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Abstract: Crimean–Congo hemorrhagic fever virus (CCHFV) infrequently causes hemorrhagic fever
in humans with a case fatality rate of 30%. Currently, there is neither an internationally approved
antiviral drug nor a vaccine against the virus. A replicon based on the Sindbis virus vector encoding
the complete open reading frame of a CCHFV nucleoprotein from a South African isolate was
prepared and investigated as a possible candidate vaccine. The transcription of CCHFV RNA and
recombinant protein production by the replicon were characterized in transfected baby hamster
kidney cells. A replicon encoding CCHFV nucleoprotein inserted in plasmid DNA, pSinCCHF-52S,
directed transcription of CCHFV RNA in the transfected cells. NIH-III heterozygous mice immunized
with pSinCCHF-52S generated CCHFV IgG specific antibodies with notably higher levels of IgG2a
compared to IgG1. Splenocytes from mice immunized with pSinCCHF-52S secreted IFN-γ and
IL-2, low levels of IL-6 or IL-10, and no IL-4. No specific cytokine production was registered in
splenocytes of mock-immunized mice (p < 0.05). Thus, our study demonstrated the expression of
CCHFV nucleoprotein by a Sindbis virus vector and its immunogenicity in mice. The spectrum
of cytokine production and antibody profile indicated predominantly Th1-type of an anti-CCHFV
immune response. Further studies in CCHFV-susceptible animals are necessary to determine whether
the induced immune response is protective.

Keywords: Crimean–Congo hemorrhagic fever virus; nucleoprotein; Sindbis virus replicon vector;
immune response

1. Introduction

Crimean–Congo hemorrhagic fever virus (CCHFV) exclusively causes disease in
humans. The virus has an extensive global geographic distribution, and the disease has
been reported in a wide array of countries in Africa, Asia, the Middle East, Eastern Europe
and recently in Spain, Western Europe [1–4]. A total of seven human cases have been
reported in Spain from 2016 to August 2020, with a case fatality rate of 42.9% [5]. Data
from the Spanish studies indicate an establishment of the CCHFV transmission cycle in
the country [5]. The expanding geographical range of the virus prompts intensification of
the research and development efforts to prevent the disease, as for now, no internationally
approved anti-CCHFV drugs or vaccines are available.

CCHFV is maintained in a life cycle involving ticks and vertebrate animals [1], while
humans are regarded as incidental hosts. Hyalomma tick species serve as principal host
and viral vectors [6]. Sources of human infections include infected tick bites, exposure to
infected livestock blood or tissue, and human to human transmission, especially in hospital
settings [7]. Infections are associated with the hemorrhagic syndrome, with a mortality rate
of 30%.

CCHFV is classified in the Nairoviridae family and the Orthonairovirus genus. Struc-
turally, Crimean–Congo hemorrhagic fever (CCHF) virions are spherical, measuring ap-
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proximately 100 nm in diameter. The three single-stranded negative RNA segments are
enclosed in a host cell-derived lipid bilayer membrane envelope. The RNA segments identi-
fied as small (S), medium (M), and large (L) each have a coding region sandwiched between
5′ and 3′ untranslated regions [8]. The untranslated regions present at the 5′ and 3′ termini
of the S, M and L segments possesses sequences required for transcription, replication and
packaging [8]. The S segment encodes the nucleocapsid protein (NP) and a non-structural
S protein (NSs). The NP encapsidates viral RNA and complementary RNA [9], while the
NSs demonstrates apoptotic activity in transfected cells [10]. The apoptotic roles of NSs
are exclusively based on protein overexpression, thus warranting further investigation on
NSs functions and properties [9]. The M segment directs the synthesis of a glycoprotein
precursor, which is sequentially cleaved by host proteases in the endoplasmic reticulum
and Golgi apparatus, to produce envelope glycoproteins (Gn and Gc), non-structural M
protein, and secreted non-structural proteins [11–13]. The Gn–Gc heterodimer mediates
viral assembly, budding of the newly formed virus particle, and attachment to new target
cells [14]. The use of a well-established CCHFV virus-like particle system allowed re-
searchers to demonstrate the relevance of each of the M-segment non-structural proteins to
virus assembly, egress, and infectivity [15]. The L segment encodes for the RNA-dependent
RNA polymerase. The L protein functions in viral mRNA transcription and translation [14].
As part of the viral RNA polymerase, CCHFV encodes a specific protease belonging to
the ovarian tumor (OTU) superfamily, with both deubiquitinase and deISGylase activities,
critical for the suppression of antiviral interferon response [16].

