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Abstract: Improved mathematical and simulation modes of the active differential mechanism (DM)
with controllable torque redistribution would better contribute to developing intelligent vehicle
transmissions. The issue is caused by actualizing the precise steerability control using advanced
automated transmissions, allowing torque vectoring for all-wheel-drive vehicles and ensuring an
option for correcting the vehicle trajectory. This paper presents an alternative mathematical method
for obtaining differential equations for modeling vehicle transmission components and its imple-
mentation for simulating the Audi sport DM. First, the steerability issues of sport DM technology
are discussed, and the sport DM design is described in detail. Then, a mathematical approach is
proposed that includes three types of equation systems: generalized dynamics equations, kinematic
constraint equations, and gearing condition equations. The approach also considers the flexibility
of the clutch’s frictional pack, friction torque, lockup condition, and piston dynamics. Finally, a
Simulink model that reflects the DM operation and calculation procedures is developed. A series of
simulations of the sport DM operation with forcible torque distribution is carried out. The results
show that the proposed mathematical model is universal, efficient, and accurate.

Keywords: sport differential; torque vectoring; friction clutch; vehicle kinematics

1. Introduction

The integrated vehicle control affords maximum vehicle performance, handling ac-
curacy, and safety. Notably, the distributed torque technology for all-wheel-drive (AWD)
vehicles provides the optimal mode of operation for each wheel individually. The redistri-
bution of traction forces reduces the lateral slip process due to the partial compensation
of lateral speeds, which increases control accuracy and motion stability. In addition, the
distributed torque technology adjusts the exactness of the vehicle trajectory, which is espe-
cially essential for autonomous vehicles. Today, many vehicle manufacturers use the sport
differential technology that does not require activating the inner wheels’ brakes during the
curvilinear motion, unlike the pure torque vectoring (TV). Electric and hydraulic drives
often carry out the control of such differentials.

The characteristics of selected studies on vehicle differential mechanism (DM) are
presented in Table 1. As noted, the research field of DM modeling is quite broad, span-
ning different methods, approaches, and study areas. Nevertheless, there is a lack of
research on modeling active differentials with the electro-hydraulic drive since most papers
have focused on active limited-slip differential (ALSD). Additionally, there is a lack of
comprehensive studies that generalize the active differential control algorithms to solve
the problems of motion stability, understeer compensation, and the increase in vehicle
passability [1]. The math models and equation systems are primarily classic and do not
imply systematization into one method. Some math models are too complicated to be used
in vehicle dynamics and focused on pure mechanical objectives.
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Table 1. Characteristics of selected studies on vehicle differential mechanisms.

Reference Topic Features

[1] Limited slip,
self-locking TORSEN DM

Actualize issues of differentials and their influence on vehicle dynamics.
Formed cornering moment in conditions of different slips.
Compared DM to the difference in angular speeds loading torques.

[2] Convectional, LSD, controlled
LSD

Introduced torsional stiffness and lash of mechanical gearing.
Matrix approach and simulation schemes.
Developed detailed and simplified DM models.
Combined DM and vehicle modeling for testing the cornering effect.

[3] Active DM,
Torque Vectoring

Developed a unified math model for active differential dynamics.
Various DM designs and levels of model complexity are used.
Restricted applicability as estimated time response is needed.

[4] Active LSD (ALSD)
Investigated driveline and tire model effects on the ALSD performance.
ALSD design includes friction clutches for transmitting the torque.
Energy losses math models and Simulink tools are included.

[5] Active LSD
Developed a control algorithm for a rear-wheel-drive sport vehicle.
Compared ALSD impact on vehicle model behavior.
Assessed ALSD influence on driver workload.

[6] Active LSD
TV differential mechanism with electrohydraulic actuation.
Race car model with 7 DOFs and low ground effect.
Implemented nested control loop for the actuation system.

[7] TV differential,
electronic stability control

Nonlinear vehicle model based on CarSim software.
TV Differential with two series of planetary gears.
Electronic stability model with three-layer Integrated control system.
Unscented Kalman filter and controller based on BA optimization.

[8] TORSEN DM
Three-dimensional cylindrical joint model with clearance, misalignment,
and friction.
Matrix dynamics system including holonomic bi-lateral constraints.

[9] Inter-wheel differential DM with power balance and kinematic relations among three shafts.
Three differential equations; no efficiencies or changes in power flows.

[10] TV differential
New TV differential based on a Ravigneaux gear set.
Two different speed ratios with only one pair of gear sets.
SimulationX software is used to test maneuverability and steerability.

[11] Original DM design
DM for TV concept; design combines inner gears.
Math model includes dynamics and kinematic constraints equations.
Losses, efficiencies, and power flow direction are neglected.

[12] Asymmetric differential
Developed two DM variants (conic and planetary gear).
Dynamics and constraints; static friction and limited-slip functionality.
Overcomes simulation problems of discontinuity at zero angular speed.

[13] TORSEN DM
Multibody simulation using nonlinear FEM.
Flexible gear pair joints and contact conditions are used as constraints.
AWD model for estimating torque redistribution.

[14] Controllable DM

DM based on the magnetorheological fluid to realize the locking state.
Torque, power balance, and kinematic constraint equations.
Double-controller scheme including extended Kalman filter.
SIL and HIL modeling using experimental prototypes.

This paper presents a universal mathematical approach for modeling vehicle trans-
mission components and its implementation for simulating the Audi sport DM, especially
for hardware in the loop (HIL) and software in the loop (SIL) modeling. The specific
contributions of the paper are: (1) to describe the steerability issues and the design of
sport DM technology, (2) to propose an alternative mathematical method for obtaining
differential equations that describe the dynamics of rotational mechanical systems, includ-
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ing generalized dynamics equations, kinematic constraint equations, gearing condition
equations, and frictional clutch, and (3) to compose a Simulink model that reflects the DM
operation and calculation procedures.

2. Background on Sport DM Technology
2.1. Steerability Issues

Consider the case of a passenger vehicle’s curvilinear motion (Figure 1a). It is almost
impossible to ensure the ideal instant turn with the neutral steer in actual conditions due to
both tires’ lateral elasticity and inevitable slip in the contact spots. As known well in this
regard, two distinctive phenomena may occur-understeer and oversteer. Both processes are
characterized by an intense lateral component of the instantaneous velocity in the tire-road
contact spot caused by the sideslip. These phenomena are associated with the distribution
of vertical reactions along the vehicle axles. From a physical point of view, it is desirable
to have approximately the same slip conditions for all tires to provide predictable control.
Thus, AWD vehicles can adjust the traction forces to compensate for the slip individually.
If a vehicle is designed so that the front axle bears a larger mass, then it has the understeer
tendency. In this case, as shown in Figure 1a, the instantaneous rotation center O is located
behind the rear axle [15]. Thus, the transversal components of the instantaneous velocities
appear in all wheels’ contact patches. The curvature of the motion trajectory decreases
compared to the required one to ensure trajectory stability. As a result, to compensate for
the lacking trajectory curvature, it is necessary to permanently increase the steered wheels’
angles or reduce the cruise speed.
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Figure 1. Steerability cases: (a) understeer and (b) neutral steer.

