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Abstract: Newcastle disease virus (NDV) causes one of the highly infectious avian diseases in poultry
leading to genuine financial misfortunes around the world. Recently, there has been an increasing
trend in the number of ND-associated outbreaks in commercial Jordanian poultry flocks indicating a
possible complex evolutionary dynamic of NDV infections in the country. To underpin the dynamics
of circulating NDV strains and to assess the vaccine-escape potential, a total of 130 samples were col-
lected from different poultry flocks in six Jordanian Governorates during 2019–2021. Twenty positive
isolates, based on real-time reverse transcriptase PCR, were used for further genetic characterization
and evolutionary analysis. Our results showed that there is a high evolutionary distance between the
newly identified NDV strains (genotype VII.1.1) in this study and the commercially used vaccines
(genotypes I and II), suggesting that circulating NDV field strains are under constant evolutionary
pressure. These mutations may significantly affect flocks that have received vaccinations as well as
flocks with insufficient immunity in terms of viral immunity and disease dynamics. To assess this
further, we investigated the efficacy of the heterologous inactivated LaSota or homologous genotype
VII.1.1 vaccine for their protection against virulent NDV in chicken. Vaccine-induced immunity was
evaluated based on the serology, and protection efficacy was assessed based on clinical signs, survival
rates, histopathology, and viral shedding. Chickens vaccinated with the inactivated genotype VII.1.1
based vaccine showed 100% protection with a significant reduction in virus shedding, and ame-
liorated histopathology lesions compared to LaSota vaccinated chicks that showed 60% protection.
These results revealed that the usage of NDV inactivated vaccine from the circulating field strains
can successfully ameliorate the clinical outcome and virus pathobiology in vaccinated chicks and will
serve as an effective vaccine against the threat posed by commonly circulating NDV strains in the
poultry industry.

Keywords: avian orthoavulaviruses 1; evolutionary pressure; vaccine; efficacy; Jordan

1. Introduction

The Paramyxoviridae family consists of a large number of viruses which are isolated from
a wide range of human and other animal species including measles, mumps, and respiratory
syncytial viruses, Newcastle disease virus (NDV), canine distemper, and rinderpest viruses [1].
All paramyxoviruses are pleomorphic, enveloped, single stranded and non-segmented viruses
containing a negative sense RNA genome of 10–17 Kb size. Based on structure, genomic
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organization, and sequence relatedness, this family is divided into two subfamilies: Paramyx-
ovirinae and Pneumovirinae [2]. The Paramyxovirinae subfamily has five genera: Respirovirus,
Rubulavirus, Morbillivirus, Henipavirus, and Avulavirus, whereas the Pneumovirinae subfamily
has two genera: Pneumovirus and Metapneumovirus [3].

All paramyxoviruses isolated from avian species have been classified into two gen-
era: Avulavirus, which represents avian paramyxoviruses (APMV), and Metapneumovirus,
which represents avian pneumoviruses. Based on hemagglutination inhibition (HI) and
neuraminidase inhibition (NI) assays, it has been concluded that avian avulaviruses infect a
wide range of domestic and wild birds all over the world [4]. Avulaviruses’ RNA genomes
encode six structural proteins (NP, P, M, F, HN, and L) as well as two non-structural
proteins (V and W) via RNA editing [2,4]. The hemagglutinin-neuraminidase (HN) and
fusion (F) proteins are surface glycoproteins found in avulaviruses. The new classification
criterion has been proposed that involve the use of genomic sequence comparisons in the
categorization of avulaviruses due to issues associated with cross-reactivity among some
serotypes of avulaviruses in serologic tests. According to recent criterion, Orthoavulavirus,
Paraavulavirus, and Metaavulavirus are three genera that now make up the Avulavirinae
subfamily [1,5].

Avian Avulavirus serotype-1 (AAvV-1) is a member of the Avulavirus genus in the
Paramyxoviridae family that causes ND in chicken. The antigenic serotypes that evolve in
this group as a result of environmental or vaccination pressure elude the immune system
of birds and are responsible for vaccine failure [6,7]. The fusion (F) and hemagglutinin
neuraminidase (HN) genes, which encode for structural envelope proteins that play host
recognition, infection, and pathogenesis roles, but also influence the antigenicity and
immunogenicity of ND viruses have a high genetic and antigenic diversity within the
AAvV-1 serotype [8–10]. Animal models (1-day-old Gallus chick) are used in infectivity
assays for ND viruses, which are expensive and time consuming. Monobasic amino acid
sequences at positions 112–113 and 115–116 of the C-terminus of the fusion protein cleavage
site (FPCS) with leucine (L) at position 117 and/or intracerebral pathogenicity indices (ICPI)
of 0.7 are used to designate low-virulent strains [11,12].

Avian Metaavulavirus has been known to cause disease, specifically mild respiratory
infections in domestic poultry, including turkeys and chickens, and pose many economic
effects on egg production and poultry industries [13]. The virus was first isolated from
a strain in Yucaipa, California in 1956. Since then, other isolates of the virus have been
isolated worldwide. Avian paramyxovirus 2 (APMV-2) has been isolated from a wide range
of birds, including chickens, turkeys, racing pigeons and feral birds and appears to be
circulating worldwide [1,14–17].

Furthermore, the prevalence of APMV-2 antibodies in several bird species, including
commercial poultry, has been investigated [13,18,19]. Chickens, broilers, and layers from
the United States, Canada, Russia, Japan, Israel, India, Saudi Arabia, the United Kingdom,
and Costa Rica, as well as turkeys from the United States, Canada, Israel, France, and Italy,
have all been shown to carry APMV-2 viruses. Infections with APMV-2 reduced turkey
hatchability and poult output [20]. More significant illness, particularly in turkeys during
subsequent infections, has been documented [21]. APMV-2 infections in turkey flocks have
also been reported by virus isolation and the presence of antibodies [22]. The reason of
the reduction in egg production was assumed to be APMV-2, which was identified from
commercial layer farms and broiler breeder farms in Scotland [23]. APMV-2 infection
in chickens via intramuscular and intratracheal routes produced no evident respiratory
disease [24]. Similar findings were found in turkeys infected by intratracheal route [25].

