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Abstract: Mucormycosis is a group of infections, caused by multiple fungal species, which affect
many human organs and is lethal in immunocompromised patients. During the COVID-19 pandemic,
the current wave of mucormycosis is a challenge to medical professionals as its effects are multiplied
because of the severity of COVID-19 infection. The variant of concern, Omicron, has been linked to
fatal mucormycosis infections in the US and Asia. Consequently, current postdiagnostic treatments
of mucormycosis have been rendered unsatisfactory. In this hour of need, a preinfection cure is
needed that may prevent lethal infections in immunocompromised individuals. This study proposes
a potential vaccine construct targeting mucor and rhizopus species responsible for mucormycosis
infections, providing immunoprotection to immunocompromised patients. The vaccine construct,
with an antigenicity score of 0.75 covering, on average, 92–98% of the world population, was de-
signed using an immunoinformatics approach. Molecular interactions with major histocompatibility
complex-1 (MHC-I), Toll-like receptors-2 (TLR2), and glucose-regulated protein 78 (GRP78), with
scores of −896.0, −948.4, and −925.0, respectively, demonstrated its potential to bind with the human
immune receptors. It elicited a strong predicted innate and adaptive immune response in the form
of helper T (Th) cells, cytotoxic T (TC) cells, B cells, natural killer (NK) cells, and macrophages. The
vaccine cloned in the pBR322 vector showed positive amplification, further solidifying its stability
and potential. The proposed construct holds a promising approach as the first step towards an
antimucormycosis vaccine and may contribute to minimizing postdiagnostic burdens and failures.

Keywords: mucormycosis; immunoinformatics; vaccine design; vaccine efficacy; population coverage;
immune activation
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1. Introduction

Mucormycosis, caused by fungal infiltration of blood vessels, is linked to a high
mortality rate. This angioinvasive infection is acquired predominantly by sporangiospore
inhalation, but the chances of infection through traumatic, nonsterile inoculation and
contaminated food are equally high [1,2]. Hematological malignancy, diabetes mellitus,
corticosteroid treatment, exposure to skin burns to the environment, and solid organ
transplants increase the risk of mucormycosis [3]. Mucormycosis has plagued the world for
5 decades, but little is known about its causative agents, pathogenesis, and epidemiology [4].
Therefore, therapeutic approaches to treat this problem are also scarce [5]. During the
COVID-19 pandemic, India has had the highest number of cases of mucormycosis among
COVID-19 patients, which was almost an 80 times higher rate compared with the rest of
the world [6].

As expected, the risk factors for mucormycosis also differ. Diabetes mellitus (DM)
has been reported as the most prevalent risk factor for mucormycosis in Asian countries,
whereas transplantation and malignancies occupy this spot in the European
world [6,7]. Apart from these general risk factors, research in the past 2 decades has
brought many health-care-associated cases of mucormycosis to light [8]. Its incidence is
constantly increasing with India and China being the most hit countries. Diabetes remains
the most common risk factor in these cases, especially in India, where DM and mucormyco-
sis top the charts in their respective incidence rates compared with relevant health problems,
respectively [9]. Along with DM, studies have associated corticosteroid use and abuse with
mucormycosis. Immunocompromised individuals, if provided 2–7 g methyl prednisone
doses, are naturally predisposed to be attacked by mucormycosis-causing agents [10].

The most prevalent type of mucormycosis is rhino-orbito-cerebral mucormycosis
(ROCM), which is frequently observed in individuals with ketoacidosis or uncontrolled
diabetes mellitus. The second most obvious and currently the most predominant clinical
form of mucormycosis is the pulmonary (PM) type. It is most often seen in patients
with transplants and hematological issues. COVID-19 is another major contributor to the
escalated development of PM [11]. Among its risk factors, blood malignancy is said to be
the major factor with a contribution of 32–40% [12]. Diabetes comes second, followed by
other factors, such as renal diseases, hematopoietic stem cell, and organ transplants. High
fever, pleuritic chest pain, consistent cough, and dyspnea are among its symptoms [13].

Mucormycosis has a wide range of clinical manifestations, based on the host’s pre-
existing immunosuppression. Even though there is substantial diversity, the clinical mani-
festation may be generally classified into six categories, ROCM [4], pulmonary [14], gastroin-
testinal, cutaneous [15], disseminated, and renal mucormycosis [16], based on anatomic
predilection. Among its causative agents, Rhizopus organisms are said to be behind ROCM,
Saksenaea and Apophysomyces are usually identified in cutaneous mucormycosis, and Cun-
ninghamella organisms are usually associated with disseminated and pulmonary forms of
the infection [6].

Despite a redundant and fatal attack of mucormycosis every now and then, therapeu-
tics are focused on postdiagnosis solutions. In most cases, it gets too late to apply that solu-
tion. Ibrahim et al. (2010) worked on developing an Ftr1 vaccine to counter mucormycosis;
however, that project was limited to the demonstration of a potential antibody vaccine [17].
Today, when the world has been shaken by the disease again, mucormycosis has threatened
to become a global concern. This demands a rigorous analysis of the available therapeutic
approaches against this deadly chain of fungal infections and an understanding that a
vaccine may minimize the chances of mucormycosis spread and fatalities.

This study proposes a multiepitope vaccine against mucormycosis. Mucor and Rhi-
zopus species are known to be at the heart of a majority of mucormycosis infections, so it
targets one transmembrane protein from each species and combines their antigenic epi-
topes to construct a multipotent vaccine that can protect the human host from both species’
infections. It will consider the global coverage of epitopes selected, immune stimulation,
and response to the vaccine, and will provide a cloning insert to help future researchers
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with the in vitro vaccine development. Although performing a rigorous, extensive, and
thorough analysis, we have amalgamated epitopes from proteins of two species to con-
struct the vaccine, which can be improved since mucormycosis is a broad-spectrum disease
and epitopes from other species could also be of significance. Furthermore, it is solely a
computational approach and lacks the sensitivity of dry lab assessments. For an efficient
vaccine, molecular and immunological assays can contribute a great deal.

2. Results
2.1. Target Proteins’ Selection

Upon analyzing 6000 proteins for R. oryzae and M. circinelloides from CELLO2GO,
18 proteins for both organisms were short-listed as they were present in the transmem-
brane region. Out of these 18, phytoene dehydrogenase from M. circinelloides (UniProt ID:
tr|Q9Y798) and a hypothetical protein from R. oryzae (accession number: KAG1630349.1)
were selected for vaccine design. Both proteins showed a hundred percent conservation
among various rhizopus and mucor species. The selected proteins were found to be anti-
genic and nonallergenic, which made them fit for further analyses. Table 1 provides the
antigenicity scores of the selected proteins.

Table 1. Antigenicity score of the selected proteins using VaxiJen v2.0.

Protein Antigenicity Score

Phytoene dehydrogenase 0.5642
Hypothetical protein 0.9140

2.2. B-Cell Epitope Prediction

The BepiPred 2.0 tool predicted B-cell-specific epitopes for both the proteins. On
average, the predicted score for the epitopes of phytoene dehydrogenase fitness was 0.450
with a minimum of 0.218 and a maximum score of 0.663. For the hypothetical protein, the
average score was 0.444 with a minimum of 0.213 and a maximum score of 0.690. According
to preferential surface accessibility, 13 peptides for phytoene dehydrogenase and 6 peptides
for the hypothetical protein were selected. The average score of accessibility for both the
phytoene dehydrogenase and the hypothetical protein residues was 1.000; the graphs for
surface accessibility and antigenicity of both the proteins are provided in Figure 1.