It is possible to create an additional yaw moment in the traction mode by changing
longitudinal reactions on the vehicle’s wheels. However, if symmetric (open) differentials
are used in transmissions, the responses on drive semi-axles are practically set equal,
which does not affect the yaw moment. Thus, the prerequisites emerge for controlling the
movement accuracy or tracking a planned trajectory by redistributing the torque between
wheels, which may be achieved, among other things, by active differentials. Since the



Vehicles 2022, 4 77

difference between traction forces on the same axle wheels, an additional yaw moment
occurs, decreasing the slip angles and approaching an instant turn to a scheme close to the
neutral steer (Figure 1b). At the same time, the tires’ lateral forces can reach larger values
and ensure control accuracy and trajectory stability (strict tracking) with a smaller steering
angle.

2.2. Design of Audi DM

Several limited-slip differentials distribute the torques depending on the wheel opera-
tional mode. However, their redistribution concept implies that the greater torque is passed
to a wheel that is either lagging or has better adhesive conditions. As a result, the sport
differential technology must transmit a more significant torque value to an outrunning
axle, which causes additional cornering (yaw moment) relative to the vertical axis passing
through the mass center. Such a solution can be obtained using other planetary gears (BMW,
Honda) or, for example, two-step internal gearing (Audi) controlled by friction clutches
with electric or hydraulic drives. Consider the design scheme and functioning of Audi
Sport Differential [16] shown in Figure 2. The primary open information may be taken
from Audi Sport Differential Technology[17].
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Figure 2. Scheme of Audi Sport Differential.

The drive is carried out over the final gear pinion 1. The ring gear is rigidly connected
to the differential carrier 2. Satellites 3, rotating around the axis fixed in the differential
carrier, interact with side gears that drive the output axles 4 and 5 by the slots. The
differential corps (carrier) has gear rims on the end sides for driving by internal gearing
the coupling halves 6 and 7, in which rotational axes are respectively shifted relative to
the carrier rotational axis. Using the frictional packs, the half-clutches 6 and 7 can drive
the half-clutches 8 and 9, respectively, which are connected by an internal gearing to the
output shafts 4 and 5. Toroidal hydraulic cylinders 10 and 11 are installed from each side
to act on the clutch packs using the pressure p10 and p11. Thus, by activating the required
hydraulic cylinder, part of the carrier torque may be passed to the needed semi-axle using
the frictional adhesion between the half-couplings over the two-step internal gearing.

Based on the sequence of links transmitting torque, the arrays of permanent liaisons L
(Figure 3), friction couples C, and vectors i of ratios and ηG of gearing efficiencies can be
introduced. Moreover, if the numbers of each detail couple are denoted as a column-vector
Lk (where k = 1, . . . , m, and m is the number of pairs), the sequential disposition of the
conjugate details may be rearranged in a row vector l, as follows:
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L =

(
1 2 2 2 3 3 4 5
2 3 6 7 4 5 8 9

)
, l =

(
LT

1 · · · LT
m
)
, C =

(
6
8

7
9

)
(1)

i =
(

i12 i23 i26 i27 i34 i35 i48 i59
)T ,

ηG =
(

η12 η23 η26 η27 η34 η35 η48 η59
)T (2)
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The friction clutch’s slip degree affects the amount of additional torque withdrawn
from the differential carrier and the fact that, as shown in Figure 1, for the general case
of curvilinear motion, the angular speeds of the coupling halves 6, 7 and 8, 9 should be
different. Thus, the pressure in the hydraulic cylinders must be adjusted in order, on the one
hand, to maintain the ratio of wheels’ angular speeds required during curvilinear motion
and, on the other hand, to prevent the clutch lock-up. Requirements for passing the greater
torque and high revolutions to the external wheel impose specific gearing ratios on the
clutches 6–8 and 7–9. Consider this situation using the example of parameters in Figure 1b,
which corresponds to ideal cornering with minimal sideslip. Assuming that a clutch state
close to complete locking is possible only for the variant of turning with a minimal radius, it
is possible to determine the gear ratios for the drive of clutches’ half-couplings. Determine
the difference in angular speeds of the rear axle wheels. Their linear speeds are given by

V4 = ωRmin, V2 = ω(Rmin + B24) (3)

where ω = instantaneous angular rate of the turn, and B24 = transversal base of rear wheels.
Then, the rear wheels’ angular speeds ωw4, ωw2 can be tied with the parameters of the

turn kinematics as:

ωw4 =
V4

re4
=

ωRmin
re4

, ωw2 =
V2

re2
=

ω(Rmin + B24)

re2
(4)

where re4, re2 = wheels’ effective radii (almost equal in most cases).
The angular velocities’ ratio, considering the designations in Figs. 1a and 1b, is

estimated as

kω =
ωw2

ωw4
=

ω4

ω5
=

ω(Rmin + B24)

rw2

rw4

ωRmin
≈ Rmin + B24

Rmin
(5)

where ωw2 = ω4 and ωw4 = ω5 are the angular velocities of the rear wheels (Figure 1b) and
the corresponding axles (Figure 2).

For the case of the angular speed distribution based on the symmetric differential’s
kinematics (components 2 and 3 in Figure 2), the following condition must be satisfied:

2ω2 = ωw2 + ωw4 = ωw2 + ωw2/kω = (1 + 1/kω)ωw2 (6)

but also
2ω2 = ω4 + ω5 = ω4 + ω4/kω = (1 + 1/kω)ω4
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Then, the required angular speed of the differential carrier is given by

ω2 =
(1 + 1/kω)

2
ω4 =

(1 + 1/kω)

2
ωw2 (7)

This determines the needed ratio between the steps of the half-couplings when a
friction clutch locks them. That is,

i24 =
ω2

ω4
= i26i84 =

ω2

ω6

ω8

ω4
=

(1 + 1/kω)

2
(8)

Since the torque is transmitted over the friction clutch in two steps of the internal
gearing, then

i26 = ω2/ω6 = z6/z2, i84 = ω8/ω4 = z4/z8 = 1/i48 (9)

Taking the integer teeth numbers for the gear rims of the half-couplings, the final
values are obtained as shown in Table 2.

Table 2. Data for determining the ratios for gears of half-couplings.

