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Abstract: The aim of herein work is to develop an automatized algorithm for detecting, as objectively
as possible, the flame front evolution of lean/ultra-lean mixtures ignited by low temperature plasma-
based ignition systems. The low luminosity characterizing the latter conditions makes both kernel
formation and combustion development difficult to detect accurately. Therefore, to estimate the igniter
capability to efficiently ignite the mixture, ever more performing tools are required. The present
work proposes a new image analysis technique, based on a dual-exposure fusion algorithm and on
Convolutional Neural Networks (CNNs), to process low brightness images captured via high-speed
camera on an optical engine. The performance of the proposed algorithm (PA) is compared to the
one of a base reference (BR) algorithm used by the same research group for the imaging analysis. The
comparison shows the capability of PA to quantify the flame radius of consecutive combustion cycles
with lower dispersion if compared to BR and to correctly detect some events considered as misfires or
anomalies by BR. Moreover, the proposed method shows greater capability to detect, in advance, the
kernel formation with respect to BR, thus allowing a more detailed analysis of the performance of the
igniters. A metric quantitative analysis is carried out, as well, to confirm the above-mentioned results.
Therefore, PA results to be more suitable for analyzing ultra-lean combustions, heavily investigated to
meet the increasingly stringent legislation on the internal combustion engines. Finally, the proposed
algorithm allows us to automatically estimate the flame front evolution, regardless of the user’s
interpretation of the phenomenon.

Keywords: convolutional neural network; combustion evolution; low luminosity; image analysis;
machine learning techniques

1. Introduction

Over the last few decades, the development and application of both experimental and
computational research have enabled in-depth analysis of fundamental physical phenom-
ena occurring in spark-ignition (SI) internal combustion engines (ICEs) [1,2].

In the ICE experimental research field, the single-cylinder optical access engine is a
well-known and widely used diagnostic technique for investigating the temporal evolution
of the flame front [3,4]. In recent years, plasma-assisted ignition (PAIs) systems, such
as corona effect discharge, nanosecond pulse discharge, microwave-assisted discharge,
etc. have been widely studied in optical engines. These systems represent an alternative
solution to the traditional spark for facing with future high-efficiency SI engines [5–11].

Focusing on the corona discharge, Idicheria and Najt [12] performed a morphological
analysis of the flame front using a gasoline-fueled engine. Marko et al. [13] evaluated the
projected flame area on a natural gas fueled engine. They found improvements in EGR
tolerance using corona instead of conventional spark. The research group of the Department
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of Engineering (University of Perugia) found an important extension of the lean stable limit,
compared to the traditional spark, at different engine operating conditions [14,15] and using
different fuels. The lean extension achieved by such devices [14,15] may be an effective
technology to address the objectives of reducing pollutant emissions and fuel consumption.
Detection of the first moment of kernel formation can be crucial to characterize the capability
of an igniter to initiate robust combustions, especially under lean/ultra-lean mixture
conditions [16]. The low luminosity, characterizing these extreme conditions, makes it
difficult to recognize the combustion evolution (Figure 1) and, especially, the early flame
development. For that reason, the requirements for a more powerful tool capable of
recognizing the flame front, led our research group to explore new ways to accomplish
this target.
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nique based on dual-exposure fusion and CNN algorithms, with the aim to improve the 
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bustion evolution promoted by two different kinds of corona devices was carried out in 
MATLAB environment. The code performed the operation of filtering, ignition detection 
and binarization. In the latter process, the filtered grayscale frames are converted to black 
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algorithm, proposed by Shawal et al. [30], which guarantees great accuracy in flame evo-
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which iteratively tries to find the best trade-off between the output of the algorithm and 
the corresponding original image. Nevertheless, while for stoichiometric conditions the 
user task is simplified by high luminosity, the low brightness characterizing lean opera-
tions complicate the identification of the early flame development [16]. 

Starting from the results of [14], CNNs methodology is first optimized on the flame 
front images of a weakly lean case to determine the most suitable structure according to 
the aim of the work. After the validation, the proposed algorithm (PA) is tested on the 
lean stable limits performed by the ACIS devices. To evaluate the performance of the al-
gorithms, the corresponding results are compared by estimating the equivalent flame ra-
dius Req of each combustion event [14]. 
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Currently, artificial intelligence (AI) is increasingly used in the automotive field, as a
powerful technique for engine parameter control [17,18], on-board diagnostics (OBDs) [19]
and pollutant emissions prediction [20–22]. In the latter area of research, Warey et al. [22]
proposed a machine learning (ML) approach using deep CNNs to predict the engine-out
emissions. The analysis starts from images generated by CFD simulations, concerning
equivalent ratio, temperature, velocity field and turbulent kinetic energy at the exhaust
valve opening. CNNs are currently also considered as one of the most powerful tools in
the field of image classification [23–25], object and edge detection [26,27] and background
noise removal [28,29].

Based on these considerations, the present work proposes a new image analysis
technique based on dual-exposure fusion and CNN algorithms, with the aim to improve
the flame detection capability of the method used in [14]. In [5], the quantification of the
combustion evolution promoted by two different kinds of corona devices was carried
out in MATLAB environment. The code performed the operation of filtering, ignition
detection and binarization. In the latter process, the filtered grayscale frames are converted
to black and white ones to evaluate the burned area (white pixels) and the unburned one
(black pixels). The binarization threshold is not fixed, but it is evaluated with a semi-
automatic algorithm, proposed by Shawal et al. [30], which guarantees great accuracy in
flame evolution detection. The determination of this threshold is mainly performed by the
user, which iteratively tries to find the best trade-off between the output of the algorithm
and the corresponding original image. Nevertheless, while for stoichiometric conditions the
user task is simplified by high luminosity, the low brightness characterizing lean operations
complicate the identification of the early flame development [16].