Despite the widespread use of a LaSota and Hitchner B1-based vaccine in the poultry,
ND outbreaks are still common in the Middle East, where the most commonly circulating
NDV isolates are taxonomically categorized as genotype VII [26–28]. Because of their
significant contribution to the ongoing ND pandemic, these genotype VII isolates are
currently regarded as the most economically relevant NDV strains in Jordan and also
frequently isolated among flocks that have been vaccinated with traditional genotype II-
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based ND vaccines. Because genotype mismatch between genotype II-based ND vaccines
and the circulating genotype VII NDV are widely thought to be responsible for the current
vaccines’ suboptimal protective efficacy. Therefore, development of new vaccines based on
the currently prevalent genotype VII NDV has the potential to improve the effectiveness of
ND control in the global poultry industry.

The aim of this study is to detect and characterize AAvVs using genetic and anti-
genic techniques to provide insights into the ecology of these viruses. We demonstrate
the presence of two different avian avulavirus serotypes: one has been previously de-
scribed in chicken (AOAvV-1) and one distantly related to AAvV-2/APMV-2. Further, we
demonstrated the vaccine efficacy of currently deployed heterologous vaccine and a newly
developed homologous vaccine in chicken. The finding warrants continued surveillance of
AOAvV-1 strains in poultry and to revise vaccines and vaccination strategies trained by the
ground realities.

2. Materials and Methods
2.1. Ethics Statement

Samples were collected by trained veterinarians. Samples processing and virus isola-
tion procedures were carried out in strict accordance with the guidance and regulations of
animal welfare and health that approved by the Department of Veterinary Pathology and
Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology
(JUST), Jordan (JUST 387-2020).

2.2. Sampling History, Virus Isolation, and Biological Characterization

A total of 130 swab samples were collected from various Jordanian poultry flocks
(Table 1). All samples were collected from vaccinated flocks except Turkey, Peacock, and
Ostrich (Table 2). Individual swabs were collected in viral transport medium supplemented
with antibiotics (isotonic PBS, 2000 U/mL penicillin, 2 mg/mL streptomycin, 50 µg/mL
gentamycin, 50 U/mL nystatin, and 0.5% BSA). Swab samples were cleared by centrifu-
gation for 5 min at 1700 rpm at 10 ◦C, and the supernatants were collected and stored at
−80 ◦C until further use.

Table 1. Sampling data and prevalence of Avian Avulaviruses in different geographical regions in
Jordan during 2019–2021.

Isolate Host Location ICPI Accession Number

NDV/chicken/Jordan/MQA-N-1/2019 Backyard chicken Ajloun 1.8 ON858785
NDV/chicken/Jordan/MQA-N-2/2020 Backyard chicken Jarash 1.6 ON858786
NDV/chicken/Jordan/MQA-N-3/2020 Backyard chicken Balqa 1.6 ON858787
NDV/chicken/Jordan/MQA-N-4/2019 Backyard Breeder Amman 1.7 ON858788
NDV/Turkey/Jordan/MQA-N-5/2020 Turkey Amman 1.8 ON858789
NDV/chicken/Jordan/MQA-N-6/2021 Layer breeder Jarash 1.8 ON858790
NDV/chicken/Jordan/MQA-N-7/2021 Broiler breeder Zaraqa 1.7 ON858791
NDV/chicken/Jordan/MQA-N-8/2021 Layer breeder Zarqa 1.8 ON858792
NDV/chicken/Jordan/MQA-N-9/2019 Layer breeder Zarqa 1.7 ON858793

NDV/Peacock/Jordan/MQA-N-10/2020 Peacock Amman 1.9 ON858794
NDV/chicken/Jordan/MQA-N-11/2020 Layer breeder Zarqa 1.6 ON858795
NDV/chicken/Jordan/MQA-N-12/2019 Backyard chicken Madaba 1.8 ON858796
NDV/chicken/Jordan/MQA-N-13/2021 Backyard chicken Madaba 1.7 ON858797
NDV/chicken/Jordan/MQA-N-14/2019 Backyard chicken Amman 1.7 ON858798
NDV/chicken/Jordan/MQA-N-15/2020 Layer breeder Amman 1.9 ON858799
NDV/chicken/Jordan/MQA-N-16/2019 Commercial broiler Jarash 1.8 ON858800
NDV/Ostrich/Jordan/MQA-N-17/2020 Ostrich Amman 2.0 ON858801
NDV/chicken/Jordan/MQA-N-18/2019 Commercial broiler Ajloun 1.8 ON858802
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Table 1. Cont.

Isolate Host Location ICPI Accession Number

NDV/chicken/Jordan/MQA-N-19/2021 Commercial broiler Jarash 1.7 ON858803
NDV/chicken/Jordan/MQA-N-20/2020 Commercial broiler Balqa 1.9 ON858804

APMV2/chicken/Jordan/MQA-N-1/2020 Commercial broiler Jarash 0 ON858805
APMV2/chicken/Jordan/MQA-N-2/2020 Commercial broiler Amman 0 ON858806

ICPI: Intracerebral Pathogenicity Index.

Table 2. Vaccination regime used to vaccinate the Jordanian poultry flocks.

Age Vaccination Route Used Vaccine

0 a,b In ovo VAXXITEK® (HVT + IBD)

1 a,b Coarse spray Live NDV (Avinew®) and live attenuated
IBV (Poulvac IB Primer®)

14 a,b Coarse Spray Live attenuated IBV (IBird®) + Live
attenuated NDV (Clone 30)

21 a,b IM Inactivated NDV + H9N2 + H5N1
28 a,b Fine Spray Live attenuated NDV LaSota
49 b Fine Spray Live attenuated NDV LaSota
65 b Eye drop Live attenuated ILTV
77 b IM Inactivated NDV + H9N2
78 b Fine Spray Live attenuated NDV LaSota

91 b SC + IM + Fine spray Inactivated TRT + IBV + live attenuated
IBV (Poulvac IB Primer®)

105 b Fine Spray Live attenuated ND LaSota
126 b IM Inactivated NDV + IBV + IBDV + REO
143 b IM Inactivated H9N2 + H5N1
175 b Fine Spray Live attenuated NDV (LaSota)

a For broiler flocks; b For breeder flocks.

