of the reverse logistic network. Table 2 will introduce the sets
of the mathematical formulation, Table 3 will introduce the parameters, and Table 4 will
introduce the decision variables and their descriptions.

Table 2. Sets of the proposed formulation.

Name Description

V Set of construction sites ; v ∈ {1, . . . , V}
L Set of labs ; l ∈ {1, . . . , L}
LF Set of landfills ; l f ∈ {1, . . . , LF}
IC Set of incineration centers ; ic ∈ {1, . . . , IC}
OC Set of recycle centers ; oc ∈ {1, . . . , OC}

Table 3. Parameters of the proposed formulation.

Name Description

WGv Waste generated by construction sites v
LCl Capacity of lab l
LFCl f Capacity of landfill l f
ICCic Capacity of incineration center ic
CULl Unit operating cost of lab l
CFLl Fixed cost of lab l
CULFl f Unit cost of landfill l f
CFLFl f Fixed cost of landfill l f
CUICic Unit cost of incineration center ic
CFICic Fixed cost of incineration center ic
CUOCoc Unit cost of recycling center oc
CFOCoc Fixed cost of recycling center oc
TDVv,l Transportation distance from v to l
TDLFl,l f Transportation distance from l to l f
TDLIl,ic Transportation distance from l to ic
TDLOl,oc Transportation distance from l to oc
TCEV Unit transportation cost for electric vehicles
TCET Unit transportation cost for electric trucks
α Proportion of recyclable material
θ Proportion of non-recyclable material
EVC Electric vehicle capacity
ETC Electric truck capacity
LEV Electric vehicle distance limit
LET Electric truck distance limit
LIMV Electric vehicle number limit
LIMT Electric truck number limit
TECS Electric truck power consumption in km
VECS Electric vehicle power consumption in km
ERLl Employment of lab l
ERIic Employment of incineration center ic
EROoc Employment of recycling center oc
ERLFl f Employment of landfill l f
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Table 4. Desicion variables of the proposed formulation.

Name Description

gl 1 if lab l is used; 0 otherwise.
hl f 1 if landfill lf is used; 0 otherwise.
zic 1 if incineration center ic is used; 0 otherwise.
ooc 1 if recycling centers are used ; 0 otherwise.
qvlv,l amount of waste transported from v to l
ql fl,l f amount of waste transported from l to l f
qlil.ic amount of waste transported from l to ic
qlol,oc amount of waste transported from l to oc
nlevv,l number of electric vehicles used to transport waste from v to l
nl f evl,l f number of electric vehicles used to transport waste from l to l f
nicevl,ic number of electric vehicles used to transport waste from l to ic
nocevl,oc number of electric vehicles used to transport waste from l to oc
nletv,l number of electric trucks used to transport waste from l to l f
nl f etl,l f number of electric trucks used to transport waste from l to l f
nicetl,ic number of electric trucks used to transport waste from l to ic
nocetl,oc number of electric trucks used to transport waste from l to oc

The first objective function will focus on the economic aspects of the reverse logistics
network. This objective function will include the fixed and operational costs of each
facility, as well as the costs of electric trucks and vehicles. These costs will encompass the
following components:

- The fixed cost of laboratories:

FCOL = ∑
l

gl × CFLl . (1)

- The operating cost of laboratories:

UCOL = ∑
v

∑
l

qvlv,l × CULl . (2)

- The fixed cost of landfills:

FCOLF = ∑
l f

hl f × CFLFl f . (3)

- The operating cost of landfills:

UCOLF = ∑
l

∑
l f

ql fl,l f × CULFl f . (4)

- The fixed cost of incineration centers:

FCOIC = ∑
ic

zic × CFICic. (5)

- The operating cost of incineration centers:

UCOIC = ∑
l

∑
ic

qlil,ic × CUICic. (6)

- The fixed cost of recycling centers:

FCOOC = ∑
oc

ooc × CFOCoc. (7)

- The operating cost of recycling centers:

UCOOC = ∑
l

∑
oc

qlol,oc × CUOCoc. (8)

- The operating cost of electric vehicles responsible for transporting the waste from
construction sites to laboratories:

UCOEVL = ∑
v

∑
l

nlevv,l × TCEV × TDVv,l . (9)

- The operating cost of electric trucks responsible for transporting the waste from
construction sites to laboratories:
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UCOETL = ∑
v

∑
l

nletv,l × TCET × TDVv,l . (10)

- The operating cost of electric vehicles responsible for transporting the waste from
laboratories to landfills:

UCOEVLF = ∑
l

∑
l f

nl f evl,l f × TCEV × TDLFl,l f . (11)

- The operating cost of electric trucks responsible for transporting the waste from
laboratories to landfills:

UCOETLF = ∑
l

∑
l f

nl f etl,l f × TCET × TDLFl,l f . (12)

- The operating cost of electric vehicles responsible for transporting the waste from
laboratories to incineration centers:

UCOEVIC = ∑
l

∑
ic

nicevl,ic × TCEV × TDLIl,ic. (13)

- The operating cost of electric trucks responsible for transporting the waste from
laboratories to incineration centers:

UCOETIC = ∑
l

∑
ic

nicetl,ic × TCET × TDLIl,ic. (14)

- The operating cost of electric vehicles responsible for transporting the waste from
laboratories to recycling centers:

UCOEVOC = ∑
l

∑
oc

nocevl,oc × TCEV × TDLOl,oc. (15)

- The operating cost of electric trucks responsible for transporting the waste from
laboratories to recycling centers:

UCOETOC = ∑
l

∑
oc

nocetl,oc × TCET × TDLOl,oc. (16)

The first objective function containing the mentioned components is as follows:

MinZ1 = FCOL + UCOL + FCOLF + UCOLF+

FCOIC + UCOIC + FCOOC + UCOOC+

UCOEVL + UCOETL + UCOEVLF + UCOETLF+

UCOEVIC + UCOETIC + UCOEVOC + UCOETOC. (17)

The second objective function focuses more on the power consumption of electric
vehicles and trucks and aims to minimize them. this objective function contains the
following components:

- The power consumed by electric vehicles from C&W sites to laboratories:

EVL = ∑
v

∑
l

nlevv,l × TDVv,l × VECS. (18)

- The power consumed by electric trucks from C&W sites to laboratories:

ETL = ∑
v

∑
l

nletv,l × TDVv,l × TECS. (19)

- The power consumed by electric vehicles from laboratories to landfills:

EVLF = ∑
l

∑
l f

nl f evl,l f × TDLFl,l f × VECS. (20)

- The power consumed by electric trucks from laboratories to landfills:

ETLF = ∑
l

∑
l f

nl f etl,l f × TDLFl,l f × TECS. (21)
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- The power consumed by electric vehicles from laboratories to incineration centers:

EVIC = ∑
l

∑
ic

nicevl,ic × TDLIl,ic × VECS. (22)

- The power consumed by electric trucks from laboratories to incineration centers:

ETIC = ∑
l

∑
ic

nicetl,ic × TDLIl,ic × TECS. (23)

- The power consumed by electric vehicles from laboratories to recycling centers:

EVOC = ∑
l

∑
oc

nocevl,oc × TDLOl,oc × VECS. (24)

- The power consumed by electric trucks from laboratories to recycling centers:

ETOC = ∑
l

∑
oc

nocetl,oc × TDLOl,oc × TECS. (25)

Considering the mentioned components, the second objective function aims to mini-
mize power consumption by the following equation:

MinZ2 = EVL + ETL + EVLF + ETLF + EVIC + ETIC + EVOC + ETOC. (26)

The third objective function takes into account social factors and aims to maximize
employment using each center or lab. This objective function is as follows:

MaxZ3 = ∑
l

gl × ERLl + ∑
l f

hl f × ERLFl f + ∑
ic

zic × ERIic + ∑
oc

ooc × EROoc. (27)