Starting from the results of [14], CNNs methodology is first optimized on the flame
front images of a weakly lean case to determine the most suitable structure according to
the aim of the work. After the validation, the proposed algorithm (PA) is tested on the lean
stable limits performed by the ACIS devices. To evaluate the performance of the algorithms,
the corresponding results are compared by estimating the equivalent flame radius Req of
each combustion event [14].
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The PA method is able to reproduce the BR results, in particular, correctly detecting
each combustion, unlike the BR method, which mistakenly considered some events as
anomalies. Moreover, each event is detected in advance, namely, up to 9 crank angle
degrees (corresponding to 1500 µs) before the BR detection. This fundamental feature
allows us to identify the flame formation as early and accurately as possible at the moment
of its first effective creation. Finally, the recognition of the flame evolution is carried out
by PA, regardless of the any user’s decision, which could make the proposed method
potentially suitable for any type of application requiring a high degree of objectivity.

2. Experimental Setup
2.1. Optical Access Engine

Tests were carried out on a 500-cc single-cylinder research engine optically accessible
(Figure 2a), with pent-roof combustion chamber, four valves, and a reverse tumble intake
port system which is designed to operate in direct injection (DI) or port fuel injection
(PFI). The latter configuration was used, with the igniter centrally located (Figure 2b). The
internal cylinder bore is 85 mm while the piston stroke is 88 mm. The compression ratio
is about 2 points lower than actual commercial automotive SI engines, but belongs to a
well-studied range, featured with an optimal compromise between power output and
thermal efficiency [31].
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(d) schematization of the measurement apparatus.

The optical access to the engine combustion chamber is guaranteed by a 45-degree
mirror and a Bowditch piston with a 60 mm quartz crown (Figure 2c). Both quartz and
mirror are designed to allow light transmission in the visible range. Piston rings are realized
in a self-lubricant material, i.e., a Teflon–graphite mix, since a dry contact between cylinder
liner and rings is required.

For all the other moving parts of the engine, a conventional mineral lubricant was
used as follows: its temperature, together with the coolant one, was set at 343.0 ± 0.2 K.
This value was chosen to guarantee longer engine durability and a reduced blow-by [32].

An AVL 5700 dynamic brake, coupled with the crankshaft, ensures the engine speed
control both in motored and firing condition. Standard European market gasoline (E5,
with RON = 95 and MON = 85) is injected by a Weber IWP092 port fuel injector at 5 bar
absolute. The air-fuel ratio (λ) is modified by varying the fuel amount at fixed throttle
position, in order to maintain the same turbulence level inside the combustion chamber. An
Athena GET HPUH4 engine control unit (ECU) controls the injector energizing time and
the ignition timing, by sending a trigger signal to the dedicated control units of the igniters.
The intake port pressure is recorded by a piezoresistive transducer (Kistler 4075A5) and a
piezoelectric transducer (Kistler 6061 B), placed on the side of the chamber, measures the in-
cylinder pressure. The indicated analysis (Figure 2d) is performed through a Kistler Kibox
combustion analysis system (temporal resolution of 0.1 CAD) that acquires the pressure
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signals, the λ measured by a fast lambda probe at the exhaust pipe (Horiba MEXA-720,
accuracy of ±2.5%), the ignition signal from ECU, the absolute crank angular position
measured by an optical encoder (AVL 365C), and the trigger signal used for synchronization
purposes. Moreover, the exhaust gas analysis was performed by a Horiba MEXA 7100D
with an OVN 723-A.

For each operating point tested, a total of 100 consecutive combustion events were
recorded. The determination of the total injected fuel mass was performed after engine tests
through a Micron AD scale (±10 mg accuracy) after 20,000 consecutive injection events
at the same gasoline pressure and injector ET; the mass per cycle (i.e., the dynamic flow
rate Q according to SAE J1832 [33]) was then computed.

2.2. Imaging System

The natural luminosity [34,35] of streamers and flames is recorded by a Vision Re-
search Phantom V710 high-speed CMOS camera coupled with a Nikon 55 mm f/2.8 [36].
A common trigger signal, derived from an automotive camshaft position sensor (Bosch
0232103052), ensures the synchronization between imaging data and indicating ones, thus
allowing to match flame development 2D information (on a swirl plane) and in-cylinder
pressure trace of the same cycle (Figure 3).

Vehicles 2022, 4 4 
 

 

 
Figure 2. Details of the (a) optical access engine, (b) engine head, (c) optical apparatus and (d) sche-
matization of the measurement apparatus. 

2.2. Imaging System 
The natural luminosity [34,35] of streamers and flames is recorded by a Vision Re-

search Phantom V710 high-speed CMOS camera coupled with a Nikon 55 mm f/2.8 [36]. 
A common trigger signal, derived from an automotive camshaft position sensor (Bosch 
0232103052), ensures the synchronization between imaging data and indicating ones, thus 
allowing to match flame development 2D information (on a swirl plane) and in-cylinder 
pressure trace of the same cycle (Figure 3). 

 
Figure 3. Area of the combustion chamber framed by the high-speed camera through the optical 
access (diameter equals to 60 mm). 

The high-speed camera starts recording when the rising edge of the trigger signal is 
detected. A tunable pre-trigger length allows us to set several frames to be acquired even 
before the rising edge. Due to flame wrinkling, distortion and convection, the flame aver-
age radius detectable without reaching the optical boundary is 20 mm, corresponding to 
about 5% of mass fraction burned (MFB) [37]. 

