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Abstract: Sensor uncertainty significantly affects the performance of autonomous vehicles (AVs).
Sensor uncertainty is predominantly linked to sensor specifications, and because sensor behaviors
change dynamically, the machine learning approach is not suitable for learning them. This paper
presents a novel learning approach for predicting sensor performance in challenging environments.
The design of our approach incorporates both epistemic uncertainties, which are related to the
lack of knowledge, and aleatoric uncertainties, which are related to the stochastic nature of the
data acquisition process. The proposed approach combines a state-based model with a predictive
model, where the former estimates the uncertainty in the current environment and the latter finds
the correlations between the source of the uncertainty and its environmental characteristics. The
proposed approach has been evaluated on real data to predict the uncertainties associated with global
navigation satellite systems (GNSSs), showing that our approach can predict sensor uncertainty with
high confidence.

Keywords: autonomous vehicles; machine learning; state-based model; sensors; sensor uncertainty;
uncertainty assessment; uncertainty avoidance; autonomous navigation

1. Introduction

Developments in mobility technology arise from the need to achieve greater inde-
pendence and safety in ambiguous or challenging situations. The latest revolution in
transportation is fully autonomous vehicles (AVs), which are equipped with advanced
sensor technology, smart controllers, and intelligent actuators with the aim of providing
a hassle-free driving experience for passengers and road users. Furthermore, complex
algorithms and communication technologies integrated into autonomous driving systems,
such as path planners, path trackers, and object detectors, help vehicles plan, analyze, and
make appropriate decisions in their environments.

Nevertheless, uncertainty greatly hinders the adoption of AVs in real life. The com-
plexity and natural behavior of the related built-in technologies lead to large errors and
ambiguities in all vehicle subsystems. For example, this can be observed under adverse
weather conditions: visual sensors cannot collect sufficient valuable information in rain or
snow. The subsystems in AVs completely depend on measurements obtained by onboard
sensors, including global navigation satellite systems (GNSSs), inertial measurement units
(IMUs), cameras, and light detection and ranging (LiDAR) sensors, which are highly suscep-
tible to varying environmental conditions as well as road features and geometries. Noisy
data can lead to unsafe behavior and potential traffic accidents. Therefore, to allow vehicles
to operate safely in the real world and reduce the ambiguity of sensor measurements, the
associated errors require careful handling. Several attempts have been made to address this
issue. For instance, some authors (e.g., [1]) have fused multiple sensor readings to enhance
the performance of the navigation system in uncertain situations. Other authors (see [2,3])
tackled the uncertainty issue using path planning approaches. However, the aleatoric
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uncertainty, which is related to the quality of the sensors and their measurement accuracy,
is strongly correlated with the environmental conditions, and this correlation has been
overlooked by the previous works. A thorough literature review of uncertainty-handling
approaches is given in Section 2.

With attention to residual correction, the Kalman filter is widely utilized as a state-
based model and is highly appropriate for modeling the major random processes affecting
AVs. In particular, GNSS readings are often far off the actual values. Through the incorpo-
ration of other sensor readings (i.e., sensor fusion), such as IMU signals, the Kalman filter
is capable of correcting these innovations. One major limitation of this approach, however,
is that such a state estimation procedure fails to predict the source of the uncertainty;
consequently, the vehicle may not be warned about challenging conditions such that it can
act to avoid a crash. Suitable analysis of the driving environment might yield valuable
contextual information about the degraded sensor performance. Such information could
potentially allow the sensor uncertainty to be modeled using machine learning.

Machine learning models endow AVs with intelligent functions. These models enable
AVs to collect massive amounts of data from their environments using sensors, analyze
those data, and ultimately make correct decisions accordingly. These models can learn
to perform tasks as efficiently as humans. In such a way, machine learning can replace
traditional techniques, making it competent for a wide range of AV functions such as
object detection, classification, and segmentation. One powerful type of model, called a
Bayesian neural network, is a hybrid of a deep neural network (DNN) and a probabilistic
model, combining the flexibility of DNNs with the ability to estimate the uncertainty of
its predictions.

