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Abstract: Highly attenuated poxviral vectors, such as modified vaccinia virus ankara (MVA),
are promising vaccine candidates against several infectious diseases. One of the approaches
developed to enhance the immunogenicity of poxvirus vectors is increasing the promoter strength
and accelerating during infection production levels of heterologous antigens. Here, we have
generated and characterized the biology and immunogenicity of an optimized MVA-based vaccine
candidate against HIV/AIDS expressing HIV-1 clade B gp120 protein under the control of a
novel synthetic late/early optimized (LEO) promoter (LEO160 promoter; with a spacer length
of 160 nucleotides), termed MVA-LEO160-gp120. In infected cells, MVA-LEO160-gp120 significantly
increased the expression levels of HIV-1 gp120 mRNA and protein, compared to the clinical vaccine
MVA-B vector expressing HIV-1 gp120 under the control of the commonly used synthetic early/late
promoter. When mice were immunized with a heterologous DNA-prime/MVA-boost protocol, the
immunization group DNA-gp120/MVA-LEO160-gp120 induced an enhancement in the magnitude of
gp120-specific CD4+ and CD8+ T-cell responses, compared to DNA-gp120/MVA-B; with most of the
responses being mediated by the CD8+ T-cell compartment, with a T effector memory phenotype.
DNA-gp120/MVA-LEO160-gp120 also elicited a trend to a higher magnitude of gp120-specific CD4+ T
follicular helper cells, and modest enhanced levels of antibodies against HIV-1 gp120. These findings
revealed that this new optimized vaccinia virus promoter could be considered a promising strategy
in HIV/AIDS vaccine design, confirming the importance of early expression of heterologous antigen
and its impact on the antigen-specific immunogenicity elicited by poxvirus-based vectors.

Keywords: promoter; vaccinia virus; MVA; HIV vaccine; gp120; mice; T and B cell immune responses

1. Introduction

The acquired immune deficiency syndrome (AIDS), caused by the human immunodeficiency
virus (HIV)-1, has become a pandemic that has spread worldwide, critically affecting human health.
According to the Joint United Nations Programme on HIV/AIDS, in 2018, an estimated 1.7 million
individuals became newly infected with HIV-1 and 770,000 people died from AIDS-related illnesses
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worldwide (www.unaids.org). Therefore, the finding of an effective vaccine against HIV/AIDS that
could limit the infection is essential to control disease progression within the next years.

An effective vaccine against HIV/AIDS should stimulate both humoral and cellular immune
responses to multiple HIV-1 viral antigens, including structural and regulatory proteins, and induce
strong, broad, polyfunctional, and durable T- and B-cell responses [1]. Although neutralizing antibodies
against gp120 are crucial, due to the difficulty in obtaining immunogens capable of inducing high titers
of neutralizing antibodies with broad specificities, a focus on HIV-1-specific T cell immune responses
has been one of the main efforts in developing HIV-1 vaccines [2]. For example, in non-human primates,
there is a good correlation between vaccine-induced HIV-1-specific cellular immunogenicity and
protection after a challenge with a pathogenic simian/human immunodeficiency virus (SHIV) [3–5],
where CD8+ T cells play an important role in immunity to HIV-1 [5]. Moreover, there is substantial
evidence that points out that HIV-1-specific CD4+ and CD8+ T cells mediates protection in vivo [6],
and the crucial role played by T cells in HIV-1 suppression comes from studying the immune system
in “elite controllers”, a group of people who are able to control HIV-1 replication without any ART
treatment [7,8]. Of the numerous clinical trials carried out so far with different HIV/AIDS vaccine
candidates, only the RV144 phase III clinical trial showed a modest protection of 31.2% against HIV-1
infection [9]. This clinical trial was based on priming with a recombinant canarypoxvirus ALVAC
vector expressing the Env (gp120) protein from subtypes B/E and Gag/Pro from subtype B followed
by boosting with HIV-1 gp120 protein from subtypes B/E [9]. Due to the limited efficacy, improved
poxvirus recombinants should be considered as components of an effective HIV/AIDS vaccine.

One of the most promising poxvirus vectors is the modified vaccinia virus Ankara (MVA), that has
been widely used in numerous preclinical and clinical trials as a vaccine candidate against several
prevalent and emerging infectious diseases, including HIV/AIDS, proving to be extremely safe, highly
immunogenic, and protective [10–15]. Recombinant MVA vectors combine the safety of a killed virus
vaccine, due to their impaired replication capacity in mammalian cells, with the immunogenicity of
a live virus vaccine. The great efficacy of recombinant MVA vectors in developing antigen-specific
immune responses is due to the expression of gene products within cells that are efficiently presented
by both MHC class I and class II molecules, leading to the activation of CD4+ and CD8+ T cells, and to
the induction of robust anti-viral responses, as happens with other vaccinia virus (VACV) strains,
that make MVA acts as an adjuvant itself [16,17].

Despite the good safety and immunogenicity profiles exhibited by recombinant MVA vectors,
novel optimized and more efficient MVA vaccine vectors able to induce an enhanced magnitude,
breadth, polyfunctionality, and durability of the immune responses to exogenously expressed antigens
are desirable. Thus, several strategies have been developed to enhance the immunogenicity and
efficacy of the MVA-based vaccine candidates [18], such as the optimization of the MVA vector itself or
the foreign heterologous antigen inserted, the use of optimized prime/boost immunization protocols,
or the enhancement of the virus promoter strength. Among them, in this work, we will focus on the
optimization of the promoter strength, because it has been shown that the levels of the heterologous
antigens expressed (and placed under the control of a VACV promoter) from poxvirus vectors correlates
with the magnitude of the antigen-specific immune responses in mice [19]; and timing of antigen
expression also influence the type, quantity, quality, and durability of the antigen-specific immune
responses [20]. Thus, the optimization of the virus promoter strength is an ideal strategy to increase
the expression of the heterologous antigens at very early times post-infection [20–23]. Moreover,
since the efficiency with which an antigen is processed and presented on the surface of infected cells
influences its recognition [24], the timing of expression of heterologous antigens from the MVA vector
is very important to induce robust antigen-specific T cell immune responses [20]. Considering that
immunodominance is defined as the phenomenon whereby only a small fraction of all of the possible
epitopes from a particular pathogen elicits an specific immune response [25], it is possible to modulate
such immunodominance hierarchy changing the timing and the quantity of antigen production [26].
In fact, it has been described that in VACV, 90% of the most recognized antigens by CD8+ T cells
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were ranked in the top of 50% in terms of mRNA expression [27], and there is a positive correlation
between viral gene expression and immunodominance hierarchy after a second immunization due to a
mechanism of cross-competition between T cells specific for early and late viral epitopes [28].

Among the different VACV promoters developed that are able to improve the expression and
immunogenicity of the foreign antigens, we have previously described a new synthetic late/early
optimized (LEO) 160 promoter, designed by using bioinformatic analysis [29,30], that significantly
enhance the expression levels of the foreign antigen (green fluorescent protein (GFP) or Leishmania
LACK antigen) in vitro, correlating with an in vivo enhancement in the antigen-specific T cell immune
responses [29,30]. Since HIV-1 gp120 plays an important role in protective immune responses, the aim
of this work is to potentiate the immunogenicity of this antigen through the generation of a novel
MVA-based vaccine candidate against HIV/AIDS, containing the optimized stronger VACV LEO160
promoter controlling the expression of HIV-1 gp120 antigen.

2. Materials and Methods

2.1. Ethics Statement

Female Balb/cOlaHsd mice (6 to 8 weeks old) used for immunogenicity assays were purchased from
Envigo Laboratories and stored in the animal facility of the CNB (Madrid, Spain). The immunogenicity
animal studies were approved by the Ethical Committee of Animal Experimentation (CEEA) of the
CNB (Madrid, Spain) and by the Division of Animal Protection of the Comunidad de Madrid (PROEX
331/14). All animal procedures were conformed to international guidelines and to the Spanish law
under the Royal Decree (RD 53/2013).