According to the characteristics of the optical apparatus [36], in [5] each frame was 
composed of 512 × 512 pixel to detect the whole flame evolution inside the optical limit. 
The maximum allowable sampling rate of 20 kHz was used, corresponding to a temporal 
resolution of 0.3 CAD/frame at 1000 rpm. For each point tested, 63 consecutive combus-
tions were recorded. A summary of the main optical parameter is shown in Table 1. 

  

Figure 3. Area of the combustion chamber framed by the high-speed camera through the optical
access (diameter equals to 60 mm).

The high-speed camera starts recording when the rising edge of the trigger signal
is detected. A tunable pre-trigger length allows us to set several frames to be acquired
even before the rising edge. Due to flame wrinkling, distortion and convection, the flame
average radius detectable without reaching the optical boundary is 20 mm, corresponding
to about 5% of mass fraction burned (MFB) [37].

According to the characteristics of the optical apparatus [36], in [5] each frame was
composed of 512 × 512 pixel to detect the whole flame evolution inside the optical limit.
The maximum allowable sampling rate of 20 kHz was used, corresponding to a temporal
resolution of 0.3 CAD/frame at 1000 rpm. For each point tested, 63 consecutive combustions
were recorded. A summary of the main optical parameter is shown in Table 1.

Table 1. High-speed camera settings.

Feature Value Unit

Image resolution 512 × 512 pixel
Sampling rate 20 kHz
Exposure time 49 µs

Bit depth 8 bit
Spatial resolution 124 µm/pixel

Temporal resolution (@1000 rpm) 0.3 CAD/frame
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An in-house MATLAB code allowed us to extract quantitative information from the
gray-scale combustion images acquired by the high-speed camera. In the following sections,
a detailed description of the algorithms used in [5] can be found.

2.3. Igniters

The experimental campaign was developed by using two different radio-frequency
(RF) advanced corona igniters, the Barrier Discharge Igniter (BDI) and Corona Streamer-
type Igniter (CSI), provided by Federal Mogul Powertrain—a Tenneco group company.
BDI [38] is made up of a grounded annular extension from which ionization waves, named
streamers, start to propagate towards the top of the alumina globe that overlaps the
high-electrode voltage [38,39] (Figure 4). In the CSI [40,41] configuration (Figure 4), the
streamers start from four-tip electrode and propagate into the medium towards the counter-
electrode (piston head and chamber walls of the optical engine). Considering the optical
configuration of [5], in the spark case (Figure 4), the visualization of the flame kernel
formation is hampered both by the low mixture volume involved during the discharge
and by the igniter geometry. At lean condition, i.e., low luminosity, the optical acquisition
becomes even more complicated. Conversely, ACISs can spatially involve a considerable
amount of mixture through volumetric discharges (Figure 4).
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Figure 4. Representation of the flame front evolution in the first instant after the end of the discharge
(aIT = after ignition timing), both for ACIS devices (BDI and CSI) and traditional spark, at air-fuel
ratio equal to 1.4. It is possible to observe at 10 CAD aIT as the volumetric discharges characterizing
the corona devices allow a better detection of the combustion evolution if compared to the spark-case.

Upon receiving the trigger signal from the ECU, corona igniters are powered by a
dedicated electronic system (ACIS Box) with an input radio-frequency of about 1.04 MHz,
corresponding to the resonance frequency of the equivalent RLC circuit [24]. Both corona
igniters can be modeled by a same lumped-parameter circuit [34,41]. Corona behavior is
controlled by managing two setting parameters, namely, driving voltage (Vd) the corona
duration (ton). The first one, proportional to the electrode voltage [41], is responsible for
the corona development, whose penetration into the medium depends on the working
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conditions. The corona duration represents the activation time of the igniters and plays an
important role in reducing the cycle-to-cycle variability [40]. Once Vd is set, the electronic
system magnifies the voltage up to a proportional value (supplied voltage, Vs) and provides
it to the coil. This latter amplifies the voltage to the firing-end up to Ve in order to produce
the discharge.

3. Methods

In this section, the authors discuss the structures and the functionalities of both the
algorithm used in [14] and the one proposed in this research activity.

3.1. Base Reference Algorithm

The BR algorithm, dedicated to the post-processing of the combustion images (Figure 5a),
performs the operations of ignition detection, image filtering (Figure 5b), and binarization
of the frames (Figure 5c) [36].
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Figure 5. Example of maximum grey level evolution in the statistic window preceding the ignition
event (first ignition frame): the red square is the sub-area for ignition detection. The images on the
right side display the main steps of the combustion analysis performed on the (a) original image, i.e.,
(b) filtering and (c) binarization processes.

1. Filtering—the filtering process is carried out on each recorded image by means of a
3 × 3 pixel median spatial filter, in order to reduce the salt and pepper noise. The filter
is featured with variable dimension depending on images luminosity and contrast.

2. Ignition Detection—Power-on detection is based on a frame-by-frame maximum gray
level (MGL) detection on a centrally located sub-area of 220 × 220 pixel. The MGL of
each frame is equal to the highest value recorded in such area. A statistically significant
number of frames before switching on, i.e., 50, is chosen first and the average of the
maximum gray level MGLavg (Equation (1)) in such windows is calculated, together
with the maximum absolute deviation from the mean MGLmax,dev (Equation (2))
(Figure 5).