The aim of the research presented in this paper is to understand how the uncertainty
that arises under challenging conditions affects AV models and data, that is, how un-
certainty from different sources influences model estimation. An end-to-end predictive
approach for the sensor uncertainty of an AV is presented. A Kalman filter outputs the
sensor uncertainty for each sensor on each road segment. These uncertainties are then
correlated with the environmental and road features to predict sensor behaviors in future
similar scenarios. This approach can be used to obtain an estimate of the sensor quality in
any given space. The presented technique can be generalized and adapted to any driving
subsystem to improve its quality. For instance, the resultant sensor uncertainty estimates
can be incorporated into a path planner to avoid high-risk road segments.

In brief, the main contributions of this paper are as follows.

• To handle sensor uncertainty in AVs, an end-to-end context-aware approach is pro-
posed that takes advantage of both Kalman filtering and machine learning and allows
for both epistemic and aleatoric uncertainties.

• An evaluation of the proposed approach is performed using real data, and the results
reveal that our approach can estimate the sensor uncertainty with a low margin
of error.

The rest of this paper is organized as follows. Section 2 reviews related works. Section 3
introduces the proposed method. Section 4 presents experimental results to illustrate and
validate the theoretical findings. Finally, Section 5 offers conclusions and perspectives on
future work.

2. Related Works

Sensor uncertainty can affect all of a vehicle’s measurements, including the estimated
positions and velocities of the vehicle itself or other surrounding objects. This uncertainty
results in noisy measurements. The literature contains three approaches to cope with sensor
uncertainty: data fusion, path planning, and machine learning.
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2.1. Data Fusion Approaches

Data fusion is an effective tool to cope with the uncertainties arising from noisy mea-
surements and nonlinear multimodality; thus, it has been extensively applied to address
sensor uncertainty [4]. A data fusion strategy involves combining and transforming homo-
geneous or heterogeneous data into a uniform configuration. Commonly, such a strategy is
exploited to estimate the optimal state. Such manipulation has enabled crucial advances
in various navigation and intelligence-demanding tasks, such as perception [1,5–8], object
detection and tracking [9–14], semantic segmentation [15–21], and control [22–24] for AVs.

Different approaches have been leveraged to fuse multisensor data, among which
fuzzy logic, Kalman filtering, and machine learning offer the best capabilities in addressing
this issue and thus are widely adopted. Unlike other sensor fusion techniques, fuzzy
logic systems provide a clear interpretation of their operations or decisions since they
represent information in the form of rules that mimic human reasoning. Moreover, such
systems can accommodate data of various degrees of quality, including vague, distorted,
and imprecise data. However, fuzzy systems depend entirely on domain knowledge,
which might not be available. The Kalman filter is the most practical state estimator due
to its optimality and structure. However, the basic Kalman filter requires that both the
system and observation models consist of linear equations, which is not realistic in many
applications. To allow nonlinear problems to be solved in this way, these problems can
be sliced into linear pieces that can be effectively addressed by the Kalman filter. This
variant is called the extended Kalman filter (EKF). The EKF approach has been proven to
demonstrate improved performance in AV tasks compared to other approaches because
it offers the ability to calculate and correct for residuals. Both Kalman filtering and fuzzy
logic require little memory space and few CPU resources. Machine learning can also offer
quick outcomes but requires careful design and extensive training and validation processes.

2.2. Path Planning Approaches

Another way to handle uncertainty in AVs is path planning, in which routes are
computed with the objective of reducing uncertainty. Recently, attention has been focused
on low-uncertainty path planning since paths planned in this way offer safe navigation
for both vehicle passengers and other road users. Researchers have primarily utilized
three methodologies to address low-uncertainty path planning: partially observed Markov
decision processes (POMDPs) [2], linear quadratic Gaussian (LQG) control, and fuzzy
logic. POMDP-based planners formulate the problem as a belief space in which every
possible uncertain belief (over states) is mapped to actions. A POMDP policy encodes a
plan to achieve the maximum reward. The literature contains exact solutions for prob-
lems with both finite [25] and infinite [26] horizons. However, because they consider a
continuous belief space, these planners consume considerable computational resources,
affecting their scalability. To alleviate the scalability issue, many approximation-based or
sample-based methods for solving POMDPs have been proposed, such as probabilistic
roadmaps (PRMs) [27] and rapidly exploring random trees (RRTs) [28]. These planners
have been proven as highly competent in terms of motion planning in high-dimensional
spaces; see, e.g., [29–35]. Instead of utilizing an explicit representation, sample-based
planners depend on a collision checking component, which determines the feasibility
of candidate trajectories, to construct a belief graph (roadmap). However, the existing
sample-based planners can only tackle problems for which the size of the state space is
limited to at most a few thousand states.