The first and second objective functions were minimizing power consumption and
costs for this reverse logistics model, while the third aimed to maximize the social im-
pacts and employment of the local people. These objective functions are subjected to the
following constraints:

WGv = ∑
vl

qvlv,l ; ∀v, (28)

α × (∑
l

∑
l f

ql fl,l f + ∑
l

∑
ic

qlil,ic) ≤ θ × ∑
l

∑
oc

qlol,oc, (29)

∑
v

qvlv,l = ∑
l f

ql fl,l f + ∑
ic

qlil,ic + ∑
oc

qlol,oc; ∀l, (30)

∑
v

qvlv,l ≤ LCl × gl ; ∀l, (31)

∑
l

ql fl,l f ≤ LFCl f × hl f ; ∀l f , (32)

∑
l

qlil,ic ≤ ICCic × zic; ∀ic, (33)

nlevv,l × EVC + nletv,l × ETC ≥ qvlv,l ; ∀v, l, (34)

nl f evl,l f × EVC + nl f etl,l f × ETC ≥ ql fl,l f ; ∀l, l f , (35)

nicevl,ic × EVC + nicetl,ic × ETC ≥ qlil,ic; ∀l, ic, (36)

nocevl,oc × EVC + nocetl,oc × ETC ≥ qlol,oc; ∀l, oc, (37)

nlevv,l × (TDVv,l − LEV) ≤ 0; ∀v, l, (38)

nletv,l × (TDVv,l − LET) ≤ 0; ∀v, l, (39)

nl f evl,l f × (TDLFl,l f − LEV) ≤ 0; ∀l, l f , (40)

nl f etl,l f × (TDLFl,l f − LET) ≤ 0; ∀l, l f , (41)
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nicevl,ic × (TDLIl,ic − LEV) ≤ 0; ∀l, ic, (42)

nicetl,ic × (TDLIl,ic − LET) ≤ 0; ∀l, ic, (43)

nocevl,oc × (TDLOl,oc − LEV) ≤ 0; ∀l, oc, (44)

nocetl,oc × (TDLOl,oc − LET) ≤ 0; ∀l, oc, (45)

∑
v

∑
l

nlevv,l + ∑
l

∑
l f

nl f evl,l f + ∑
l

∑
ic

nicevl,ic + ∑
l

∑
oc

nocevl,oc ≤ LIMV, (46)

∑
v

∑
l

nletv,l + ∑
l

∑
l f

nl f etl,l f + ∑
l

∑
ic

nicetl,ic + ∑
l

∑
oc

nocetl,oc ≤ LIMT, (47)

gl , hl f , zic, ooc ∈ {0, 1}, (48)

qvlv,l , ql fl,l f , qlil,ic, qlol,oc ≥ 0, (49)

nlevv,l , nletv,l , nl f evl,l f , nl f etl,l f nicevl,ic, nicetl,ic, nocevl,oc, nocetl,oc ∈ N. (50)

Constraint (28) ensures that all of the generated waste will be transferred into the labs.
This constraint will be reformulated in the robust optimization reformulation to take into
account the uncertainty of collectible wastes. Constraint (29) ensures that based on the
selected policy, the proportion of wastes to be recycled will be determined. The inflow
and outflow of this network will be controlled by constraint (30). Constraints (31)–(33)
take into account the capacity constraint on each facility. As one of the assumptions in this
network, the recycling center does not have a determined capacity. Constraints (33)–(37)
ensure that the material transferred between the facilities is distributed between trucks
and vehicles in a way that their capacity is not exceeded. As mentioned in the previous
sections, electric vehicles have limitations regarding the distance they can cover; therefore,
constraints (38)–(45) ensure that every electric truck and vehicle only cover the distance
they can. In that way, some of the roads between facilities cannot be covered by certain
vehicles. Constraints (46) and (47) are responsible for making sure this model uses cars and
trucks according to the number of cars and trucks available.