2.2. Cells

DF-1 cells (a spontaneously immortalized chicken embryo fibroblast (CEF) cell line, ATCC
catalog no. CRL-12203), primary CEF cells (obtained from specific-pathogen-free 11-day-old eggs;
MSD, Salamanca, Spain), and HeLa cells (immortalized human epithelial cervix adenocarcinoma cells,
ATCC® CCL-2) were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco-Life Technologies,
Carlsbad, CA, USA), supplemented with 10% fetal calf serum (FCS) (Gibco-Life Technologies, Carlsbad,
CA, USA) for DF-1 and CEF cells or 10% newborn calf serum (NCS) (Sigma-Aldrich, St. Louis, MO,
USA) for HeLa cells. Cell cultures were maintained at 37 ◦C in a humidified incubator containing
5% CO2. Cell lines were infected with viruses, and after 1 h of adsorption, the virus inoculum was
removed and DMEM-2% FCS or DMEM-2% NCS was added to the cell cultures.

2.3. Viruses

The viruses used in this study included the attenuated MVA wild-type (MVA-WT) strain (kindly
provided by G. Sutter) obtained from the chorioallantoic vaccinia virus Ankara strain after 586 serial
passages in CEF cells [31], and the recombinant MVA-B expressing HIV-1IIIB Gag-Pol-Nef (GPN) as
an intracellular polyprotein and the HIV-1BX08 gp120 protein as a cell-released product from HIV-1
clade B isolates [32], which are inserted into the thymidine kinase (TK) locus of the MVA-WT genome
under the transcriptional control of a VACV synthetic early/late (sE/L) promoter. MVA-WT was used
as the parental virus for the generation of the MVA-LEO160-gp120. All viruses were grown in DF-1
cells to obtain a master seed stock (P2 stock), and titrated in DF-1 cells by plaque immunostaining,
using rabbit polyclonal antibody against VACV strain Western Reserve (WR) (diluted 1:1000; Centro
Nacional de Biotecnología), followed by an anti-rabbit horseradish peroxidase (HRP)-conjugated
secondary antibody (Sigma-Aldrich, St. Louis, MO, USA; diluted 1:1000), as previously described [33].
Determinations of the titers of the different viruses were performed at least two times. Furthermore,
viruses grown in primary CEF cells were purified by centrifugation through two 36% (wt/vol) sucrose
cushions in 10 mM Tris-HCl pH 9. All viral stocks were free of contamination with mycoplasma
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(checked by specific polymerase chain reaction (PCR) for mycoplasma), bacteria (checked by growth in
LB plates without ampicillin), or fungi (checked by growth in Columbia blood agar plates; Oxoid).

2.4. Construction of Plasmid Transfer Vector pLZAW1-LEO160-gp120

This plasmid was used for the insertion of the HIV-1 gp120 sequence (clade B, isolate BX08,
GenBank accession number: GQ855765.1), under the control of the novel synthetic VACV LEO160
promoter into the TK locus of MVA. It was generated by inserting the HIV-1Bx08 gp120 sequence
into the pLZAW1-LEO160 plasmid [29], that contains the novel synthetic VACV LEO160 promoter
by using GeneArt Subcloning and Plasmid Services (Thermo Fisher Scientific, Waltham, MA, USA).
Thus, pLZAW1-LEO160-gp120 contains the HIV-1BX08 gp120 sequence under the control of the novel
synthetic VACV LEO160 promoter introduced in a multiple cloning site between the MVA TK left
(TK-L) and TK right (TK-R) flanking regions, and the selectable marker genes for ampicillin and
β-galactosidase (β-gal). The β-gal gene (LacZ) is inserted among two repetitions of the TK-L flanking
region, allowing their deletion from the final recombinant virus by homologous recombination after
consecutive plaque purification steps. The resulting plasmid pLZAW1-LEO160-gp120 (9217 bp) was
confirmed by DNA sequence analysis.

2.5. Generation of MVA-LEO160-gp120 Recombinant Virus

The MVA-LEO160-gp120 recombinant virus was generated using MVA-WT as parental virus,
and pLZAW1-LEO160-gp120 as plasmid transfer vector; employing an infection/transfection protocol
previously described [34–39]. After the infection/transfection in DF-1 cells, we initially selected blue
plaques stained with 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside (X-Gal, Sigma-Aldrich,
St. Louis, MO, USA). In the first three passages viruses from selected blue plaques expressing β-Gal
were picked, and in the last three passages (six passages in total) viruses from selected plaques do not
express any marker due to the loss of β-Gal marker. The isolated plaques were expanded in DF-1 cells
until cytopathic effect was observed, and then crude viral extracts obtained were used for the next
plaque purification round. After these recombination events in cell culture, the final plaques were
selected and expanded in DF-1 cells to obtain a master seed stock (P2 stock).

2.6. PCR Analysis

To verify that the HIV-1 gp120 sequence under the control of the novel synthetic VACV
LEO160 promoter was correctly inserted in MVA-LEO160-gp120, viral DNA was extracted from
DF-1 cells mock infected or infected at 5 plaque forming units (PFU)/cell with the different viruses,
as previously described [34], and the correct insertion was confirmed by PCR analysis. Primers
TK-L (TGATTAGTTTGATGCGATTC) and TK-R (TGTCCTTGATACGGCAG) spanning the MVA TK
locus, were used for PCR analysis, to verify the correct insertion of the LEO160-gp120 sequence in
MVA-LEO160-gp120. The insertion was also confirmed by DNA sequence analysis (Secugen, Madrid,
Spain). The amplification protocols were performed using PuReTaq™ Ready-To-Go™ PCR beads
(GE Healthcare, Chicago, IL, USA), in accordance with the manufacturer’s protocol. PCR products
were run in 1% agarose gel and visualized by SYBR Safe staining (Invitrogen, Carlsbad, CA, USA).

2.7. Analysis of Virus Growth

To study the virus growth profile of MVA-LEO160-gp120, monolayers of DF-1 cells grown in
12-well plates were infected in duplicate at 0.01 PFU/cell with MVA-WT and MVA-LEO160-gp120.
Following virus adsorption for 60 min at 37 ◦C, the inoculum was removed. The infected cells
were washed with DMEM and incubated with fresh DMEM containing 2% FCS at 37 ◦C in a 5%
CO2 atmosphere. At different times (0, 24, 48, and 72 h post-infection (hpi)), cells were collected by
scraping, freeze-thawed 3 times, and briefly sonicated. Virus titers in cell lysates were determined by
immunostaining plaque assay as previously described [33].
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2.8. Expression of HIV-1BX08 gp120 by Western Blot

To check the correct expression of the HIV-1BX08 gp120 protein, monolayers of DF-1 cells were mock
infected or infected at 5 PFU/cell with the different viruses. At 24 hpi, cell extracts were lysed in Laemmli
buffer and fractionated in 8% SDS-PAGE, and then analyzed by Western blotting with rabbit polyclonal
anti-gp120 antibody against clade B IIIB strain (CNB; diluted 1:3000) to analyze the expression of
the gp120 protein. As loading controls, we used rabbit anti-β-actin (Cell Signaling, Danvers, MA,
USA; diluted 1:1000), and rabbit anti-VACV E3 (CNB; diluted 1:1000) antibodies. An HRP-conjugated
anti-rabbit antibody (Sigma-Aldrich, St. Louis, MO, USA; diluted 1:5000) was used as the secondary
antibody. The immunocomplexes were detected with an HRP-luminol enhanced-chemiluminescence
system (ECL Plus) (GE Healthcare, Chicago, IL, USA).

2.9. Genetic Stability of Recombinant MVA-LEO160-gp120 by Expression Analysis

The genetic stability of recombinant MVA-LEO160-gp120 was analyzed as previously
described [34,40]. MVA-LEO160-gp120 (P2 stock) was continuously grown at low multiplicity of
infection (MOI) in DF-1 cells during 9 passages and then 28 individual plaques were picked from virus
derived from passage 9. Next, viruses from the 9 passages and the 28 individual plaques from passage
9 were used to infect DF-1 cells and the expression of HIV-1BX08 gp120 protein was checked by Western
Blot as described above.