According to the OIE Manual of Standards for Diagnostic Tests and Vaccines, each
sample was inoculated (in triplicate) into the allantoic sac of 9–10-day embryonated chicken
eggs (ECEs) for viral isolation [29]. The positive HA samples were biologically characterized
using intracerebral pathogenicity test in Rhode Island Red SPF chicks using the standard
protocols [29]. All samples were negative for other avian respiratory viruses including
influenza viruses and infectious bronchitis virus (IBV).

2.3. RNA Extraction, Genome Amplification and Sequencing

Samples were subjected to RNA extraction from the allantoic fluid using an RNA
extraction kit (RNAeasy Mini Kit, Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions. Detection of avian avulaviruses was conducted using a real-time
reverse transcriptase PCR based on the M gene of NDV and the N gene of aMPV as de-
scribed previously [30]. For full length fusion (F) gene amplification, RNA was reverse
transcribed into cDNA using a Superscript IV First-Strand cDNA Synthesis Kit (Invitrogen,
Waltham, MA, USA) and the second strand was synthesized with Q5 DNA Polymerase
(New England Biolabs, Ipswich, MA, USA) using for amplification and sequencing of the
full length F gene [31,32]. Amplified PCR products were visualized by electrophoresis
on a 1.2% agarose gel electrophoresis and then purified using a QIAquick Gel Extraction
Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. The purified
PCR products were sequenced bi-directionally with both sense and antisense primers that
were used in the PCR amplification [31,32] using ABI PRISM BigDye Terminator version
3.1 (Applied Biosystems, Foster City, CA, USA) by Sanger sequencing method on a 3500
Applied Biosystems capillary sequencer (Source Bioscience, Cambridge, UK).
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2.4. Sequence Analyses and Phylogeny

The F nucleotide and amino acid sequences were retrieved in fasta format from the
NCBI GenBank and compared to those found in ViralZone UniProtKB/Swiss-Prot entries
using corresponding accession numbers. These sequences were edited to the same length
and aligned using ClustalW, which is included in BioEdit version 7.0. [33]. The obtained
nucleotide sequences were submitted to GenBank and assigned accession numbers are
outlined (Table 1). Sequence Demarcation Tool (SDT) was used to display the amino acid
pairwise identity scores through a color-coded matrix [34].

Phylogenetic analyses were conducted using general time-reversible (GTR) model [35],
which was selected using jModelTest [36], and maximum-likelihood trees were constructed
using RaxML version 8.2.11 [37] with 1000 bootstrap replicates. The phylogenetic analysis
was performed on nucleotides based on the pilot tree proposed by Dimitrov et al. [38] to
maintain the tree topology and to ascertain the genotypes of avian avulaviruses isolates.

2.5. Mutations Mapping at Variable Positions and Functional Regions

The F nucleotide sequences were later translated into amino acid sequences in MEGA
X program v10.1.8 to compare our AOAvV-1 isolates, and vaccine (LaSota: JF950510.1)
strains at the amino acid levels. Sequence logos, graphical representations of patterns
within the F protein aligned sequences, were generated using the WebLogo service (http:
//weblogo.threeplusone.com/create.cgi, accessed on 15 August 2022). Sequence logos give
a fuller and more accurate representation of F protein sequence similarity than consensus
sequences, and they can quickly expose important characteristics of the alignment that
might otherwise be difficult to notice.

Sequences variations were mapped onto the protein structures and entropy calcula-
tions with the aid of Scop3D tool, which visualizes variations across multiple sequences on
the protein structures [39]. The F protein numbering was based on LaSota using GenBank
accession number JF950510.1. The functional regions were defined based on literature and
were mapped on the structures and Jalview or Chimera-analyzed models for diversity as
visualized to the predicted structure models.

2.6. DiscoTope: Structure Based Antibody Prediction

The interaction of antibodies with antigens is one of the most significant immune
system strategies for removing pathogenic organisms from the host. Antibodies bind to anti-
gens at B-cell epitopes. The precise placement of B-cell epitopes is critical in many scientific
applications, including rational vaccine design, disease diagnostics, and immunothera-
peutics. However, because experimental mapping of epitopes is time consuming, in silico
approaches provide an interesting supplementary option [40]. Using the Discotope 2.0
online tool (https://services.healthtech.dtu.dk/service.php?DiscoTope-2.0, accessed on
11 August 2022), we tried to map the antibody binding sites within the F protein of NDV
that will help to identify these residues compared to those in commercially used vaccines
among Jordanian poultry sectors.

2.7. F Protein Structural Homology Analyses and Selective Pressure

To identify the conserved regions, homology models for the translated F proteins were
created by matching sequences using multiple sequence alignment (MSA) with the help of
ClustalW, which is included in the BioEdit software version 7.0 [33]. The consensus areas
for each protein in the field isolates and vaccine were utilized in a BLAST search against
the Protein Data Bank (PDB) to find known homologs or orthologs. The Synonymous-Non-
Synonymous Analysis Program (SNAP) was used to predict the F gene-specific estimates
of dN/dS [41]. The number of potential synonymous and non-synonymous changes
as well as the number of actual synonymous and non-synonymous changes in codon
between each pair were counted. Then, the dN/dS ratio was calculated by comparing the
proportion of observed non-synonymous substitutions over the proportion of observed
synonymous substitutions. These were then adjusted for multiple hits using the Jukes–

http://weblogo.threeplusone.com/create.cgi
http://weblogo.threeplusone.com/create.cgi
https://services.healthtech.dtu.dk/service.php?DiscoTope-2.0
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Cantor correction [41]. A higher score than 0 indicates a more dominant diversifying
positive selection while below 0 indicates negative selection.