3.2. Robust Formulation

In this problem, there is uncertainty at each construction site. The waste generated
by each construction site has a certain rate of collectibility. Since there are no accurate
measurements to determine this rate of collectibility, a robust formulation can be the
appropriate approach to consider the uncertainty in this problem. For this formulation, this
research will utilize the Bartimas and Sim method [49] in the robust formulation. In order to
reformulate this problem, the rate of collectibility, γ, is introduced. γ is a number between 0
and 1 and will be used in the first constraint. As γ is uncertain, the baseline method for the
reformulation suggested that this parameter can be in the interval of [γ − σ̂, γ + σ̂], where
σ̂ is the deviation from γ and will take into account the uncertainty of the parameter γ. In
addition to γ, this reformulation technique needs two auxiliary variables as well. P and Z
are the auxiliary variables.

Considering this reformulation technique, the constraint (28) can be reformulated
as follows:

WGv × (γv + Pv + ZvΓ) ≤ ∑
l

qvlv,l ; ∀v, (51)

WGv × (γv + Pv + ZvΓ) ≥ ∑
l

qvlv,l ; ∀v, (52)

Pv + Zv ≥ σ̂. (53)

3.3. Interactive Fuzzy Optimization

As discussed in Section 3, there are three objective functions that need to be optimized.
The decision-making process can be made easier using interactive fuzzy optimization
methods for multi-objective optimization. Managers or supply chain planners can define
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the importance of each objective in relation to other objectives and then optimize this reverse
logistics problem. One of the most common approaches in interactive fuzzy optimization
is the TH interactive fuzzy method [50]. In this method, the planner will directly determine
the degree of satisfaction for each objective function.

The first step of this fuzzy approach entails finding the positive ideal solution for
each objective function. This is shown with the symbol ZPIS. The ZPIS for our objective
functions are calculated using the following equation:

ZPIS
1 = MINZ1; ZPIS

2 = MINZ2; ZPIS
3 = MAXZ3. (54)

In addition to the PIS, a negative ideal solution (NIS) should be calculated as well.
This can be achieved by solving each MILP problem, but as these calculations are time-
consuming and computational costs are high, the estimation of NIS using PIS is an effective
way to deal with this situation. The related NIS can be estimated as follows:

ZNIS
h = MAXk=1,2,3{Zh(v∗k )}; h = 1, 2, (55)

ZNIS
h = MINk=1,2,3{Zh(v∗k )}; h = 3. (56)

After determining the NIS and PIS for each objective function, the linear membership
function for each objective function is determined. Figures 3 and 4 are the illustrations of
this membership function.

Figure 3. Linear membership function for Z1 and Z2.

Figure 4. Linear membership function for Z3.
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µ1(x) =


0, if Z1 ≤ ZPIS

1
ZNIS

1 −Z1

ZNIS
1 −ZPIS

1
, if ZPIS

1 ≤ Z1 ≤ ZNIS
1

1, if Z1 ≥ ZNIS
1

, (57)

µ2(x) =


0, if Z2 ≤ ZPIS

2
ZNIS

2 −Z2

ZNIS
2 −ZPIS

2
, if ZPIS

2 ≤ Z2 ≤ ZNIS
2

1, if Z2 ≥ ZNIS
2

, (58)

µ3(x) =


0, if Z3 ≥ ZPIS

3
Z3−ZNIS

3
ZPIS

3 −ZNIS
3

, if ZNIS
3 ≤ Z2 ≤ ZPIS

3

1, if Z3 ≤ ZNIS
3

. (59)

At the final stage of this interactive fuzzy approach, the auxiliary multi-objective MILP
model is transformed into an equivalent single-objective MILP using the following new
auxiliary formulation.

max λ(v) = γλ0 + (1 − γ)∑
h

θhµh(v) (60)

s.t λ0 ≤ µh(v), h = 1, 2, 3

v ∈ F(v), λ0 and γ ∈ [0, 1].