The analysis provided 20 peptides with antigenicity above the average and a threshold
value of 1.027 with the minimum score being 0.889 for the residues of phytoene dehy-
drogenase (Figure 1A). This prediction was fascinating as the majority of the peptides
demonstrated an antigenic potential. The results were duplicated for the hypothetical pro-
tein residues, which averaged an antigenicity score of 1.014 with the maximum score being
0.874 and the maximum being 1.164, provided in Figure 1B. The flexibility, β-turn, and
hydrophilicity analyses predicted 416 epitopes based on flexibility and 576 epitopes based
on β-turn and hydrophilicity, respectively, for the phytoene dehydrogenase residues. Fifty
percent of phytoene dehydrogenase residues in all the graphs were satisfying the threshold
values. For the hypothetical protein, 281 residues based on flexibility and 282 based on
β-turn and hydrophilicity were calculated. According to surface accessibility, which was
selected as an important factor for analyses, based on predictions of epitopes that are
easily accessible (present) on the surface of the target proteins, 13 peptides from phytoene
dehydrogenase and 6 for the hypothetical protein were provided, with the average scores
being 1.000 for both proteins (Figure 1C,D).

2.3. Protein Modeling, Refinement, and Validation

trRosetta predicted the tertiary protein structure for phytoene dehydrogenase with a
Tm score of 0.846 and the structure for hypothetical protein with a Tm score of 0.742. The
models are demonstrated in Figure 2C,D along with the GalaxyRefine structures of phy-
toene dehydrogenase and hypothetical protein respectively. For phytoene dehydrogenase,



Vaccines 2022, 10, 664 4 of 22

ERRAT predicted that the overall protein quality was 95.2212. For the hypothetical protein,
ERRAT showed a quality factor of 84.838, which was well above the accepted value of 50.
PROCHECK predicted that 95.1% of the residues of the phytoene dehydrogenase protein
lie in the favorable region according to the RC plot. Zero bad contacts were predicted,
whereas 99% of the planar groups were within limits.
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PROCHECK predicted that 89.8% of the hypothetical protein’s residues fall in the
core category with 9.0% in the allowed category. Only 1 bad contact was found in the
protein, and 99% of planar groups were within limits. According to the RC plot, 95.053%
residues were found to be in the highly preferable regions, and 4.240% residues were
shown in additionally allowed regions, whereas 0.7% residues were present in the ques-
tionable category. Verify3D scores predicted that 97.75% phytoene dehydrogenase residues
averaged >0.2 scores. Additionally, a minimum of 80% of AAs passed the 3D/1D profile
complementing the overall score. Similarly, for the hypothetical protein, 90.53% scored
>0.2, and more than 80% of residues passed the 3D/1D scores as well.

2.4. Discontinuous B-Cell Epitope Analysis

ElliPro predicted 15 linear epitopes and 8 discontinuous epitopes for phytoene dehy-
drogenase along with 11 linear and 3 discontinuous epitopes for hypothetical protein. The
discontinuous epitopes for phytoene dehydrogenase and hypothetical protein (shown in
Figure 2A,B) are provided in Supplementary Table S11.

2.5. Selection of B-Cell Epitopes

Out of the 20 epitopes retrieved from the antigenicity analysis and 13 epitopes retrieved
from the surface accessibility analysis for phytoene dehydrogenase, 3 epitopes (SVIVLVPIG,
KMVLAVIER, and ILGLSHDVLQVLWF) were selected for the final construct on the basis
of their antigenicity, accessibility, and allergenicity values. Similarly, out of the 6 surface
accessibility epitopes and 10 antigenicity-based epitopes for the hypothetical protein, 3
(DKIYKKTTKH, VLTHVDLIEKLLHYN, and IQLISPPSKKSKTT) were finalized for the
final vaccine construct. A total of 6 B-cell epitopes were selected. The antigenicity and
accessibility scores for these residues are provided in Table 2.

Table 2. Finalized B-cell epitopes for the vaccine construct.

No. Start End Peptide Length Antigenicity Surface Accessibility Allergenicity

Phytoene dehydrogenase
1 374 382 SVIVLVPIG 9 0.9144 1 Nonallergen
2 405 413 KMVLAVIER 9 1.1837 1 Nonallergen
3 446 459 ILGLSHDVLQVLWF 14 0.9727 1 Nonallergen

Hypothetical protein
1 31 41 DKIYKKTTKH 10 1.055 6.293 Nonallergen
2 260 274 VLTHVDLIEKLLHYN 15 1.164 2.059 Nonallergen
3 120 135 IQLISPPSKKSKTT 14 1.2688 4.217 Nonallergen

2.6. T-Cell Epitope Analysis

For phytoene dehydrogenase, 15,738 interactions with all the HLA molecules were
predicted, out of which 50 epitopes’ IC50 values were below the threshold, and hence, the
remaining results were discarded. Out of these 50, 10 were further processed for population
coverage analysis. For the hypothetical protein, 12,584 interactions were predicted, out of
which 23 epitopes’ IC50 values were below the threshold value of 500, and 6 were further
run for population coverage.

Among phytoene dehydrogenase’s epitopes, MAFTFQTMY was a dominant binder to
10 HLA alleles (HLA-C*07:01, HLA-B*15:01, HLA-A*03:01, HLA-A*11:01, HLA-B*53:01,
HLA-A*30:02, HLA-B*58:01, HLA-A*68:01, HLA-B*57:01, HLA-B*35:01), WVMFMFFYF
and LTSSISFY were dominant binders of 9 alleles (HLA-A*32:01, HLA-A*68:01, HLA-
A*24:02, HLA-A*68:02, HLA-B*53:01, HLA-B*15:01, HLA-B*35:01, HLA-A*23:01, HLA-
A*02:06 and HLA-B*35:01, HLA-A*03:01, HLA-B*58:01, HLA-A*26:01, HLA-A*11:01, HLA-
B*15:01, HLA-A*68:01, HLA-A*30:02, HLA-A*01:01), respectively. Among hypothetical pro-
tein’s six epitopes, QMFNPPFVY and RLMNGHNSM were dominant binders of 10 HLA al-
leles, STIDPAQSY bound 9 HLA alleles, RYCCRRMVL and KVYEWDFSR bound 6 HLA
alleles dominantly, and YLSLIQAEY bound to 5 HLA alleles.
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MHC-II analyses provided quite an extensive result wherein out of 44,523 allelic
interactions, 10 core peptides of the phytoene dehydrogenase were chosen with all the
epitopes having an IC50 value of <100. Hypothetical protein’s results were surprisingly
elaborative with one of the core peptides (FVYSLAIST) binding dominantly to 177 HLA-DR
alleles with IC50 values of <100. A total of 14 core peptides were selected.

2.7. Population Coverage

Selected MHC-I epitopes showed phenomenal accumulative world coverage of 97.15%
with a PC90 value of 3.08, whereas the MHC-II epitopes displayed a coverage of 77.71%
coverage, with a PC90 average of 0.45, which suggests the minimum epitopes hit per
HLA combination acknowledged by 90% of the population. This indicated the potential
of the selected epitopes for the final vaccine construct. The coverage maps of phytoene
dehydrogenase’s MHC-I and MHC-II epitopes are shown in Figure 3A,B, respectively. The
former suggested that epitope 4 covered the highest percentage of the world population,
estimated to be 22% on average, whereas the latter suggested the same about the first
epitope with an estimated population coverage of 23%.
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The combined world coverage displayed extraordinary results with a 98.26% coverage
of the selected epitopes of phytoene dehydrogenase (Figure 3C). The average hit per HLA
antigen was estimated to be 3.75, whereas the PC90 value was calculated to be 1.86. The
coverage for individual epitopes for MHC-I and MHC-II classes are provided in Table 3,
and the graphical coverage is provided in Figure 3 (A: individual MHC-I coverage of the
epitopes, B: individual MHC-II coverage of the epitopes, C: combined population coverage
of both the MHC-I and MHC-II epitopes). The graph (Figure 3C) predicted that epitope 4 of
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the phytoene dehydrogenase, MAFTFQTMY, covered the highest percentage of individuals,
estimated to be 62.52%. The world population coverages of the hypothetical protein’s
epitopes were not as astounding as the ones for phytoene dehydrogenase; however, they
were quite satisfactory. For the MHC-I class, the epitopes covered 90.78% of the population
with an average 3.01 hit and a 1.05 PC90 value (Figure 3D). For the MHC-II class, the core
epitopes covered 58.33% of the world population with an average hit of 0.98 and a PC90
value of 0.24 (Figure 3E). The combined coverage of all the epitopes for both classes was,
however, excellent, covering 96.16% of the world population, with an average hit of 3.99
and a PC90 value of 1.62 (Figure 3F). Individual coverage for each epitope against MHC-I
and MHC-II and combined coverage are provided in Table 3. QMFNPPFVY, RYCCRRMVL,
IDLNESNKF, and STIDPAQSY showed the best individual coverages of 66.02%, 49.95%,
33.99%, and 45.26%, respectively.