Internationally licensed therapies or vaccines against CCHFV are not yet available,
thus treatment of CCHFV infection is mainly supportive. There is an inactivated vaccine
used on a small scale in Eastern Europe [17]. It is unlikely that this inactivated vaccine may
be licensed for international use because of safety reasons. The search for a CCHFV vaccine
is thus an area of intense research. Vaccine candidates based on the inactivated CCHFV
particle, the nucleoprotein, the glycoprotein precursor or the envelope glycoproteins have
been reported [18–24]. The NP is the most abundantly produced viral protein during infec-
tion, is highly immunogenic, and possesses B and T cell epitopes [25,26]. However, unlike
the envelope glycoproteins Gn and Gc, which are extracellular and induce neutralizing
antibodies [27], the NP is an internal protein and does not induce neutralizing antibodies.
Instead, the NP induces cytotoxic T lymphocyte response (CTL). Potent CTL responses
have been demonstrated against the NP in survivors from CCHFV infection, whereas CTL
response against structural glycoproteins is rare [26]. Importantly, anti-NP CTL responses
are present at high frequency and are detectable several years after the acute infection,
despite the absence of continued antigenic stimulation [26]. This advances the NP as a
prospective candidate for the CCHFV vaccine.

Vaccine candidates based on the NP for orthohantaviruses and the Rift Valley fever
virus have induced protective immune responses against lethal viral challenge in animal
models [28,29]. Likewise, CCHF NP candidate vaccines have protected knockout mice in
viral challenge studies [30,31], although negative results have also been reported [23]. Even
though the NP is expected to induce a CTL response of protective character [32], as has
been shown in the human studies [26], the immune correlates of the NP-induced protection
in animal models remain unidentified [4].

Replicating viral vectors based on alphaviruses, flaviviruses, measles virus, and
rhabdoviruses has been evaluated for vaccine development [33]. Sindbis virus, a member
of the alphavirus genus, causes mild disease in humans, and replicons based on the Sindbis
virus genome have demonstrated encouraging results as vaccine vectors [34]. Replication-
deficient alphavirus vectors can be applied as naked RNA, recombinant particles, and
plasmid DNA [35]. Recombinant particles are more effective at stimulating immune
responses; however, the manufacturing process is costly, and safety issues arising from
recombination generating replication-competent virus remain a concern. To circumvent
these drawbacks, the RNA replicon can be launched from a plasmid. In this setup, the
Sindbis virus genome sequence, excluding sequences encoding structural proteins, is
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converted to a cDNA sequence which is driven by a foreign promoter, such as one derived
from human cytomegalovirus (hCMV). Transcription, beginning in the nucleus, results
in the generation of the Sindbis virus RNA which exits the nucleus into the cytoplasm
where the translation of the viral replicase takes place. The replicase directs transcription
of subgenomic mRNA encoding the gene of interest [36,37]. Replicons are superior to
conventional plasmid DNA vectors in terms of heterologous protein production because the
Sindbis virus replication machinery generates numerous subgenomic mRNAs from which
the gene of interest can be translated, in contrast to the traditional DNA vectors from which
fewer mRNA transcripts are generated. Sindbis replicons promote apoptosis in transfected
cells, and apoptosis enhances the induction of immune response [38,39]. Furthermore,
Sindbis replicons are relatively safer, since apoptosis induced by the vector reduces the
chances of foreign DNA integration. In this study, we present the characterization of a
replicon expressing CCHFV NP in mammalian cells and evaluation of immune responses
induced by this replicon delivered by plasmid DNA in a mouse model.

2. Materials and Methods
2.1. Cells

The baby hamster kidney (BHK-21) cell line (ATCC® CCL-10, Manassas, VA, USA)
was obtained from American Type Culture Collection (ATCC) and maintained in Dul-
becco’s Modified Eagle Medium (DMEM), supplemented with 10% gamma-irradiated
fetal bovine serum (FBS) (Gibco, Paisley, UK), 1% L-glutamine (Lonza, Verviers, Belgium),
1% penicillin-streptomycin (Lonza, Verviers, Belgium), and 1% non-essential amino acids
(Lonza, Verviers, Belgium) at 37 ◦C in a humid 5% CO2 atmosphere.

2.2. Sindbis Replicon Vectors Expressing CCHFV NP

A primer set amplifying the entire open reading frame of the CCHFV nucleoprotein
of CCHFV isolate SPU 187/90 was designed using sequence data retrieved from GenBank
(GenBank Accession number: KJ682823.1).

Primers designated CCHF-NP-F: GCGGCCGCATGGAAAACAAAAT(T/C)GAGGTGAAT
and CCHF-NP-R: ATCGATTTAGTGGTGGTGGTGGTGGTGGAT(G/A)ATGTT(G/A)GCA
CTGGTGGC were modified to include NotI and ClaI restriction enzyme sites for down-
stream cloning, and a polyhistidine tag (italicized) was included at the 3′ end of the
reverse primer.

The primer pair F2 (TGGACACCTTCACAAACTC) and R3 (GACAAATTCCCTG-
CACCA) [40–42] that amplify a 536 base pair region of the nucleoprotein gene was used for
the quantitative polymerase chain reaction (qPCR). A hydrolysis probe designated CCHF-
NP31_52 (CTGAGCTAAAAGTTGACGTCCCGAAAAT) was identified, which annealed
within the targeted region.