MGLavg =
1
n

n

∑
j=1

MGLj (1)
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MGLavg,dev = max
1≤j≤n

{
MGLj − MGLavg

}
(2)

with:
n = dimension of the statistic window
j = frame index in the statistic window (j ≤ n)
The detection condition of the first ignition event (Figure 5) is therefore expressed as

follows (Equation (3)):

MGLi > MGLavg + K × MGLmax,dev (3)

where:
i = frame index after the statistics window (i > n)
K = arbitrary constant

3. Binarization—finally, a binarization of the image is carried out to convert from
grayscale frames to black (unburned area) and white (burned area) ones with the
aim to determine the equivalent flame radius Req (Equation (4)), starting from the
knowledge of equivalent flame area Aeq. For each frame, Aeq in mm2 is obtained by
computing the sum of the pixels representing the flame front (value equal to 1).

Aeq > π× R2
eq = nb × sc2 (4)

where:
Req = equivalent flame radius
nb = number of binarized pixels
sc = scaling factor [mm/pixel]
The binarization threshold is not fixed but is evaluated for each frame with a dynamic

semi-automatic algorithm [30]. Starting after the first ignition event detected, the threshold
TH of each subsequent image is set proportionally to the average grey level AVGj of the
previous image, as shown in the following (Equation (5)):

TH = AVGj × K1 + K2 (5)

After choosing the best pair (K1,K2), the method is applied to all 63 combustions
analyzed. Given that the threshold values strongly depend on the average luminosity level
of each event, some combustions could therefore be considered as anomalies instead of
regular events, thus making the (K1,K2) unfit for the analysis. This aspect will be covered in
detail in the Section 5. Whereas for stoichiometric mixtures, the BR analysis is made easier
by the strong brightness of the event, for high λ values, the user could encounter significant
difficulties, in particular to distinguish the beginning of the combustion event. Since,
nowadays, the automotive research field is aimed at the investigation of technologies able
to operate with increasingly lean mixtures, the post-processing of growing less luminous
images may be an essential activity to focus on. The recognition of the flame front in
ultra-lean condition becomes an increasingly delicate operation that requires progressively
more advanced and sophisticated algorithms. The arbitrariness of choice is fine as long as
the flame front is well-defined. At extreme operating condition, this arbitrariness becomes
excessive, and different operators could produce quite different results and, therefore,
of questionable value. Indeed, in the BR method, the determination of the whole flame
evolution depends on parameters suggested by the user’s phenomenological interpretation
of the phenomenon. During the analysis of less bright images, the operator struggles to
identify the flame front in the first moments of combustion.

For all these reasons, in this work, an alternative method capable of detecting the flame
front in an objective manner has been sought to overcome the abovementioned problems.
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3.2. Proposed Algorithm

Generally speaking, the opacity of the images due to the presence of quartz on the
piston head, the reverberation of reflecting bodies placed inside the combustion chamber
and the lack of brightness due to lean mixtures, represent the main issues which make
difficult the physical interpretation of the flame front evolution. Moreover, the progressively
increase in residuals on the optical access highly affects the quality of the recorded images
by enhancing, cycle-by-cycle, the haze effect.
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flame front and therefore can be considered as the best choice to select.

Based on these considerations, the detection could be simplified by using specific
filters for brightness/contrast enhancement, and haze removal to limit the alteration of the
information of the images.

Concerning the brightness and contrast enhancement, Ying et al. [42] proposed an
algorithm, named BIMEF, that involves the use of an image fusion technique similar to high
dynamic range, and comparable to the post-processing happening in our brain. Inspired
by the human visual system, they design a multi-exposure fusion framework for low-light
image enhancement, by proposing a dual-exposure fusion algorithm to provide an accurate
contrast and lightness enhancement. In output, the algorithm returns an image with less
distortion of brightness and greater fidelity to visual information than the other known
algorithms in the literature (for example LIME and NPE) [43,44].

Based on these considerations, the algorithm of Ying et al. [42] is employed in the
present work for enhancing the luminosity of our low-brightness images.

Concerning the haze removal, Li, B. et al. [45] propose an efficient end-to-end dehazing
convolutional neural network model, called the All-in-One Dehazing Network (AOD-Net).
They compare the proposed model with a variety of state-of-the-art methods, on both
synthetic and natural haze images, using both objective and subjective measurements.
Once the intensity of the haze is estimated, five convolutional layers clear the haze from
the image. Extensive experimental results confirm the excellent, robustness, and efficiency
of AOD-Net [45].
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Based on these considerations, the algorithm of Li, B. et al. [45] is chosen in the present
work for limiting the effects of reverberation and opacity which affect the recorded images.

The present work evaluates the quality of the images processed by the abovementioned
algorithms through the following two different parameters: the structural similarity index
map (SSIM) and the peak signal-to-noise ratio (PSNR) [46,47].

PSNR is commonly used to quantify the quality of reconstruction for lossy compression
images and videos. It is defined as the ratio between the maximum signal power MAX
and the noise signal power. This parameter is calculated by the mean squared error MSE
as follows [47]:

PSNR = 20 log10(MAX/(MSE)1/2) (6)

SSIM is a method for predicting the perceived quality of digital images or video. It is
also used for measuring the similarity between two images [47].

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µx

2 + µy
2 + C1

)(
σx2 + σy2 + C2

) (7)

where x and y are the windows dimensions of the image, µ and σ are the average and
variance value of the specific dimension of the frame, respectively, σxy the covariance and
C1 and C2 two variables to stabilize the division with weak denominator.

Based on the previous considerations, preliminary tests were carried out at λ = 1.4
to determine, from the original images, the method structure, namely, the most suitable
steps-sequence (Table 2) according to the purpose of the work.