2.8. Preparation of Inactivated Newcastle Disease Virus Vaccine

The genotype VII.1.1 seed virus (ON858797 AOAvV-1 isolate NDV/chicken/Jordan/MQA-
N-13/2021) was propagated via inoculation into the allantoic sac of specific pathogen-free
embryonated chicken eggs (SPF-ECE) which were incubated at 37 ◦C. Allantoic fluids from these
inoculated eggs were harvested after overnight chilling at 4 ◦C and tested for hemagglutination
using 1% chicken red blood cells (RBCs). The Egg Infective Dose 50 (EID50) was determined via
titration in 10-day-old SPF-ECE according to the method described [42].

The titrated virus (ON858797 AOAvV-1 isolate NDV/chicken/Jordan/MQA-N-13/2021)
was used as a master seed for the preparation of inactivated vaccine. Seed virus inactivation
was conducted with formalin (final concentration of 0.1%) for 18 h at 37 ◦C. Complete
inactivation of the virus was confirmed through three passages in 10-day-old embryonated
SPF chicken eggs followed by HA and EID50. All SPF chicken embryos inoculated with
formalin-treated virus remained alive after 120 hours, and no HA-based positivity was
detected. The final dose used was 108 EID50/0.5 mL per chick. Inactivated NDV vaccine
was prepared as water in oil emulsion (W/O) using Montanide ISA 70 at a ratio of 3/7 (v/v)
aqueous/oil ratio. The manufacturing process was carried out according to the standard
protocol of SEPPIC, France. The prepared vaccine were tested for its sterility and safety
according to OIE [29]. Stability testing of emulsion involves determination of stability at
long-term storage at 4 ◦C and 25 ◦C [43,44]. Velogenic Newcastle disease virus (vNDV)
ON858797 AOAvV-1 isolate NDV/chicken/Jordan/MQA-N-13/2021 strain was used to
challenge the vaccinated and non-vaccinated (positive control) chicks.

2.9. Vaccination and Challenge Experiments

Forty SPF Rhode Island Red chicks were housed separately in two groups: vaccinated
(n = 20) and unvaccinated (n = 20). The challenge experiments were conducted in accor-
dance with all relevant guidelines and animal ethics permits issued by Department of
Veterinary Pathology & Public Health, Faculty of Veterinary Medicine, Jordan University
of Science and Technology (JUST), Irbid, Jordan. Chicks in the unvaccinated group were
divided into three subgroups: non-vaccinated challenged (positive control, n = 10) and non-
vaccinated non-challenged (negative control, n = 10). However, chicks in the vaccinated
group (n = 20) were kept in two groups (10 each); LaSota vaccinated challenged group
and genotype VII.1.1 vaccinated challenged group (Figure 1) and administered either the
inactivated LaSota vaccine (genotype II) or inactivated genotype VII.1.1 vaccine on day 7 at
a dose of 0.5 mL per chick via the subcutaneous route around the neck region (Figure 1).

Chicks in the vaccinated- challenged and non-vaccinated challenged groups was chal-
lenged with a dose of 100 µL of 106.5EID50 (ON858797 AOAvV-1 isolate NDV/chicken/Jordan/
MQA-N-13/2021) strain through the oculonasal route on day 29. The mock-infected group
served as a negative control and was inoculated with 100 µL of sterile PBS (Figure 1). For the
next 10 days, chicks were monitored twice daily for any clinical signs including depression,
sneezing/coughing, facial swelling, respiratory sounds, ocular/nasal discharge, ruffled
feathers, dyspnea, greenish diarrhea, paralysis and tremors as well as necropsy lesions in
dead chicks for pathognomic lesions of NDV including hemorrhages in the proventriculus
and cecal tonsils.

2.10. Serology, Virus Shedding and Histopathology

Serum samples were obtained pre- (day 27) and post-challenge (day 38) from the
vaccinated challenged groups and tested using an HI assay. The HI assay was performed
using inactivated NDV antigen with 4 HAU in 0.025 mL [29]. Titers were calculated as the
reciprocal of the highest serum dilution providing complete hemagglutination inhibition.
Serum titers of 1:8 (23) or lower were considered negative for antibodies against NDV. Virus
shedding was detected using previously described assays for identification of velogenic
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strains of NDV in oropharyngeal swabs [29]. Oropharyngeal swabs were collected, placed
in virus transport medium, filtered through a 0.2 µm filter and then aliquoted and stored at
−70 ◦C until all samples were collected before analysis as previously described [29].

Selected tissues including trachea and lungs were collected, fixed by immersion in
10% neutral buffered formalin at room temperature for 48 h and followed by processing
and embedding in paraffin wax. Tissue sections of 5 µm were stained with Hematoxylin
and Eosin and examined for microscopic lesions under a light microscope.
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2.11. Statistical Analysis

Pairwise comparisons of challenged (clinical and sub-lethal doses) and control groups
(positive and negative) were performed using Student’s t-test. Kaplan–Meier analysis was
performed to calculate the survival rates. Two-tailed Student’s t-test and one-way analysis
of variance (ANOVA) were used to determine differences between groups. Statistical
significance is shown with values of p < 0.05. All data were represented as the mean ±
standard deviation (SD). Statistical analyses were conducted using GraphPad Prism 7
(GraphPad Software, La Jolla, CA, USA).
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3. Results
3.1. NDV Epidemiology in Jordan and Biological Characterization

We present the isolation, biological characterization and genetic analyses that map the
evolution of NDV in Jordan during 2019–2021. A total of 130 samples were individually
screened by RT-qPCR, followed by full length amplifications for F gene of positive samples.
From this screening, 20 out of 130 samples (20/130; 15.4%) were positive among all tested
swab samples for AOAvV-1 (Table 1) while only two samples were positive for avian
paramyxovirus 2 (2/130; 1.5%). The ICPI was conducted for all isolated viruses individually,
which calculates the mean score per bird per observation over the 8-day period. Our results
revealed that ICPI values ranged between 1.6–2.0 per eight-day observation period for the
20 AOAvV-1 isolates (Table 1) indicating their velogenic nature while ICPI was zero for the
two APMV-2 (Table 1) isolates indicating the lentogenic nature of these isolates.