Table 3. World population coverage of MHC-I and MHC-II epitopes of the selected proteins.

Phytoene Dehydrogenase

Epitope Coverage

MHC-I coverage
AAFWVMFMF 27.24%
KIYDRASKY 41.99%
SSISFYWSM 27.64%

MAFTFQTMY 62.52%
STFPVWFWL 53.56%
VMFMFFYFF 68.08%

LTSSSISFY 64.02%
LVYAYHNILL 59.37%
RMAFTFQTM 37.16%
WVMFMFFYF 50.11%

MHC-II coverage
FDQGPSLYL 44.03%
FIYNAPVAK 16.02%

FKTKKMRMA 22.39%
YMGMSPYDA 18.55%
YFKTKKMRM 36.85%
MRMAFTFQT 60.71%
LRCDNNYKV 6.69%
LAVIERRLG 31.26%

FYWSMSTKV 33.61%
FYVNVPSRI 43.45%

Hypothetical Protein
MHC-I coverage

QMFNPPFVY 66.02%
KVYEWDFSR 45.05%
RYCCRRMVL 49.95%
STIDPAQSY 45.26%
YLSLLQAEY 35.72%

MHC-II coverage
AQMFNPPFV 8.91%

FVYSLAIST 26.79%
IDLNESNKF 33.99%
IDPAQSYQL 17.55%
IEKLLHYNP 7.01%

2.8. Selection of T-Cell Epitopes

Out of 10 MHC-I and MHC-II epitopes of phytoene dehydrogenase, 6 core epitopes
were nonallergenic as per AllerTOP v.2.0. Out of 5 MHC-I and MHC-II epitopes of the hypo-
thetical protein, 4 epitopes and 3 core peptides were considered nonallergenic. Among the
selected 6 core epitopes of phytoene dehydrogenase and 3 core epitopes of the hypothetical
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protein, 2 for each satisfied the VaxiJen v.20 analysis at a threshold of 0.5, and 6 epitopes
from phytoene dehydrogenase and 8 from the hypothetical protein were finalized for
vaccine construct based on their antigenicity scores, as shown in Table 4.

Table 4. Selected T-cell epitopes for vaccine construct and their antigenicity scores.

Epitope Antigenicity Score

Phytoene dehydrogenase
VMFMFFYFF 0.6814

KKMRMAFTFQTMYMG 0.5753
HQGHRFDQGPSLYLM 0.9144
QGHRFDQGPSLYLMP 1.3727
GHRFDQGPSLYLMPK 1.2474
RFDQGPSLYLMPKYF 1.8275

Hypothetical protein
QMFNPPFVY 0.582
RYCCRRMVL 2.4632
STIDPAQSY 0.8302

SIDLNESNKFLAT 1.6163
SIDLNESNKFLA 1.5324

QSIDLNESNKFLATADD 1.3854
NPPFVYSLAISTD 2.0289

PFVYSLAISTDGNWI 1.8247

2.9. Final Vaccine Construct

Figure 4A depicts the final vaccine construct using the selected B- and T-cell epitopes.
The green sequence indicates the adjuvant, the red ones are linkers, and the golden sequence
indicates the polyhistidine tags that stabilize the protein structure and protect it from
nuclease action.
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2.10. Vaccine Antigenicity and Allergenicity

Table 5 provides the antigenicity and allergenicity analyses of the vaccine construct.
ToxinPred provided superlative results, demonstrating that only 8 residues of the construct
were toxic, and overall, the construct was nontoxic by a huge margin. A partial prediction
of ToxinPred along with the toxin residues, highlighted in red, is provided in Figure 4B.
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Table 5. Antigenicity and allergenicity analyses of the vaccine construct.

Tool Used VaxiJen v. 2.0 Scratch AllerTOP v.2.0 AllergenFP v. 1.0

Score 0.7572 (antigenic) 0.5 (antigenic) Non-allergen Nonallergen

2.11. Prediction of Secondary Structure

The software indicated the vaccine to be a transmembrane protein, validating its
origin from two transmembrane proteins. PSIPRED predicted that most of the vaccine
was involved in a transmembrane helix and only 31 residues (7%) were disordered. The
MEMSTAT analysis predicted that residues from 314 to 458 are extracellular, exposed to the
host proteins. Figure 5 provides the PSIPRED and MEMSTAT analyses. Figure S25 presents
the disordered plot of the vaccine. Only the residues crossing the cutoff value (0.5) were
said to be disordered. It was not problematic because only 3 of the 31 residues were from
the primary construct, and the rest were part of the adjuvant or polyhistidine tags. Scratch
provided similar results shown in Figure S25A. Only 1 disulfide bond was predicted in the
structure between the cysteines present on positions 319 and 320. The antigenicity score
predicted by Scratch, as shown in Table 5, was 0.5, indicating that the vaccine construct
is antigenic.
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2.12. Tertiary Structure Prediction, Refinement, and Verification

trRosetta predicted the tertiary structure of the vaccine with a TM score of 0.237. Such
a low score indicates the uniqueness of the protein structure. The contact maps of the
predicted 2D structure indicate the credibility of the protein structure. ERRAT predicted
that the overall protein quality was 88.452, as shown in Figure 6A. PROCHECK predicted
that 94.9% of the residues of the vaccine construct lie in the favorable region according to
the RC plot, as shown in Figure 6B.
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with the reference E. coli solubility index, (D) tertiary structure of the vaccine’s discontinuous epitopes,
and (E) solubility index along with fold propensity for the vaccine construct.

The RC plot suggested that right-handed helices and β-sheets are the most dominant
secondary structures in the protein corresponding to good hydrophilicity. Only 0.5% of
residues were in the disallowed region, which proved the protein quality. Verify3D scores
predicted that 67.90% of the construct’s residues averaged >0.2 scores. Additionally, a
minimum of 80% of AAs passed the 3D/1D profile, complementing the overall score. The
overall quality of the predicted 2D structure was satisfactory with most of the residues
concentrated in the lower left of the graph, indicating the presence of α-helices.

2.13. Physicochemical Properties

The number of amino acids submitted to ProtParam was 458. The output molecular
weight was 49051.19 g/mol. The adjuvant part was considered as the N-terminal of the
vaccine, and the estimated half-life in reticulocytes according to in vitro analysis was 30 h,
which is a quality attribute. The instability index was calculated to be 34.96, whereby the
threshold value is 40. This prediction indicated that the vaccine construct is stable. The
aliphatic index predicted by the server was 78.52. The GRAVY index was calculated to be
−0.064, indicating the hydrophilicity of the vaccine construct. Solubility analysis predicted
by the Protein-Sol also predicted the same about vaccine hydrophilicity or solubility. The
index is given in Figure 6C, whereas the folding propensity and charge score per amino
acid is provided in Figure 6E.

2.14. ElliPro and Cleavage Analysis

These analyses showed that majority of the epitopes, including MAKLSTDEL, STID-
PAQSY, SIDLNES, YSLAIST, and DGNWIAAYDKIY, were conserved after fusing them
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into a new construct. Figure 6D demonstrates the 3D discontinuous epitope processed by
ElliPro with a score of 0.801 and 57 residues.