An alternative planning approach is to construct a belief space using the LQG esti-
mator, which provides an optimal estimate of the state of a linear system with additive
Gaussian noise [3]. An LQG-based planner requires the generation of an initial trajectory,
for which two common architectures have been proposed. The first architecture is divided
into a trajectory process and control policies. An instance of this architecture was presented
in [36], where candidate paths generated using RRT and LQG outputs were evaluated
over each path. One major drawback of this approach is that an optimal trajectory might
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not be found because the path optimality is determined based on a minimum cost that is
restricted to a bounded collision belief. One resolution to this issue is to use a local LQG
approach to estimate the belief over the trajectories formed by the candidate paths and
improve these paths using incremental sampling refinement [37]. The second architec-
ture employs an iterative distinct routine that combines the trajectory process and control
policies [38,39]. However, AV systems are complicated, dynamic, and nonlinear. As a
result, simple distributions such as the Gaussian distribution cannot effectively model and
represent beliefs about sensor uncertainties. Moreover, although stochastic approaches can
resolve the relevant computational complexity and provide reasonable outcomes, optimal
solutions are not always guaranteed.

Low-uncertainty path planning can exploit fuzzy logic to model uncertainty. One
recent work has proposed a collaborative fuzzy logic-based path planning approach that
models sensor uncertainty and computes paths with the minimum uncertainty [40]. The
authors demonstrated that vehicles could successfully maneuver along road segments
with uncertainty sources using this planning approach. However, this approach requires
domain knowledge to configure the fuzzy logic models, including the environmental
factors influencing the quality of sensor readings, which might be challenging to obtain.
Thus, there is an urgent need to enable AVs to understand their sensing limitations and act
accordingly. A better understanding of a vehicle’s sensing capabilities will facilitate the
prediction of sources of sensor uncertainty.

2.3. Machine Learning Approaches

Predictions can be readily obtained using machine learning models such as DNNs,
which can capture nonlinear relations within high-dimensional data. DNNs are typically
trained using maximum likelihood (ML) or maximum a posteriori (MAP) estimators. Thus,
such a predictive model yields prediction value(s) but does not provide information about
the underlying uncertainty. It is crucial to characterize a model’s confidence about its predic-
tions, especially for applications such as AVs, which commonly encounter life-threatening
situations [41]. Therefore, a probabilistic variant of a DNN with an uncertainty estimation
functionality has been proposed, inspired by Bayesian statistics [42–44]. The network
parameters (i.e., weights) of a Bayesian neural network (BNN) have an arbitrary prior dis-
tribution, and the posterior distribution is then computed. Because of their large numbers
of parameters and intractable posterior distributions, BNNs are resource-intensive models.
Thus, an approximate inference approach should be applied. Variational inference is a pop-
ular approximation approach in which the differences between the distribution parameters
and the true distribution are typically optimized by minimizing the Kullback–Leibler (KL)
divergence [45,46]. Although BNNs serve best as supervised learning models, obtaining
sufficient labeled data is very challenging. Thus, a new approach is needed for estimating
sensor uncertainties and modeling them for future prediction.

3. Method

The underlying aim of our approach is to enable cooperation between a Kalman filter
and a machine learning model to estimate sensor uncertainty in a particular road segment.
There are many possible Kalman filter variants and machine learning models other than
those proposed in this paper. However, the results of our experiments demonstrate highly
reliable outcomes overall when following the method detailed below. The proposed method
includes three primary components: an ensemble-based Kalman filter, a sensor uncertainty
estimator, and a BNN model. Figure 1 presents an overview of the proposed method.
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Figure 1. Context-aware sensor uncertainty estimation approach. (a) Pretraining process. The
EKFs process a few data points that are used for estimating sensor uncertainty and establishing
the BNN model. (b) Online process. A measurement, z, is first processed by different EKFs. The
related uncertainty is then evaluated and stored in the uncertainty pool. When the vehicle completes
navigating the current road segment, the uncertainties are aggregated, and the BNN model is
updated. The BNN model takes the environmental conditions and road features as input and outputs
an estimate of the sensor uncertainty along with the estimation uncertainty.

