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Abstract: In the wake of previous works, the authors propose a new approach for the identification
and evolution of the flame front in an optical SI engine. Currently, it is an essential prerogative to
characterize the capability of innovative igniters to guarantee earlier flame development in critical
operating conditions, such as ultra-lean mixture, towards which automotive research is moving
to deal with the ever more stringent regulations on pollutant emissions. The core of the new
approach lies in the R-CNN Mask method. The latter consists of a conceptually simple and general
framework for object instance segmentation. It can efficiently detect objects contained in an image
while simultaneously generating a high-quality segmentation mask for each instance. In particular,
the aim this work is to develop an automatized algorithm for detecting, as objectively as possible, the
flame front evolution of lean/ultra-lean mixtures ignited by low-temperature plasma-based ignition
systems. The capability of the Mask R-CNN algorithm to automatically estimate the binarized area,
without setting a defined binarized threshold, allows us to perform an analysis of the flame front
evolution completely independent from the user interpretation. Mask R-CNN can detect the kernel in
advance and can identify events as regular combustions instead of misfires or anomalies if compared
to other traditional approaches. These features make the proposed method the most suitable option
to analysis the real behavior of the innovative ignition systems at critical operating conditions.

Keywords: Mask R-convolutional neural networks; combustion evolution; image analysis; machine
learning techniques; innovative igniters

1. Introduction

The even more stringent regulations on pollutant emissions are forcing the entire
research community to design cleaner and more efficient internal combustion engines
(ICEs) [1,2]. The investigation of the combustion process is an essential requirement to de-
velop innovative solutions that are able to address this challenge [3,4]. The synergy between
computational and experimental methods allowed in-depth analysis of the physical phe-
nomena occurring in spark-ignition (SI) engines [5,6]. Optical diagnostic techniques [7–9]
proved to be valid tools for examining the spatial and temporal evolution of the flame
front produced by innovative ignition systems called ACISs (Advanced Corona Ignition
Systems), which represent alternative solutions to the traditional spark for facing future
high-efficiency SI engines [10–12]. Such systems guarantee stable ignitions and strong com-
bustion processes characterized by low cycle-to-cycle variability even at critical operating
conditions, such as, for instance, highly diluted and/or extremely lean mixtures [13–15].
Idicheria [16] and Marko [17] performed morphological and indicating analysis, on opti-
cal access engines, of the flame front produced by corona-based ignition systems. They
found relevant improvements in EGR tolerance with respect to the traditional spark. The
research group of the Department of Engineering (University of Perugia) also recorded
extensions of the lean stable limit at different engine operating conditions [18–20] and using
different fuels [14]. The spatial and temporal analysis of the flame fronts allowed us to
correlate the velocity and repeatability of the combustion process with the robustness of
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the kernel formation event in these critical operating conditions [14,19]. The lean extension
may be an effective technology to meet the target of reducing pollutant emissions and
fuel consumption [18,21], and the correct detection of the first moment of kernel forma-
tion is crucial for characterizing the capability of an igniter to initiate robust combustions.
In ultra-lean conditions, the low luminosity of the recorded events hinders the correct
identification of the early flame development [22]. For such a reason, powerful tools are
required to overcome this issue and accomplish this task. Currently, artificial intelligence
(AI) is increasingly used for engine parameter control [23,24], image classification [25,26],
background noise removal [27,28], and object and edge detection [29–31]. Concerning the
latter operation, literature shows the promising results of deep learning algorithms based
on YOLO [32,33], SSD [34] and Mask R-CNN approaches [35,36]. Focusing on the latter,
Mask R-CNN [37] is a convolutional neural network based on Faster R-CNN [38]. This
neural network can detect targets and perform semantic segmentation at the same time.
Nie et al. [39] proposed a ship detection and segmentation method based on an improved
Mask R-CNN model, starting from an Airbus ship image dataset.