Table 2. List of the analyzed cases to determine the best algorithm sequence for the proposed method.

Cases Sequences

A BIMEF
B DEHAZING
C BIMEF+DEHAZING
D DEHAZING + BIMEF
E BIMEF+DEHAZING+DENOISING

For each evaluated combination (single step or multiple steps), Table 3 shows the PSNR
and SSIM values used to determine the method structure. At each specific CAD aED (after
end of discharge), reported in Table 3, PSNRs and SSIMs are computed as the average value
of 63 PSNRs and SSIMs (equal to the number of consecutive recorded combustion events).
For sake of completeness, Table 3 displays, through images of the combustion flame, the
outputs of the algorithms reported in Table 2. The combination showing the highest values
PSNR and SSIM has been chosen. Single step procedures [(BIMEF(A) and DEHAZING (B)]
result in being unfit to guarantee filtered images simultaneously characterized by high
values of fidelity (high SSIM and high PSNR).

The two-step procedure (C combination) has been chosen since it presents both the
highest value of SSIM and PSNR if compared to the ones obtained using D. Once the
most suitable sequence is established, a denoising action is implemented to reduce the salt
and pepper noise which affect the dehazing process. This undesired effect could alter the
result in the subsequent binarization phase, detecting illuminated pixels belonging to the
background as a flame front. The FFDNet algorithm, proposed by Kai Zhang et al. [48],
is used in this work. Starting from the estimation of the mean noise level of the 20 frames
before the start of discharge, the algorithm subtracts it from each frame of the recorded
series. The algorithm is a three-layered CNN, mainly composed of the following three
operations: convolution, batch normalization and Relu. It uses the orthogonal initialization
method with convolution filters that allow the noise level map to effectively control the
trade-off between noise reduction and detail retention. Denoising occurs via a non-uniform
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map that removes noise spatially variable. This latter step allowed to increase both SSIM
and PSNR of the combination C, as reported in the final combination E (Table 3).

Table 3. Outputs of the algorithms reported in Table 2, at each specific CAD aED. PSNRs and
SSIMs are computed as the average value of 63 values (equal to the number of consecutive recorded
combustion events).
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8 

 0.76 11.6 0.42 14.1 0.84 31.6 0.40 11.3 0.95 35.5 

      

15 

  0.78 11.6 0.44 13.8 0.85 32.7 0.41 11.4 0.95 38.1 

      

22 

  0.89 15.3 0.49 13.2 0.84 21.6 0.47 15.4 0.93 21.7 

      

29 

  0.91 17.3 0.64 12.6 0.87 19.8 0.48 17.3 0.92 19.8 

      

36 

  0.92 21.2 0.82 14.7 0.89 20.8 0.6 21.7 0.93 21.9 

      

 

Starting from the grayscale images (0–255), the last step involves the binarization
process to estimate the flame front area. The binarization threshold is automatically set by
the algorithm, analyzing the greyscale matrix of Figure 7C which is equal to the first grey
scale value with a non-zero number of pixels (Figure 7B) on the first image after the end
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of discharge (Figure 7A). The grey scale values of the subsequent images are expected to
be higher than the previous one, therefore the same selected threshold value is applied to
such frames.
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spots” that obscure the analyzed area, the code is also enriched with a contours function. 
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For sake of clarity, Figure A1 (Appendix A) displays both the results of the binariza-
tion process applied to the images of Table 3 and the one obtained using BR algorithm. 

Figure 7. The first image after the end of discharge (A) with the corresponding grey scale value
distribution of its pixels (B) and the grey scale histogram (C) utilized by the algorithm to set the
binarization threshold.

Since the combustion processes generate dirt residues that produce dirty “black spots”
that obscure the analyzed area, the code is also enriched with a contours function. Such
function highlights the external flame front by recognizing the morphology of the border,
and then fills any holes placed inside it. In such a way, it is possible to give a physical
meaning to the phenomenon. In fact, since the combustion process develops from a central
point and radially propagates, no holes inside the boundary are physically allowed. The
final procedure presented in this work is reported in Figure 8.
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Figure 8. Step-by-step results (from B–E) of the image analysis carried out with PA on the original
image (A).

For sake of clarity, Figure A1 (Appendix A) displays both the results of the binarization
process applied to the images of Table 3 and the one obtained using BR algorithm. Moreover,
Figure A2 shows the equivalent flame radius of the analyzed algorithm at λ = 1.4 to
highlight how each structure of Table 2 influences the final interpretation of the physical
phenomenon.

4. Test Campaign

The proposed method is fine-tuned working on the image-set acquired in BR. In this
wok, the capability of CSI and BDI to extend the lean optical engine stable limit with
respect to the traditional spark (λ = 1.4) is shown [14]. Test were carried out with the engine
operating at 1000 rpm and low load (IMEP = 4.5 bar at λ = 1) [14]. Both igniters were tested
by using extreme setting parameters. With a reasonable margin to prevent coil overheating
issues, the activation time ton was set equal to 1500 µs. For BDI, the maximum allowable Vd
(i.e., equal to 60 V) to prevent igniter malfunction was chosen, whereas CSI was featured
with the highest Vd not to face with arching events.
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The ignition timing was optimized for each operating point tested with the aim
to achieve the maximum brake torque (MBT) (reached with the combustion center
MFB50 ≈ 9 CAD aTDC) [37]. CSI and BDI showed similar lean tolerance, with CSI be-
ing able to reach a slightly higher value (λ = 1.60, against 1.55 of BDI).

For the sake of clarity, each tested point was considered stable if featured with an
CoVIMEP less than 4% [36].