3.2. Phylogenetic Analyses

To determine the epidemiological clustering of Jordanian NDV isolates in the current study,
representative avian avulaviruses genome sequences from the National Center for Biotechnology
Information (NCBI) databases were downloaded and used for phylogenetic and comparative
genomic analyses. A Bayesian consensus phylogenetic analysis, which was verified using the
neighbor-joining method, 20 isolates in this study clustered within avian avulavirus 1 along
with previously reported isolates from Jordan, Israel, Iraq, Egypt, and China (Figure 2) while
two isolates were clustered with APMV-2 along with previously reported APMV-2 isolates in
Israel (Figure 2). The phylogenomic and clustering pattern of AOAvV-1 isolates revealed that
19 isolates were clustered within genotype VII.1.1 while only one isolate was allocated within
genotype VII.2 (Figure 3), showed their close association within the previously reported isolates
in Jordan and neighboring countries including Israel, Iraq and Egypt from both commercial and
backyard flocks. Interestingly, NDV/Peacock/Jordan/MQA-N-10 isolate was isolated from
wild bird indicating the close relationship between wild birds and domesticated birds in NDV
epidemiology and evolution.



Vaccines 2022, 10, 1862 9 of 21
Vaccines 2022, 10, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 2. Phylogenomic revealed the clustering of 20 isolates within the AOAVv-1 while two isolates 

were allocated within AAvV-2/APMV-2. Unrooted phylogenetic trees were generated using the dis-

tance-based using maximum likelihood method and MEGA 6 software. Statistical support for tree 

branches was assessed by bootstrap analysis using 1000 replications of bootstrap re-sampling; num-

bers above branches indicate neighbor-joining bootstrap values that were ≥ 80%; the tree is drawn 

to scale, with branch lengths measured in the number of substitutions per site. The reported AAvV-

1 isolates in this study are marked with red square within light green box; however, AAvV-2 isolates 

are marked with red hexagon labelled within light yellow box. 
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were allocated within AAvV-2/APMV-2. Unrooted phylogenetic trees were generated using the
distance-based using maximum likelihood method and MEGA 6 software. Statistical support for
tree branches was assessed by bootstrap analysis using 1000 replications of bootstrap re-sampling;
numbers above branches indicate neighbor-joining bootstrap values that were≥80%; the tree is
drawn to scale, with branch lengths measured in the number of substitutions per site. The reported
AAvV-1 isolates in this study are marked with red square within light green box; however, AAvV-2
isolates are marked with red hexagon labelled within light yellow box.
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Figure 3. Phylogenetic analysis of the studied AOAvV-1 isolates and their clustering patterns with
representative AOAvV-1 isolates. Full-length F-gene (1662 nt)-based phylogenetic analysis of our
AOAvV-1 isolates with representative strains of each genotype. Reported isolates clustered in the
genotype VII.1.1 of class II. Unrooted phylogenetic trees were generated using the distance-based
using maximum likelihood method and MEGA 6 software. Statistical support for tree branches was
assessed by bootstrap analysis using 1000 replications of bootstrap re-sampling; numbers above
branches indicate neighbor-joining bootstrap values that were≥80%; the tree is drawn to scale, with
branch lengths measured in the number of substitutions per site. The reported AOAvV-1 isolates
in this study are marked with red square within yellow box, however, NDV genotype II including
LaSota (commonly used vaccine) was labelled within light blue box.
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3.3. Nucleotide and Amino Acid Homology

The level of nucleotide sequence identity between the AOAvV-1 studied isolates
ranged between 91% and 99%, and these isolates showed varying degrees of genetic
divergence from other representative genotypes of NDV (Figure 4a); however, the identity
with the LaSota vaccine strain was 83% (Figure 4a). Meanwhile, all the AOAvV-1 isolates
showed 11–13% amino acid difference compared to vaccines that are routinely used in the
country (LaSota [genotype II]).
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Figure 4. (a) The pairwise identities plot of fusion protein sequences aligned by MAFFT and displayed
by Sequence Demarcation Tool (SDT) software. (b) WebLogo graphs illustrating the amino acid
divergence between AOAVv-1 isolates reported in this study compared to LaSota vaccine and
previously reported isolates in Jordan.

All AOAvV-1 isolates in this study exhibit multiple basic amino acid residues at
the cleavage site (F0) of the F protein (Figure 4b), which is a hallmark of velogenic NDV
strains [4,45]. The predicted residue analysis of F protein revealed a typical proteolytic cleav-
age motif 112R-R-Q-K-R116, characteristic for virulent viruses (Figure 4b). Previous studies
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have identified six possible glycosylation sites within the F protein that are highly con-
served across the majority of AOAvV-1 genotypes. The glycosylation motif Asn-X-Ser/Thr
(N-X-S/T, where X is any residue except proline [P] and aspartic acid [D]) was identified
in the studied isolates. These sites were identified in the reported AOAvV-1 isolates in
this study as follow; 85N-RT87, 191N-N-T193, 366N-T-S368, 471N-N-S473, and 541N-N-T543 that
are key residues for receptor binding, and crucial amino acids in the hydrophobic core of
the stalk [46,47]. Several substitutions were found in the transmembrane region (aa501 to
aa521) of the F protein of the AOAvV-1 isolates studied in this study (Figure 4b). In addition,
the AOAvV-1 isolates had different alterations in the signal and fusion peptides, and the
heptad repeat (HR) regions compared to LaSota and previously reported Jordanian NDV
strains (Figure 4b), which might impact on the F protein’s fusogenic activity [45,48–50].