2.15. Molecular Docking

Docking analyses of vaccines with MHC-I gave 25 clusters with varying energies, out
of which model 0 was selected for simulations. It had the lowest energy, −987.5, and its
center was estimated to be −896.0. The docking complex is provided in Figure 7A, wherein
blue and green represent the MHC-I molecule and orange, red, and yellow are the vaccine.
Figure 7B shows the docking complex of TLR2 with the vaccine, wherein blue and green
represent the receptor. Out of 29 provided clusters by ClusPro, model 25 was selected
based on the lowest energy and the centers being −948.4. Lastly, the docking complex
of the vaccine with the natural mucormycosis receptor is shown in Figure 7C. A total of
28 complexes were provided by the server, and model 1 was selected based on its score,
−925.0, and center, −889.8.
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A total of 48, 55, and 26 interactions between the ligand and the receptors, MHC-I,
TLR2, and GRP78, respectively, were computed from Discovery Studio. MD simulations
helped visualize the molecular interactions, as shown in Figure 8A, for the docking complex
of GRP78 and vaccine. Figure 8B provides the improved simulation complex of MHC-I and
vaccine. Figure 8C provides similar results for TLR2 and vaccine.

2.16. Codon Optimization

The reverse-translated sequence processed by EMBOSS, when run on JCAT, provided
sublime optimization with a CAI value of 1.0, indicating that the refined codons will show
a maximum expression in the host, and GC contents reduced from 61% to 50%. Figure 9A,B
provides the codons after optimization and the optimized sequence, respectively. The
red lines in both figures represent the codon adaptation. Comparing the preadaptation
sequence and the post adaptation sequence, we found an idea that C is replaced by T in
the fifth position, changing the codon from GCC to GCT. However, both these codons
translate to the same amino acid, alanine, hence not changing the final protein sequence
but optimizing the codon according to the host.
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2.17. Cloning and Expression

Cloning was performed by replacing the EcoRV and Nru1 restriction sites with our
vaccine construct (Figure 9C) using the direct insert method. The precloning construct was
of 4361 base pairs, whereas after insertion, the vector size increased to 4948 base pairs. The
EcoRV restriction site was chosen because it was also present in the vaccine construct and
enhanced the chances of stable insertion.

2.18. Immune Response Simulation

C-ImmSim provided an excellent immune response to the designed vaccine. Figure 10
provides the B-cell population: (A) PLB population, (B) B-cell presentation, (C) and Th
cell population (D) per subsequent injection day. According to these graphs, active B cells,
memory B cells, and IgM isotypes are constitutively produced and duplicated over the
course of the vaccine. The PLB graph depicts the exponential growth of IgM + IgG isotypes
and individual IgM and IgG1 isotypes following the 1st week of vaccine injection. The
B-cell population/presentation graph depicts the active presentation of MHC-II molecules
in the first 5 days of injection. Additionally, B cells stay active for a long time after the
injection, which indicates the efficacy and quality of the proposed vaccine. Lastly, the helper
T-cell graph shows that the memory cells and antigen-presenting T cells stay active for a
long course, whereas Th cells’ concentration slightly decreases after 15 days of injection.

Vaccines 2022, 10, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 10. B- and T-cell populations upon vaccine injection: (A) antibody isotopes produced and 
activated in response to the vaccine, (B) PLB cells’ response against vaccine, (C) B-cell response per 
state, (D) helper T-cell response against the vaccine. 

Th0 activity decreases as Th1 activity increases in response to the vaccine. The 
memory TC cells are produced constantly during the 1st month of injection, while the 
concentration of active TC cells decreases after the first 2 weeks. The NK cell population 
showed a pulsating increase and decrease; however, during the first 10 days of injection, 
their population was quite extraordinary. The MA graph per state depicts both the active 
and resting populations increasing in the first 30 days of injection. Antigen presentation 
increases in the first 3 days and then decreases spontaneously. 

3. Discussion 
With the increasing threat of mucormycosis adjoined with COVID-19 variants and 

underfacilitated hospital systems, a permanent intervention is required. As mentioned by 
Imran et al. (2021), mucormycosis, although dangerous and lethal for immunocompro-
mised people, is equally infectious to immunocompetent people, and no vaccine has yet 
been developed to minimize its chances of infection [18]. This study provided an im-
munoinformatics approach to bridge this gap and propose a vaccine construct from two 
highly infectious species of Mucorales responsible for the majority of mucormycosis in-
fections worldwide. Structural and computational analyses provide a benchmark for pro-
posing therapeutics that are not cost-effective in the preliminary phases of design. Gupta 
and Kumar (2020) utilized a similar approach to propose a vaccine against a variety of C. 
jejuni [19]. Furthermore, Elamin Elhasan et al. (2021) also worked on a similar approach 
and proposed a multiepitope vaccine against Candida glabrata [20]. 

These, along with other innovations, support the potential use of bioinformatics, 
computational vaccinology, and immunoinformatics in the fields of health and medicine. 

Figure 10. B- and T-cell populations upon vaccine injection: (A) antibody isotopes produced and
activated in response to the vaccine, (B) PLB cells’ response against vaccine, (C) B-cell response per
state, (D) helper T-cell response against the vaccine.

Th0 activity decreases as Th1 activity increases in response to the vaccine. The memory
TC cells are produced constantly during the 1st month of injection, while the concentration
of active TC cells decreases after the first 2 weeks. The NK cell population showed a
pulsating increase and decrease; however, during the first 10 days of injection, their popu-
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lation was quite extraordinary. The MA graph per state depicts both the active and resting
populations increasing in the first 30 days of injection. Antigen presentation increases in
the first 3 days and then decreases spontaneously.

3. Discussion

With the increasing threat of mucormycosis adjoined with COVID-19 variants and
underfacilitated hospital systems, a permanent intervention is required. As mentioned
by Imran et al. (2021), mucormycosis, although dangerous and lethal for immunocom-
promised people, is equally infectious to immunocompetent people, and no vaccine has
yet been developed to minimize its chances of infection [18]. This study provided an
immunoinformatics approach to bridge this gap and propose a vaccine construct from
two highly infectious species of Mucorales responsible for the majority of mucormycosis
infections worldwide. Structural and computational analyses provide a benchmark for
proposing therapeutics that are not cost-effective in the preliminary phases of design. Gupta
and Kumar (2020) utilized a similar approach to propose a vaccine against a variety of C.
jejuni [19]. Furthermore, Elamin Elhasan et al. (2021) also worked on a similar approach
and proposed a multiepitope vaccine against Candida glabrata [20].

These, along with other innovations, support the potential use of bioinformatics,
computational vaccinology, and immunoinformatics in the fields of health and medicine.
Chaudhuri and Ramachandran (2017) consider immunoinformatics as a golden weapon in
applying techniques such as reverse vaccinology [21]. The efficacy of vaccines proposed
computationally is proved by a lot of recent efforts. Following the lead, this study utilized
6 B-cell and 14 T-cell epitopes to construct a vaccine. Despite an average coverage, the se-
lected epitopes showed phenomenal immune simulations, establishing that the antigenicity
of the selected epitopes plays a major role in an efficient drug design. Most of the work for
the study was processed on IEDB tools, and the application was well suited and enough
for thorough analysis, as indicated by Dhanda et al. (2019) [22]. A variety of software
were utilized to verify the results, and fortunately, all the analyses were consistent with
one another.

A recently published study identified 80 COVID-19-associated mucormycosis [23].
Among these cases, 42 cases were reported from India; 8 from the USA; 5 from Pakistan;
4 from France, Iran, and Mexico; 2 from Russia; and 1 from Bangladesh, Austria, Brazil,
Chile, Germany, Kuwait, Italy, Lebanon, the UK, Turkey, and Czech Republic [23]. Most
of these cases were reported when the patients were being treated at respective health-
care centers, while some of the cases were reported after the patients had recovered from
COVID-19. The most common types of mucormycosis reported were ROCD and pulmonary
mucormycosis [23].