PA methodology is developed starting from an image set of a BDI case, namely, λ = 1.4.
Upon being optimized, the algorithm was tested on the lean stable limits performed by the
ACIS (λ = 1.60 for CSI and 1.55 for BDI), for a total of three cases analyzed. For the sake of
completeness, the main technical characteristics of the abovementioned tested points are
reported in Table 4.

Table 4. Main technical characteristics of the experimental points of chosen to develop and test
CNNs methodology.

Igniter
Type

Engine Speed,
(pm)

λ,
(-)

Vd,
(V)

ton,
(µs)

IT,
(CAD aTDC)

IMEP,
(bar)

COVIMEP,
(%)

BDI
1000

1.4 60 1500 −36 3.6 1.5
BDI 1.55 60 1000 −53 3.2 2.3
CSI 1.6 17 1000 −47 3.1 3

5. Results and Discussion

The proposed method is preliminarily validated on a specific combustion event at
λ = 1.4, by comparing the PA output with binarized images obtained via human perception
and used as Target. The flame front contours are manually identified by the users on the
original images and the pixels inside such defined perimeter are white-filled, whereas
all the others, not belonging to the flame, are black-filled. The comparison is carried out
taking into account characteristic moments of the combustion development, from the kernel
formation to the optical limit occlusion (Figure 9). The corresponding binarized areas are
compared by evaluating the equivalent flame area Aeq (Equation (4)). For the sake of clarity,
each image of Figure 9 is cropped around the optical access boundary, corresponding to
an area of 2827 mm2. As visible, PA is able to reproduce the shape and area of the Target
images. The differences in terms of Aeq quantitatively show the effectiveness of PA. The
first image shows a slight overestimation (green flame area) of PA, testified by a difference
of 459 pixels, corresponding to 7.28 mm2 out of a total of 85 mm2. In other words, PA
performs an error of about 9% in estimating the Target area. In the following images, PA
slightly underestimates (violet flame area) the Target area; however, the error remains
between 4% and 10%.

Since the committed errors can be considered of circumstantial evidence, the PA
method is then applied to all the 63 combustions with λ = 1.4. The results are then compared
both with Target and the one of BR [14].

Starting from the 63 combustion cycles recorded by the high-speed camera during
the test (Table 4), all the equivalent flame radii (Req) of PA and BR cases are computed.
In Figure 10 the Req evolution is plotted from the instant of the end of the discharge
onwards (aED). The colored trend (red for BR and blue for PA) represents the average
values of 63 consecutive events. The proposed algorithm reproduces the evolution of the
flame front of BR. Moreover, it should be emphasized that PA curves bundles are less wide
and, therefore, characterized by lower dispersion. To highlight that, the boxplot of each
method displays, through vertical bars, the standard deviation (σReq) of the equivalent
flame radius Req. For clarity, σReq values are reported every 10 frames (corresponding to
approximately 3 CAD, from the first frame after the end of the discharge. Both methods
show a progressively increase in σReq up to 26.7 CAD. After that, σReq decreases as it
reaches the optical limit. In any case, the PA method performs lower dispersion values.
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Given that in BR the binarization threshold is substantially determined by the user,
the higher dispersion showed (Figure 10) could be due to the difficulty of choose the right
threshold capable to correctly estimate the Req of all events. Therefore, some combustions
previously considered by the BR method as misfires or anomalies, are instead considered
as physically valid by PA. To demonstrate it, Figure 11 displays the Req trends and cor-
responding original frames (after BIMEF operation, for sake of clarity) of the two cases
mistakenly recognized as non-physical by BR. For both cases analyzed, both methods
identify, even if with a slight delay (see the first images around 8 CAD aED), the first
moments of the flame front evolution. In any case, the PA method correctly tracks the
combustion evolution, unlike BR, which does not detect the flame front at many CADs.
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The corresponding equivalent flame radii (solid lines for PA and dashed one for BR) certify
this assertion, showing the progressive evolution of Req over the CAD.

Vehicles 2022, 4 14 
 

 

Given that in BR the binarization threshold is substantially determined by the user, 
the higher dispersion showed (Figure 10) could be due to the difficulty of choose the right 
threshold capable to correctly estimate the Req of all events. Therefore, some combustions 
previously considered by the BR method as misfires or anomalies, are instead considered 
as physically valid by PA. To demonstrate it, Figure 11 displays the Req trends and corre-
sponding original frames (after BIMEF operation, for sake of clarity) of the two cases mis-
takenly recognized as non-physical by BR. For both cases analyzed, both methods iden-
tify, even if with a slight delay (see the first images around 8 CAD aED), the first moments 
of the flame front evolution. In any case, the PA method correctly tracks the combustion 
evolution, unlike BR, which does not detect the flame front at many CADs. The corre-
sponding equivalent flame radii (solid lines for PA and dashed one for BR) certify this 
assertion, showing the progressive evolution of Req over the CAD. 

 
Figure 11. Evaluation of the flame front in order to evaluate the actual existence of the combustion 
detected as an anomaly by the BR code. 

Figure 12a shows the mean Req trend of the 63 combustions for PA (red curve) and 
BR (dashed blue line), to be compared with a Target (black markers). Each marker, relat-
ing to the specific frame, is determined by averaging 63 Req values. The procedure is man-
ually performed for each combustion event in order to test the validity of PA. However, 
it is unthinkable to apply this type of procedure when dealing with large amount of data. 