3.4. Tehran Case Study

Tehran is one of the oldest and largest capitals in the world. Many hospitals and tall
buildings have been built in the past that are not compatible with modern living. One of
the first things business owners do is demolish these old buildings and build new ones that
are safer and more efficient. Most of these buildings are located in the city center; however,
there are some old skyscrapers situated in the vicinity of Tehran. Laboratories are mostly
in the vicinity of Tehran, and one of them, which has a substantial capacity and is close to
Tehran, is located in a city adjacent to Tehran. Despite not being in Tehran, it is being used
due to its size and proximity to the city. Landfills and incineration centers are all outside
of the city, but generally, incineration centers are closer to the city than landfills; however,
their processing costs are significantly higher. Figure 5 shows a graphical representation of
this case study.

The demolition project includes six hospitals, four specialty hospitals/clinics, and
one sports clinic that has been selected for renovation and reconstruction. To improve
supply chain planning, it is necessary to estimate the weight of the waste produced. This
estimation involves various factors such as the height and area of each floor, as well as
the total number of floors in each building. Detailed information for these complexes is
available in Table 5. In this estimation, there are several assumptions. The weights of
each material used in the building are deemed different, and the percentage of usage of
each material is extracted from the blueprint of the building. The next assumption is that
we overlook other materials used in the buildings as they do not constitute a significant
percentage and can be transferred easily.

There are always several concerns about transporting waste to construction sites. The
limited number of trucks and vehicles available is a significant problem, especially as, in
this research, the use of electric trucks and vehicles is being scrutinized. The number of
manufactured electric trucks is relatively lower than electric vehicles, but at the same time,
these electric vehicles have less capacity, and their fixed costs may exceed the fixed cost of
using the electric truck.
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Figure 5. A graphical illustration of the case study in Tehran.

Table 5. Detailed information about the demolition sites.

Sites Category No. Floors Concrete Steel Brick Drywall Square Feet Total Weight in Pounds

1 Hospital 12 65% 20% 10% 5% 6900 173,052,000

2 Speciality
Hospital 6 80% 15% 5% 5% 8000 96,480,000

3 Speciality
Clinic 9 70% 20% 10% 10% 7500 147,150,000

4 Hospital 9 60% 30% 5% 5% 5400 118,827,000
5 Hospital 7 75% 15% 5% 5% 9000 121,905,000
6 Hospital 12 80% 5% 5% 10% 4200 77,364,000

7 Speciality
Hospital 17 50% 30% 10% 10% 6000 241,740,000

8 Sports
Clinic 2 80% 10% 10% 0% 12,000 43,440,000

9 Speciality
Hospital 9 80% 15% 5% 5% 8000 144,720,000

10 Hospital 3 60% 30% 10% 0% 18,000 134,460,000
11 Hospital 9 75% 15% 5% 5% 5000 87,075,000

Each laboratory and waste management center has a specific capacity that cannot be
exceeded, as outlined in Table 6. It is important to note that the recycling centers in this
study are assumed to have unlimited capacity, as their actual capacity far exceeds the scale
of this study.

Table 6. Detailed information about waste management facilities.

Landfills Capacity (Pounds) Labs Capacity (Pounds) IC Center Capacity (Pounds)

1 7,900,000 1 190,000,000 1 123,900,000
2 29,500,000 2 230,000,000 2 432,800,000
3 76,400,000 3 1,850,000,000 3 321,700,000
4 9,500,430 4 465,000,000 - -
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The distance between the centers should be calculated as the electric vehicles’ efficiency
will be compared, and it has a direct effect on the cost of operation for each electric vehicle
and truck. The estimation of the distance between each facility and site is determined in
Tables 7–10.

Table 7. The distance between construction sites and labs.