3.4. Deduced Amino Acid Mutations Trend Analyses

In the pathophysiology of the ND, HN glycoprotein starts infection, whereas F gly-
coprotein facilitates viral attachment and penetration into host cells [2]. Both HN and
F proteins stimulate the host immune response and are essential for the production of
neutralizing antibodies generated by vaccinations. Antibodies against F proteins have been
shown in vivo to be critical in neutralizing ND infectivity [51,52]. Previous studies showed
that there are seven major F protein neutralizing epitopes involved in fusion inhibition
and neutralization are shown at specific residues 72, 74, 75, 78, 79, 157–171, and 343 for
epitopes A1, A2, A3, A4, and A5, respectively. Our results showed that there is an amino
acid substitution (H78R) in 17 AOAvV-1 isolates reported in this study. The amino acid
residues show that both F1 and F2 are involved in the formation of a single antigenic site
vital in the structure and function of the active F epitopes [53].

3.5. Antibody Sites Prediction and Immune Pressure

We predicted the antibody binding residues and their surface accessibility and anti-
genicity scores using the BepiPred linear Epitope prediction method, Emini surface ac-
cessibility tool, and Kolaskar and Tongaonkar antigenicity, which use epitope scores and im-
munogenicity predictions through IEDB online (www.iedb.org, accessed on 11 August 2022)
facilities. Both BepiPred-2.0 prediction tool and Vaxijen 2.0 tool gave effective antigenic
domains; antigenic region I, II, III, IV and V for our AOAvV-1 isolates compared to LaSota
vaccine (Table 3). These domains were above antigenicity score (0.8) and surface accessibil-
ity score (0.6) suggesting that these amino acid residues could modify the effectiveness of
the predicted epitopes, which are speculated for the antigenic differences between these
viruses and vaccine. In addition, our analyses showed variable residues that affect the
F protein hydrophobic stability (Table 4). Structure-based antibody prediction of the F
protein for the AOAvV-1 isolates reported in this study showed different epitope locations
(Figure 5a). Mass vaccination has a cumulative effect that plays a role in virus evolution
through immune pressure. Our results demonstrated that the cumulative difference be-
tween the nonsynonymous substitution rate (dN) and the synonymous substitution rate
(dS) for the Jordanian NDV strains were under positive selection at critical sites within the
F protein (Figure 5b).

www.iedb.org
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Table 3. Analysis of mutations in the predicted F protein antigenic domains structure between LaSota
vaccine and our AOAvV-1 isolates reported in this study.

Domain Antigenic Region I
(7–30)

Antigenic
Region II
(196–241)

Antigenic
Region III
(380–394)

Antigenic
Region IV
(413–437)

Antigenic
Region V
(447–460)

A.A
positions 8 9 13 16 17 19 20 22 27 28 29 30 203 231 232 385 386 387 421 422 430 451 457

LaSota
(JF950510.1) K N M T I V A V C P A N A N K T I K K Q G Q I

AOAvV-1
isolates R I L I T I M I R L T S T T Q A L R R H D L V

Table 4. Analysis of mutations in the predicted positions contribute to hydrophobic stability of the F
protein in our AOAvV-1 isolates reported in this study compared to the LaSota vaccine.

Domain Variable Residues of Hydrophobic Stability

A.A positions 69 82 115 124 145 146 192 403 421 430 453 457 486 489

LaSota (JF950510.1) L D G G K Q K N K G S I R D

AOAvV-1 isolates M E K S K Q N D R D S V S E/K
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Figure 5. (a) Structure-based Antibody Prediction. X-axis contains the position of residues while the
y-axis shows the propensity line indicates the threshold value. Regions above the threshold value,
shown in green, are representing the residues under positive prediction. (b) The cumulative dN/dS
of the average synonymous and non-synonymous substitutions moving codon by codon across F
protein of AOAVv-1 isolates reported in Jordan including the reported isolates in this study with
highlighting the most affected domains (high selective pressure) within the F protein.

3.6. Vaccine Sterility, Safety and Hemagglutination Inhibition Test

The prepared genotype VII.1.1 based inactivated vaccine was sterile and safe as they
were free from any bacterial and fungal contaminants. No local or systemic reactions
were observed. No clinical signs or mortality were recorded in vaccinated chicks and no
pathological lesions were observed by postmortem examination. The post-vaccination
antibody titers in the chicks’ sera were determined using HI test with homologous antigens.
All chicks had no detectable NDV antibody titers just before vaccination. Similarly, the
control group showed no HI antibody titers throughout the study. On the contrary, 3 weeks
post vaccination; chickens vaccinated with the genotype VII.1.1 based vaccine showed
increasing antibody titer log2 6.73 ± 0.50 compared to LaSota vaccinated chicks showed
4.19 ± 0.95.

3.7. Vaccines Efficacy Assessment

As proved to be highly immunogenic, the protective role of genotype VII.1.1 against
virulent viral challenge was compared with LaSota vaccine. The inactivated genotype
VII.1.1 vaccine was prepared and used to immunize SPF chicks followed by challenge with
homologs virulent NDV strain. Commercial inactivated LaSota vaccine and sterile saline
were used as positive and negative immunization controls. Each chick was immunized
with a dose of 107EID50 via neck subcutaneous injection then challenged with 106.5EID50
dose of challenge virus. The clinical symptoms and death of the chicks were recorded every
day till 15th days post-challenge. After immunization, all chicks appeared normal before
challenge; chicks immunized with either inactivated genotype VII.1.1 or LaSota vaccine did
not show any obvious abnormality after challenge; however, non-vaccinated challenged
chicks (positive control) showed drowsiness, loss of appetite, apathetic, and row yellow-
greenish dilute feces on 2nd day post challenge (dpc) and all chicks died by 5th dpc in this
group. These results confirmed that vaccination with genotype VII.1.1 provide complete
protection (100%) (Figure 6a) against homologous challenge while LaSota vaccination
provided partial protection (60%) (Figure 6a). Clinical signs, representative of ND, started
to appear in non-vaccinated challenged group on the 3rd day post-challenge including
depression, anorexia, mild respiratory sounds, and oculonasal discharges. Interestingly,
all chicks in the non-vaccinated challenged group were died 5 days after infection. On
the other hand, clinical signs started to appear in LaSota vaccinated challenged group on
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the 5th day post challenge and 4 chicks (out of 10) died by the 7th day post challenge
(Figure 6a).
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Figure 6. Survival rates and Evaluation of viral shedding. (a) Percentage survival rates and (b) Viral
shedding from oropharyngeal swabs of genotype VII.1.1 and LaSota vaccinated challenged chicks
with virulent NDV compared to negative and positive control groups. Bars represent the standard
deviation means. **** indicates the level of significance at p value < 0.05.