As shown in Figure 12a, both methods are able to correctly reproduce the Target 
trend and, in particular, PA shows a greater capability to detect in advance the kernel 
formation. To better underline that, the box plot in Figure 12a displays, through vertical 
bars, the relative percentual errors (Err = ห(Rୣ୯ୣ୲୦୭ୢ − Rୣ୯ୟ୰ୣ୲)/Rୣ୯ୟ୰ୣ୲ห*100) made by the meth-
ods in estimating the Target values. Higher Err values characterize the BR method in the 
first CAD, with peaks of up to 40%. From the 7.8 CAD aED, both methods well reproduce 
the Target. Anyway, the PA percentual error stands below 10%. The obtained results cer-
tify the validity of the PA. For that reason, the PA algorithm is applied to the extreme lean 
operating points of [5]. In order not to dwell on the discussion, Figure 12b,c only report 
the mean Req, at λ = 1.55 (BDI case) and λ = 1.60 (CSI case). Both methods correctly repro-
duce the Target trends, and, even in these cases, PA shows greater capability to detect the 
first moment of the kernel formation. This quality is essential prerogative to characterize 
the ACIS igniters capability to guarantee an earlier flame development in relation to the 
spark one. 

Figure 11. Evaluation of the flame front in order to evaluate the actual existence of the combustion
detected as an anomaly by the BR code.

Figure 12a shows the mean Req trend of the 63 combustions for PA (red curve) and BR
(dashed blue line), to be compared with a Target (black markers). Each marker, relating to
the specific frame, is determined by averaging 63 Req values. The procedure is manually
performed for each combustion event in order to test the validity of PA. However, it is
unthinkable to apply this type of procedure when dealing with large amount of data.

Vehicles 2022, 4 15 
 

 

As mentioned in the Method section, the low luminosity made it difficult to deter-
mine the correct binarization threshold for BR algorithm. Therefore, both the correspond-
ing Req curves are featured by delayed growths. However, from Req = 15 mm, the methods 
reproduce, with extreme accuracy, the Target curve evolution. 

 

(a) (b) (c) 

Figure 12. Evaluation of the Req trends, averaged over 63 cycles, in the three operating condi-
tions analyzed, i.e. (a) λ=1.4, (b) λ=1.55 and (c) λ=1.6.  

To demonstrate the effectiveness of PA to recognize in advance the front evolution, 
a complementary analysis is carried out (both Figure 13a,b, refer to λ = 1.6 case) by over-
lapping the corresponding images. The areas (red contour for Target, orange area for PA 
and white area for BR) are superimposed to visualize the flame-front evolution at each 
CAD. This additional analysis is necessary to highlight how the PA method, despite a 
slight underestimation of the front with respect to the Target, still obtains a much better 
result than the BR method, which, for about 15 CAD, practically does not detect the com-
bustion phenomenon (Figure 13). 
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As shown in Figure 12a, both methods are able to correctly reproduce the Target trend
and, in particular, PA shows a greater capability to detect in advance the kernel formation.
To better underline that, the box plot in Figure 12a displays, through vertical bars, the
relative percentual errors (Err =

∣∣∣(RMethod
eq − RTarget

eq

)
/RTarget

eq

∣∣∣∗100) made by the methods
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in estimating the Target values. Higher Err values characterize the BR method in the first
CAD, with peaks of up to 40%. From the 7.8 CAD aED, both methods well reproduce the
Target. Anyway, the PA percentual error stands below 10%. The obtained results certify the
validity of the PA. For that reason, the PA algorithm is applied to the extreme lean operating
points of [5]. In order not to dwell on the discussion, Figure 12b,c only report the mean Req,
at λ = 1.55 (BDI case) and λ = 1.60 (CSI case). Both methods correctly reproduce the Target
trends, and, even in these cases, PA shows greater capability to detect the first moment of
the kernel formation. This quality is essential prerogative to characterize the ACIS igniters
capability to guarantee an earlier flame development in relation to the spark one.

As mentioned in the Method section, the low luminosity made it difficult to determine
the correct binarization threshold for BR algorithm. Therefore, both the corresponding
Req curves are featured by delayed growths. However, from Req = 15 mm, the methods
reproduce, with extreme accuracy, the Target curve evolution.

To demonstrate the effectiveness of PA to recognize in advance the front evolution,
a complementary analysis is carried out (both Figure 13a,b, refer to λ = 1.6 case) by over-
lapping the corresponding images. The areas (red contour for Target, orange area for PA
and white area for BR) are superimposed to visualize the flame-front evolution at each
CAD. This additional analysis is necessary to highlight how the PA method, despite a slight
underestimation of the front with respect to the Target, still obtains a much better result
than the BR method, which, for about 15 CAD, practically does not detect the combustion
phenomenon (Figure 13).

The performances of the PA method are quantified through the performance evaluation
metrics [49] Equations (8)–(10), based on the raster values of the binarized images (Target).
The purpose is to evaluate any overestimation and/or underestimation performed by the
algorithms. The pixels correctly detected are indicated as true positive (TP), as true negative
(TN) those correctly indicated as not belonging to the edge, as false positive (FP) those
where the algorithm has mistakenly detected the edge and as false negative (FN) those
where the algorithm has mistakenly not detected the edge. Based on those metrics, the
accuracy, sensitivity, and specificity of the model were computed as below:

Sensitivity =
(TP)

(TP + FN)
(8)