2.10. RNA Analysis of HIV-1 gp120 by Reverse Transcription Real-Time Quantitative PCR (RT-qPCR)

Total RNA was isolated using the RNeasy Kit (Qiagen, Hilden, Germany), from non-permissive
HeLa or permissive DF-1 cells mock infected or infected at 5 PFU/cell with the different viruses and
harvested at different times post-infection. Reverse transcription of maximum 1000 ng of RNA was
performed with the QuantiTect reverse transcription kit (Qiagen, Hilden, Germany), according to
the manufacturer’s recommendations. Quantitative PCR was performed with a 7500 Real-Time PCR
system (Applied Biosystems, Foster City, CA, USA) using Power SYBR green PCR Master Mix (Applied
Biosystems, Foster City, CA, USA), as previously described [17]. The mRNA expression levels of
HIV-1 gp120 was analyzed by real-time PCR with specific oligonucleotides (sequences are available
upon request). Specific gene expression was expressed relative to the expression of the cellular
hypoxanthine phosphoribosyltransferase (HPRT) gene in arbitrary units (AU) using the 2−∆∆Ct
method [41]. All samples were tested in triplicate, and 2 independent experiments were performed.

2.11. Expression Kinetics of HIV-1BX08 gp120 by Western Blot

To compare the expression kinetics of the HIV-1BX08 gp120 protein between MVA-B and
MVA-LEO160-gp120 viral vectors, monolayers of DF-1 cells were mock infected or infected at 5 PFU/cell
with the different viruses. At 2, 4, 6, and 24 hpi, cell extracts were obtained and quantified using
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA USA), following manufacturer´s
recommendations. Next, 30 µg of each cell extract was lysed in Laemmli buffer, fractionated in 8%
SDS-PAGE, and then analyzed by Western blotting with rabbit polyclonal anti-gp120 antibody against
clade B IIIB strain (CNB; diluted 1:3000). As viral loading control we used a rabbit anti-VACV E3 (CNB;
diluted 1:1000) antibody. An HRP-conjugated anti-rabbit antibody (Sigma-Aldrich, St. Louis, MO,
USA; diluted 1:5000) was used as the secondary antibody. The immunocomplexes were detected with
an HRP-luminol enhanced-chemiluminescence system (ECL Plus) (GE Healthcare, Chicago, IL, USA),
according to the manufacturer´s instructions, and detected in a ChemiDoc™ Imaging System (Bio-Rad).
Band intensities were quantified using Image Lab software (Bio-Rad, Hercules, CA, USA) and gp120:E3
intensity ratios were represented and analyzed using GraphPad Prism Software (San Diego, CA, USA).
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2.12. HIV-1BX08 gp120 Protein Quantification by Enzyme Linked Immunosorbent Assay (ELISA)

To quantify the concentration of HIV-1BX08 gp120 protein secreted to supernatants from infected
cells, 100 mm diameter culture dishes (Falcon) of HeLa cells were infected with the corresponding MVA
recombinant viruses and incubated with 12 ml of DMEM-Hi glucose medium (Sigma-Aldrich, St. Louis,
MO, USA) for 2, 4, 6, and 24 h at 37 ◦C. Then, supernatants were centrifuged at 1500 rpm for 5 min
to clarify them and concentrated using Amicon® Ultra-15 Centrifugal Filters (Millipore, Burlington,
MA, USA). Next, 96-well plates (NUNC MaxiSorp™, Thermo Fisher Scientific, Waltham, MA, USA)
were coated with concentrated supernatants and, at the same time, with serial dilutions (in PBS) of the
purified HIV-1BX08 gp120 protein (CNB) at known concentrations in order to have a standard curve.
Plates were incubated at 4 ◦C overnight and, the next day, blocked for 1 h with 5% skimmed milk
prepared in PBS-T, followed by three washes with PBS-T. Next, the protein coated plates were incubated
for 2 h at room temperature (RT) with primary antibody anti-HIV-1 gp120 2G12 (NIAID-NIH) diluted
1:100 in PBS-1% skimmed milk-0.01%Tween20. Then, the plates were washed three times again with
PBS-T and incubated for 1 h at RT with secondary antibody goat anti-human-HRP (Sigma-Aldrich,
St. Louis, MO, USA) diluted 1/1000 in PBS-1% skimmed milk-0.01%Tween20. Finally, after another
washing step, the plates were developed by adding 100 µL of 3,3′,5,5′ Tetramethylbenzidine (TMB)
substrate (Sigma-Aldrich, St. Louis, MO, USA) and the reaction was stopped by adding 50 µL of 1 M
H2SO4. The absorbance was read at 450 nm using an EZ Read 400 microplate reader (Biochrom Ltd.,
Cambourne, Cambridge, UK).

2.13. DNA Vectors

DNA plasmids expressing HIV-1BX08 gp120 (pCMV-gp120BX08) and the empty plasmid (pCMV-φ)
have been previously described [32] and were purified with the EndoFree Plasmid Mega kit (Qiagen,
Hilden, Germany) in accordance with the manufacturer’s protocol and diluted for injection in
endotoxin-free phosphate-buffered saline (PBS) (Gibco-Life Technologies, Carlsbad, CA, USA). pCMV-φ
(termed DNA-φ) or pCMV-gp120BX08 (termed DNA-gp120) have been used in the immunization
protocol as a prime.

2.14. Peptides

HIV-1 peptide pools, with each purified peptide at 1 mg/mL per vial, were provided by BEI
Resources, NIH. The peptides covered the Env protein present in the consensus sequence of HIV-1 clade
B (gp120 from isolate BX08) as consecutive 15-mers overlapping by 11 amino acids. The HIV-1BX08

gp120 protein was spanned by the Env-1 and Env-2 peptide pools.

2.15. Mouse Immunization Schedule

Female BALB/c mice (6 to 8 weeks old) were purchased from Envigo Laboratories and stored
in a pathogen-free barrier area of the CNB in accordance to the recommendations of the Federation
of European Laboratory Animal Science Associations. A DNA prime/MVA boost immunization
protocol was performed as previously described [32,37–39,42] to assay the immunogenicity of
MVA-LEO160-gp120. Groups of animals (n = 5) received 100 µg of DNA-gp120 (100 µg of
pCMV-gp120BX08) or 100 µg of DNA-φ (100 µg of pCMV-φ) in 50 µL of PBS by the intramuscular
(i.m.) route and 2 weeks later received an intraperitoneal (i.p.) inoculation of 1 × 107 PFU of the
corresponding MVA virus (MVA-WT, MVA-B, or MVA-LEO160-gp120) in 200 µL of PBS. Mice primed
with sham DNA (DNA-φ) and boosted with nonrecombinant MVA-WT were used as a control group.
At 10 days after the last immunization, mice were sacrificed with carbon dioxide (CO2) and their spleens
and blood samples were processed to measure the adaptive T cell and humoral immune responses
to HIV-1 gp120, respectively, by using intracellular cytokine staining (ICS) assay or enzyme-linked
immunosorbent assay (ELISA). Two independent experiments were performed.
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2.16. ICS Assay

The magnitude, breadth, polyfunctionality, and phenotype of the HIV-1-specific T cell adaptive
immune responses were analyzed by ICS as previously described [34,37–39,43], with some modifications.
After spleen processing, fresh 4 × 106 splenocytes (depleted of red blood cells) were seeded onto M96
plates and stimulated for 6 h in complete RPMI 1640 medium supplemented with 10% FCS containing
1 µL/mL Golgiplug (BD Biosciences, Franklin Lakes, NJ, USA) to inhibit cytokine secretion; monensin
1X (eBioscience, Thermo Fisher Scientific, Waltham, MA, USA), anti-CD107a–FITC (BD Biosciences,
Franklin Lakes, NJ, USA); and HIV-1 Env peptide pools (5 µg/mL). Then, cells were washed, stained
for the surface markers, fixed, permeabilized (Cytofix/Cytoperm kit; BD Biosciences, Franklin Lakes,
NJ, USA), and stained intracellularly with the appropriate fluorochromes. Dead cells were excluded
with the violet LIVE/DEAD stain kit (Invitrogen, Carlsbad, CA, USA). The fluorochrome-conjugated
antibodies used for functional analyses were CD3-phycoerythrin (PE)-CF594, CD4-allophycocyanin
(APC)-Cy7, CD8-V500, IFN-γ–PE-Cy7, TNF-α–PE, and IL-2–APC. In addition, the antibodies used for
phenotypic analyses were CD62L-Alexa 700 and CD127-peridinin chlorophyll protein (PerCP)-Cy5.5.
All antibodies were from BD Biosciences, Franklin Lakes, NJ, USA.