The pSinGFP expression vector encoding the green fluorescence protein (GFP) gene
was provided by Professor Mark Heise from the University of North Carolina (Chapel Hill,
NC, USA). CCHFV RNA was supplied by the National Institute for Communicable Diseases
(Johannesburg, South Africa). Viral RNA was converted to cDNA using SuperScriptTM

III Reverse Transcriptase (RT) enzyme (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. The CCHFV NP full-length open reading frame (from
CCHFV isolate SPU 187/90, GenBank Accession number: KJ682823.1) was amplified using
Phusion® High fidelity (HF) DNA polymerase enzyme (New England Biolabs, Ipswich,
MA, USA), using cDNA as a template in a two-step reverse transcription-polymerase chain
reaction (RT-PCR) technique. The PCR cycling conditions comprised an initial denaturation
at 98 ◦C for 30 s, followed by 25 cycles of 98 ◦C denaturation for 10 s, annealing at 68 ◦C
for 30 s, and extension at 72 ◦C for 1.5 min followed by a final extension at 72 ◦C for 7 min.
Samples were held at 4 ◦C. The amplified fragments of the nucleoprotein were purified
and subcloned into an intermediate vector, pMiniT 2.0 (New England Biolabs, Ipswich,
MA, USA), following the manufacturer’s instructions. Restriction enzyme digestion of the
NP fragments in pMiniT 2.0 vector yielded DNA fragments that were inserted at the NotI
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and ClaI sites of the Sindbis-based replicon vector. Sanger sequencing was performed to
determine the accuracy of the nucleotide sequences. Plasmids produced by transforming
single-use JM109 competent cells (Promega, Madison, WI, USA) were purified using Qiagen
Plasmid Maxi Kits (Qiagen, Hilden, Germany). The DNA concentration was determined
using the NanoDrop 2000 spectrophotometer, and labelled aliquots were stored at −20 ◦C
until use.

2.3. Recombinant Protein Expression and Detection

Transfection by electroporation was performed using the Neon® Transfection System
MPK5000 (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions.
Briefly, cells were dissociated, counted, washed, resuspended in 100 µL of Resuspension
Buffer R (Invitrogen, Carlsbad, CA, USA), and mixed with 15 µg of the plasmid. Electropo-
ration was performed at 1500 V, 3 pulses, and 10 ms pulse width, and cells were grown at
37 ◦C in a 5% carbon dioxide enriched environment. NP expression in transfected BHK-21
cells was detected using immunofluorescence microscopy. Briefly, 24 h post-transfection
the cells were fixed in a methanol–acetone solution for 20 min at −20 ◦C and blocked with
a solution consisting of 10% sucrose and 0.5% Triton X-100 in 1% phosphate-buffered saline
(PBS) at room temperature for 20 min. Serum from CCHF survivors or anti-His6 mouse
monoclonal antibody was applied 1:10 or 1:200, respectively. Detection involved goat
anti-human and goat anti-mouse IgG fluorescein isothiocyanate antibody (FITC) (SeraCare
Life Sciences, Milford, MA, USA), diluted 1:20 in 0.1% Evans blue. Cells were visualized
using the Nikon ECLIPSE Ni-U fluorescence microscope (Melville, Huntington, NY, USA).

Transfected BHK-21 cells were grown in T-25 cm2 flasks at 37 ◦C in a 5% carbon
dioxide enriched incubator for 48 h. Cells were washed and lysed in 250 µL of mammalian
cell lysis buffer (50 mM Tris, 150 mM NaCl, 1% Nonidet P-40 with the addition of a
protease inhibitor cocktail (Sigma, Burlington, MA, USA)). Harvested cells were separated
using 12% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis and
transferred onto polyvinylidene difluoride (PVDF) membrane. The PVDF membrane was
probed with an anti-His6 monoclonal antibody (Roche, Rotkreuz, Switzerland), targeting
the C-terminal histidine tag fused to the CCHFV nucleoprotein and detected using the
Pierce® Fast Western Blotting kit (Thermo Scientific, Waltham, MA, USA). The images were
captured with the C-DiGit® Blot Scanner (LI-COR®, Bad Homburg, Germany).

2.4. Quantitative Determination of CCHFV NP RNA

Transfected BHK-21 cells grown in 6-well plates were harvested at 4 h, 8 h, 12 h, 24 h,
and 48 h. Total RNA was extracted using the RNeasy® Plus Mini Kit (Qiagen, Hilden,
Germany) as per the manufacturer’s instructions. DNA removal from RNA samples was
performed using the RQ1 RNase-free DNase kit (Promega, Madison, WI, USA) according
to the manufacturer’s instructions.