3.8. Virus Shedding and Histopathology

The virus shedding data from oropharyngeal swabs were evaluated based on a num-
ber of shedders and amount of shedding (EID50) at 0, 3rd, 5th, 7th, 10th and 15th days
post-challenge. Results of oropharyngeal viral shedding from the vaccinated chicks with
genotype VII.1.1 based vaccine showed a significant reduction in the amount of virus
shedding compared with LaSota vaccinated group or non-vaccinated challenged group
(p ≤ 0.05) (Figure 6b), however, there was incomplete prevention for the virus shedding.

Trachea and lung organs were collected from vaccinated groups either with inacti-
vated genotype VII.1.1 or LaSota based vaccine and non-vaccinated challenged chicks
(positive control group) followed by histopathological examination compared with and
non-vaccinated non-challenged chicks (negative control group) to assess the level of pro-
tection offered by vaccination in face of challenge with a virulent NDV along with the
induced histopathological changes. Microscopically, trachea of control non-vaccinated
non-challenged chicks and genotype VII.1.1 vaccinated chicks exhibited normal histological
structure (Figure 7). On contrary, remarkable histopathological alterations were investi-
gated in tracheal tissues of non-vaccinated challenged chicks (positive control) described
by necrosis of lamina epithelialis, mucous secreting glands and mononuclear cells infiltra-
tion in lamina propria (Figure 7). Otherwise, moderate changes were noticed in tracheal
tissues of LaSota vaccinated chicks; edema in the lamina propria/submucosal layer. The
histopathological alterations in the trachea and lungs of different groups are summarized
according to their severity in Table S1.
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potentially circulating of virulent strains in apparently healthy birds constitute a concur-
rent problem. Concerns about virus evolution, vaccination type utilized to protect birds, 

Figure 7. Photomicrographs representing H&E stained sections of tracheas and lungs collected
from genotype VII.1.1 and LaSota vaccinated- challenged chicks with virulent NDV compared to
mock chicks (negative control) and positive control groups (non-vaccinated challenged chicks). Non-
vaccinated- non-challenged chicks and genotype VII.1.1 vaccinated- challenged chicks showing
normal histological architecture for Tracheas and normal histological architecture of parabronchus
and air capillaries in lungs. On the other hand, LaSota vaccinated challenged chicks showed necrosis
of lamina epithelialis and mucosal glands (black arrow) associated with mononuclear cells infiltration
in lamina propria (blue arrow) in Trachea and inflammatory cells infiltration (black arrow) in lungs.
In addition, non-vaccinated-challenged chicks (positive control group) showing multifocal necrosis
of lamina epithelialis (black arrow), congestion (red arrow) and accumulation of mucous exudate
in the tracheal lumen (asterisk) in Trachea and showing inflammatory cells infiltration in the air
capillaries (black arrow), perivascular edema (red arrow), dilatation of atria (asterisk) and dilatation
of air capillaries (blue arrow) in lungs (scale bar 50 µm).

4. Discussion

In Jordan and elsewhere, the economic impact of ND on both backyard and commer-
cial poultry is enormous. The recurrence of disease each year, vaccination failures, and
potentially circulating of virulent strains in apparently healthy birds constitute a concur-
rent problem. Concerns about virus evolution, vaccination type utilized to protect birds,
and post-vaccine assessment have been proposed several times in previous studies. The
anticipated B-cell epitopes and functional domains of F protein in AOAvV-1 isolated from
Jordanian birds were compared to those in vaccines to see whether there were any differ-
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ences between the two groups that might explain the ND vaccination failures. Until now,
the AOAvV-1 vaccine has been evaluated only on the basis of empirical cross protection in
birds, whereas many of these studies show that ND vaccines with antigenically matched
antigens give superior immunity [54,55]. However, such investigations are expensive and
time-consuming, and they need extensive field research. Inadequate cold-chain main-
tenance, insufficient immunization titer, hygienic state, and other variables that might
contribute to vaccination failures have all been a source of worry. In this study, we looked
at the neutralizing epitopes of F-glycoproteins of enzootic wild ND viruses and vaccine
(genotype II) to see if there were any virus variants or recombinants at this antigenic and
surface glycoprotein in our AOAvV-1 isolates, which could lead to ineffective vaccination.

In this study, the investigated flocks had varying mortality rate (30–50%) due to putative
vNDV infection symptoms such as tracheitis and proventriculus hemorrhage, which are charac-
teristic for velogenic NDV infection [50]. Intracerebral pathogenicity index (ICPI) was used for
biological characterization of our isolates reported in this study, which showed that 20 isolates
(AOAvV-1) have ICPI ranged between 1.6–2.0 per eight-day observation period. However, only
two isolates (APMV-2) showed zero ICPI, suggesting no morbidity or mortality. All samples
were negative for other respiratory viruses including influenza viruses and infectious bron-
chitis virus (IBV). Molecular pathotyping was performed for the AOAvV-1 isolates using the
amino acid sequences of the F0 protein cleavage site motifs (residues 112 to 117) because it is a
faster and more reliable method than the mean death time (MDT), intravenous pathogenicity
index (IVP), and intracerebral pathogenicity index (ICP) tests [56,57]. The majority of virulent
NDV strains feature a polybasic cleavage site, which is the primary recognition site for furin
(R-X-K/R-R); an intracellular protease presents in most cells that offers an efficient cleavage in a
wide variety of tissues, allowing virulent strains to disseminate systemically. While avirulent
NDV strains frequently have basic residues at the -1 and -4 positions relative to the cleavage site,
which are cleaved by secretory protease. Because avirulent strains cannot be cleaved by furin,
their replication is limited to the respiratory and intestinal routes, where secretory protease is
available for cleavage.