The magnitude of the HIV-1-specific T follicular helper (Tfh) cell adaptive immune responses was
analyzed by ICS as previously described [44,45], with some modifications. After spleen processing,
fresh, 4 × 106 splenocytes (depleted of red blood cells) were seeded onto M96 plates using RPMI-10%
FCS and stimulated with 5 µg/mL of Env peptide pools and 0.5 µg/mL of HIV-1 gp120 envelope
protein from isolate BX08 (CNB) along with anti-CD154 (CD40L)-PE antibody at 37 ◦C. Two hours
later, 1 µL/mL protein transport inhibitor GolgiPlug (BFA, BD Biosciences, Franklin Lakes, NJ, USA),
and monensin (1X; eBioscience, Thermo Fisher Scientific, Waltham, MA, USA), were added and
cells were keep incubated for 4 additional hours at 37 ◦C. Next, live cells were stained using fixable
viability stain (FVS) 520 (BD Biosciences, Franklin Lakes, NJ, USA) for 20 min at 4 ◦C. Then, after
being washed twice with IB buffer (PBS 1X-FCS 2%-EDTA 2 mM), cells were stained for the surface
markers using 50 µL of the corresponding antibodies CD4-Alexa 700, CD44-PECy5, CXCR5-PE-CF594,
PD1(CD279)-APC-eFluor780 and CD8-V500 diluted following manufacturer’s instructions for 20 min
at 4 ◦C. After being washed again two times with IB buffer, splenocytes were fixed and permeabilized
with BD Cytofix/Cytoperm™ solution Kit (BD Biosciences, Franklin Lakes, N.J., USA) for 20 min at 4 ◦C
and rested overnight in IB buffer. The day after, cells were washed with Permwash 1X (BD Biosciences,
Franklin Lakes, NJ, USA) and the Fc receptors were blocked with 25 µL of an anti CD16/CD32 (FcBlock)
antibody (diluted 1:100 in Permwash 1×) for 5 min at 4 ◦C. Finally, the cells were stained intracellularly
for cytokines using 25 µL of intracellular antibodies IL-4-FITC, IFNγ-PECy7, and IL-21-APC (diluted
following manufacturer’s instructions) for 20 min at 4 ◦C and washed then twice in Permwash 1X after
resuspended them in 200 µL of IB buffer.

Cells were acquired with a Gallios flow cytometer (Beckman Coulter, Brea, CA, USA). Data analysis
was carried out using FlowJo software (version 8.5.3, Tree Star, Ashland, OR, USA). After gating,
boolean combinations of single functional gates were created with the FlowJo software to determine
the frequency of each response based on all possible combinations of cytokine expression or all
possible combinations of differentiation marker expression. Background responses detected in
negative-control samples were subtracted from those detected in stimulated samples for every specific
functional combination.

2.17. Antibody Measurements by ELISA

The total IgG anti-HIV-1BX08 gp120 envelope protein antibodies in pooled sera from immunized
mice were measured by ELISA, as previously described [32,42].
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2.18. Statistical Procedures

Student’s t test was used for analysis of gp120 transgene expression and for protein and antibody
measurements to establish the differences between two groups. Statistical analysis of the ICS assay
results was realized, as previously described [42,43], by an approach that corrects measurements for
the medium response (RPMI), calculating confidence intervals and P values. Only antigen response
values significantly larger than the corresponding RPMI are presented. Background values were
subtracted from all of the values used to allow analysis of proportionate representation of responses.
The statistical significances are indicated as follows: *, p < 0.05; **, p < 0.005; ***, p < 0.001.

3. Results

3.1. Generation and In Vitro Characterization of MVA-LEO160-gp120

To study if the novel LEO160 promoter was also able to increase the expression levels and the
immune responses of a soluble antigen, such as the HIV-1 gp120 protein, in comparison with the
HIV/AIDS vaccine candidate MVA-B that expresses HIV-1 gp120 under the VACV sE/L promoter [32], a
novel MVA vector expressing the HIV-1 envelope gp120 protein (clade B, isolate BX08) under the control
of the synthetic VACV LEO160 promoter was generated (termed MVA-LEO160-gp120), as described in
Materials and Methods (Figure 1A).

The correct presence of the VACV LEO160 promoter and the HIV-1 gp120 gene in the
MVA-LEO160-gp120 recombinant virus was analyzed by PCR using oligonucleotides annealing
in the VACV TK-flanking regions (Figure 1B) and was also confirmed by DNA sequencing. The virus
growth kinetics in cultured permissive chicken DF-1 cells of the novel MVA-LEO160-gp120 recombinant
virus and MVA-B (used as control) were similar (Figure 1C), proving that the insertion of the VACV
LEO160 promoter and the HIV-1 gp120 gene does not affect MVA vector replication under permissive
conditions. The correct expression of the heterologous HIV-1 gp120 protein was studied by Western
blot in cell extracts from DF-1 cells, mock infected or infected with MVA-LEO160-gp120, MVA-B,
or MVA-WT using a specific rabbit polyclonal anti-gp120 antibody. The results demonstrated that
MVA-LEO160-gp120 correctly expressed the HIV-1 gp120 protein (Figure 1D). Moreover, to ensure
that the encoded HIV-1 gp120 protein is stably expressed from the MVA genome and its expression
can be maintained though long-time passages, MVA-LEO160-gp120 was grown in DF-1 cells infected
at low MOI (0.01 PFU/cell) for nine consecutive passages (Figure 1E) and at passage 9, 28 individual
virus plaques were isolated (Figure 1F). The expression of the HIV-1 gp120 protein was determined in
cell extracts by Western blot, revealing that MVA-LEO160-gp120 efficiently expresses the HIV-1 gp120
protein at all passages (Figure 1E) and that 100% of the plaques at passage 9 correctly expressed the
HIV-1 gp120 protein (Figure 1F), demonstrating the high genetic stability of MVA-LEO160-gp120.
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Figure 1. Generation and in vitro characterization of modified vaccinia virus Ankara (MVA)- late/early
optimized (LEO)160-gp120. (A) (left panel) Scheme of the MVA-LEO160-gp120 genome map. The HIV-1
gp120 gene (from the clade B, isolate BX08) placed under the control of the LEO160 promoter and
inserted within the MVA thymidine kinase (TK) viral locus (J2R gene) is indicated. TK-L = TK left
flanking region, TK-R = TK right flanking region. (A) (right panel) Scheme and sequence of the synthetic
LEO160 promoter. Late promoter element (29 nucleotides; green); early promoter motif (15 nucleotides;
red), and a 160-nucleotide spacer (consisting in several multicloning sites; black) are shown. Adapted
from [29]. (B) PCR analysis of MVA TK locus. Viral DNA was extracted from DF-1 cells mock infected
or infected at 5 PFU/cell with MVA-WT, or MVA-LEO160-gp120. DNA from pLZAW1-LEO160-gp120
plasmid transfer vector was used as positive control for LEO160-gp120 insert. Primers spanning the
TK-L and TK-R flanking regions were used for PCR analysis. DNA products corresponding to the
MVA TK gene and the LEO160-gp120 insertion are indicated on the right. Molecular size markers (1-kb
ladder) with the corresponding sizes (base pairs) are indicated on the left. (C) Viral growth kinetics.
Monolayers of permissive DF-1 cells were infected at 0.01 PFU/cell with MVA-B or MVA-LEO160-gp120.
At different times post-infection (0, 24, 48, and 72 h post-infection (hpi)) cells were collected and
virus titers in cell lysates were quantified by plaque immunostaining assay with anti-vaccinia virus
(VACV) antibodies. The mean ± standard deviations of two independent experiments are shown.
(D) Expression of HIV-1 gp120 protein. Western blot analysis of the HIV-1 gp120 protein detected in
cells extracts of DF-1 cells mock infected or infected with MVA-B, MVA-LEO160-gp120, or MVA-WT.
Antibodies against VACV E3 and β-actin were used as viral and cellular loading controls, respectively.
The proteins detected are indicated on the right and their protein molecular weights (in kDa) are
indicated on the left. (E,F) Stability of MVA-LEO160-gp120. MVA-LEO160-gp120 (P2 stock) was
continuously grown at low MOI in DF-1 cells to passage 9 and at passage 9, 28 individual plaques were
picked. Virus stocks from each passage (E) and from the 28 individual plaques at passage 9 (F) were
used to infect cells and the expression of HIV-1 gp120 protein was determined by Western blotting.
Rabbit anti-VACV E3 protein antibody was used as a VACV loading control. The proteins detected are
indicated on the right and their protein molecular weights (in kDa) are indicated on the left.