B24 Rmin i24 z2 z6 i26 z4 z8 i84

1.551 5.8 0.887 33 41 1.242 25 35 0.714

The obtained value of i24 shows that the difference between the angular speeds of
the differential’s carrier and the outer rear wheel differs only by about 11%, even at the
maximum steering angle. Thus, the angular speeds of the half-couplings can be compared
when moving with a lesser curvature, as follows

ω6 =
ω2

i26
=

ω2

1.242
= 0.805ω2, ω8 = ω4i84 = 0.714ω4 (10)

If, for instance, the movement is close to a straight line, then ω2 = ω4, and it follows
from Equation (10) that ω6 > ω8 by about 11%. For all cases when the instantaneous
curvature radius is greater than Rmin, it remains true that ω6 > ω8, which corresponds
to the need for a friction clutch’s slip that regulates the required instantaneous radius of
the vehicle’s turn. In this case, half-couplings 6 or 7 will be driving, depending on the
activation order. It is also evident that at turning with the maximum angles of steered
wheels, ω6 ≈ ω8 and consequently, the friction clutch can be locked. As it follows, if the
pressure in the hydraulic cylinder leads to locking the clutch, the ratio of the rear wheels’
angular speeds will correspond to the kinematics of turning with a minimum radius even
for straight motion.

3. Integrated Mathematical Model

This section presents the approach for generalizing the rotational dynamics equations
followed by the integration of the whole mathematical model. The research methodology
is shown in Figure 4 and explains the steps needed to build and test the model (the
respective subsection of each step is shown in parentheses). First, three types of equations
are considered separately: generalized dynamics equations, kinematic constraint equations,
and gearing condition equations. Then, appending the equations for translationally moving
elements, the math model of the entire mechanism is composed, considering friction clutch
(friction torque, lockup condition, and piston dynamics). Finally, a series of virtual tests
were conducted to validate the sport differential’s unique properties and the simulation
approach in general.
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hypoid gearing, (b) final drive pinion, (c) carrier body, (d) satellite, (e) side gears and output shafts,
(f) clutches’ leading half-couplings, (g) clutches’ driven half-couplings, and (h) clutches’ hydraulic
cylinders.

The rear-axle final drive as the component of Audi Sport Differential is represented
by the hypoid gearing, unlike, for instance, the pure conic final drive of the vehicle front
axle, and shown in Figure 5a. Among the advantages of such a design solution, many
aspects may be listed, such as a higher gear ratio with smaller gear ring size, increased
teeth strength, and reduced noise. The main drawbacks include working with teeth sliding
that reduces the gearing efficiency and requires special oils for high-pressure mechanical
contacts. According to the scheme in Figure 5a, the force of contact reaction may be
decomposed as [18].

P21 = Pn cos(β1), P12 = Pn cos(β2) (11)

where the angles β1 and β2 are conditioned by the eccentricity e1 and teeth curvature. It is
recommended that β1 = 45◦ to 50◦ and β2 = 45◦ to 50◦. Thus, the hypoid final drive ratio
can be expressed as

i12 =
ω1

ω2
=

M21

M12
=

DωP12

dωP21
=

DωPn cos(β2)

dωPn cos(β1)
=

Dω

dω
k12, k12 =

cos(β2)

cos(β1)
= 1.2 . . . 1.5 (12)

where dω and Dω = reference (pitch) diameters of the pinion and ring, respectively.
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The hypoid gearing efficiency and teeth sliding speed may be calculated as

η12 =
1 + µ12 tan(β2)

1 + µ12 tan(β1)
,vs = v1

sin(β1 − β2)

sin(β2)
(13)

where µ12 = coefficient of teeth friction (µ12 = 0.05 . . . 0.1, η12 = 0.96 . . . 0.97), and v1 = pinion
peripheral speed.

Consequently, the torque relation for the final drive gearing may be written for the
two cases, depending on the power flow passing through pinion and gear ring, as

M21 + M12i12η12 = 0, M21η21 + M12i12 = 0 (14)

3.1. Generalization of Dynamics Equations
3.1.1. Rotational System

Using Figure 5, the system of differential equations was combined for each design
element[3], considering generalized states of power flows between the parts. Assuming
that the internal moments are unknown, the system may be represented in the form of the
extended left side as

I1ε1η1B −M12η
(c)
1B = T1η

(s)
1B + V1

I2ε2η2B −M21η
(s)
2B −M23η

(c)
2B −M26 −M27 = V2

ns I3ε3η3B − ns M34η3B − ns M35η3B = nsV3

I4ε4η4B −M43η
(s)
4B −M48 = T4η

(c)
4B + V4

I5ε5η5B −M53η
(s)
5B −M59 = T5η

(c)
5B + V5

I6ε6η6B −M62η
(s)
6B = M68η

(c)
6B + V6

I7ε7η7B −M72η
(s)
7B = M79η

(c)
7B + V7

I8ε8η8B −M84η
(s)
8B = M86η

(c)
8B + V8

I9ε9η9B −M95η
(s)
9B = M97η

(c)
9B + V9

(15)

where In = moment of inertia, εn = angular acceleration, ηnB = bearing efficiency, Mnk =
internal and external moments (k is the position of counteracting element), Vn = moment of
viscous losses, Tn = external torque, ns = number of satellites, n = position of element (n =
{1, . . . , 9}), and s and c—upper indexes for meaning state and converse state of transmitting
the power, respectively.

Let I be the vector of inertias, ηB be the vector of pure bearing efficiencies, ηT be the
vector of external torques’ efficiencies, ηM be the vector of friction torques’ efficiencies, and
ns be the vector of satellite quantity. Then,

I =



I1
I2
I3
I4
I5
I6
I7
I8
I9


, ηB =



η1B
η2B
η3B
η4B
η5B
η6B
η7B
η8B
η9B


, ηT =



η
(s)
1B
1
1

η
(c)
4B

η
(c)
5B
1
1
1
1


, ηM =



1
1
1
1
1

η
(c)
6B

η
(c)
7B

η
(c)
8B

η
(c)
9B


, ns =



1
1
ns
1
1
1
1
1
1


(16)
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Then, the matrix of inertia influence ID can be rewritten as

ID = diag(I) diag(ns) diag(ηB) (17)

Note that the proposed system of Equation (15) is represented by equations based
on the one universal equation of rotational dynamics but with a different set of unknown
variables in each equation. This approach does not require complying with the variables’
signs. This contributes to simplifying the general view of the system by using the matrix
technique to automate the definition of variables and their signs.