Site/Lab (km) 1 2 3 4 5 6 7 8 9 10 11

1 16 11 12 15 9 14 17 14 10 29 6
2 25 22 19 17 17 14 15 11 5 21 11
3 27 27 21 15 20 13 10 8 10 10 16
4 43 47 39 32 40 31 27 29 34 15 38

Table 8. The distance between landfills and labs.

Labs/Landfills (km) 1 2 3 4

1 49 80 69 28
2 39 68 57 27
3 40 64 52 38
4 52 60 48 62

Table 9. The distance between recycling centers and labs.

Labs/Recycling Centers (km) 1 2 3 4

1 21 4 12 41
2 33 8 4 33
3 40 19 15 22
4 59 43 40 3

Table 10. The distance between incineration centers and labs.

Labs/Incineration Centers (km) 1 2 3

1 14 33 45
2 21 24 35
3 32 13 25
4 56 12 12

4. Numerical Results and Analysis

In this section, a numerical analysis from a real case study in Tehran is implemented on
the mathematical model, and the effectiveness and robustness of the model are evaluated.
Section 4 will analyze the results of the first solution to the problem with default settings
and then analyze the effect of electric vehicles and trucks. In this subsection, first, the
problem will be solved with the consideration of trucks and vehicles being electric, and
then a different type of problem will be solved with the assumption of the cars using diesel
fuels to determine how much the use of electric cars and drive are helping the environment.
Moreover, a thorough analysis will be implemented in this subsection to determine the
sensitivity of the problem to the change in different values in the robust reformulation as
well as the MILP formulation. This research is implemented using GAMS 25.1 software in
an Intel i7 CPU machine with 16 gigabytes of RAM.

Data and Sensitivity Analysis

In this section, the Tehran case study will be analyzed, and different parameters of
this problem will be scrutinized. For the numerical results and data analysis, this research
will first determine six different approaches towards the decision-making process. The first
approach is the economic approach. In this approach, the decision-maker has two different
scenarios. The extreme scenario only values the economic factor in the interactive fuzzy
optimization problem (θ1 = 1, θ2 = 0, θ3 = 0). The “High” approaches in this section
consider other factors while giving the main factor more attention. For instance, in the high
scenario for economic decisions, the hyperparameters for the interactive fuzzy optimization
are distributed evenly between environmental and social factors, while the economic factor
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has a higher value than the other two. (θ1 = 0.7, θ2 = 0.15, θ3 = 0.15) social and economic
scenarios follow the same rules.

On the other hand, there are some scenarios that combine two decisions. These deci-
sions are labeled as hybrid decision-making. “Socio-Economical”, “Socio-Environmental”,
and “Enviro-Economical” decisions are the hybrid scenarios used for this problem type.
Socio-economical decisions focus on balancing social welfare and economic benefits; socio-
environmental decisions integrate social considerations with environmental sustainability;
enviro-economical decisions merge environmental impacts with economic viability. These
hybrid decision scenarios give equal attention to the two important factors, and in the
“Extreme” scenario, the third one is overlooked. However, in the “High” scenario, the
remaining weight will be given to the third factor as well. For instance, for the “Socio-
Economical” decision, the “Extreme” scenario’s hyperparameters are θ1 = 0.5, θ2 = 0.5,
and θ3 = 0, while the “High” scenario’s hyperparameters are θ1 = 0.4, θ2 = 0.4, and
θ3 = 0.2.

For the first stage of the data analysis, λ is compared in different scenarios to determine
the optimal policy for decision-making in the fixed situation. Figure 6 shows the value of λ
in different scenarios of decision-making. As mentioned earlier in this section, different
scenarios are determined by altering the value of θ. Social decision-making shows a
better response for our objective function in the “Extreme” scenario, while economic
decision-making has a better objective function in the “High” scenario. Environmental
decisions lead to moderate answers to the problem. However, hybrid decisions do not
show any improvement in comparison to the first three decision-making scenarios. The
worst-case scenario for the objective function is the “Extreme” scenario in socio-economical
decision-making.

Figure 6. λ in correspondence to different decision strategies.