3.1. Ensemble-Based Kalman Filter

The Kalman filter is a powerful and practical estimator that is adopted in many AV
systems, such as controllers, localization and mapping systems, and object trackers. The
basic Kalman filter can generate estimates only for models described in terms of linear
relationships. However, the sensor data collected by AVs are nonlinear; therefore, for such
a filter to be used, the corresponding models must be decomposed into linear components.
To assimilate these complex data, this work employs the EKF, which associates states with
a measurement or observation space using nonlinear functions. The EKF consists of two
stages: prediction and correction. The filter is first initialized with a state x0 with error
covariance P0. In the prediction stage, the state and the error covariance are projected
forward as expressed by the following equations:

x̂k+1|k ≈ f (x̂k+1|k, uk), (1)

Pk+1|k = FkPk|kFT
k + Qk, (2)

where f (·) is a nonlinear model of the state transition dynamics, u is a control variable
vector, Q is the process noise covariance matrix, and F is an approximation of f (·) obtained
using the first derivative of the Taylor series called the Jacobian matrix, which is defined as

F ≡


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

 (3)

In the correction stage, the filter computes the optimal estimate by updating the initial
estimate with a new sensor measurement z using the relative weight or Kalman gain K and
also updates the error covariance.

Kk = Pk|k−1Hk(HkPk|k−1HT
k + Rk)

−1 (4)

x̂k|k ≈ x̂k|k−1 + Kk[zk − h(x̂k|k−1)] (5)

Pk|k = (I − Kk Hk)Pk|k−1 (6)
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where h(·) and H are functions that associate the vehicle’s state with the available obser-
vation space and its Jacobian, respectively, and R is the sensor noise covariance matrix or
measurement error.

In this paper, the Kalman filter is utilized to perform the localization task using only
one target sensor and another supporting sensor (i.e., an IMU). The purpose of the EKF is
not to localize the vehicle as in standard applications; rather, it is to detect and quantify
the variation between the optimal estimated position and the observed position. IMUs as
supporting sensors are less susceptible to errors, and the relevant errors can be corrected
through filtering. The filtering error for each road segment is stored for use in future
uncertainty prediction. Given an estimate of the current position, velocity, and acceleration
of the vehicle, the future vehicle motion can be predicted using the laws of motion (or a
Newtonian prediction model). Thus, the state vector to be estimated for each movement is
defined as:

h(x) = [xm, ym, ωm, sm]
T , (7)

where xm and ym are the coordinates observed by sensor m, ω is the angular speed, and
s is the speed at which the vehicle moves. The angular speed and the true speed can be
calculated via the following equations:

ω =
d
dt

tan−1
(

ẏ
ẋ

)
=

ẋÿ− ẏẍ
ẋ2 + ẏ2 , (8)

s =
√

ẋ2 + ẏ2, (9)

where ẋ and ẏ are the first derivatives (i.e., velocity) of the vehicle’s movement in the x
and y coordinates and ẍ and ÿ are the second derivatives (i.e., acceleration). Given the
state vector function h(·), the EKF linearizes the state transition matrix H by evaluating the
Jacobian (Equation (10)) at the predicted state vector.

Hk =
∂h(x̂k+1|k)

∂x̂k+1|k
. (10)

Another adjustment worth mentioning is that in the prediction stage, the process noise
covariance matrix, Q, incorporates the third derivatives (i.e., jerk) of the vehicle’s x and y
positions (see Equation (11)) as Gaussian random variables with zero mean and variances
of σ2...x and σ2...y . These variances are typically unknown and thus are estimated from the
historical data, as shown in Equation (12). Considering the vehicle’s jerk in Q enables the
correction of errors caused by rapid acceleration changes, which are inevitable in AVs.