Roden et al. (2005) reported that the majority of mucormycosis episodes were associ-
ated with Rhizopus species, found in 47% of the cases, followed by Mucor, found in 18%
of the cases, in a survey of over 900 documented human reports [24]. The genera Mucor,
Rhizopus, and Lichtheimia are most reported, among which Rhizopus arrhizus is the most
dominant organism [6]. Although these are the most common agents, infections due to
Cunninghamella are said to be the most fatal, with only 7% pathogenesis recorded [24].
Other species involved in the pathogenesis are Apophysomyces, Absidia species, Saksenaea
species, and Rhizomucor pusillus with 5%, 5%, 5%, and 4% documentation, respectively.

An important aspect of designing any vaccine construct is to ensure its antigenicity,
nonallergenicity, and nontoxicity. Results for all three aspects were consistent with that
of Naveed et al. (2021), who worked on antigenicity analyses throughout [25]. This
study utilized a similar approach, and the individual antigenicity and allergenicity of
all the epitopes were processed for the selection of final epitopes. To our knowledge,
this practice ensured the final antigenicity of our vaccine to elicit the required immune
response. The choice of adjuvants and linkers was a fascinating aspect of this study. After
searching for a lot of fungal adjuvants and linkers, the results obtained were surprisingly
not satisfactory. Tarang et al. (2020) used a TLR4 agonist to enhance the fungal vaccine
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activity; however, this adjuvant destabilized our protein structure [26]. Utilizing the
adjuvant used by Naveed et al. (2021) helped us achieve the desired stability and did not
affect the antigenicity [25]. The reason why the adjuvant used by Tarang et al. (2021) did
not work is not yet understood [26].

Furthermore, the use of C-ImmSim eased the process of immune simulation. As Abdel-
moneim et al. (2020) reported, C-ImmSim plays with the immune response and provided
extraordinary analyses, and our results demonstrated the same observations [27]. De-
spite covering an above-average population coverage, our selected epitopes, VMFMFFYFF,
KKMRMAFTFQTMYMG, HQGHRFDQGPSLYLM, QGHRFDQGPSLYLMP, GHRFDQG-
PSLYLMPK, RFDQGPSLYLMPKYF, QMFNPPFVY, RYCCRRMVL, STIDPAQSY, SIDL-
NESNKFLAT, SIDLNESNKFLA, QSIDLNESNKFLATADD, NPPFVYSLAISTD, and PFVYS-
LAISTDGNWI elicited great response owing to their ideal antigenicity with scores aver-
aging between 1.5 and 2.0 and their nonallergenicity. The importance of running protein
physicochemical analysis along with verification analyses was understood in the molecular
docking process. With the first adjuvant, the docking scores were not impressive because
the output protein structure was not stable. However, stabilizing the structure improved
the docking analyses 10-fold. These findings on the importance of structure stability were
found consistent with Naveed et al. (2021) [25] and Abraham Peele et al. (2020) [28] and
improved the quality of the vaccine construct. These results point to a potential agent for
the precautionary therapeutics against mucormycosis.

4. Materials and Methods
4.1. Target Proteins’ Selection

The NCBI protein database was to retrieve 6000 proteins of both Mucor circinelloides
and Rhizopus oryzae, downloaded in FastA format. Gene ontology analysis was run on both
the species’ proteins separately using CELLO2GO [29], available at http://cello.life.nctu.
edu.tw/cello2go/ (accessed on 23 July 2021). Conservation and homology analyses using
Blastp [30] available at https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins (accessed
on 23 July 2021) were performed on both selected proteins individually.

VaxiJen v2.0 [31], available at http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.
html (accessed on 23 July 2021), and AllerTOP v.2.0 [32] (https://ddg-pharmfac.net/
AllerTOP/ (accessed on 23 July 2021) were utilized for antigenicity and allergenicity analy-
ses of the selected fungal proteins, respectively.

4.2. B-Cell Epitope Prediction

B-cell epitopes were predicted using different IEDB tools (http://tools.iedb.org/bcell/
(accessed on 23 July 2021) with plain sequence (no headers) input. BepiPred 2.0 was used
to depict linear epitopes based on the random forest algorithm. The surface antigenicity
scale put forward by Parker et al. (1986) was dedicated to calculating the surface epitopes
of the target proteins [33]. The Kolaskar and Tongaonkar (1990) antigenicity analysis was
performed to predict antigenic epitopes in the query proteins [34]. The β-turn prediction
allowed the secondary structure analysis based on the target proteins based on their AA se-
quence. Lastly, hydrophilicity analyses were used to predict the hydrophilic protein regions,
which are presumably located on their surface and have a potential antigenic character.

4.3. Protein Modeling, Refinement, and Verification

Three-dimensional structures of both selected proteins were modeled using the tr-
Rosetta server [35] (https://yanglab.nankai.edu.cn/trRosetta/ (accessed on 23 July 2021).
These structures were further utilized to identify the discontinuous B-cell epitopes of the
protein discussed in the next section. The models retrieved from trRosetta were refined on
GalaxyRefine [36] (http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE (accessed
on 24 July 2021), which were further run on three tools of the UCLA-DOE lab server (https:
//servicesn.mbi.ucla.edu/PROCHECK/ (accessed on 24 July 2021), PROCHECK [37] ER-
RAT [38], and verify3D [39] for protein analysis and validation.

http://cello.life.nctu.edu.tw/cello2go/
http://cello.life.nctu.edu.tw/cello2go/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://ddg-pharmfac.net/AllerTOP/
https://ddg-pharmfac.net/AllerTOP/
http://tools.iedb.org/bcell/
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4.4. Discontinuous B-Cell Epitope Analysis

ElliPro [40] (http://tools.iedb.org/ellipro/ (accessed on 25 July 2021) analyzed the 3D
structure of preferable epitopes in both the target proteins. The 3D models of the target
proteins (refined PDB formats) were provided to the server, and the parameters were set to
default values.

4.5. Selection of B-Cell Epitopes

The most probable B-cell epitopes present on the target antigen’s surface were selected
for the vaccine construct. Their antigenicity and surface accessibility scores were given
prime importance. Furthermore, the final selection of epitopes was carried out by analyzing
the allergenicity of all preliminarily selected epitopes through AllerTOP v.2.0 [32] (https:
//ddg-pharmfac.net/AllerTOP/ (accessed on 26 July 2021) analysis, and the ones with the
prediction of being nonallergens were selected for the final vaccine construct.

4.6. T-Cell Epitope Analyses

MHC-I [41] and MHC-II [42,43] coverage analyses available on http://tools.iedb.org/
main/tcell/ (accessed on 26 July 2021) were performed for potential T-cell epitopes. All
the alleles with a length of 9 residues were selected for analysis. Artificial neural network
version 4.0 [43] was selected as the prediction method as it is reported to be highly efficient
as compared with other predicted models. From the total number of epitopes, only those
with IC50 values below or equal to 500 were short-listed. Among these, epitopes with
acceptable antigenicity and allergenicity were finalized for the construct.

For MHC-II analyses, the prediction method was selected as NN-align-2.2 [42], which
analyzes the binding core and affinities, simultaneously providing a robust and adequate
prediction. It expels redundant binding cores by rigorous training and provides results
for 16 MHC-II classes. Epitopes with the same core peptides and IC50 values less than or
equal to 100 were selected for further analysis. These were then screened based on their
antigenicity and allergenicity predictions.

4.7. Population Coverage

All the short-listed epitopes for MHC-I and core epitopes for MHC-II alleles were
evaluated for population coverage [44] (http://tools.iedb.org/population/ (accessed on 27
July 2021) before the allergenicity and antigenicity analyses. The ones with higher coverage
were further run for these tests.