Different strategies have different impacts on the cost and power consumption of
electric vehicles and trucks. As mentioned earlier, electric trucks and vehicles have some
limitations in comparison to diesel vehicles, and one of the most important limitations for
electric vehicles is their power consumption and battery usage. As expected, environmental
decisions are the best decision-making strategies for the power consumption of electric
vehicles. However, “Extreme” and “High” social decisions are the best and worst scenarios
available, respectively. This unexpected result might be because of the distance between
the facilities, as some of the facilities outside of the city have more capacity for employ-
ment. Between the hybrid decisions, socio-environmental decisions are more effective
than expected. Socio-environmental decisions cause less power consumption by electric
vehicles. Therefore, they are the best options for decision-makers when the environment is
the main concern.



Urban Sci. 2024, 8, 171 19 of 24

The worst hybrid decision for power consumption is the socio-economical decision, as
in the “Extreme” scenario, they have the most power consumed by the vehicles and rank
second in the worst cases among other scenarios. The environmental decision scenario,
both for “Extreme” and “High”, is effective for decision-makers if they want to minimize
power consumption and it is their priority. Figure 7 illustrates the power consumption for
electric vehicles in each scenario and strategy.

Figure 7. Power consumption of electric vehicles in different strategies.

One of the most important parameters for any supply chain planner or decision-
maker is the fixed cost and cost of the operation. It is evident that if the decision-maker
decides to adopt an economic strategy, the cost is minimized. The economic strategy
in both “Extreme” and “High” scenarios has been proven to be effective in minimizing
costs. However, power consumption is not that optimal. The worst scenario for cost
minimization is the “High” scenario from social strategy. This makes more sense as the
fixed and operating cost per unit is relatively higher for the factories that hire more people,
as wages are one of the fixed cost components. The best strategy between the hybrid
approaches is the enviro-economical strategy, which keeps the cost low in both “High”
and “Extreme” scenarios. This hybrid strategy also keeps power consumption low. Along
with the economic strategy, environmental strategies also happen to work well for cost
minimization. Figure 8 demonstrates the cost of each strategy and scenario.

Figure 8. Fixed operation costs in different strategies.
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The interactive fuzzy approach for this optimization problem has two important
hyperparameters. λ, which is the objective function of our fuzzy problem, and γ, which
is the compensation coefficient. In the proposed problem, by increasing γ, λ changes
and reacts to these changes. By increasing γ to a value of 0.4, the objective function first
increases by nearly 15%, and after a value of 0.4, it starts to decrease until the compensation
coefficient is up to 0.8. After this value, there is a minor increase in our objective function.
Figure 9 illustrates the changes and relationship between γ and λ. Figure 10 shows the
different values of γ and the related costs and power consumption. It is evident from
the graph that a value of 0.4 is the optimal value for the compensation level in order to
minimize costs and power consumption.

Figure 9. Sensitivity analysis of γ and λ.

Figure 10. Sensitivity analysis of γ correspondence with related costs and power consumption.

The price of robustness (Γ) is the parameter that works to determine realization
scenarios under uncertainty. By changing the price of robustness, the realization scenario
will change, and our objective function will change accordingly. Robust optimization works
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in a way that considers the worst-case scenario for optimization in a stochastic situation [51].
The price of robustness helps us consider the different scenarios with the reformulation
carried out in Section 3. In different scenarios, costs and power consumption act differently.
For instance, by increasing the price of robustness to 0.5, the cost decreases by nearly 65%;
on the other hand, the power consumption increases by 10%. After this value, both power
consumption and cost increase in the scenarios, and the robust price is more than 0.5. λ,
which is our objective function, has its optimal value when the robustness price has the
values 0.5 and 0.7. However, the scenario in which the price of robustness is 0.5 has the
maximum level of λ. Figures 11 and 12 show the sensitivity analysis for Γ.

Figure 11. Cost and power consumption related to different values of Γ.