3.2. MVA-LEO160-gp120 Increases the Expression and Cell Release of HIV-1 Envelope gp120 Antigen

To determine whether MVA-LEO160-gp120 could enhance the expression levels of HIV-1 gp120,
in comparison to MVA-B, HeLa or DF-1 cells were infected with MVA-B and MVA-LEO160-gp120 at a
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MOI of 5 PFU/cell for 2, 4, 6, and 24 h. Then, total RNA was isolated and mRNA levels of HIV-1 gp120
were determined by RT-qPCR. The results showed that MVA-LEO160-gp120 significantly increased
HIV-1 gp120 transcription compared to MVA-B in either HeLa (Figure 2A) or DF-1 cells (Figure 2B).
Noticeable are the differences observed in mRNA levels at early times post infection, highlighting the
robust increase in gene expression achieved by the LEO160 promoter.Vaccines 2019, 7, x FOR PEER REVIEW 10 of 23 
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Figure 2. MVA-LEO160-gp120 enhances the mRNA levels of HIV-1 gp120, compared to MVA-B. HeLa
(A) or DF-1 cells (B) were mock infected or infected with MVA-B, or MVA-LEO160-gp120 at 5 PFU/cell.
At 2, 4, 6, and 24 hpi, RNA was extracted, and HIV-1 gp120 expression was analyzed by RT-qPCR.
Results are expressed as the ratio of HIV-1 gp120 to endogenous HPRT mRNA levels. A.U. = arbitrary
units. P values indicate significant response differences between MVA-B and MVA-LEO160-gp120
at the same hour (*, p < 0.05; **, p < 0.005; ***, p < 0.001). Data are means ± standard deviations of
triplicate samples from one experiment and are representative of two independent experiments.

Next, in order to compare the HIV-1 gp120 protein expression between MVA-B and
MVA-LEO160-gp120, total protein was extracted at different time points (2, 4, 6, and 24 h) from
HeLa cells infected at 5 PFU/cell with MVA-B or MVA-LEO160-gp120. Next, 30 µg of protein were
loaded on SDS-PAGE and the HIV-1 gp120 protein levels were detected by Western blot (Figure 3A).
The results showed that MVA-LEO160-gp120 increased the expression levels of HIV-1 gp120 protein,
compared to MVA-B (Figure 3A). Furthermore, the band intensity was quantified using Image Lab
software and the expression of HIV-1 gp120 protein was normalized to VACV E3 protein (VACV
constitutive early protein) to show that the difference in heterologous antigen expression was the result
of distinct promoter strengths, and not to different virus infective capacities. The results showed that
MVA-LEO160-gp120 induced a significantly increased in gp120 production compared to MVA-B at all
time points analyzed (Figure 3B), correlating with the previous results of mRNA levels (Figure 2).

To further analyze whether there were differences in cell released of soluble HIV-1 gp120
protein to the extracellular medium, supernatants derived from HeLa cells infected with MVA-B or
MVA-LEO160-gp120 were collected at 2, 4, 6, and 24 hpi and concentrated using Amicon® Ultra-15
Centrifugal Filters (Millipore, Burlington, MA, USA). The total amount of HIV-1 gp120 protein present
in the supernatants was quantified by ELISA using a standard curve of purified HIV-1 gp120BX08

protein. The results showed that MVA-LEO160-gp120 released more soluble HIV-1 gp120 to the
extracellular medium than MVA-B at early times post-infection (2 and 4 h) (Figure 3C), but at later
times post-infection (6 and 24 h), there were no significant differences between MVA-LEO160-gp120
and MVA-B in the total amount of HIV-1 gp120 protein released to the supernatant, probably mediated
by cytopathic and apoptosis induction.

These in vitro results with virus-infected cells confirmed that the VACV LEO160 promoter
positively enhances the expression of the antigen HIV-1 gp120.
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Figure 3. MVA-LEO160-gp120 enhances the protein levels of HIV-1 gp120, compared to MVA-B. (A) HIV-1
gp120 protein expression in HeLa cells infected at 5 PFU/cell with MVA-B or MVA-LEO160-gp120 at 2,
4, 6, and 24 hpi. VACV E3 protein expression was used as a VACV loading control. (B) Bars showed
the ratio of HIV-1 gp120 protein to VACV E3, after quantification of the corresponding band intensities
represented in panel A, using Image Lab software. A.U. = arbitrary units. Values showed the mean± SEM
of two independent experiments. P values indicate significant response differences between MVA-B and
MVA-LEO160-gp120 at the same hour (*, p < 0.05; **, p < 0.005). (C) Levels of HIV-1 gp120 protein secreted
to the supernatant. HeLa cells were infected at 5 PFU/cell with MVA-B or MVA-LEO160-gp120 and at
2 and 4 hpi supernatants were concentrated and the amount of HIV-1 gp120 protein was determined
by ELISA. Data are means ± standard deviations of duplicate samples from one experiment and are
representative of two independent experiments. P values indicate significant response differences between
MVA-B and MVA-LEO160-gp120 at the same hour (***, p < 0.001).

3.3. MVA-LEO160-gp120 Increases the Magnitude of Env-Specific T Cell Immune Responses in Mice

To determine whether the increased HIV-1 gp120 early expression observed in vitro in cells
infected with MVA-LEO160-gp120 could drive an enhancement in the Env-specific T cell responses
in vivo, the HIV-1 Env-specific CD4+ and CD8+ T cell immune responses induced in mice immunized
with MVA-B and MVA-LEO160-gp120 were analyzed. A DNA prime/MVA boost immunization
protocol was used, as this protocol amplifies the levels of T and B cell responses compared to the
homologous MVA prime/MVA boost immunization [4,32]. Thus, mice received 100 µg of DNA-gp120
prime by i.m. route and 14 days later were boosted with 1 × 107 PFU of MVA viruses (MVA-B
or MVA-LEO160-gp120) by i.p. route. Animals primed with sham DNA (DNA-φ) and boosted
with non-recombinant MVA-WT were used as a control group. Adaptive Env-specific CD4+ and
CD8+ T cell immune responses elicited by the different immunization groups (DNA-gp120/MVA-B,
DNA-gp120MVA-LEO160-gp120, and DNA-φ/MVA-WT) were measured 10 days after the boost by
ICS assay, after the stimulation of splenocytes with a pool of Env peptides that spanned the HIV-1
gp120 from an HIV-1 clade B consensus sequence.

The magnitude of the total HIV-1 Env-specific CD4+ (Figure 4A) and CD8+ (Figure 4B) T cell
adaptive immune responses (determined as the sum of the individual responses expressing IFN-γ,
TNF-α, and/or IL-2 cytokines, as well as the expression of CD107a on the surface of activated T cells as
an indirect marker of cytotoxicity) was significantly greater in the DNA-gp120/MVA-LEO160-gp120
immunization group than in DNA-gp120/MVA-B, with both vaccinated groups triggering an overall
Env-specific immune response mediated mainly by CD8+ T cells (Figure 4A,B).