Specificity =
TN

(TN + FP)
(9)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(10)
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To this end, for each of the three engine operating conditions tested (Table 4), the
corresponding confusion matrices were compiled. At each λ, Figures 14–16 report the
comparisons between the flame front binarized areas of BR and the ones obtained by
the compared algorithms. The overlap of the flame fronts is represented by white color,
the flame overestimates with green one, whereas violet represents the underestimates
made by the methods. The results obtained with PA achieve, on average, higher values
of the three parameters. In particular, the PA Sensitivity is higher at each case analyzed,
especially in darkest frames, i.e., during the kernel formation. Going into more detail, in the
λ = 1.4 case, both methods have Specificity greater than 99%. This result testifies that the
two algorithms are able to correctly identify those pixels not belonging to the edge, namely,
not overestimations of the flame front are performed. However, the proposed method
presents higher Sensibility levels, i.e., less flame front underestimations, especially after
the end of discharge. This confirms the PA ability to better identify, from the beginning,
the flame evolution if compared to the BR. The higher Accuracy (over 96%) of PA proves
the greater capacity to correctly detect both pixels belonging and not belonging to the
flame front. The above-mentioned differences between the compared methods are further
emphasized at lean conditions. PA performed confusion matrix parameters extremely
higher than BR, whose Sensitivity, in particular, is low in the first instants of flame evolution.
For instance, at λ = 1.6, the first two images show Sensitivity levels less than 20%, as opposed
to PA which instead shows values higher than 90%.
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6. Conclusions

This paper intends to propose a non-conventional method, based on the application
of photographic techniques and a convolutional neural network, for the analysis of com-
bustion events characterized by low-light conditions. The main target of this work is to
improve the quality of the flame-front detection, starting from the first moments in which
the kernel is generated. The proposed method was developed on image set of combustion
events promoted by advanced corona ignition systems. The experimental campaign was
carried out in a spark-ignition optical access engine and showed the capability of the ACIS
devices to extend the lean stable limit of the engine with respect to the traditional spark
(λ = 1.4). As the air/fuel ratio raises, the decreasingly luminosity of the flame front required
a careful choice of the setting parameters of the previously utilized semiautomatic method
and here used as a reference. This setting is needed to establish the correct threshold for
the flame front area estimation, to perform the corresponding binarized area and, finally,
to investigate the flame front evolution. Upon optimizing on a faint lean case, the PA
algorithm was tested on the lean stable limits performed by the ACIS. The estimation of
the equivalent frame radius Req was used to compare the results of both methods, with the
ones related to images manually binarized by the user and used as a target.
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1. Both algorithms were able to detect the flame front evolution by well reproduc-
ing the physical trend of the phenomenon. However, the PA curves bundles re-
sult in being less wide and therefore characterized by lower dispersion. Moreover,
some combustions previously considered by the BR method as misfires or anomalies
(3% of the total) are instead considered as physically valid by the proposed method.
These features allow us to characterize the effective capability of the tested igniter on
guarantying stable combustion onsets characterized by low cycle-to-cycle variability.

2. In all cases analyzed, both methods were able to correctly reproduce the Target trend,
and, in particular, PA showed a greater capability to detect in advance (up to 1500 µs),
the kernel formation if compared to BR. In this way, it is possible to carry out a more
detailed analysis of the igniter’s performance in the first moments of kernel formation.
This feature is of pivotal importance at the leanest operating conditions of interest
where BR showed its limits. Moreover, it allows for an almost-perfect correspondence
between indicating and imaging analysis.

3. The metric parameters confirmed the capability of PA to allow more reliable detection
of early flame kernel development. The proposed algorithm performed values of
Accuracy, Sensitivity, and Specificity higher on average if compared to the BR one.
The darker the case, the higher the differences with the BR method, which makes
the PA method more suitable for analyzing ultra-lean combustions, towards which
automotive research is increasingly focused.

4. Moreover, the capability of the PA algorithm to automatically estimate the binarization
threshold allows us to perform an analysis of the flame front evolution completely
independent from the user interpretation.

Author Contributions: Conceptualization, L.P. and F.R.; methodology, L.P. and F.R.; software, L.P.
and F.R.; validation, L.P. and F.R.; formal analysis, L.P.; investigation, L.P. and F.R.; data curation,
L.P. and F.R.; writing—original draft preparation, L.P. and F.R.; writing—review and editing, L.P.,
F.R., G.D. and F.M.; visualization, F.M.; supervision, F.M. and G.D.; project administration, F.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

ACIS Advanced Corona Ignition System
IMEP Indicated Mean Effective Pressure
aED After End of Discharge
IT Ignition Timing
AI Artificial Intelligence
MBT Maximum Brake Torque
BDI Barrier Discharge Igniter
MFB Mass Fraction Burned
BIMEF Bio-Inspired Multi-Exposure Fusion
MFB50 50% of Mass Fraction Burned
BR Base Reference method
ML Machine Learning
CAD Crank Angle Degree
OBD On Board Diagnostic
CFD Computational Fluid Dynamics
PFI Port Fuel Injection
CNN Convolutional Neural Network
PA Proposed Algorithm
CoVIMEP Covariance of IMEP
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Req Equivalent flame radius
CSI Corona Streamer-Type igniter
RF Radio Frequency
DI Direct Injection
SI Spark Ignition
ECU Engine Control Unit
TDC Top Dead Center
EGR Exhaust Gas Recirculation
t on Activation time of the igniter
FFDNet Fast Flexible Denoising Network
TN True Negative
FN False Negative
TP True Positive
FP False Positive
Vd Driving Voltage of the igniter
ICE Internal Combustion Engine

Appendix A
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Figure A1. Binarized frames of BDI 1.4 air/fuel ratio for the different cases studied. 
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Figure A2. Equivalent radii for the cases studied in Table 2. Five images are showed in order to 
visual estimate the corresponding flame front propagation. 
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