Quantitative real-time PCR was performed using the LightCycler® 2.0 Instrument
(Roche, Rotkreuz, Switzerland). The master mix was prepared by adding 10 µL of the
LightCycler® FastStart Enzyme to the LightCycler® FastStart TaqMan® Reaction Mix
containing reaction buffer, MgCl2, and dNTP mix, all supplied with the kit. The reactions
consisted of 4 µL master mix, 2 µL (10 pmol/µL) each of F2 and R3, 1 µL (2 pmol/µL)
CCHF-NP31_52 (hydrolysis probe), 1 µL cDNA/diluted standards, and 10 µL nuclease-free
water. Thermocycling conditions comprised of a pre-incubation step at 95 ◦C, followed
by 35 cycles of denaturation at 95 ◦C for 10 s, annealing and extension at 55 ◦C for 60 s,
and a cooling step at 40 ◦C for 30 s. The fluorescence signal was gathered at the end of
the combined annealing and extension step of each cycle. A temperature transition rate
of 20 ◦C/s was utilized. Samples were analyzed in duplicate, and each run included a
known standard. The concentrations of samples were determined using standard curves
generated from a positive control of known copy numbers.
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2.5. Animal Immunizations

Six- to eight-week-old female National Institute of Health (NIH), NIH-III Heterozy-
gous mice strain were bred and housed in the animal facility at the University of the Free
State. Mice in groups of three were immunized with either 100 µg of Sindbis replicon
expressing CCHFV NP, or 100 µg of the replicon and 50 µg of Polyinosinic-polycytidylic
acid Poly (I:C) HMW (High Molecular Weight) VacciGrade (InvivoGen, Toulouse, France)
into the tibia anterior muscle at days 0, 21, and 42. The control group received 50 µg of
pSinGFP and 50 µg of Poly (I:C) HMW VacciGrade. The replicon and the adjuvant were
administered in a total volume of 100 µL, 50 µL in each of the tibia anterior muscle. Mice
were monitored daily for any signs of discomfort post-vaccination.

2.6. Determination of Cytokine Responses

To evaluate cytokine secretion as an index of cellular immune responses, mice spleens
were stimulated in vitro using CCHFV antigen. The spleens were harvested from mice
euthanized 2 weeks after the final immunization. Spleens were harvested from euthanized
mice and single-cell suspensions prepared in RPMI 1640 media containing 10% heat-
inactivated foetal bovine serum. Single-cell suspensions were seeded at a density of
5 × 105 cells per well in 96 well plates, in a total volume of 250 µL RPMI 1640 media
supplemented with 10% gamma-irradiated foetal bovine serum and stimulated with 10 µg
of inactivated sucrose acetone extracted CCHFV antigen prepared from infected suckling
mouse tissue for 48 h at 37 ◦C in a 5% CO2 enriched incubator. The antigen was prepared by
intracranial inoculation of suckling mice with a South African isolate of CCHFV (SPU 4/81)
and extraction of antigen from brain tissue of mice that succumbed [43] (kindly donated
by Prof J Paweska from the National Institute for Communicable Diseases, South Africa).
Meanwhile, 0.25 µg/well of concanavalin A antigen (Calbiochem, San Diego, CA, USA)
and PBS were used as positive and negative controls respectively. The CCHFV antigen
was supplied freeze-dried and reconstituted in sterile PBS prior to stimulating splenocytes.
Stimulation was performed in duplicate for each of the cytokine assayed.

The levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha (TNF-α),
and interferon-gamma (IFN-γ) in culture supernatants were determined by ELISA kits
(eBioscience, San Diego, CA, USA) following manufacturer’s instructions. Photometric
analysis was performed at 450 nm using the Sunrise™ absorbance reader. All assays were
performed in duplicate.

2.7. Determination of Humoral Immune Responses

CCHFV NP-specific immunoglobulins G (IgG) were analyzed in serum from im-
munized mice using an indirect immunofluorescent assay (EUROIMMUN AG, Lubeck,
Germany), modified to test mouse serum samples. The assay was supplied with BIOCHIP
slides coated with cells expressing the CCHFV nucleoprotein. Sera from a laboratory con-
firmed human CCHF survivor previously shown to have antibody was used as a positive
control. Serum samples were reacted with cells on the BIOCHIP at room temperature.
After washing with PBS-Tween, the slides were incubated with fluorescein-labelled goat
anti-mouse IgG (SeraCare Life Sciences, Milford, MA, USA), diluted 1:20 in 0.1% Evans
blue for 30 min at room temperature. Slides were visualized using the Nikon ECLIPSE
Ni-U fluorescence microscope. Anti-CCHFV NP positive samples were further isotyped to
determine the IgG subtypes using fluorescein-conjugated rat anti-mouse IgG1, IgG2a, and
IgG2b (Biolegend, San Diego, CA, USA) as detection antibodies.