4.8. Selection of T-Cell Epitopes

The most probable T-cell epitopes, present on the target antigen’s surface, were run
on AllerTOP v.2.0 [32] (https://ddg-pharmfac.net/AllerTOP/ (accessed on 27 July 2021),
and the ones with the prediction of being nonallergens were selected for the final vaccine
construct. For MHC-I, the selected peptides were run on VaxiJen v.2.0 (http://www.
ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html (accessed on 27 July 2021). For MHC-II,
however, this process was further subdivided into two parts. First, the core epitopes were
analyzed in a FastA format, and the threshold value was kept at 0.5. All core epitopes
having a greater value were subjected to AllerTOP v.2.0 [32], and those predicted as
nonallergenic were selected. The epitopes of the selected core peptides were then subjected
to VaxiJen v2.0 in the same way as the core peptides. All those with a value greater than 0.5
were further subjected to AllerTOP v.2.0 [32] analysis and finalized for vaccine construct.

4.9. In Silico Construction of Vaccine

Potential B-cell and T-cell epitopes for both proteins were further fused into a single
chimeric sequence of the vaccine. The final sequence was prepared on a text file. An
L7/L12 50S ribosomal protein, following Naveed et al. (2021), was used as an adjuvant
at the N-terminal of the vaccine construct as it significantly improves the recognition by
Toll-like receptors and can polarize CD4+ cells and activate naïve T cells [25]. Three linkers,
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successfully utilized by Naveed et al. (2021) [25] and Elamin Elhasan et al. (2021) [20], were
used to adjoin the epitopes of the two target proteins together. Polyhistidine tags were
added at the C-terminal of the vaccine to keep the structure stable.

4.10. Antigenicity and Allergenicity Prediction of the Vaccine

The vaccine sequence was subjected to VaxiJen v2.0, Scratch [45], AllerTOP v.2.0 [32],
and Allergen FP v.1.0 [32] (http://ddg-pharmfac.net/AllergenFP/data.html (accessed on
28 July 2021) for antigenicity analyses by the first two tools and allergenicity analyses by
the last two tools, respectively. Furthermore, since the vaccine construct must not be toxic,
the sequence was subjected to ToxinPred analysis [46] available at https://webs.iiitd.edu.
in/raghava/toxinpred/algo.php (accessed on 28 July 2021).

4.11. Vaccine Secondary Structure Prediction

The primary sequence of the vaccine construct was subjected to secondary struc-
ture analysis on PSIPRED [47] (http://bioinf.cs.ucl.ac.uk/psipred/ (accessed on 28 July
2021) and Scratch [45] (http://scratch.proteomics.ics.uci.edu (accessed on 28 July 2021).
Sequence data of the vaccine in FastA format were inputted in the required box. The
prediction of secondary structure by PSIPRED 4.0, prediction of disordered regions by
DISOPRED3 [48], prediction of membrane helices by MEMSTAT-SVM [49], prediction of
domains by DomPred [50], 3D structure prediction based on domain folding by DMPfold
1.0 [51], and contact prediction by DeepMetalPSICOV 1.0 [52] was analyzed using the
server. For scratch-assisted prediction, a plain sequence of the vaccine with no headers was
provided to the server, and its secondary structure, disordered regions, solvent accessibility,
disulfide bonds, and antigenicity were predicted.

4.12. Vaccine Tertiary Structure Prediction, Refinement, and Verification

The 3D structure of the vaccine was modeled using the trRosetta server [35] (https:
//yanglab.nankai.edu.cn/trRosetta/ (accessed on 28 July 2021). The model retrieved from
trRosetta was refined on GalaxyRefine [36] (http://galaxy.seoklab.org/cgi-bin/submit.cgi?
type=REFINE (accessed on 29 July 2021) and was subjected to three verification tools of
the UCLA-DOE lab server (https://servicesn.mbi.ucla.edu/PROCHECK/ (accessed on 29
July 2021), PROCHECK [37], ERRAT [38], and verify3D [39]. The Z-Lab RC plot server [53]
(https://zlab.umassmed.edu/bu/rama/ (accessed on 29 July 2021) was also utilized for an
additional confirmatory RC analysis.

4.13. Physicochemical Properties

The ProtParam tool (https://web.expasy.org/protparam/ (accessed on 29 July 2021)
of the Expasy server [54] was utilized to examine the physicochemical characteristics of
the vaccine construct. The parameters computed for the vaccine include molecular weight,
stability index, estimated half-life, and GRAVY (the more positive the value, the more
hydrophilic the structure is). Further, Protein-Sol [55] (https://protein-sol.manchester.ac.uk
(accessed on 29 July 2021) was used to analyze the solubility index of the protein compared
with a standard E. coli protein.

4.14. ElliPro and Cleavage Analysis of the Vaccine

The vaccine construct was subjected to ElliPro [40] and MHC-NP cleavage analy-
ses [43] (http://tools.iedb.org/mhcnp/ (accessed on 30 July 2021) to check for the conser-
vation of discontinuous B-cell epitopes and T-cell epitopes. The MHC-NP tool analyzed
the epitopes processed by the MHC molecules upon interaction. All alleles of the human
species were selected to run the analysis. The protein sequence was provided in FastA
format, and the default values were not changed.
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4.15. Molecular Docking of Vaccine with Immune and General Receptors

To analyze whether the designed construct binds with the general mucormycosis and
immune receptors, crystal structures of three receptors, MHC-I (PDB ID: 2XPG), TLR2 (PDB
ID: 6NIG), and GRP78 (PDB ID: 5F1X), were retrieved from the Protein Data Bank [56]
(https://www.rcsb.org (accessed on 30 July 2021). MHC-1 interaction with the vaccine
is crucial as it represents the antigen to the cytotoxic T cells. TLRs further play a role in
recognizing specific PRRs that initiate an innate immune response. GRP78 plays a role as a
general attachment point for mucormycosis agents, and interaction with GRP78 confirms
the conservation of these epitopes and their recognition as fungal entrants.

The docking analyses of the vaccine along with three individual receptors were run
on ClusPro supercomputers [57] (https://cluspro.bu.edu/home.php (accessed on 30 July
2021). The best model clusters were analyzed based on model scores and binding affinities
(negative energies were the standard) and were further processed for binding affinity
analyses. PyMOL2 [58] downloaded from https://pymol.org/2/ (accessed on 30 July 2021)
and Discovery Studio Visualizer downloaded from https://discover.3ds.com/discovery-
studio-visualizer-download (accessed on 30 July 2021) were utilized to visualize the binding
residues between the vaccine and the receptors. The MDWeb tool [59] (https://mmb.
irbbarcelona.org/MDWeb (accessed on 30 July 2021) was utilized for the simulations of the
docked complexes.

4.16. Codon Optimization

Reverse translation of our vaccine construct was retrieved from EMBOSS Backtranseq
(https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/ (accessed on 31 July 2021) using
an E. coli reverse translation codon table as the vaccine was expressed in its vector. The
input sequence was provided in plain one-letter-residue format. After reverse translation,
the nucleotide sequence was pasted on the JAVA codon adaptation tool [60] (http://www.
jcat.de/ (accessed on 31 July 2021), and codon optimization was performed to adapt to
most sequenced eukaryotic and prokaryotic organisms. The E. coli strain K-12 was utilized
for the analysis.

4.17. Cloning and Expression Analysis

An E. coli pBR322 expression vector was utilized from https://www.snapgene.com/
resources/plasmidfiles/?set=basic_cloning_vectorsandplasmid=pBR322 (accessed on 31
July 2021), as it is a standard in cloning procedures and is optimum for quality results.
SnapGene software downloaded from https://www/snapgene.com/ (accessed on 31 July
2021) was used to perform the cloning and expression. The insert method was used for
this purpose.

4.18. Immune Simulations

To verify the immune response generated by the vaccine construct, the sequence was
run on the C-ImmSim server [61] (http://kraken.iac.rm.cnr.it/C-IMMSIM/ (accessed on
1 August 2021). The server provides immune activity against vaccines or drugs based on
particulars, such as injection time. It shows B and T lymphocytes’ response to the vaccine
along with the prediction of immunoglobulins’ and immunocomplexes’ response.