3.1.2. Power Flows and Efficiencies

The states (s) and (c) in Equation (15) are mutually opposite and caused by different
events for various design elements. Thus, the main linked components of the differential k
= {1, 2, 4, 5} can transmit the direct (d) and reverse (r) power flow relative to the order of
nodes in the vector L, and, consequently, the possible states correspond to the following
combinations

η
(s)
kB ∈

{
η
(d)
kB , η

(r)
kB

}
, η

(c)
kB ∈

{
η
(r)
kB , η

(d)
kB

}
(18)

That is, if the state (s) is switched to (d), then state (c) is shifted to (r) and vice versa. In
turn, the substitution of the values is carried out as follows

η
(s)
kB = η

(d)
kB = ηkB ⇒ η

(c)
kB = η

(r)
kB = 1 , η

(s)
kB = η

(r)
kB = 1⇒ η

(c)
kB = η

(d)
kB = ηkB (19)

Based on the power flow, the following prerequisites may determine the direction.
Suppose the power is transmitted through the drivetrain to the wheels. In that case, the
input flow must exceed the algebraic sum of the output power flows regardless of the
internal mechanism state since the mechanical connections themselves already consider
the ratio of the input and output powers. Then, the direct power flow corresponds to the
condition given by

|T1ω1| > |T4ω4 + T5ω5| (20)

which means the state (s) has been switched to the (d).
On the other hand, if the wheels drive the semi-axles, the power is returned to the

transmission and the flow becomes reverse. Another situation is tied with redistributing
the external powers between the wheels when their signs are opposite, and the modules
differ slightly. In these cases, the condition is

|T4ω4 + T3ω3| ≥ |T1ω1| (21)

which corresponds to the switching state (s) to (r).
There is a different picture with the drive of the friction clutches’ components corre-

sponding to the elements k = {6, 7, 8, 9} in Equation (15). In this case, in each element, the
direct/reverse state in each element can be changed independently of the general power
flow direction. That is, states (s) and (c) can take on direct and reverse modes (d) and (r)
depending on whether a flow corresponds to the natural order of nodes while transmitting
power or to the reverse order (Figure 3). Thus, in this case, the math approach, in this case,
is equal to Equation (19).

Note that each friction clutch can be activated individually, withdrawing some torque
from the carrier and returning to it. Elements k = {6, 7} are initially in the direct phase,
transmitting torques from the carrier even in the case of disengaged clutches. In this case,
the condition for transmitting power from the carrier can be represented as
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|M62| − |M86| > 0, |M72| − |M97| > 0 (22)

Elements k = {8, 9} are initially in the passive phase (idle). The condition for activating
the additional torque on a semi-axle can be expressed as

|M86| − |M84| > 0, |M97| − |M95| > 0 (23)

The values of M86 and M97 are calculated by the dependencies for frictional moments
considered next.

Denote the vectors of all the internal moments M, Ns of the satellite quantity and
bearing efficiencies depending on the states, as follows: ηBM = vector for internal links, ηBS
= vector for satellites, ηBC = vector for clutches. Vector Ns can be obtained by changing
values in vector l Equation (1) with 1, except for positions equal to numeric 3 (satellites),
which are replaced with the number of satellites ns. The vector ηBS structurally corresponds
to the vector Ns but contains efficiency η3B instead of ns. Thus,

M =



M12
M21
M23
M32
M26
M62
M27
M72
M34
M43
M35
M53
M48
M84
M59
M95



, Ns =



1
1
1
ns
1
1
1
1
ns
1
ns
1
1
1
1
1



, ηBM =



η
(c)
1B

η
(s)
2B

η
(c)
2B
1
1
1
1
1
1

η
(s)
4B
1

η
(s)
5B
1
1
1
1



, ηBS =



1
1
1

η3B
1
1
1
1

η3B
1

η3B
1
1
1
1
1



, ηBC =



1
1
1
1
1

η
(s)
6B
1

η
(s)
7B
1
1
1
1
1

η
(s)
8B
1

η
(s)
9B



(24)

The matrix HB is obtained using the vectors ηBM, ηBS, and ηBC, and HT in terms of ηT
and ηM

HB = diag(ηBM)diag(ηBS)diag(ηBC), HT = diag(ηT)diag(ηM) (25)

The conditions described above facilitate managing the switching between vectors in
the simulation model to reflect mechanical losses according to the power relation on the
DM shafts.

3.1.3. Internal Moments

Suppose that the vector M components are initially unknown, which allows us to con-
sider them on the system’s left side of Equation (15). Each pair (Mkl, Mlk) reflects the force
interaction of conjugated parts. This matrix is obtained by comparing the corresponding
equations, and a logical matrix E is introduced. To obtain it, the element-wise comparison of
two matrices should be carried out. One matrix is obtained by repeating the column-vector
of the parts’ serial numbers (1, ... , n) the number of times corresponding to the doubled
number (2·m) of the connections in the matrix L. The second matrix is obtained by repeating
the row-vector l from Equation (1) the number of times equal to the number of details (n).
However, pair 2–3 does not provide an absolute kinematic connection between the carrier
and the satellites. The moments act in different planes, so the element corresponding to
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row 3 and column 2·2 = 4 must be zeroed in matrix E. Thus, the left part of the system of
Equation (15) associated with the unknown moments is represented in matrix form as

ED = −E diag(Ns) diag( HB) (26)

3.1.4. Loads and Resistance

After introducing the vectors v of viscous resistance[13] coefficients, V of viscous
moments, ωh of housing angular speeds, and ωr of relative angular speeds, then

v =



v1
v2
v3
v4
v5
v6
v7
v8
v9


, V =



V1
V2
V3
V4
V5
V6
V7
V8
V9


, ωh =



0
0
0

ω2
ω2
0
0

ω6
ω7


, ωr = ω−ωh, V = −diag(v)ωr (27)

Consequently, the viscous losses for the system of Equation (15) are given by

VD = diag(ns)V = −diag(ns) diag(v) ωr (28)

Introduce vectors T of external torques, TT of the known external torques, and matrix
eT of transition to the vector T, then

T =



T1
0
0
T4
T5

M68
M79
M86
M97


, TT =


T1
T4
T5

M86
M97

, eT =



1
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
−1
0
1
0

0
0
0
0
0
0
−1
0
1


, T = eTTT (29)

Consequently, the right part of the Equation (15) system is represented in matrix form as

TD = HTT = HTeTTT (30)

Thus, the system of Equation (15) is written as

IDε + EDM = TD + VD (31)

Note that the clutch friction moments are split to be represented as external torques
along with shafts’ torques in the vector T.

3.2. Kinematic Constraints

In this section, the technique for automating the description of the absolute and
relative kinematic constraints for each mechanical interaction is derived. In describing
the ideal kinematic connections adopted in the sport differential design, two moments
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occur regarding the continuity of links transmitting both absolute and relative kinematic
parameters[14]. Introduce the following basic kinematic vectors

ω =

 ω1
...

ωn

, ε =
dω

dt
=

 ε1
...

εn

 (32)

where n = number of rotating components (9). In particular, as shown in Figure 2, some
of the elements (2, 3, 4, 5) have differential relations, and the relative angular speed ω3
describes the motion of the satellites 3. Thus, for all couples (columns) of the matrix L
Equation (1), except for containing the element 3, the gear ratios are defined as

ikl = ωk/ωl (33)

where k = {1, 2, 2, 4, 5}, l = {2, 6, 7, 8, 9} = the positions of the couples’ elements transmitting
the absolute angular speeds.

In this case, the continuity equation of a kinematic connection can be written in general
form as

ωk − iklωl = 0, εk − iklε l = 0 (34)

In the case of differential dependency between links, this yields

ikl = i(p)
kl =

(
ωk −ωp

)
/
(
ωl −ωp

)
(35)

where k = {4, 5}, l = {5, 4}—the positions of the couple’s elements transmitting the relative
angular speeds, and p = {2, 2} = positions of the stopped carrier.