Vaccines 2019, 7, 208 12 of 22

Vaccines 2019, 7, x FOR PEER REVIEW 12 of 23 

 

The magnitude of the total HIV-1 Env-specific CD4+ (Figure 4A) and CD8+ (Figure 4B) T cell 

adaptive immune responses (determined as the sum of the individual responses expressing IFN-γ, 

TNF-α, and/or IL-2 cytokines, as well as the expression of CD107a on the surface of activated T cells 

as an indirect marker of cytotoxicity) was significantly greater in the DNA-gp120/MVA-LEO160-gp120 

immunization group than in DNA-gp120/MVA-B, with both vaccinated groups triggering an 

overall Env-specific immune response mediated mainly by CD8+ T cells (Figure 4A,B). 

 

Figure 4. Immunization with DNA-gp120/MVA-LEO160-gp120 enhances the magnitude of HIV-1 

Env-specific CD4+ and CD8+ T cell adaptive immune responses. Splenocytes were collected from 

mice (n = 5 per group) immunized with DNA-ϕ/MVA-WT, DNA-gp120/MVA-B, or 

DNA-gp120/MVA-LEO160-gp120, 10 days after the last immunization. Next, HIV-1 Env-specific 

CD4+ and CD8+ T cell adaptive immune responses triggered by the different immunization groups 

were measured by ICS assay following the stimulation of splenocytes with an Env peptide pool 

(comprising Env-1 + Env-2 peptide pools). Values from unstimulated controls were subtracted in all 

cases. P values indicate significant response differences between the DNA-gp120/MVA-B and 

Figure 4. Immunization with DNA-gp120/MVA-LEO160-gp120 enhances the magnitude of
HIV-1 Env-specific CD4+ and CD8+ T cell adaptive immune responses. Splenocytes were
collected from mice (n = 5 per group) immunized with DNA-φ/MVA-WT, DNA-gp120/MVA-B, or
DNA-gp120/MVA-LEO160-gp120, 10 days after the last immunization. Next, HIV-1 Env-specific
CD4+ and CD8+ T cell adaptive immune responses triggered by the different immunization groups
were measured by ICS assay following the stimulation of splenocytes with an Env peptide pool
(comprising Env-1 + Env-2 peptide pools). Values from unstimulated controls were subtracted in
all cases. P values indicate significant response differences between the DNA-gp120/MVA-B and
DNA-gp120/MVA-LEO160-gp120 immunization groups (**, p < 0.005; ***, p < 0.001). (A,B) Overall
percentages of Env-specific CD4+ (A) and CD8+ (B) T cells. The values represent the sum of the
percentages of T cells expressing CD107a and/or IFN-γ and/or TNF-α and/or IL-2 against the Env
peptide pool. (C,D) Polyfunctional profiles of Env-specific CD4+ (C) and CD8+ (D) T cells. All of the
possible combinations of responses are shown on the x axis, while the percentages of T cells expressing
CD107a and/or IFN-γ and/or TNF-α and/or IL-2 against the Env peptide pool are shown on the y axis.
Responses are grouped and color coded on the basis of the number of functions (4, 3, 2, or 1). The pie
charts summarize the data. Each slice corresponds to the proportion of the total Env-specific CD4+ and
CD8+ T cells exhibiting 1, 2, 3, or 4 functions (CD107a and/or IFN-γ and/or TNF-α and/or IL-2).

Furthermore, the quality of the Env-specific T cell adaptive immune responses was characterized
in part by the pattern of cytokine production and its cytotoxic potential. Thus, on the basis of the
production of CD107a, IFN-γ, TNF-α, and IL-2 from HIV-1 Env-specific CD4+ and CD8+ T cells,
15 different HIV-1 Env-specific CD4+ and CD8+ T cell populations could be identified (Figure 4C,D).
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As shown in Figure 4C (pie charts), Env-specific CD4+ T cell responses were similarly polyfunctional in
both vaccinated groups, with around 80% of the CD4+ T cells exhibiting two or more functions. CD4+

T cells expressing CD107a+IFN-γ+TNF-α+IL-2, CD107a+TNF-α+IL-2 or IFN-γ+TNF-α+IL-2 were the
most induced populations elicited by both vaccinated groups, but DNA-gp120/MVA-LEO160-gp120
induced a significantly greater percentage of these major populations than DNA-gp120/MVA-B
(Figure 4C, bars). On the other hand, as shown in Figure 4D (pie charts), DNA-gp120/MVA-B and
DNA-gp120/MVA-LEO160-gp120 have a similar polyfunctional profile of Env-specific CD8+ T cell
responses, with 85% and 87% of the CD8+ T cells exhibiting two or more functions, respectively.
CD8+ T cells expressing CD107a+IFN-γ+TNF-α was the most abundant population elicited by both
vaccinated groups, but once again DNA-gp120/MVA-LEO160-gp120 induced a significantly greater
increase in the percentage of this population, and others, than DNA-gp120/MVA-B (Figure 4D, bars).

3.4. MVA-LEO160-gp120 Enhances the Magnitude of Env-Specific T Cells with an Effector Memory Phenotype

It has been described that HIV-1-specific T cells of a mature effector memory phenotype are
more frequently detectable in HIV-1 controllers than in HIV-1 progressors [46–48]. Thus, next we
determined the memory phenotype of HIV-1 Env-specific CD4+ and CD8+ T cells by measuring the
expression of the CD127 and CD62L surface markers, which allow the definition of the different
memory subpopulations: T central memory (TCM, CD127+/CD62L+), T effector memory (TEM,
CD127+/CD62L−), and T effector (TE, CD127−/CD62L−) cells [49], and determined as the sum of the
individual responses expressing CD107a, IFN-γ, TNF-α, and/or IL-2 obtained for the Env peptide
pool (Figure 5). The results showed that in both vaccinated groups, Env-specific CD4+ and CD8+ T
cells were mainly of the TEM phenotype, followed by the TE phenotype. However, immunization
with DNA-gp120/MVA-LEO160-gp120 induced a significantly greater increase in the percentage of
Env-specific CD4+ and CD8+ TEM and TE cells than immunization with DNA-gp120/MVA-B (Figure 5).Vaccines 2019, 7, x FOR PEER REVIEW 14 of 23 
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Figure 5. Phenotypic profile of Env-specific CD4+ and CD8+ T cells. Percentages of T central memory
(TCM), T effector memory (TEM), and T effector (TE) HIV-1 Env-specific CD4+ (A) and CD8+ (B) T
cells expressing CD107a and/or IFN-γ and/or TNF-α and/or IL-2 against Env peptide pool 10 days
after the last immunization (adaptive phase). Values from unstimulated controls were subtracted
in all cases. P values indicate significant response differences between the DNA-gp120/MVA-B and
DNA-gp120/MVA-LEO160-gp120 immunization groups (***, p < 0.001).