Qk = var

([
∆t3

6
...
x ,

∆t2

2
...
x , ∆t

...
x ,

∆t3

6
...
y ,

∆t2

2
...
y , ∆t

...
y
]T)

= σ2...x var

(
...
x
[

∆t3

6
,

∆t2

2
, ∆t, 0, 0, 0

]T)
+ σ2...y var

(
...
y
[

∆t3

6
,

∆t2

2
, ∆t, 0, 0, 0

]T) (11)

σ2...x = σ2...y = max (var(
...
x 0:k), var(

...
y 0:k)) (12)

The sensor measurement vector, z, is designed to incorporate the noisy readings (x
and y coordinates) that require filtering as measured by the target sensor. Reliable sensor
signals such as velocity and acceleration are injected into the filtering process in the form
of a control vector. The EKF estimates the optimal positions of the vehicle. These positions
are then utilized to infer the sensor uncertainty in the current driving environment.

An ensemble-based filtering approach is adopted in this work for each sensor in the
AV to enable the filter to converge quickly. Instead of a single EKF, we utilize several
EKFs, each of which is initialized with different random values of the EKF parameters.
These EKFs receive the same measurements, and their outcomes are aggregated before
proceeding to the next step (i.e., uncertainty estimation).
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3.2. Sensor Uncertainty Estimation

The objective is to estimate the sensor uncertainty, which quantifies the expected
accuracy when using the target sensor in a specific situation. Therefore, the numerical
uncertainty value is an estimate of the error. That is, the uncertainty indicates the quality
of the sensor measurements, but it is not a guarantee of accuracy. The focus in this paper
is to estimate the error as influenced or controlled by certain challenging conditions (i.e.,
random errors), which is complex enough that it cannot be filtered using the EKF.

One way to measure modeling errors in Gaussian systems is to use the Mahalanobis
distances of the measurement residuals. In some of the literature, this approach is used to
improve the filtering outcomes and remove outliers [47,48]. The Mahalanobis distance is
adopted in this paper for sensor uncertainty estimation. The measurement residual of the
EKF is defined as:

ẑk = zk − x̂k+1|k. (13)

For the nonlinear Gaussian system presented in (1) and (2), the residuals should follow
an exact distribution, with the projection of the process uncertainty into the observation
space given by

Pk = HkPk|k−1HT
k + Rk. (14)

Thus, the Mahalanobis distances û of the measurement residuals should follow the
chi-square distribution with the same number of degrees of freedom as the measurement.

û ≈
√

ẑT
k P−1

k ẑk (15)

Using this approach, we can determine how many standard deviations the current
measurement is away from the optimal estimated state. These estimates of sensor uncer-
tainty at every time step are maintained in the uncertainty pool to retrain the predictive
model. The uncertainty values vary among different road segments due to changes in the
environmental conditions. Therefore, these uncertainty estimates are aggregated by their
associated road segments.

3.3. Bayesian Neural Networks

Incorporating a probabilistic approach into deep learning enables the elimination of
uncertainty. To achieve the uncertainty elimination, such models assign lower confidence
levels to inaccurate predictions. BNNs are utilized in this research to capture the epistemic
uncertainty, which is the uncertainty related to the model fitness due to the availability
of insufficient data from which to learn effectively. BNNs differ from standard neural
networks in that BNNs learn probability distributions over the network weights to encode
the uncertainty of the weights, whereas standard neural networks learn certain weight
and bias values (see Figure 2). Before observing any data, a prior probability distribution
is defined. Once data are observed, the model learns the parameters and transforms the
distribution into a posterior distribution. In this work, the prior and posterior distributions
are Gaussian in nature since the BNN output y is the expected sensor error indicating the
amount of sensor uncertainty, which is a continuous variable. The features considered in
the BNN model include road and environmental attributes such as the number of lanes
and the weather conditions.

Ideally, high uncertainty in a BNN indicates samples that are far away from the
evaluated data, while the uncertainty of close samples is low. Given a training dataset
D =

{
x(i), y(i)

}
, the optimal solution for estimating the posterior distribution of the network

parameters is to use full Bayesian inference or Bayes’ theorem, expressed as

P(w|D) = P(D|w)P(w)

P(D) , (16)



Vehicles 2021, 3 728

where w denotes the network parameters; P(w|D) and P(w) are the posterior and prior
parameter distributions, respectively; P(D|w) is the likelihood function; and P(D) is the
probability of the training dataset occurring.