The general remark regarding the sign of a gear ratio can be made, assuming that it is
determined depending on the rotational directions of the corresponding parts. Thus, if both
linked parts provide the same counterclockwise and clockwise rotations, their gear ratio is
to be considered as positive regardless of whether the engagement is external or internal.
Conversely, a change of direction means a negative gear ratio. For example, couple 3–5
(Figure 2) provides the rotation of satellites 3 counterclockwise if the side gear 5 also rotates
counterclockwise. However, couple 3–4, which is symmetrical to it, provides the clockwise
rotation of satellite 3 if the side gear 4 rotates counterclockwise, which corresponds to a
negative gear ratio. Note that with this approach, the signs of the mechanism’s force and
kinematic gear ratios coincide using this approach.

As known, the differential mechanism provides two degrees of freedom, and at the
same time, according to Figure 2, three couples of details are involved. It is assumed that
the ratios i34 and i35 correspond to when carrier 2 is stopped. Differential constraints are
described by the Willis formula, which gives the following statements for the case of power
distribution

i(2)45 =
ω4 −ω2

ω5 −ω2
=

ω
(2)
4

ω
(2)
5

=
ω
(2)
4

ω3

ω3

ω
(2)
5

= − z3

z4

z5

z3
=

i(2)43

i(2)53

=
i35

i34
(36)

where z3 and z5—teeth numbers of corresponding elements. The relative ratios between
side gears and satellites are determined as follows

i(2)43 =
ω4 −ω2

ω3
=

ω
(2)
4

ω3
=

1
i34

, i(2)53 =
ω5 −ω2

ω3
=

ω
(2)
5

ω3
=

1
i35

(37)

Equations (36) and (37) give the relative kinematic expressions for differential links as

(ω4 −ω2)i34 − (ω5 −ω2)i35 = 0, ω3 − (ω4 −ω2)i34 = 0, ω3 − (ω5 −ω2)i35 = 0 (38)
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Thus, the resulting system of the algebraic equations of kinematic connections, using
the derivatives of Equations (37) and (38), is

ε1 − i12ε2 = 0
(ε4 − ε2)i34 − (ε5 − ε2)i35 = 0

ε2 − i26ε6 = 0
ε2 − i27ε7 = 0

ε3 − (ε4 − ε2)i34 = 0
ε3 − (ε5 − ε2)i35 = 0

ε4 − i48ε8 = 0
ε5 − i59ε9 = 0

(39)

This system can be decomposed considering vector i and matrix L in Equations (1)
and (2)

εin =



ε1
ε2
ε2
ε2
ε3
ε3
ε4
ε5


, εout =



ε2
ε3
ε6
ε7
ε4
ε5
ε8
ε9


−



0
0
0
0
ε2
ε2
0
0


, εin = einε, εout = eoutε (40)

The matrices ein and eout can be obtained based on rows 1 and 2 of the matrix L,
respectively. For this, two matrices are logically compared. One of which is obtained by
repeating an elements’ column-vector several times equal to the number of connections.
The second is obtained by copying a row of matrix L (upper for ein or lower for eout) several
times equal to the number of elements being considered (n in this case). The result will
give logical matrices containing 0 and 1. Note that link 2–3 in the matrix L describing the
interaction between carrier 2 and satellites 3 is differential, and therefore the corresponding
row in the vectors εin and εout must be zeroed and links 3–4 and 3–5 represented by relative
angular accelerations following Equation (38). To do this, introduce the matrix ed, which
ensures the replacement of the conjugation of the carrier and satellites rotating in different
planes with a differential connection by subtracting the angular accelerations for the side
gears and satellites relative to the satellite. Thus, Equation (39) in matrix form is

eε = ed(ein − diag(i)eout), eεε = z (41)

where z = zero column-vector with the length corresponding to the number of kinematic
links.

On the other hand, the differential is characterized by two degrees of freedom. That
is, the vector ε of angular accelerations can be expressed through the vector εD containing
only the angular accelerations of the side gears

εD =

(
ε4
ε5

)
, εD =

(
ε4
ε5

)
, ε = EεεD (42)
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where

Eε =
1

(i34 − i35)



i12i34 −i12i35
i34 −i35
−i35i34 i35i34

(i34 − i35) 0
0 (i34 − i35)

i34/i26 −i35/i26
i34/i27 −i35/i27

(i34 − i35)/i48 0
0 (i34 − i35)/i59


(43)

Thus, substituting Equation (43) into Equation (41) helps to reduce the number of
unknown kinematic variables. Thus,

eε = ed(ein − diag(i)eout), eεEεεD = z (44)

3.3. Gearing Conditions

The technique for reducing several unknown internal moments along with the ap-
proach for automating the determination of moments’ signs are represented in this section.
Consider the force factors emerging in conjugated components[11]. In the general case, the
sum of the moments at a node can be expressed as

Mkikl + Ml = 0 (45)

where k, l = indexes of conjugated details and ikl = ratio.
Note that in the general case, ikl can be either positive or negative depending on

whether the connection changes the moment sign. Thus, for example, for an internal
gearing pair, the directions of positive moments coincide. Therefore, the gear ratio is
positive, which determines the opposite signs of Ml and Mk as the driving and reaction
moments in a node.

Assuming that a part of mechanical energy is lost while transmitting the moment, for
the cases of direct and reverse power flow, it can be, respectively, written as

Mkl iklηkl + Mlk = 0, Mkl ikl + Mlkηlk = 0 (46)

where ηkl and ηlk = direct and reverse gearing efficiencies, respectively (it may be assumed
that ηkl = ηlk).

Let ηG be the vectors of gearing efficiencies for exceptionally differential’s details, ηC
be the vector of gearing efficiencies for clutches’ details, and MD be the vector of unknown
internal moments

η
(s)
G =



η
(s)
12

η
(s)
23
1
1

η
(s)
34

η
(s)
35
1
1


, η

(c)
G =



η
(c)
12

η
(c)
23
1
1

η
(c)
34

η
(c)
35
1
1


, η

(s)
C =



1
1

η
(s)
26

η
(s)
27
1
1

η
(s)
48

η
(s)
59


, η

(c)
C =



1
1

η
(c)
26

η
(c)
27
1
1

η
(c)
48

η
(c)
95


, MD =



M21
M32
M62
M72
M43
M53
M84
M95


(47)

where s, c = upper indexes for determining the possible state and converse state efficiencies,
respectively, depending on whether the power is being transmitted according to the order
the nodes in the matrices L and C or vice versa.
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Thus, the systems of moments’ equilibrium for the generalized case of direct or reverse
power flow is 

M21η
(c)
12 + M12η

(s)
12 i12 = 0

M32nsη
(c)
23 + M23η

(s)
23 i23 = 0

M62η
(c)
26 + M26η

(s)
26 i26 = 0

M72η
(c)
27 + M27η

(s)
27 i27 = 0

M43η
(c)
34 + M34η

(s)
34 i34ns = 0

M53η
(c)
35 + M35η

(s)
35 i35ns = 0

M84η
(c)
48 + M48η

(s)
48 i48 = 0

M95η
(c)
59 + M59η

(s)
59 i59 = 0

(48)

Note that the system of Equation (48) depends on the states of power flows passing
through the differential and through the clutches. For each pair of k = {1, 2, 3, 3} and l = {2,
3, 4, 5}, possible states are switched simultaneously since these parts are being connected in
the whole mechanism. Thus,

η
(s)
G ∈

{
η
(d)
G , η

(r)
G

}
, η

(c)
G ∈

{
η
(r)
G , η

(d)
G

}
,

η
(d)
G = ηG ⇒ η

(r)
G = {1} , η

(r)
G = ηG ⇒ η

(d)
G = {1}

(49)

where ηG = gearing efficiency vector with ηkl, and {1} = vector of ones with the same size as
ηG.