5. Conclusions

This study proposed a potential vaccine against mucormycosis, one of the daunting
challenges faced by medical professionals due to immunosuppression of COVID-19-affected
patients. Using the immunoinformatics approach and immune simulations, epitopes from
two proteins of different species were selected. It was found that several epitopes of both
proteins fit well in the preferred regions, and after analyzing the population coverage and
immune response simulations, it was concluded that the designed construct, if manufac-
tured industrially, holds great promise. The vaccine structure was found to be stable with
only 7% disordered regions. Docking analyses with two immune receptors and one natural
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fungal receptor demonstrated great potential with a variety of interactions. Lastly, this
study eliminates the economic and emotional burden of physical screening pre- and, to
some extent, postmanufacture, easing and enhancing the whole vaccine design process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10050664/s1: Figure S1: Sequence map of pBR322 uti-
lized for cloning and expression. Figure S2: Blastp analysis of selected proteins for conservation
among different fungal species. Figure S3: Predicted epitope scores for residues of phytoene dehydro-
genase. Figure S4: Predicted epitope scores for residues of hypothetical protein. Figure S5: Contact
maps and 2D information of both target proteins. Figure S6: RC plot of the hypothetical protein
secondary structure. Figure S7: Verify3D plot of phytoene dehydrogenase. Figure S8: Verify3D
plot of hypothetical protein residues. Figure S9: ElliPro epitope graph for phytoene dehydrogenase.
Figure S10: ElliPro epitope graph for hypothetical protein. Figure S11: Cartoon analysis predicting
the individual secondary structure of the vaccine. Figure S12: DPM fold structure of the vaccine
construct. Figure S13: Disorder probabilities of the vaccine construct. Figure S14: Contact maps of
the 2D protein structure of the vaccine. Figure S15: Verify3D plot of the vaccine construct. Figure
S16: Confirmatory RC plot for the vaccine construct. Figure S17: Interactions of TLR2 with the
vaccine. Figure S18: Interactions of MHC-I with the vaccine. Figure S19: Interactions of GRP78 with
the vaccine. Figure S20: The reverse translated sequence of vaccine construct. Figure S21: Codon
adaptation preoptimization. Figure S22: Cloned vaccine construct. Figure S23: Innate and adaptive
immune response against vaccine injection. Figure S24: Immunocomplexes and DC response against
the vaccine. Figure S25: (A) Predicted solvent accessibility analysis of the vaccine construct. (B) MEM-
STAT analysis showing the subcellular location of the vaccine. (C) DISOPRED plot showing the
disordered regions. Table S1: Default parameters of the utilized tools for epitope prediction. Table S2:
Linear epitopes of the target proteins predicted by BepiPred 2.0. Table S3: Predicted peptides based
on the surface accessibility scores. Table S4: Predicted epitopes for both proteins based on antigenicity
analysis. Table S5: MHC-I binding epitopes selected from phytoene dehydrogenase. Table S6: MHC-I
binding epitopes selected from the hypothetical protein. Table S7: ElliPro analysis of discontinuous
epitopes. Table S8: Interacting residues of MHCI and vaccine. Table S9: Interacting residues of TLR2
and vaccine. Table S10: Interacting residues of GRP78 and vaccine. Table S11: Discontinuous epitopes
selected for both proteins with the highest scores.

Author Contributions: Conceptualization, M.N., N.A. and U.A.; methodology, M.I.K. and R.N.M.;
software, U.A., M.I.K., R.N.M. and S.S.A.; validation, M.A.K., A.M., S.S.A. and P.M.; formal analysis,
G.A.S., P.M., and U.A.; investigation, M.A.K., A.M. and G.A.S.; resources, M.N.; data curation, U.A.
and N.A.; writing—original draft preparation, M.N. and U.A.; writing—review and editing, M.I.K.
and N.A.; visualization, N.A.; supervision, M.N.; project administration, N.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data set used in the current study will be made available at
reasonable request.

Acknowledgments: This research was supported by the Deanship of Scientific Research at King
Khalid University, Abha, Saudi Arabia, under grant number RGP-2/247/1443 and Taif University
Researchers support project number TURSP-2020/102, Taif University, P.O. Box-11099, Taif-21944,
Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Challa, S. Mucormycosis: Pathogenesis and pathology. Curr. Fungal Infect. Rep. 2019, 13, 11–20. [CrossRef]
2. Spellberg, B.; Maertens, J. Mucormycosis. In Principles and Practice of Transplant Infectious Diseases; Springer: Berlin/Heidelberg,

Germany, 2019; pp. 577–589.

https://www.mdpi.com/article/10.3390/vaccines10050664/s1
https://www.mdpi.com/article/10.3390/vaccines10050664/s1
http://doi.org/10.1007/s12281-019-0337-1


Vaccines 2022, 10, 664 20 of 22

3. Baldin, C.; Ibrahim, A.S. Molecular mechanisms of mucormycosis—The bitter and the sweet. PLoS Pathog. 2017, 13, e1006408.
[CrossRef]

4. Beiglboeck, F.M.; Theofilou, N.E.; Fuchs, M.D.; Wiesli, M.G.; Leiggener, C.; Igelbrink, S.; Augello, M. Managing mucormycosis in
diabetic patients: A case report with critical review of the literature. Oral Dis. 2021, 28, 568–576. [CrossRef]

5. Hasham, K.; Ahmed, N.; Zeshan, B. Circulating microRNAs in oncogenic viral infections: Potential diagnostic biomarkers. SN
Appl. Sci. 2020, 2, 1–13. [CrossRef]

6. Singh, A.K.; Singh, R.; Joshi, S.R.; Misra, A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in
India. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102146. [CrossRef]

7. Corzo-León, D.E.; Chora-Hernández, L.D.; Rodríguez-Zulueta, A.P.; Walsh, T.J.J.M.M. Diabetes mellitus as the major risk factor
for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases. Med. Mycol. 2017, 56, 29–43. [CrossRef]

8. Jeong, W.; Keighley, C.; Wolfe, R.; Lee, W.L.; Slavin, M.; Kong, D.C.M.; Chen, S.-A.J. The epidemiology and clinical manifestations
of mucormycosis: A systematic review and meta-analysis of case reports. Clin. Microbiol. Infect. 2019, 25, 26–34. [CrossRef]

9. Serris, A.; Danion, F.; Lanternier, F.J.J.O.F. Disease entities in mucormycosis. J. Fungi 2019, 5, 23. [CrossRef]
10. Ahmadikia, K.; Hashemi, S.J.; Khodavaisy, S.; Getso, M.I.; Alijani, N.; Badali, H.; Mirhendi, H.; Salehi, M.; Tabari, A.; Mohammadi

Ardehali, M.J.M. The double-edged sword of systemic corticosteroid therapy in viral pneumonia: A case report and comparative
review of influenza-associated mucormycosis versus COVID-19 associated mucormycosis. Mycoses 2021, 64, 798–808. [CrossRef]

11. Ahmed, N.; Rizvi, A.; Naeem, A.; Saleem, W.; Ahmed, A.; Parveen, S.; Ilyas, M. COVID-19 and public awareness. Prof. Med. J.
2020, 27, 1710–1716. [CrossRef]

12. Zurl, C.; Hoenigl, M.; Schulz, E.; Hatzl, S.; Gorkiewicz, G.; Krause, R.; Eller, P.; Prattes, J. Autopsy proven pulmonary mucormyco-
sis due to Rhizopus microsporus in a critically ill COVID-19 patient with underlying hematological malignancy. J. Fungi 2021,
7, 88. [CrossRef]

13. Asano-Mori, Y.J.M.m.j. Diagnosis and Treatment of Mucormycosis in Patients withHematological Malignancies [Translated
Article]. Med. Mycol. J. 2017, 58, E97–E105. [CrossRef]

14. Johnson, A.K.; Ghazarian, Z.; Cendrowski, K.D.; Persichino, J.G. Pulmonary aspergillosis and mucormycosis in a patient with
COVID-19. Med. Mycol. Case Rep. 2021, 32, 64–67. [CrossRef]

15. Sipsas, N.V.; Gamaletsou, M.N.; Anastasopoulou, A.; Kontoyiannis, D.P. Therapy of mucormycosis. J. Fungi 2018, 4, 90. [CrossRef]
16. Bhadauria, D.; Etta, P.; Chelappan, A.; Gurjar, M.; Kaul, A.; Sharma, R.K.; Gupta, A.; Prasad, N.; Marak, R.S.; Jain, M.; et al.