Figure 12. Sensitivity analysis of Γ and λ.

One of the main policies for recycling items concerns LEDD rules. LEDD rules have
three different policies in their scoring system. The first policy, which receives zero points,
is where decision-makers recycle under 50% of their waste and do not make streamlines
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for recyclable materials. The second policy, which receives one point, is when two types
of materials have different streamlines, and half of the waste is recycled at the end of the
reverse logistics network. The last policy, which receives the full points, ensures that all
recyclable materials have streamlines for recycling, and 75% of the material will be recycled.
In this research, all three LEDD policies have been addressed and implemented in the
optimization model.

Table 11 shows the different policies implemented based on LEDD rules. In these
experiments, the number of electric vehicles and trucks used for the reverse logistics
network helped us to calculate CO2 emissions in case the planners were using diesel
vehicles. In this experiment, the first policy, which does not receive any points, has a better
objective but is not suitable to implement if the planner is looking for LEED points and
circular economy is the priority. However, the third policy is better as our objective function
focuses on optimality. Using electric vehicles and trucks based on these experiments helps
the environment by emitting at least 50,197,950 g less CO2 in this project. Also, if the
planners do not have electric vehicles or trucks, the second policy proved to be more
effective in CO2 emission, as less distance was be traveled by the vehicles.

Table 11. Different LEED policies and the parameter of solutions related to the policy implemented.

Policy Recycled Disposed Vehicles Trucks Power Consumption (wh) Cost (Rials) CO2 Emission (g) λ

1 25% 75% 76,996 358 161,625,600 205,198,000,000 55,428,200 0.89
2 50% 50% 90,000 833 363,030,500 305,857,000,000 50,197,950 0.48
3 75% 25% 78,299 99 236,678,900 429,797,000,000 58,875,050 0.68

5. Discussion and Conclusions

This research focused on socio-economical analysis with respect to environmental
factors of green reverse logistics in the construction and demolition industry. Existing
literature in this context did not mention the use of electric vehicles and their limitations in
the transportation of construction waste. Some studies researched policies and their effects,
and some just studied the environmental and economic factors of many construction sites’
reverse logistics network. This novel approach tried to tackle this problem using three
objective functions with constraints that consider electric transportation vehicles.

The research used stochastic planning and robust optimization methods to address
the uncertainty in the collection of waste in Tehran. The goal was to make the research
more applicable to real-world situations. Through sensitivity analysis, it was determined
that enviro-economic policies, particularly hybrid policies and social policies in the “High”
scenario, work best for the designated network. However, these results are subject to change
based on different situations and data. This innovative reverse logistics model assists supply
chain planners and managers in choosing a strategy based on their preferences, utilizing an
interactive fuzzy approach.

The Tehran case study was conducted to test the model in a real-life project and
situation. Data and sensitivity analysis were also conducted to determine the best values
of hyperparameters for the case study. This case study was specifically for the healthcare
industry and hospital construction, as it involved incineration centers and special landfills
for waste disposal.

The research experiments utilized LEED policies to assess their effectiveness and align-
ment with external recycling policies for construction materials. The study also identified
the number of trucks and vehicles involved and analyzed their power consumption. The
research demonstrated the potential CO2 emissions if supply chain planners opt for diesel
vehicles over electric trucks and vehicles.

There were some limitations in this study. The reverse logistics network was NP-Hard,
and commercial solvers like CPLEX were unable to handle these NP-Hard problems on
a large scale. Future researchers can propose metaheuristic algorithms to deal with large-
sized problems or use relaxation methods to overcome the CPU time needed to solve this
specific problem. Moreover, future researchers can use this network and enhance it in a
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way that would make the number of trucks and vehicles optimal by combining this model
with vehicle routing problem models. Moreover, the cost of battery disposal and the time
to pick up the waste can be considered as well. Finally, researchers can focus more on
stochastic planning and consider more variables as uncertain to make it as close as possible
to the real-world situation.
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