Unlike those mentioned above, the clutches’ elements can be active and passive
depending on the friction moments M86 and M97 regardless of the basic mechanism state.
A clutch may be withdrawing some torque from the carrier and returning it back. For each
pair of k = {6, 7, 8, 9} and l = {2, 2, 4, 5}, the sign of the difference in moments may determine
the state since an angular velocity is the same at both sides of an element. Thus,

|Mkl | −
∣∣∣M f

∣∣∣ > 0 (50)

where the friction moment Mf = {M86, M97} for corresponding indexes k and l, respectively.
If the inequality of Equation (50) for a clutch component is satisfied, its mode will be

“direct” and vice versa. This implies the following assertions, where the upper indexes
denote conditionally direct (d) and reverse (r) states. Then,

η
(s)
kl ∈

{
η
(d)
kl , η

(r)
kl

}
, η

(c)
kl ∈

{
η
(d)
kl , η

(r)
kl

}
,

η
(d)
kl = ηkl ⇒ η

(r)
kl = 1 , η

(d)
kl = ηkl ⇒ η

(r)
kl = 1

(51)

The pairwise use of the moments in Equation (48) and their sequential pair arrange-
ment in the vector M makes it possible to separate the parts of action and reaction moments
through the matrices er at gear ratios and em for output loads of dimension m × 2m. Thus,
in the matrix er, the elements corresponding to the mesh nodes based on each row and each
second column, starting from the first, are equal to 1, while the other elements equal 0. The
same procedure for forming the matrix em but starting from the second column. Thus, the
system of Equation (48) is represented in matrix form as follows:

eMM = z (52)
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where for the generalized state of the power flows,

eM =
(

H(s)
G diag(i)er + H(c)

G em

)
diag(Ns) (53)

On the other hand, based on the system of Equation (47), all the moments of vector
M can be expressed by the elements of vector MD. Considering Equation (24), it can be
derived for the generalized case as

EM = (diag(ND))
−1
(

em −
(

H(s)
G diag(i)

)−1
H(c)

G er

)T
(54)

where ND may be obtained by replacing elements 3 and 4 in the vector Ns with 1/ns and 1,
respectively. Then,

M = EMMD, eMEMMD = z (55)

Another step is regarding replacing M32 with an expression based on M43 and M53.
An additional condition can be formed because the driving moments of the differential
carrier and satellites lie in different planes, as shown in Figure 5e. Then, for a satellite,

P32 + P34 + P35 = 0 (56)

Multiply by the radius R23 of the force transmission through the satellite’s axle and by
the number of satellites, then

nsP32R23 + nsP34R23 + nsP35R23 = 0 (57)

or
ns M32 + nsP34R3

R23
R3

+ nsP35R3
R23
R3

= 0,

ns M32 + ns M34i34u24 + ns M35i35u25 = 0
(58)

where u24 = R23/R4, u25 = R23/R5 = ratio of passing forces between the radii of satellites’
axles and gearings (may be accepted that u24 = u25 = 1).

Using Equation (48), Equation (58) is rewritten in the generalized form as

M32
η
(c)
23 ns

η
(s)
23 i23

= M43
η
(c)
34

η
(s)
34

+ M53
η
(c)
35

η
(s)
35

(59)

Let

b43 =
η
(c)
34

η
(s)
34

η
(s)
23 i23

η
(c)
23 ns

, b53 =
η
(c)
35

η
(s)
35

η
(s)
23 i23

η
(c)
23 ns

(60)

Then,
M32 = M43b43 + M53b53 (61)

The latter excludes the redundant variable M32 from MD and reduces the unknown
variables.

Denote transition matrix S and vector MU of independent internal moments. Then

S =



1 0 0 0 0 0 0
0 0 0 b43 b53 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, MU =



M21
M62
M72
M43
M53
M84
M95


, MD = SMU (62)
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3.4. Friction Clutch

The additional delivery of a power flow in this DM design is carried out by the external
control according to the need (dashed lines in Figure 3) and corresponds to the interactions
of nodes specified in the matrix C of Equation (1) [4]. The formation of driving moments in
friction clutches is schematically shown in Figure 5f–h.

3.4.1. Friction Torque

It is evident that in the vector T from Equation (29), M68 = −M86 and M79 = −M97,
which allows considering only the driven parts. Frictional moments in clutches are func-
tions of the design parameters and normal forces N10, N11. That is,

Mkl = fkl NpRpnkl (63)

where Mkl = driving frictional moment, where k = {8, 9} and l = {6, 7} = indexes denoting
frictional elements, Np = normal force, p = {10, 11} = indexes denoting pressing elements,
Rp = average friction radius, fkl = friction factor, and nkl = number of friction surfaces.

The hyperbolic tangent function can be accepted as a frictional model that ensures
automatic changing of the sign when the clutch slides. Additionally, this model is sufficient
since the design does not provide strict conditions for locking clutches, as it is required, for
example, in the automatic gearbox. Moreover, the torque transmitted to a wheel should
preferably be proportional to the pressure in a hydraulic cylinder, which makes the control
predictable and stable.

fkl = µkltanh(ckl∆ωkl), ∆ωkl = (ωl −ωk) (64)

where µkl = the module value of friction coefficient, and ckl = the intensity coefficient.