Our findings revealed that all of the AOAvV-1 isolates had the cleavage site motif
12RRQKRF117, which is common in velogenic NDV strains. Furthermore, the presence of the
phenylalanine (F) residue at position 117, which was detected in our 20 AOAvV-1 isolates,
has been characterized as a probable contribution to the neurological consequences [58].
On the other hand, one or two basic residues are detected in the putative F protein cleavage
site of APMV-2 isolates (DKPASR↓F), which is similar but not identical to the pattern seen
in avirulent NDV strains. Previous research found that APMV-2 replicated in vitro in a
wide range of cells without the addition of exogenous protease, and introducing protease
did not improve the replication efficiency.

Phylogenetic study of NDV pathotypes is based on the FPCS as well as the hypervari-
able areas of the F protein [59]. Other ways of classifying NDV strains include genotyping
and lineage analysis [60,61]. To date, two classes, I and II, have been identified and each
further is classified into three sub-genotypes (1.1.1, 1.1.2, and 1.2) and 21 clades or sub-
genotypes (I-XXI), respectively [38,59,60]. Notably, the class II genotype VII viruses are
the most commonly reported in ND outbreaks in poultry, pet, and wild birds throughout
the world, while class I, which is commonly isolated from waterfowl, shore birds, and
some poultry, is less virulent and is exploited for potential vaccine candidates [60–64]. The
two membrane-anchored glycoproteins F and HN are possible targets for the immune
system response to NDV infection and are also important for cell-binding and infection [65].
ND vaccination failure has been linked to genomic and antigenic variations between field
isolates and vaccine strains. These discrepancies result from many accumulated changes in
the field strains’ F and HN genes as a result of vaccination pressure [6,63,66].

Phylogenetic analysis based on the F gene showed that all 20 AOAvV-1 isolates were
related to velogenic strains of NDV; 19 isolates was classified as genotype VII.1.1 (class II)
while only one isolate was clustered within genotype VII.2 with close relationship to previously
reported isolates in Jordan, Iraq, Israel and Egypt. Moreover, the recently isolated strains are



Vaccines 2022, 10, 1862 18 of 21

genetically distant from vaccine strains indicating the potential evolution of virulent NDV in
the Jordanian poultry sector. Vaccination has been linked to viral evolution in a variety of
disease affecting avian, animals and humans. Wild bird strains can spread in a new and more
difficult habitat when immunization is not sterilizing. Selective pressure analysis revealed that
the circulating Jordanian NDVs are under strong pressure, indicating that vaccination has a role
in viral evolution as well as virus adaption in wild birds.

In the present study, the humoral immune response was assessed by HI assay for
vaccinated chicks and revealed higher antibody titer; log2 6.73 ± 0.50 and 4.19 ± 0.95 for
genotype VII.1.1 and LaSota vaccinated chicks, respectively 3 weeks post vaccination. In
addition, our results revealed that the genotype VII.1.1 inactivated vaccine was able to
protect the vaccinated chicks from the challenge virus morbidity or mortality. However,
the group vaccinated with LaSota inactivated vaccine provide 60% protective efficiency
(survival rate). These results were in agreement with previous studies that shown an ND
inactivated vaccine must be prepared from current local circulating strains/genotypes [45].
Our results were similar to Miller et al. who observed 100% mortality for non-vaccinated
chicks and 100% survival for four weeks-old SPF chicks vaccinated subcutaneously with a
single dose of inactivated NDV vaccine after three weeks post-challenge with NDV [55].

While all vaccinated chicks were protected from overt clinical signs and mortality,
virus shedding was noted in all the groups vaccinated with the inactivated vaccines. This
indicates that these vaccines could only protect against the clinical disease but not against
virulent virus infection and replication. Nevertheless, the magnitude and duration of
virulent virus shedding in those groups was generally lower than those in the positive
control group whose magnitude of the virus shedding was high from day 5 post-challenge.
Whether genotype VII.1.1 or LaSota based inactivated ND vaccine was used, the level of
virulent challenge virus shed from chicks vaccinated with a homologous vaccine (genotype
VII.1.1 based) was significantly lower than that vaccinated with a heterologous vaccine
(LaSota based). In consistence, our results demonstrated that the level of specific antibody
response against genotype VII.1.1 is higher than that of anti-LaSota response in the vacci-
nated chicks, which confer a stronger protection against challenge to the immunized chicks,
and lead to more efficient control of disease and reduced viral shedding.

5. Conclusions

We have identified that there are at least two types of NDV strains circulating in the
country. Importantly, the F protein of the AOAvV-1 isolates were found to map numerous
changes that alter the antigenic epitopes and antibody binding domains based on the
deduced amino acid analyses. These mutations may significantly affect flocks that have
received vaccinations as well as flocks with insufficient immunity in terms of viral immunity
and disease dynamics. Therefore, it must be determined if each of these alterations,
separately or together, has an impact on the virus’ antigenicity and can have major negative
effects on vaccination effectiveness. Continuous genetic and phylogenetic characterization
for the circulating AOAvV-1 isolates causing outbreaks are important to understand the
AOAvV-1 epidemiology, evolution and to develop novel vaccines and control strategies.
The results of the present study confirmed that an inactivated oil-adjuvanted vaccine from
the local circulating velogenic AOAvV-1 was efficient to protect the vaccinated birds from
morbidity and mortality against the challenge virus.
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