Isolated bilateral renal mucormycosis in apparently immunocompetent patients—A case series from India and review of the
literature. Clin. Kidney J. 2018, 11, 769–776. [CrossRef]

17. Ibrahim, A.S.; Gebremariam, T.; Lin, L.; Luo, G.; Husseiny, M.I.; Skory, C.D.; Fu, Y.; French, S.W.; Edwards, J.E., Jr. The high
affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis. Mol. Microbiol. 2010, 77, 587–604.
[CrossRef]

18. Imran, M.; AS, A.; Tauseef, M.; Khan, S.A.; Hudu, S.A.; Abida. Mucormycosis medications: A patent review. Expert Opin. Ther.
Pat. 2021, 31, 1059–1074. [CrossRef]

19. Gupta, N.; Kumar, A. Designing an efficient multi-epitope vaccine against Campylobacter jejuni using immunoinformatics and
reverse vaccinology approach. Microb. Pathog. 2020, 147, 104398. [CrossRef]

20. Elamin Elhasan, L.M.; Hassan, M.B.; Elhassan, R.M.; Abdelrhman, F.A.; Salih, E.A.; Ibrahim, H.A.; Mohamed, A.A.; Osman,
H.S.; Khalil, M.S.M.; Alsafi, A.A.; et al. Epitope-based peptide vaccine design against fructose bisphosphate aldolase of Candida
glabrata: An immunoinformatics approach. J. Immunol. Res. 2021. [CrossRef]

21. Chaudhuri, R.; Ramachandran, S. Immunoinformatics as a tool for new antifungal vaccines. In Vaccines for Invasive Fungal
Infections; Springer: Berlin/Heidelberg, Germany, 2017; pp. 31–43.

22. Dhanda, S.K.; Mahajan, S.; Paul, S.; Yan, Z.; Kim, H.; Jespersen, M.C.; Jurtz, V.; Andreatta, M.; Greenbaum, J.A.; Marcatili, P.; et al.
IEDB-AR: Immune epitope database—Analysis resource in 2019. Nucleic Acids Res. 2019, 47, W502–W506. [CrossRef]

23. Hoenigl, M.; Seidel, D.; Carvalho, A.; Rudramurthy, S.M.; Arastehfar, A.; Gangneux, J.-P.; Nasir, N.; Bonifaz, A.; Araiza, J.; Klimko,
N.; et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe 2022.
[CrossRef]

24. Roden, M.M.; Zaoutis, T.E.; Buchanan, W.L.; Knudsen, T.A.; Sarkisova, T.A.; Schaufele, R.L.; Sein, M.; Sein, T.; Chiou, C.C.; Chu,
J.H. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. Clin. Infect. Dis. 2005, 41, 634–653. [CrossRef]

25. Naveed, M.; Tehreem, S.; Arshad, S.; Bukhari, S.A.; Shabbir, M.A.; Essa, R.; Ali, N.; Zaib, S.; Khan, A.; Al-Harrasi, A. Design of a
novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J. Infect. Public Health
2021, 14, 938–946. [CrossRef]

26. Tarang, S.; Kesherwani, V.; LaTendresse, B.; Lindgren, L.; Rocha-Sanchez, S.M.; Weston, M.D. In silico design of a multivalent
vaccine against Candida albicans. Sci. Rep. 2020, 10, 1–7. [CrossRef]

27. Abdelmoneim, A.H.; Mustafa, M.I.; Abdelmageed, M.I.; Murshed, N.S.; Dawoud, E.d.; Ahmed, E.M.; Kamal Eldein, R.M.; Elfadol,
N.M.; Sati, A.O.M.; Makhawi, A.M. Immunoinformatics design of multiepitopes peptide-based universal cancer vaccine using
matrix metalloproteinase-9 protein as a target. Immunol. Med. 2021, 44, 35–52. [CrossRef]

28. Abraham Peele, K.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Venkateswarulu, T. Design of multi-epitope vaccine candidate
against SARS-CoV-2: A in-silico study. J. Biomol. Struct. Dyn. 2021, 39, 3793–3801. [CrossRef]

http://doi.org/10.1371/journal.ppat.1006408
http://doi.org/10.1111/odi.13802
http://doi.org/10.1007/s42452-020-2251-0
http://doi.org/10.1016/j.dsx.2021.05.019
http://doi.org/10.1093/mmy/myx017
http://doi.org/10.1016/j.cmi.2018.07.011
http://doi.org/10.3390/jof5010023
http://doi.org/10.1111/myc.13256
http://doi.org/10.29309/TPMJ/2020.27.08.4655
http://doi.org/10.3390/jof7020088
http://doi.org/10.3314/mmj.17.013
http://doi.org/10.1016/j.mmcr.2021.03.006
http://doi.org/10.3390/jof4030090
http://doi.org/10.1093/ckj/sfy034
http://doi.org/10.1111/j.1365-2958.2010.07234.x
http://doi.org/10.1080/13543776.2021.1939308
http://doi.org/10.1016/j.micpath.2020.104398
http://doi.org/10.1155/2021/8280925
http://doi.org/10.1093/nar/gkz452
http://doi.org/10.1016/S2666-5247(21)00237-8
http://doi.org/10.1086/432579
http://doi.org/10.1016/j.jiph.2021.04.010
http://doi.org/10.1038/s41598-020-57906-x
http://doi.org/10.1080/25785826.2020.1794165
http://doi.org/10.1080/07391102.2020.1770127


Vaccines 2022, 10, 664 21 of 22

29. Yu, C.-S.; Cheng, C.-W.; Su, W.-C.; Chang, K.-C.; Huang, S.-W.; Hwang, J.-K.; Lu, C.-H. CELLO2GO: A web server for protein
subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 2014, 9, e99368. [CrossRef]

30. Zhang, J.; Madden, T.L. PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and
annotation. Genome Res. 1997, 7, 649–656. [CrossRef]

31. Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.
BMC Bioinform. 2007, 8, 1–7. [CrossRef]

32. Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP-a server for in silico prediction of allergens. BMC Bioinform. 2013, 14, S4.
[CrossRef]

33. Parker, J.; Guo, D.; Hodges, R. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention
data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 1986, 25,
5425–5432. [CrossRef] [PubMed]

34. Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett.
1990, 276, 172–174. [CrossRef]

35. Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted
interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [CrossRef] [PubMed]

36. Lee, G.R.; Heo, L.; Seok, C. Effective protein model structure refinement by loop modeling and overall relaxation. Proteins: Struct.
Funct. Bioinform. 2016, 84, 293–301. [CrossRef]

37. Laskowski, R.A.; Rullmann, J.A.C.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for
checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [CrossRef]

38. Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2,
1511–1519. [CrossRef]

39. Luthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 1992, 356, 83–85.
[CrossRef]

40. Ponomarenko, J.; Bui, H.-H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the
prediction of antibody epitopes. BMC Bioinform. 2008, 9, 1–8. [CrossRef]

41. Tenzer, S.; Peters, B.; Bulik, S.; Schoor, O.; Lemmel, C.; Schatz, M.; Kloetzel, P.-M.; Rammensee, H.-G.; Schild, H.; Holzhütter, H.-G.
Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding.
Cell. Mol. Life Sci. CMLS 2005, 62, 1025–1037. [CrossRef]

42. Bui, H.-H.; Sidney, J.; Peters, B.; Sathiamurthy, M.; Sinichi, A.; Purton, K.-A.; Mothé, B.R.; Chisari, F.V.; Watkins, D.I.; Sette, A.
Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 2005,
57, 304–314. [CrossRef]
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