3.4.2. Lockup Condition

The algorithm for determining the current locking compression force is proposed
here for use in the simulation model. Despite the possibility of conditionally unlimited
increasing the normal force Np in Equation (32), the frictional moment is restricted by the
critical value Npc, leading to locking a clutch. At the same time, an Npc value does not
remain constant, which is consistent with external loading changes. In this regard, it is
necessary to provide an algorithm for setting the locking mode and limiting the friction
torque. For this, introduce a threshold zone ±∆ωc in the vicinity of ∆ωkl = 0, where the
mode is equivalent to the lock state, and the sliding is practically absent. The current value
of the clutch compression force Np can result in two states:

|∆ωkl | > ∆ωc, |∆ωkl | ≤ ∆ωc (65)

If the absolute value of the relative angular speed does not exceed a threshold value,
the Np value is stored in the memory as Np(−1). In the next step, the new value Np(+1) can
be compared with the previous one for the minimum, as follows

Np = min
{

Np(−1) Np(+1)

}
(66)

Note that an Np value is not related to a friction moment sign. This point stipulates
only positive values of Np. The friction moment in this state is defined as

Mkl = µkl NpRpnklsgn(∆ωkl) (67)

When ∆ωkl exceeds a threshold value, the Np current value is taken as the basic one
and cycles are repeated.
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3.4.3. Piston Dynamics

To reflect the elastic and stiff properties of clutch discs as parts of the clutch pack
compression physics, consider the translational motion of pistons compressing the clutches,
as shown in Figure 5h. The system of equations can be represented as{

dxp/dt = sp
mpap = Pp + N′p

(68)

where mp = piston mass, ap = piston acceleration, sp = piston velocity, xp = piston trans-
lational displacement, Pp = resulting piston force, N’p = the force of combined normal
reaction, and p = the index of translational element (p = 10, 11).

Denote
Pp = pp Ap + Fp + Sp (69)

where pp = the pressure in the cylinder p, Ap = the piston area, Fp = the resistance force of
interaction between the cylinder and the cuff, and Sp = elastic force of return springs.

The components of Equation (69) may be found by the following formulas, considering
p = 10, 11:

Ap =
π

4

(
d2

pe − d2
pi

)
(70)

where dpe, dpi = piston external and internal diameters, respectively.

Sp = −ksp
(
xp + ∆p0

)
(71)

where ksp = spring stiffness and ∆ p0 = initial deformation.

Fp = −
(

pphπ
(
dpe + dpi

)
fp + νpsp

)
, fp = µptanh

(
cpsp

)
(72)

where h = cuff width, fp = friction factor, νp = viscous coefficient, µp = module value of the
translational friction coefficient, and cp = the intensity coefficient.

The simplest way to form the force N’p consists of setting piecewise linear functions
depending on the piston stroke. The N’p reaction ensures the piston hard stop in the
boundary positions, while the Np component is the clutch compressing force.

N′p = −kp1xpEH
(
−xp

)
− Np,

Np = kp2
(

xp − xp∆
)(

EH
(
xp − xp∆

)
− EH

(
xp − xh∆

))
+ PpoEH

(
xp − xh∆

) (73)

where kp1, kp2 = the stiffness of elastic forces in the piston boundary positions, xp∆ = clear-
ance for ensuring the complete clutch disengagement, xh∆ = piston stroke corresponding to
the hard-stop, Ppo = value of the Pp force evaluated at the preceding time-step, and EH =
Heaviside step-function.

3.5. Matrix Form

The matrix form is the most efficient for such equations [8]. Therefore, the three
different types of equation systems are combined to automate the allocation of efficiencies,
ratios, unknown moments, and their signs and reduce the size of the total equation system
and the number of variables. Thus, summarizing all the preceding, the systems of Equations
(15), (39), and (48), considering the equations of the previous section to form the vector TD
from Equation (30), can be rewritten in matrix form as

IDEεεD + EDEMMD = TD + VD

eεEεεD = zm

eMEMMD = zm

(74)

where zm = vector of zeros with dimension m × 1.
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Denote the following matrices for Equation (74):

D =

 ID ED
eε Zm,2m

Zm,n eM

, F =

(
Eε Zn,m

Z2m,2 EM

)
, G =

(
E2,2 Z2,m−1
Zm,2 S

)
,

R =

 TD + VD
zm
zm


(75)

where Zq,r = matrix of zeros with dimension q × r, and E2,2 = identity matrix 2 × 2.
According to the properties of Equations (44) and (55), the kinematic and gearing

equations in Equation (74) become zeros and, therefore, may be reduced by the rectangular
identity matrix EU with dimension n × n + 2m. Consequently, the final matrix components
are obtained as

x =

(
εD
MU

)
, EU = En,n+2m, B = EUR, A = EUDFG, x = A−1B (76)

4. Simulation
4.1. Simulink Model

Based on the preceding theoretical expressions, a simulation model (Figure 6) of the
sport differential mechanism and its control under external loads conditions was composed,
validated, and tested for different cases using MATLAB software [19]. The blocks in Figure 6
are fully adjustable and configurable and can be used as a component of an intelligent
transmission Simulink model for developing control drives and algorithms.
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The model’s basic element is block 1 (System of differential Equations), which contains a
description code of differential equations for translationally and rotationally moving design
parts. The block has complex input and output ports transmitting information through
buses. In block 2 (Bus), the required data about the model components’ states are updated,
and vectors of initial conditions for integrators and delay blocks are distributed.
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Block 3 (Bus Selector) expands the complex output by the corresponding signal names.
Namely, signals denote: <PrevNormForces> is a row vector of compression forces in fric-
tion clutches from previous integration step; <InternalMoments> is a vector of internal
moments used for detecting clutches’ operating modes and states of transmitting elements;
<ClutchActivation> is a row vector of frictional couplings 6–8 and 7–9 modes taking values
0—inactive and 1—activated; <PowerDirection> is the direction of the external power flow
for the differential mechanism: 1 (direct) and -1 (reverse); <AngularSpeeds> is a column
vector of angular velocities according to Equation (32); <FrictionMoments> is a row vector
of frictional moments’ values; <Variable> is a reserve variable for displaying any other
data while testing the model; <PistonDerivs> are the derivatives of hydraulic (translational
elements) clutches’ states; <DifferDerivs> are the derivatives of the differential (rotational)
components’ states. All the needed information about the differential components’ physical
and geometric characteristics is collected in the SDDms structure and transmitted through
block 4—Sport Differential Data.

In block 5 (Pressure), the initial control signals for hydraulic cylinders 10 and 11 are
formed and then combined in a row vector in block 6 (Vector Concatenate). Similarly, in
block 7 (Torques), the external loads on the differential’s shafts 1, 4, and 5 are generated
to be combined into a column vector in block 8 (Vector Concatenate). The model uses
two independent integrators: 9 (Differential Mechanism Integrator) for the rotational motion
equations and 10 (Piston Integrator) for the equations of pistons’ translational motion. Blocks
11 (Nf) and 12 (M) allow storing the vectors of compression forces and internal moments at
the previous computing step in memory. Block 13 (Results) accumulates the primary output
data for analysis.

4.2. Testing Differential Model Operability

The model of DM must be tested first. It is expected that the distribution of angular
speeds, in this case, corresponds to the concept of “least resistance” for a power flow. Thus,
the most general test mode may be formed using periodical loads with the same phases
but different amplitudes (Figure 7, External torque) on the mechanism shafts. The primary
output information is the values of angular velocities of all the mechanism’s rotating
components. In turn, it can be stated that the shapes of the angular speeds’ curves for
shafts 1, 4, and 5 are in good coordination, reflecting trends of the corresponding external
torques. The internal moments’ curves also inherit the nature of the external ones with
distinctive step shifts when the power flow direction is changed. The solution’s periodicity
remains, which indicates the model stability. The main point implies that an axle with lower
loading torque tends to have a higher angular speed, typical for symmetrical frictionless
differentials.