2.8. Statistical Analysis

Statistical analysis (Mann–Whitney test) was performed using GraphPad Prism ver-
sion 9.2.0 for Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com,
10 December 2021). Statistical significance was set at p < 0.05.

www.graphpad.com
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3. Results
3.1. Expression of CCHFV NP by Sindbis Replicon Vector

CCHFV NP gene was amplified from a South African viral isolate by the RT-PCR
technique. Translated NP amino acid sequence showed 100% similarity compared to the
original CCHFV NP sequences deposited in the GenBank. The CCHFV NP encoding se-
quence was cloned into a replicon based on the Sindbis virus vector generating recombinant
plasmid, designated pSinCCHF-52S (Supplementary Figure S1). The NP sequence was
supplemented with a polyhistidine tag sequence at the C-terminal. CCHFV nucleoprotein
expression in BHK-21 cells transfected with the recombinant plasmid, pSinCCHF-52S, was
evaluated by immunofluorescence staining of expressing cells using anti-His tag antibodies
(Figure 1A,B) and further confirmed by immunofluorescence staining using anti-CCHF
IgG from CCHF survivors (Figure 1C,D). SDS-PAGE, followed by transfer to the PVDF
membrane and Western blotting with anti-His6 tag mouse monoclonal antibody, revealed
a protein band of approximately 52 kDa corresponding to the estimated molecular mass of
CCHFV NP [44] (Figures 1E and S5).
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polyhistidine tag were specifically stained with anti-His6 antibody (A,B) and anti-CCHFV IgG human serum (C,D) in
immunofluorescence test, and expressed protein with a molecular mass of 52 kDa stained with anti-His tag antibodies (E).
BHK-21 cells transfected with replicon pSinCCHF-52S (A,C); mock-transfected BHK-21 cells (B,D); images were captured
using the Olympus BX51 fluorescence microscope (USA) (×40). Western-blot analysis of CCHFV NP using mouse anti-
His6 monoclonal antibody (E): Lane 1: MagicMark XP Western Protein Standard, Lane 2: BHK-21 cells transfected with
pSinCCHF-52S, Lane 3: Mock-transfected BHK-21 cells. The position of the molecular mass marker is shown on the left.

3.2. Kinetics of CCHF NP Total RNA Expression

The kinetics of CCHFV NP RNA transcription by pSinCCHF-52S in transfected BHK-
21 cells was evaluated by performing a qRT-PCR. For this, total RNA was extracted from the
transfected BHK-21 cells at 4, 8, 12, 24, and 48 h post-transfection. Total RNA was converted
to cDNA, and cDNA was quantified as a proxy for the original subgenomic CCHFV NP
RNA by the RT-qPCR technique. The CCHFV NP RNA load was estimated using a standard
curve generated by ten-fold dilution, ranging from 1.28 × 1011 to 1.28 × 103 DNA copies
(amplification efficiency of 1.928 with a standard error of 0.018).

qRT-PCR demonstrated that transcription of CCHFV NP RNA from pSinCCHF-52S
construct started 8 h post-transfection, increasing sharply by 24 h and decreasing thereafter
(Figure 2). No CCHFV RNA was detected in cells transfected with a plasmid carrying
Sindbis virus replicon expressing GFP (pSinGFP). Copy numbers of NP RNA detected 4 to
48 h post-transfection are presented in Supplementary Table S1.
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3.3. Immune Responses of Mice to Immunization with pSinCCHF-52S

Plasmid pSinCCHF-52S expressing CCHFV NP was used to immunize NIH mice
(n = 5); two of these mice received pSinCCHF-52S mixed with Poly (I:C). Control mice
received pSinGFP mixed with Poly (I:C). Plasmids were delivered by intramuscular in-
jections on days 0, 21, and 42. At the experimental endpoint, mice were bled, sera were
collected, thereafter mice were euthanized, and spleens were excised to prepare single-cell
splenocyte cultures for T-cell tests.

3.3.1. Humoral Immune Response

Plasmid pSinCCHF-52S induced the production of CCHFV nucleoprotein-specific
antibodies (Figure 3A1–A5). No antibodies were detected in mice receiving control pSinGFP
plasmid (Figure 3B1–B3). The average endpoint titer of anti-NP antibodies determined by
a commercial indirect immunofluorescent assay reached 1229 ± 457.9 (Figure 3C).