3.5. MVA-LEO160-gp120 Increases the Magnitude of Env-Specific CD4+ T Follicular Helper (Tfh)
Cell Responses

The development of HIV-1 broadly neutralizing antibodies (bNAbs) has been previously correlated
with the frequency and quality of CD4+ T follicular helper (Tfh) cells [50,51]. This subpopulation of
T helper cells is involved in the development and sustaining of germinal center (GC) interactions,
an essential crosstalk that promotes the generation of long-lived high-affinity humoral immunity.
Since the interaction between Tfh and B cells is mediated both by cell-associated and soluble factors,
including CD154 (CD40L), ICOS, IL-21, IL-10, and IL-4 [52], the Env-specific CD4+ Tfh cell responses
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were studied analyzing those parameters by ICS assay in splenocytes obtained from immunized mice
at 10 days after the last immunization. Thus, splenocytes were non-stimulated (RPMI) or stimulated
ex vivo for 6 h with HIV-1 gp120BX08 protein plus Env peptide pool. Frequencies of total CD4+ T
cells with Tfh phenotype (CXCR5+, PD1+) were significantly higher in animals immunized with
DNA-gp120/MVA-LEO160-gp120 than in those immunized with DNA-gp120/MVA-B; in both cases,
the frequencies were lower than in animals of control group DNA-φ/MVA-WT (Figure 6A), probably
due to an immunosuppressive function of the HIV-1 Env protein. Afterwards, the HIV-1 Env-specific
Tfh response was evaluated by quantifying the percentage of CD4+ Tfh cells that produced CD154
and/or IL-21 and/or IL-4. Since about 70% of the CD4+ Tfh cells obtained in the non-stimulated (RPMI)
or stimulated (with the gp120BX08 protein plus the Env peptide pool) conditions were positive for
IL-21, whereas in the CD4+ non-Tfh population only 2% of the cells were IL-21+, the Env-specific
Tfh response was finally established by analyzing the percentage of CD4+ Tfh cells that produced
CD154 and/or IL-4 after stimulation, in comparison with non-stimulated cells (Figure 6B). The results
showed that the magnitude of the HIV-1 Env-specific Tfh response induced by animals immunized
with DNA-gp120/MVA-LEO160-gp120 was significantly higher than in animals immunized with
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Figure 6. Env-specific Tfh cell immune responses. Mice (n = 5) were immunized with
DNA-gp120/MVA-B, DNA-gp120/MVA-LEO160-gp120, or DNA-φ/MVA-WT. At 10 days after the last
immunization, levels of CD4+ Tfh cells and Env-specific CD4+ Tfh cell immune response was studied
in splenocytes by ICS assay. P values indicate significant response differences between immunization
groups (***, p < 0.001). (A) Magnitude of the CD4+ T cells with Tfh phenotype (CXCR5+, PD1+) measured
in non-stimulated (RPMI) splenocytes. (B) Magnitude of Env-specific CD4+ Tfh cells. The total value
in each group represents the sum of the percentages of CD4+ Tfh cells expressing IL-4 and/or CD154
against gp120BX08 protein plus Env peptide pool. Data are background (RPMI)-subtracted.

3.6. MVA-LEO160-gp120 Enhances the Levels of Antibodies against HIV-1 gp120

Since both the cellular and humoral arms of the immune system are thought to be necessary to
control HIV-1 infection [53], the humoral responses elicited after immunization with DNA-gp120/MVA-B
and DNA-gp120/MVA-LEO160-gp120 were also analyzed, quantifying by ELISA the total IgG levels of
antibodies against HIV-1 gp120 protein (clade B, isolate BX08) in pooled sera obtained from mice 10 days
post-boost (Figure 7). The results showed that DNA-gp120/MVA-LEO160-gp120 elicited higher levels of
total IgG anti-gp120 antibodies than DNA-gp120/MVA-B. While the differences observed were small,
they might have biological relevance.
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Figure 7. Humoral immune responses elicited by DNA-gp120/MVA-B and DNA-gp120/

MVA-LEO160-gp120 against HIV-1 gp120 protein. Levels of gp120-specific total IgG binding
antibodies were measured by ELISA in pooled sera from mice immunized with DNA-gp120/MVA-B,
DNA-gp120/MVA-LEO160-gp120 or DNA-φ/MVA-WT (n = 5) 10 days after the last immunization.
Mean absorbance values (optical density (OD) measured at 450 nm) and standard deviations of
duplicate pooled serum dilutions are represented. P values indicate significant differences in antibody
levels between the DNA-gp120/MVA-B and DNA-gp120/MVA-LEO160-gp120 immunization groups at
each serum dilution (***, p < 0.001).

4. Discussion

One of the approaches more recently applied to increase the immunogenicity of MVA recombinant
vectors is the use of stronger VACV promoters to enhance the levels of expression of foreign antigen(s)
inserted in the MVA genome [18,54]. Poxviral promoters contain different sequence motifs that can
be classified into early, intermediate, and late, depending on the expression timing during poxvirus
infection [55,56]. The modification of the promoter sequence is an excellent approach to control
transgene expression; for example, some have both early and late elements, allowing their open
reading frames or recombinant antigens to be expressed early in the virus infection and late after the
viral genome replication. In the last few years, a number of poxviral promoters have been tested
in recombinant MVA vectors, to increase recombinant antigen expression and, potentially, enhance
antigen-specific immune responses [19,20,29,30,57,58]. Among them, one of the most promising is
the novel synthetic VACV LEO promoter, which was previously designed in our laboratory using
bioinformatic approaches and contains a late motif followed by an optimized immediate-early motif
that allowed the transcriptional control of a heterologous antigen. The LEO promoter enhanced
GFP expression and the magnitude of GFP-specific CD8+ T cells in immunized mice [30]. Further
improvement of the LEO promoter was achieved by elongating from 38 to 160 nucleotides the spacer
sequence between the promoter elements and the transgene transcriptional start site (termed LEO160
promoter), thus improving antigen-specific memory CD4+ and CD8+ T cell responses in immunized
mice, as tested with GFP or the Leishmania antigen LACK [29]. Thus, considering the strength
of the LEO160 promoter in inducing better early expression of the intracellular GFP and LACK
antigens, and improving antigen-specific cellular immune responses in immunized mice, this promoter
modification was introduced in the context of an MVA-based HIV/AIDS vaccine candidate. Therefore,
insertion of the novel VACV optimized LEO160 promoter was introduced in MVA to try to enhance
the expression and immunogenicity of the HIV-1 gp120 antigen from clade B. The recombinant virus
MVA-LEO160-gp120 was generated with the aim to define the role of the LEO160 promoter strength in
the early expression and secretion of the soluble HIV-1 gp120 antigen, and to test whether gp120-specific
cellular and humoral immune responses could be enhanced.

When a new promoter or insertion site is introduced within the genome of any viral vector, the
demonstration of the genetic stability of the transgenes should be tested, because several reports have
suggested that the promoter used and/or the insertion site could affect the stability of the recombinant
transgene [59–61]. Although genetic stability data were absent in previous LEO promoter reports [29,30],
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here the high genetic stability of MVA-LEO160-gp120 is demonstrated through long-term passages in
cell culture showing high levels of expression of the HIV-1 gp120 antigen during all the passages.

The temporal expression of HIV-1 gp120 under the control of the LEO160 promoter was studied
and the results showed that the mRNA transcription levels of HIV-1 gp120 and the total HIV-1 gp120
protein production in cells infected with MVA-LEO160-gp120 was significantly upregulated during
most of the times studied, compared with cells infected with the HIV/AIDS vaccine candidate MVA-B,
expressing the HIV-1BX08 gp120 under the control of the widely used sE/L promoter [62]. These results
confirm the previous results obtained in our laboratory [29,30], and are in agreement with various
recent studies reporting that new early promoters increase the expression of heterologous antigen under
their transcriptional control [20,57,58], when compared to the early and late p7.5 promoter (p7.5), one of
the first VACV promoters described [63], and to the widely used sE/L VACV promoter [62]. Moreover,
the analysis of the HIV-1 gp120 secretion to the extracellular media showed a significant enhancement
at early times post-infection in cells infected with MVA-LEO160-gp120, compared to MVA-B-infected
cells; confirming that the LEO160 promoter can also enhance the cell release of a soluble antigen,
such as HIV-1 gp120. Thus, the MVA-LEO160-gp120 vector enhanced the levels of intracellular and
extracellular production of gp120 during infection, although there was no apparent difference between
the vectors in the gp120 secreted levels at 6 and 24 h, probably due to the extensive cytopathic effect
and induction of apoptosis triggered by the MVA vector. The higher levels of gp120 mRNA observed
in cells infected with the MVA-LEO160-gp120 vector is likely due to the enhanced promoter strength,
although increased mRNA stability and/or other cellular factors contributing to the stability can also
be considered. Pulse-chase experiments of mRNA could help to define these differences.