A prediction of a new sample, P(y|x), can be computed by taking the expected value
of the optimized posterior distribution, P(w∗|D), as follows:

P(ŷ|x) = EP(w∗ |D)P(ŷ|x, w∗), (17)

This expectation serves as the average prediction of an infinite number of neural
networks, weighted by their posterior probabilities. Although this prediction is resistant
to noise, an analytical solution for both the posterior distribution and the prediction is
computationally intractable. Hence, we resort to approximation. In this work, a determin-
istic method, i.e., variational inference, is employed. The basic concept of the variational
technique is to formulate the inference task as an optimization problem. This optimization
problem is tackled by approximating the actual posterior distribution, P(w|D), by an
instance of tractable distributions, Q(w|θ); i.e., a Q(w|θ) that closely resembles P(w|D) is
determined. Because the variational posterior is Gaussian, it is parameterized by θ = µ, σ2

with a mean µ and a variance σ2. Instead of querying P(w|D), the BNN queries Q(w|θ)
to obtain an approximate solution, which is formally accomplished by minimizing the
Kullback–Leibler (KL) divergence between the two probability distributions P(w|D) and
Q(w|θ). The related optimization objective is called the variational free energy and is ex-
pressed as a combination of complexity and error losses:

F(D, θ) = DKL(Q(w|θ)‖P(w))︸ ︷︷ ︸
complexity

−E[log P(D|w)]Q(w|θ)︸ ︷︷ ︸
error

, (18)

where the first term is the KL divergence between Q(w|θ) and P(w), and the second term
is the expectation of the likelihood function under the variational distribution Q(w|θ).
The complexity cost determines the network cost, whereas the error cost determines the
prediction accuracy

Rearranging the terms in Equation (18) allows the optimization objective function to
be written as

F(D, θ) = E[log Q(w|θ)]Q(w|θ) −E[log P(w)]Q(w|θ) −E[log P(D|w)]Q(w|θ). (19)

Hence, samples w(i) drawn from Q(w|θ) can approximate the objective function
as follows:

F(D, θ) ≈ 1
N

N

∑
i=1

[
log Q(w(i)|θ)− log P(w(i))− log Q(D|w(i))

]
. (20)

Each iteration of the training process involves a forward propagation phase and a
backward propagation phase. In the forward propagation phase, a random sample is
drawn from the variational distribution and propagated through the network until it
reaches the final layer. Then, the approximate objective function (Equation (20)) can be
evaluated. The first two terms of Equation (20) can be evaluated in each layer since they
are independent of the data, while the third term can be evaluated only at the forward-
propagation end due to its data dependence. In the backward propagation phase, the
gradients of the parameters of the variational posterior distribution are computed, and
their values are adjusted accordingly.

The BNN model produces different estimates for identical inputs during each run
as new weights are sampled from the distributions each time to build the network and
generate an output. As the model becomes more certain about its weights, the outputs
produced for the same inputs reveal less variability. This epistemic uncertainty is reduced
when AVs are exposed to increasingly many different scenarios. Moreover, the output of
standard BNN models are a point estimate for a given input. In our proposed approach, the
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output is modeled as normal distribution with learnable parameters. In this case, the BNN
model also incorporates the aleatoric uncertainty caused by irreducible noise in sensor
data. Due to this merit, the model can be trained with the negative log-likelihood function
as the loss function.

3.4. Pretraining Process

The predictive model starts with equal probabilities for the uncertainty in all road
segments, resulting in equal predictions. To improve the initial results, our approach
assumes that some data samples exist for pretraining purposes. In this stage, the BNN
model is fed with estimates of sensor uncertainty as well as the associated road features
and environmental conditions. The resultant model can be utilized as an initial pretrained
model and refined as the approach continues to operate.

4. Evaluation and Discussion

Extensive experiments were conducted on a real dataset to evaluate the performance
of the proposed approach. Python 3.9 was utilized for implementation. All experiments
were carried out on a system running macOS 11.5 Big Sur with a 2.9 GHz dual-core Intel
Core i5 processor and 8 GB of memory. The implementation of the Kalman filter was
developed from scratch, whereas for the BNN implementation, Keras [49] and TensorFlow
Probability [50] were used. We evaluated the uncertainty existing in the data and generated
by the GNSS.

Our evaluation included two data sources. The first data source was the Ford AV
dataset [51], which logs 18 trajectories captured by a fleet of Ford AVs under different
environmental and driving conditions, including different weather, traffic, lighting, and
construction conditions. With these diverse conditions, these data encompass different
sources of uncertainty and thus are perfectly aligned with the objective of our proposed
approach. Table 1 summarizes the major features of the routes in the Ford AV dataset. The
data were collected while the vehicles were being driven manually in Michigan.