Anti-nucleoprotein NP antibodies were further characterized into the IgG1, IgG2a,
and IgG2b subtypes (Figure 3D). Subtyping demonstrated higher endpoint titers of anti-NP
IgG2 subtypes (Figure 3D, Supplementary Figure S2B). The ratios of IgG2a/IgG1 and of
IgG2a/IgG2b exceeded 1 (Supplementary Figure S2B). The addition of Poly (I:C) led to a
decrease in the titers of anti-NP IgG, IgG1, IgG2a, and IgG2b; however, the difference did
not reach the level of significance and had no effect on the IgG2a/IgG1 and IgG2a/IgG2b
ratios (Supplementary Figure S2B).
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Figure 3. Antibody responses induced by immunization with pSinCCHF-52S. Indirect immunofluorescence analysis of
serum CCHFV NP IgG antibodies from pSinCCHF-52S immunized mice with and without Poly (I:C) (A1–A5): (A1) mouse 1,
(A2) mouse 2, (A3) mouse 3, (A4) mouse 4, (A5) mouse 5 compared to mice immunized with pSinGFP (B1–B3): (B1) mouse
1, (B2) mouse 2, and (B3) mouse 3. (C1), positive control. Images were captured using the Nikon ECLIPSE Ni-U fluorescence
microscope (USA) (×20). Anti-CCHFV NP IgG endpoint titer (C). Anti-CCHFV NP IgG endpoint titer and IgG2a/IgG1
ratios (D). Mice (NIH; n = 5/group) were immunized three times intramuscularly with the prepared pSinCCHF-52S
construct expressing CCHFV nucleoprotein with (n = 2) and without Poly (I:C) (n = 3). Serum anti-CCHFV NP IgG were
analyzed using a commercially available indirect immunofluorescent assay. Data are expressed as the mean for five mice
(pSinCCHF-52S) and three mice for pSinGFP and the standard error of the mean. * p < 0.05 by Mann–Whitney U test.
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3.3.2. Cellular Immune Response

To investigate cytokine responses following immunization with Sindbis replicons
expressing CCHFV NP with and without Poly (I:C), splenocytes harvested from vaccinated
mice were stimulated in vitro with CCHFV antigen for two days, sterile PBS as the negative
control or concanavalin A as the positive control. We performed a Mann–Whitney test
on the levels of cytokines secreted by splenocytes from pSinCCHF-52S immunized mice
with and without Poly (I:C). There was no statistically significant difference in the levels
of IFN-γ and IL-2 production in mice receiving pSinCCHF-52S with or without Poly
(I:C) (Supplementary Figure S3A,B). Thus, Poly (I:C) had no significant effect on cellular
response. Splenocytes of mice immunized with pSinCCHF-52S secreted significantly higher
levels of IFN-γ (p = 0.0357) and IL-2 (p = 0.0357), and insignificantly higher levels of TNF-α
(p = 0.1000) compared to control mice immunized with pSinGFP (Figure 4A–C). Of note,
TNF-α secretion by cells from mice that received the replicon in the absence of Poly (I:C)
was marginally higher than those from the control group (p = 0.0495; Supplementary
Figure S3C). Immunization with pSinCCHF-52S induced weak production of IL-6 and
IL-10 (Supplementary Figure S4A,B). IL-4 was undetectable. These results demonstrate that
immunization with pSinCCHF-52S expressing CCHFV NP protein induced predominantly
Th1 type cytokines, indicating a Th1-profile of cellular immune response.
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Figure 4. Immunization of mice with pSinCCHF-52S expressing NP protein of CCHFV (n = 5) induced specific production
of IFN-γ (p = 0.0369) (A), IL-2 (p = 0.0495) (B), and an insignificant increase in production of TNF-a (p = 0.1) (C) as compared
to cytokine responses in mice immunized with pSinGFP (n = 3). Murine splenocytes were stimulated with CCHFV antigen,
as described in the Materials and Methods section. Cytokine expression was measured by ELISA using commercial kits
(eBioscience, San Diego, CA, USA). Data are expressed as the mean for the group, with the standard error of the mean.
* p < 0.05.

3.3.3. Correlation between Cytokine and Antibody Responses

We have also looked for correlations between cellular and antibody responses to
CCHFV NP using the Spearman rank correlation test. Considering that we had data for
five immunized and three control mice, the test was run at a stringent significance value of
p < 0.001. Strong correlations were observed between CCHFV antigen-specific splenocyte
production of IFN-γ and TNF-α (R = 0.9326), and IL-2 and TNF-a (R = 0.957), confirming
specificity of TNF-α production (Supplementary Table S2). Correlations indirectly indicated
that these three cytokines were produced by the same T-cells.
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Furthermore, both IFN-γ and IL-2 production correlated with anti-CCHFV NP IgG2a
(R = 0.9506 for both; Supplementary Table S2). Induction of anti-CCHFV NP IgG1 and
IgG2b was, on the contrary (and as could be expected) correlated with the levels of IL-6
(R = 0.9512 and 0.9449, respectively). Last but not least, the production of anti-CCHFV NP
IgG1, IgG2a, and IgG2b was strongly correlated with the secretion of TNF-α (R = 0.974679,
0.968246, and 0.968246, respectively; Supplementary Table S2). Altogether, this confirmed
Th-1 tilting of anti-CCHFV immune response in pSinCCHF-52S immunized mice.