Few comparative studies have reported on the choice of transgene promoter or insertion site
and heterologous antigen secretion in vitro from poxviral vectors, but some reports have associated
an increase in the secretion of an MVA transgene with an enhanced transgene-specific immune
responses [64]. Thus, to determine whether the enhanced levels of HIV-1 gp120 expressed by
MVA-LEO160-gp120 observed in cultured cells correlate with an increased magnitude of HIV-1-specific
T cellular and humoral immune responses in vivo, a DNA-gp120 prime/MVA boost immunization
protocol was performed in mice, as this heterologous regimen has been shown to increase the
antigen-specific T cell and humoral immune responses over homologous immunization vectors [4,32].
Compared to DNA-gp120/MVA-B, DNA-gp120/MVA-LEO160-gp120 significantly enhanced the
magnitude of the adaptive HIV-1 gp120-specific CD4+ and CD8+ T cell immune responses. Similar
results were obtained using a homologous MVA/MVA immunization regimen but, as expected,
the elicited HIV-1 gp120-specific CD4+ and CD8+ T cell responses magnitudes were lower. Apart from
the results obtained from previous reports of our lab with the novel LEO promoter, many other reports
confirmed a positive correlation between enhanced early expression triggered by MVA vectors and
increased T cellular immunogenicity [19,20,57,59]. In particular, a previous report of MVA recombinants
expressing either enhanced GFP or chicken ovalbumin, each under the control of a hybrid early–late
promoter (pHyb) compared with the widely used p7.5 and sE/L promoters, have demonstrated that a
stronger immediate-early neoantigen expression by a poxviral vector results in superior induction
of neoantigen-specific CD8+ T cell responses [20], and were able to stimulate potent recall responses
after repeated boosters providing an advantage in the context of homologous vaccination regimes
and immunotherapy [57]. Furthermore, in the field of MVA-based HIV/AIDS vaccine candidates,
a previous report has already correlated a 4- to 7-fold enhanced expression of HIV-1 Env antigen
driven by the strong mH5 promoter with a significant increase in Env-specific CD4+ (1 to 2-fold) and
CD8+ T (3- to 5-fold) cell responses [19]. These results are in agreement with the results obtained
with the MVA-LEO160-gp120, in which up to 9-fold enhanced expression of HIV-1 gp120 antigen
correlated with an increase in Env-specific CD4+ (1.5-fold) and CD8+ T (3-fold) cell immune responses,
and highlights that the novel LEO160 promoter appears superior to other widely used viral and
synthetic promoters, such as p7.5. Moreover, we have also previously described that the LEO promoter
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was superior to sE/L promoter in terms of increased early antigen expression and of antigen-specific
CD8+ T cell immune responses [29,30].

The increase in HIV-1 gp120-specific CD4+ and CD8+ T cell responses obtained with the
DNA-gp120/MVA-LEO160-gp120 immunization could be of relevant importance, because several studies
indicate that the HIV-1-specific cellular response goes some way towards controlling HIV-1 infection,
although it fails ultimately to deal with virus infection [65]. Vaccines that can stimulate both CD4+ and
CD8+ T cell responses to HIV-1 may be able to control the virus early in infection before the virus causes
major immune damage, as was demonstrated with the partial efficacy obtained in the RV144 trial [9].

Additionally, when evaluating the HIV-1-specific cellular immune responses, it is also important
to consider the memory phenotype of the T cells elicited, because a fast acquisition of TEM and TE
phenotypes in the adaptive phase could be important in the development of the T cell memory responses
and in the mounting of a more effective immunity during a primary pathogen encounter, as the presence
of TEM cells has been correlated with protection in the macaque-SIV model [66,67]. In this work,
both immunization groups elicited mainly HIV-1 gp120-specific T cells of a TEM phenotype, followed
by a TE phenotype; again, DNA-gp120/MVA-LEO160-gp120 significantly enhanced the magnitude of
these T cell populations, which is a positive cell marker for HIV-1 protective responses.

Furthermore, a CD4+ T cell population has been identified, named Tfh cells, which is responsible
for providing help to B cells [68]. Since then, a deep research of this T cell subpopulation has been
done in the context of HIV-1 infection and vaccine development [51]. Circulating HIV-1-specific
IL-21+ Tfh cells were found at higher frequencies in sera from participants in the partially protective
ALVAC+AIDSVAX (RV144) HIV/AIDS clinical trial compared to the non-protective DNA+Ad5 clinical
trial, thus correlating protective antibody responses with elevated percentages of this CD4+ T cell
subtype [69]. Moreover, in HIV-1-infected patients, a correlation between the frequencies of circulating
Tfh cells and the induction of bNAbs has been reported [70], and in HIV-1 controllers, higher
percentages of circulating Tfh cells have been associated with the induction of HIV-1-specific antibodies
in functional assays favoring preserved memory B cell responses [71]. Given the central role for
the Tfh cell response in inducing protective responses against HIV-1, the percentages of total and
HIV-1 gp120-specific Tfh cells elicited by the recombinant MVA-LEO160-gp120 in comparison with
the MVA-B vaccine candidate was studied. The results obtained in immunized mice showed that the
overall magnitude of HIV-1-gp120-specific Tfh cell response was significantly higher in splenocytes
from animals receiving DNA-gp120/MVA-LEO160-gp120 immunization compared with the group
immunized with DNA-gp120/MVA-B, disclosing the ability of the LEO160 promoter to increase also
the HIV-1-gp120-specific response of this important cell subtype. Since the differences observed were
small, future experiments will be performed to further characterize in detail the impact of the novel
MVA-LEO160-gp120 vector on Tfh cell responses. These findings are in agreement with recent results
from our laboratory that suggest that MVA-based vectors might represent an advantageous platform
to potentially activate HIV-1-specific Tfh cell responses [44,45].

Although the positive correlation between the heterologous antigen expression in the MVA system and
the improvement of the T cell (particularly CD8+) responses has been well documented [19,20,29,57,59],
none of these reports have found difference in the levels of neo-antigen-specific antibodies independently
of the promoter used [57]. This result was attributed to the fact that during VACV infection, the late and
intermediate genes have shown to be the preferred targets for antibody responses [21,22], but the factors
that regulate and determine the antibody responses from MVA expressed genes are still not well defined.
Here, when HIV-1-specific humoral immune responses elicited in serum samples from immunized
animals were analyzed by ELISA, the data revealed that DNA-gp120/MVA-LEO160-gp120 immunization
protocol enhanced the levels of total IgG binding antibodies against HIV-1 gp120 protein compared to
DNA-gp120/MVA-B. While the differences observed between both groups were small, they might be
biologically relevant. The more efficient production of anti-Env-specific antibodies seen may be due to
the higher expression of HIV-1 Env in infected cells, as this slightly higher total IgG HIV-1 Env binding
antibody levels observed in mice immunized with DNA-gp120/MVA-LEO160-gp120 is consistent with the
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higher levels of gp120 observed in MVA-LEO160-gp120-infected cells. Even though it is suggested that in
MVA immunizations antibodies are mainly induced against late poxviral antigens [72], here we observed
an enhancement in the antigen-specific antibody responses by an early strong transgene expression.
Although promoter optimization within the VACV replicative strain LC16m8 expressing HIV-1 Env was
found to increase production of anti-HIV-1 Env-specific antibodies when the stronger SFJ1-10 promoter
was used, compared with the widely used p7.5 promoter [58], this is the first time that this phenomenon
is described for a recombinant MVA vector. Higher levels of total IgG in serum could be an important
parameter associated with the protective effect induced by HIV/AIDS vaccine candidates, because studies
on the RV144 vaccine regimen revealed that the protection against HIV-1 infection was directly correlated
with the level of IgG antibodies specific for the HIV-1 gp120 V1V2 region [9,73]. Future studies should
aim to analyze in detail the humoral immune responses elicited by this novel LEO160 promoter, such as
the induction of different isotypes, peptide mapping, neutralizing antibodies, and antibody-dependent
cellular cytotoxicity.

5. Conclusions

In summary, the results obtained demonstrate how a designed VACV promoter modification
can be used to enhance the levels of HIV-1 gp120 soluble protein in cultured cells infected with an
MVA vector. In mice, the magnitude of the HIV-1 gp120-specific CD4+ and CD8+ T cell immune
responses and the levels of anti-gp120 antibodies were also increased, demonstrating the enhanced
immune properties of this promoter. Thus, based on its capacity to increase heterologous antigen
expression in vitro and antigen-specific CD4+ and CD8+ T cell responses in vivo, the novel synthetic
VACV LEO160 promoter is a promising prototype to be used in the generation of poxvirus-based
vaccine vectors.
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