The recorded coordinates were matched to the real-world road network in Open Street
Map [52]. Accordingly, the attributes associated with the matched roads could be obtained
and processed. To solve the map matching problem, a hidden Markov model approach
was exploited [53]. Given the GNSS observations, each observation was matched to the
most likely candidate road segment. An open-source routing software called Valhalla was
utilized for map matching [54]. The GNSS traces were matched based on time, acceleration,
and directional angles to achieve the best matching results.

Since our focus was on predicting GNSS uncertainty, we selected four features (layer,
geometry, speed limit, lane count) that could capture degradation in GNSS performance and
fed them into the predictive model. The layer feature indicates the existence of occlusions
preventing signals from reaching the GNSS receiver. The layer feature could have a positive
or negative number, where the former indicates bridges, and the latter indicates tunnels
and under-bridge road segments; a layer value of zero indicates normal road segments.
The geometric complexity feature indicates the number of points representing a particular
road segment (also known as resolution). For instance, the geometric complexity feature
for a simple straight road segment (a line) has only two points. The posted speed limit
feature indicates the road type, such as a highway or a residential road. The lane count
feature indicates the road width. On a large road segment, which typically may have
multiple-lanes, there is a lower chance of signals being blocked by trees or buildings.

The architecture of the BNN consisted of four layers: an input layer, two hidden layers,
and an output layer (see Figure 2). The input layer included four nodes representing the
features mentioned earlier. The first and second hidden layers consisted of six and nine
nodes, respectively. The output layer included only one node representing the sensor
uncertainty. The sigmoid activation function was applied for each node in the BNN hidden
layers. The optimizer utilized to train the model was the RMSprop algorithm. The BNN
was designed to produce a normal distribution so that we could calculate how probable
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was it that the actual data would be seen in the model’s predicted distribution. Therefore,
the model was trained with the negative log-likelihood as the loss function. We also
evaluated the accuracy in terms of the root mean square error (RMSE) and the mean
absolute error (MAE).

Table 1. Summary of the Ford AV dataset.
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Figure 2. Architecture of the BNN. Unlike in standard neural networks, the weights of a BNN are
defined in the form of a distribution with learnable parameters. The BNN that is designed includes
four features (layer, geometric complexity, speed limit, lane count), two hidden layers, and one
output (sensor uncertainty).

The EKF received sensory and derived measurements, including position, velocity,
acceleration, jerk, speed, and angular speed. An instance of sensory measurements fed
into the EKF is presented in Figure 3. Once the EKF had processed these measurements,
the sensor uncertainty estimates were stored in the uncertainty pool. The stored estimates
were aggregated by their associated road segments, and the average was computed. The
resultant data consisted of 971 road segments for analysis. For evaluation purposes, we
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randomly selected 13 logs for training and 5 logs for testing. The selected test logs were
Aug V2—Log 2, Aug V3—Log 1, Aug V3—Log 2, Aug V3—Log 6, and Oct V2—Log 3.
The training set was shuffled and split into training and evaluation sets, corresponding to
82% and 18% of the samples, respectively. The entire approach was evaluated with earlier
configurations on 13 out of the 18 logs. When testing the BNN outcomes, we predicted
the GNSS uncertainties produced for the five different test logs and then compared those
results with those estimated by the EKF. The findings revealed promising sensor uncertainty
estimation performance.
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Figure 3. An instance of sensory measurements fed into the EKF.

Figure 4a depicts considerable differences between the GNSS uncertainties on different
routes. These discrepancies are anticipated due to varying environmental conditions.
However, routes with the same features demonstrate similar trends. For instance, Vehicles 2
and 3 exhibit similar trends on their August routes. Nevertheless, at the micro level, these
identical routes have different GNSS uncertainties on individual road segments. In other
words, the uncertainties differ within the same road segments. Figure 4b illustrates the
maximum GNSS uncertainties estimated for each route. It is apparent that in this case,
the trends between Vehicles 2 and 3 disappear, and the differences between the maximum
values can be large, such as the difference between the first logs in August for Vehicles 2 and
3, although they have identical route attributes but not environmental attributes. The fact
that these vehicles run under different conditions is confirmed by examining the standard
deviations of the GNSS uncertainties for the associated routes in Figure 4a.