Note that the instantaneous switch in Figure 7 occurs at the time of mutual intersection
of the external and internal loads in the nodes with zero values. The regime change means
switching between equations with different efficiency vectors. From the point of view of
zero loads, the computations of the dynamics equations for a given moment are the same.
To eliminate this phenomenon, it is necessary to use efficiencies depending on torques and
kinematics, which complicates the model and is insignificant for speed modes. Further,
most models proposed in the literature do not use mode switching at all and often neglect
mechanical efficiency.

Consider now an option of activating one of the differential’s clutches (Figure 8) for
the same external loading conditions as in Figure 7. Proceeding from the fact that a larger
external resistance torque passes through axle 4, the pressure increase p10 can be set while
p11 remains zero (Figure 8, Pressure). Only ω4 and ω5 angular speeds are reflected as the
output. The pressure increase phases are accompanied by the friction torque M86 (M97 = 0
because of p11 = 0). In the phase of positive values, this friction torque adds power to shaft
4 with a larger load, causing its angular speed ω4 to exceed the ω5 one, unlike the situation
in Figure 7. The internal moments M62 and M84 appear in the opposite phase, revealing
their possible leading/driven states when the clutch 6–8 is activated. Thus, in contrast to
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the situation in Figure 7, the torque and speed output parameters are redistributed, and the
angular speed of a more loaded shaft can exceed that of a less loaded shaft.
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Note that the spikes in Figure 8. are transient processes in friction clutches that
inevitably accompany the changes of the load signs. The Simulink model is carefully tuned
to minimize the influence of abrupt slip processes in clutch packs. The presence of dry
friction in models always leads the differential equations to a “stiff” form that requires
reducing the time increment to ensure the solution’s stability.

4.3. Zero-Resistance Case

The case when one of the differential’s output axles is unloaded (or the load tends to
zero) is of interest. Such a situation typically occurs due to the lack of tire-road adhesion on
one of the same axle wheels. In the case of a conventional symmetrical differential, all the
power goes to drive the wheel with the worst adhesion conditions, and its angular speed
tends to a maximum. In the case of an active limited-slip differential, a part of the carrier’s
torque may be transmitted to a lagging axle, maintaining the differences in the angular
speeds. These variants’ properties can be compared with the example in Figure 9. Thus,
axle 5 is unloaded, and the torques on shafts 1 and 4 are constant.
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As seen, outside the time moments of activating the clutch 6–8, the angular speed of
the unloaded axis 5 rapidly increases, and axis 4 rotates in the opposite direction under the
influence of a negative load, which corresponds to the operational mode of a conventional
differential. However, in the periods 1.5–3.5 s and 6.5–8.5 s of stable pressure in the clutch’s
6–8 cylinder, the angular speed ω4 of the loaded shaft even slightly exceeds the angular
speed ω5. At the same time, the moment M43 value of the side gear 4 falls to a minimum,
while the moments M62 and M84 reach their maximum modules. This situation corresponds
to transmitting the maximum torque through one output shaft. Thus, the wheels’ angular
speeds are synchronized to ensure maximum vehicle passability.
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4.4. Alternating Activation

The following example shows the alternating actuation of the friction clutches. This
option can be used when correcting the trajectory under conditions of a motion track with a
variable sign periodic curvature. Suppose the resisting moments to be changed periodically,
and the driving moment is constant, as shown in Figure 10. At the same time, the load
moments are alternately changed to larger/smaller amplitude values. A conventional
differential design would result in a higher angular speed on the shaft with less load and
vice versa. The activation of the friction clutches is organized in such a way to match the
increase in axles’ loads. As an immediate result, only the angular velocities ω4 and ω5
are taken accompanied by piston strokes xp10, xp11. As shown seen, the activation of the
corresponding clutches causes the angular speed to rise for a semi-axle under higher load
conditions, which allows more torque to be transmitted to a wheel with better adhesion
conditions, ensuring a greater reaction value (traction force).
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4.5. Analysis of Results

A few comments are noted about the data used and their impact on the simulation
results. First, the question concerns the moments of friction forces and their influence on the
solution accuracy. Varying the data has shown that the friction torque’s increased sensitivity
relative to the cylinder pressure negatively affects the slip smoothness. Thus, the variant of
“hard” friction disks leads to the appearance of jerks and solution instability. The decreased
sensitivity requires a larger pressure and may lead to a delay in the response time of a
controlling drive. Thus, the compromise must meet the demands of operating properties
and design compactness. Note that a decrease in the friction coefficient for clutches and
an increase in the number of frictional pairs positively affect the smoothing of the torque
passing from the differential’s carrier. This issue can also be facilitated by introducing a
piecewise constant compressing stiffness of a clutch package up to a deformation limit.
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Thus, the adjustment and tuning of this design simulation model compose a separate task
for adapting the model functioning to a specific range of loads and vehicle motion modes.

5. Conclusions

All the needed stages to achieve the results showed their adequacy, consistency, and
coordination between each other. Based on this study, two main conclusions are made.

1. All the simulations carried out with different sets of initial conditions confirm the
model’s efficiency in transmitting a larger torque to an axle with higher resistance
and equalizing the angular speeds of the output shafts. This is unlike the working
principle of functioning the conventional (open) and passive limited-slip differentials.
The angular speed growth on a shaft with higher resistance leads to an increase in slip
(up to a critical) and, as a rule, to a rise in traction force on a wheel, which contributes
to the appearance of an additional turning moment relative to the vertical vehicle
axis (Figure 1). At the same time, the friction clutch usage can be practical not only
in the traction mode but also in the driven one, when due to the activation of the
outer wheel clutch, the negative longitudinal reaction decreases. This fosters the wide
use of various algorithms for controlling the sport differential to stabilize/align the
vehicle trajectory. In addition, the possibility of transmitting all the torque to one
of the output axles was demonstrated to maintain the vehicle’s passability in the
conditions of limited road-tire adhesion. Thus, the proposed sport differential model
can be used for simulating the active control vehicle transmissions.

2. The paper has proposed an alternative method for obtaining differential equations that
describe the dynamics of rotational mechanical systems. As demonstrated, the main
idea consisted of decomposing a mechanical system onto elementary components
with the independent formation of three types of equations: dynamics, kinematic
constraints, and force interactions. All the internal efforts’ signs are determined
automatically. The developed mathematical apparatus effectively reduces the total
number of equations for compactness and lowers the simulation time. Thus, the
approach corresponds to the modern trend of multibody modeling and provides a
field for developing a technique to automate the composition of motion equations
for mechanical systems. The proposed method should be further improved in the
complex modeling of all-wheel-drive transmissions with several DMs.
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