4. Discussion

In the present study, we reported the preparation of a Sindbis replicon expressing
the full-length open reading frame of a CCHFV NP from a South African isolate. The
replicon based on a DNA vector transcribed CCHFV NP subgenomic RNA. We assessed
the transcription of CCHFV NP RNA in the transfected BHK-21 cells by the qRT-PCR
technique by introducing an index of self-replication. This allowed us to quantify the
rate of self-replication of the Sindbis virus replicon expressing the CCHFV NP, which,
according to our knowledge, has not previously been assessed. Self-replication was vital in
underscoring the prepared recombinant plasmid as an efficient vector for immunogenicity
studies. Another necessary attribute of the vector for immunization was its ability to direct
the translation of the heterologous protein. Our experiments demonstrated the capacity
of the Sindbis replicons to direct the expression of the CCHFV NP in vitro. An efficient
self-replication of the Sindbis virus replicon made the pSinCCHF-52S construct potentially
effective as an immunogen. An active alphavirus virus replicase offered an additional
bonus: replicase activity produces dsRNA intermediates that activate antiviral pathways,
thus potentiating the induction of immune responses [45].

Indeed, when introduced into mice, the construct pSinCCHF-52 induced nucleoprotein-
specific antibodies and potent in vitro CCHFV specific cytokine production by murine
splenocytes stimulated with CCHFV antigen, as a readout vaccine-induced cellular im-
munity. Memory splenocytes generated after the initial encounter with an antigen secrete
cytokines upon re-exposure to the same antigen. We therefore stimulated and analyzed
cytokine secretion by splenocytes harvested from immunized compared to control mock-
immunized mice and observed specific cytokine secretion by splenocytes from vaccinated
mice after stimulation by the CCHFV antigen. Predominantly produced were IFN-γ and
IL-2; mice receiving pSinCCHF-52 without Poly (I:C) also produced TNF-α, while levels
of IL-6 and IL-10 were low (not exceeding those in mice mock-immunized with pSinGFP
and no IL-4). The profile of cytokines indicated a Th1-type immune response [46,47]. In a
previous study by Aligholipour Farzani et al., the researchers reported high levels of serum
IL-6 and TNF-α, which were postulated to be associated with survival in mice lacking both
the IFN-I receptor and IFN-gamma receptor (IFNα/β/γR−/−) after immunization with
NP based constructs [31]. Future studies are planned to assess the protective potential of
the immune responses induced by the replicon and to evaluate serum cytokines that can
be considered protective.

Immunization of mice with pSinCCHF-52S construct elicited CCHFV NP-specific
IgG antibodies. CCHFV specific antibodies were of predominantly IgG2a subclass; the
high IgG2a/IgGa and IgG2a/IgG2b ratios spoke of a predominantly Th1-type immune
response [48,49]. The Th-1 immune response was also supported by strong correlations
between anti-CCHFV NP IgG2a and CCHFV NP-specific IFN-γ and IL-2 production.
However, the presence of both IgG2a and IgG1 in immunized mice suggests pSinCCHF-
52S has the potential to elicit both Th1 and Th2 responses. Unlike our study, a previous
study reported a bias towards Th2 responses in BALB/c mice following immunisation
with constructs expressing the nucleocapsid protein from a CCHF Ank-2 strain [31]. We
could not assess the neutralization potential of the NP-specific antibodies because of the
absence of the Biosafety Level (BSL)-4 facility, but we did not expect this immunization to
produce neutralizing antibodies, as neutralizing antibodies are normally observed after
immunization with the CCHFV glycoproteins [27,50,51].
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We observed strong correlations between CCHFV NP-specific IFN-γ, IL-2, and TNF-α
production, and levels of anti-NP IgG2a antibodies. Strong correlations between antigen-
specific IFN-γ, IL-2, and TNF-α production alongside the preferentially Th1-type immune
response determined by antibody profiling were earlier shown in mice immunized with
plasmid DNA encoding HIV-1 reverse transcriptase (RT) [52]. Specific responses were
later attributed to the RT-specific T cell reactivity of CD4+ T cells [53]. Our data on
the correlations between NP-specific IFN-γ, IL-2, and TNF-α production, together with
these observations, speak in favor of all three cytokines being produced by the same
cells, suggestively, NP-specific CD4+ T cells. Same cells could then give support to the
production of NP-specific IgG2a.