Figure 5 shows how the negative log-likelihood loss changes over the epochs along
with the RMSE values for both the training and evaluation datasets. As can be observed, the
learning curve converges very quickly during training, after approximately 1800 epochs,
while the validation set average loss exhibits fluctuations across the finally epochs. Since
the proposed approach is designed to handle thousands of samples, this rapid convergence
could be related to the relatively low number of samples used for training. Nevertheless,
the difference between the prediction accuracies on the training and evaluation sets is
not significant, with training RMSE = 0.15 and evaluation RMSE = 0.155. Moreover, the
training losses are higher during some epochs because relatively few samples were used for
validation. An evaluation of the trained model on unseen data demonstrates an accuracy
very close to the training accuracy (i.e., RMSE = 0.157), which implies that the model is
not overfitted.
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Figure 4. Descriptive statistics for the GNSS uncertainties estimated by the EKF for each route. (a) Average uncertainties
depicted as points and the standard deviations of the uncertainties depicted as vertical lines emerging from these points.
(b) Maximum GNSS uncertainties.
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Figure 5. Fitness convergence of the BNN during training. The validation loss follows that of training,
with the exception of having more actuations. The resultant model has very similar performances on
both the training and validation datasets.

Each time being called the model produces different outputs because the weights are
sampled from the given distributions. Figure 6a shows an instance of BNN prediction
results for the test datasets. The grey vertical bars depict the 95% confidence intervals of the
associated predictions. The less certain the model predictions are, the wider the intervals
are seen in the output. It can be seen in Figure 6a that very few points are not predicted
accurately. We ascribe mispredictions to the lack of similar examples in the training dataset.
For these particular predictions, the RMSE and MAE are 0.119 and 0.087, respectively,
(Figure 6b). It is apparent from Figure 6b that most of GNSS uncertainties are predicted
with errors of less than 0.1 meters.

If provided with a model with a high level of confidence in its estimates of sensor
uncertainty, the decision-making and planning for AVs could potentially be improved.
Armed with the knowledge of the uncertainty of each sensor on every road segment, an AV
could avoid or better maneuver through road segments with high uncertainty. Moreover,
the AV might be able to set sensor preferences or prioritize road segments based on their
high associated sensing accuracy. In this way, better decisions regarding challenging
situations could certainly lead to safer navigation.
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Figure 6. Performance of the BNN model on the test dataset. (a) Outputs of the BNN model. The plot depicts the actual
values (blue) and the predicted values (purple). The grey vertical bars depict the 95% confidence intervals of predictions.
(b) Prediction errors. The orange horizontal line highlights the mean absolute error (MAE). The majority of points are
predicted with lower error rates.

5. Conclusions and Future Research

This paper presents an end-to-end approach for exploiting the EKF and a BNN model
with contextual information to predict the sensor uncertainties arising in challenging
situations. The approach incorporates the EKF to measure the error encountered in the
current situation. Using this error, the sensor uncertainty is estimated and associated
with the context or environmental information for use in predicting future uncertainties.
The proposed approach considers epistemic uncertainties, which are related to the lack of
knowledge, and aleatoric uncertainties, which are related to stochastic nature of the data
acquisition process. The results show that our learning approach performs very well in
predicting GNSS uncertainties in real data. This approach has the potential to improve
navigation safety for passengers and road users. With advance knowledge of possible
sensor failures, AVs can better maneuver through challenging road segments that present
risky conditions. Applications of our proposed approach are not limited to path planning;
rather, all AV modules, such as localization, lane-keeping assistance, blind-spot detection,
and object detection, can benefit from sensor uncertainty estimates. For instance, upon
determination that a navigation-related sensor provides estimates with high uncertainty,
the localization module can disregard its readings, avoiding localization with large errors.

However, given that neural networks are data intensive, through sharing data among
AVs, the proposed approach can alleviate possible uncertain situations. Since sensors are
fabricated by varying vendors and have different configurations, future research should
consider modeling features of sensor configurations and qualities along with the envi-
ronmental features. Moreover, a new decision-making module should be developed to
analyze the sensor uncertainty estimates and support AVs in making the proper decision
for each task.
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