Traditionally, adjuvants are incorporated into vaccines to increase the magnitude of
antibody response or the potential to prevent infection and to guide the type of adaptive
immune response, as per the immune correlates of protection [54]. Poly (I:C), a Toll-like
receptor (TLR) agonist, was investigated as a potential adjuvant for the replicon. TLRs
expressed by numerous innate immune cells recognize conserved molecular products
on various pathogens, setting off a chain of signaling events resulting in activation of
innate immunity and subsequent initiation of adaptive immunity [55]. Poly (I:C) exerts
its adjuvant effects by activating TLR3 and MDA5 pathways, promoting the induction
of antibody responses, Th1, and CD8+ T cells immune responses [54]. On the other
hand, DNA vaccination generally promotes Th1 responses, which have been reported as
effective against viruses in animal models [56]. Importantly, a dominant Th1 response has
been suggested to confer the most efficient protective immune responses against lethal
CCHFV challenge in a mouse model lacking type 1 interferon signalling (IFNAR−/−) [20].
A previous study reported CTL responses against the CCHFV NP from survivors [26],
probably pointing to the importance of these immune responses in clearing the infection.
We, therefore, sought to maximize Th1 immune responses by the replicon, thus selecting
Poly (I:C) to serve as an adjuvant. However, mice co-vaccinated with pSinCCHF-52S and
Poly (I:C) did not show an enhanced Th1 type response; instead, the adjuvant somewhat
dampened both cellular and antibody responses. Given the possibility that Poly (I:C)
is likely to exert its effects first before the transfected cells fully express the protein, by
signaling type 1 interferon production, Poly (I:C) might have induced an antiviral state in
cells, thus hindering Sindbis virus replicase activity and ultimately reducing transcription
and translation of the encoded CCHFV NP. In support of this, innate immune responses
induced in a human cell line pretreated with Poly (I:C) were shown to inhibit replication
of the Chikungunya virus in vitro [57]. The possibility of overstimulation of the innate
immune system by both the Sindbis virus vector and the Poly (I:C) subsequently interfering
with the potency of the Sindbis replicon also merits consideration. Both Poly (I:C) and
alphavirus-based vaccines induce antiviral pathways [39,54], which downregulate mRNA
translation, thereby inhibiting protein synthesis [58–60]. Our results suggest that Poly (I:C)
may not be the best adjuvant for viral vectors. In fact, adjuvants that interfere with viral
replication dampen immune induction with viral vectors. However, the “side effects” of
Poly (I:C) can be circumvented by administering Poly (I:C) at least 2–3 days following the
introduction of the replicon, after which the expression of the CCHFV NP would have
occurred. We intend to further investigate adjuvants that can enhance the immunogenicity
of the CCHFV NP encoded by the Sindbis replicon. Plasmid encoded adjuvants would be
ideal, since the immune stimulation and protein expression are synchronised. The genetic
adjuvants can be administered as separate plasmids or as additional genes encoded by
the replicon.

The present study has a number of limitations. A small number of mice were used in
our study; consequently, a larger mouse sample size may be required to further validate
the findings. We understand that harvested splenocytes consist of T lymphocytes (CD4+

and CD8+ T cells) among other white cells. The observed cytokine responses could have
been either CD4+ and/or CD8+ T cells, and further studies are needed to identify their
origins. Poly (I:C), intended to amplify cellular responses, specifically the Th1-type immune
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response, failed to play this role, possibly due to its interference with Sindbis replicon
replication, or due to overstimulation of the immune system in addition to the one caused
by RNA expressed by the Sindbis viral replicase.

Despite the limitations, CCHFV NP transcription in transfected BHK cells coupled
with the cellular and humoral immune responses generated in pSinCCHF-52S immunized
mice is encouraging. In continuation, we are planning to further enhance the immunogenic-
ity of the NP in this vector system by including a signal peptide that can be incorporated
into the N-terminal of the NP gene to promote the dissemination of the NP beyond the
DNA transfected cells, thus providing broad access to the cells of the immune system. The
nature of immune responses generated by combining either the CCHFV GPC/Gn and Gc
with the NP warrant investigation. In summary, we have demonstrated that Sindbis-based
replicons efficiently expressed the CCHFV NP, and construct pSinCCHF-52S induced pre-
dominantly Th1 immune responses in an animal model. Further studies in CCHFV animal
models are necessary to determine whether the immune responses are protective of the
lethal virus challenge.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vaccines9121491/s1, Table S1: RT-qPCR viral load results following the transfection of
pSinCCHF-52S in BHK-21 cells. Samples were analyzed in duplicate; Table S2: Spearman Rank Order
Correlations. MD pairwise deleted. Correlations in bold are significant at p < 0.001, Figure S1: Prepa-
ration of recombinant plasmids. Schematic representation of pSinCCHF-52S; Figure S2: Antibody
responses induced by immunization with pSinCCHF-52S with and without Poly (I:C); Figure S3:
Cytokine profiling by ELISA from splenocytes harvested from NIH mice after immunization with
pSinCCHF-52S independently (n = 3) or with adjuvant poly (I:C) (n = 2); Figure S4: Cytokine
profiling by ELISA from splenocytes harvested from NIH mice (n = 5/group) after immunization
with pSinCCHF-52S independently or with adjuvant poly (I:C); Figure S5: Western blot analysis of
CCHFV NP.
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