Concerning other tested methods such as PANet [40], SCRDet [41], the proposed
network achieved the greatest improvement—up to 6%—in detection and segmentation
accuracies. Vuola et al. [42] compared the capability of the U-Net approach and Mask
R-CNN when segmenting the nuclei instance of microscopy images deriving from the
biomedical field. The results show that Mask R-CNN is characterized by better recall and
precision, indicating that it can detect nuclei more accurately. Leger et al. [43], proposed
a pretrained Mask R-CNN to improve the quality control of wheel suspensions in the
automotive field. The target was to avoid issues deriving from lack of attention of the
operators in charge, too rapid inspection completion time, and non-detection of defects,
which can lead to high supplementary costs.

Within this context, the present work proposes to evaluate the capability of a Mask
R-CNN approach in detecting the flame front evolution of combustion processes started on
an optical access engine by a corona ignition system.

Starting from the results of [44], the proposed method is firstly tested on a weakly lean
case to determine the feasibility and effectiveness of the Mask R-CNN approach. After that,
the neural structure is tested up to the lean stable limits performed by the corona device.
The obtained results are compared with the performance of the algorithm described in [44]
and used as a Base Reference (BR) to quantify any differences and improvements.

The results show that Mask R-CNN is able to reproduce both the area and shape of
the flame front by showing percentual errors lower than 6% and accuracy levels higher
than 90% in the richest case analyzed. In the leaner cases, Mask R-CNN can detect in
advance, with about 1500 µs on average, the kernel formation if compared to BR. In the
leanest case, with respect to the BR method, Mask R-CNN identifies events as regular
combustion instead of misfires or anomalies. Even in such a case, Mask R-CNN reproduces
the flame front evolution with an accuracy level higher than 90%, showing improvements
of over 200% if compared to BR. Moreover, the capability of the Mask R-CNN algorithm
to automatically estimate the binarized area, without setting a defined threshold, allows
the authors to perform an analysis of the flame front evolution completely independent of
the user interpretation. The results of the present approach suggest the application of the
proposed method to other combustion engines operating in ultra-lean conditions such as,
for instance, gas-turbine combustors [45,46].

2. Experimental Setup
2.1. Optical Access Engine

Tests are carried out on a 500 cc single-cylinder research engine that is optically
accessible (Figure 1), with four valves, a pent-roof combustion chamber, and a reverse
tumble intake designed to operate. The internal cylinder bore is 85 mm, the piston stroke
is 88 mm and the compression ratio equals 8:8:1 (Table 1). Piston rings are realized in a
Teflon–graphite mix, a self-lubricant material, since dry contact between rings and cylinder
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liner is required. The engine speed control is guaranteed by An AVL 5700 dynamic brake
both in motored and firing conditions. A Mitsubishi KSN230B port fuel injector, placed
in the intake manifold, injects Standard European market gasoline (E5, with RON = 95
and MON = 85) at 3.8 bar of pressure. The air–fuel ratio (λ) is modified by varying the
fuel amount at a fixed throttle position to maintain the same turbulence level inside the
combustion chamber. The injector energizing time and the ignition timing are controlled
by an Athena GET HPUH4 engine control unit (ECU). A piezoresistive transducer (Kistler
4075A5) records the intake port pressure, while the in-cylinder pressure is measured by
a piezoelectric transducer (Kistler 6061 B). The indicated analysis is performed through a
Kistler Kibox combustion analysis system (temporal resolution of 0.1 CAD) which acquires
the λ measured by a fast lambda probe at the exhaust pipe (Horiba MEXA-720, accuracy
of ±2.5%), the pressure signals, the ignition signal from the ECU, the absolute crank
angular position measured by an optical encoder (AVL 365C), and the trigger signal used
to synchronize indicating and imaging data. The latter operation is performed by a Vision
Research Phantom V710 high-speed CMOS camera coupled with a Nikon 55 mm f/2.8 lens.

Figure 1. The main components of the optical access engine; focus on the optical configuration, which
allows acquisition of the flame front evolution inside the combustion chamber.

Table 1. Optical access engine features.

Feature Value and Unit

Displaced volume 500 cc

Stroke 88 mm

Bore 85 mm

Connecting Rod 139 mm

Compression ratio 8.8:1

Number of Valves 4

Exhaust Valve Open 13 CAD bBDC

Exhaust Valve Close 25 CAD aTDC

Inlet Valve Open 20 CAD bTDC

Intake Valve Close 24 CAD aBDC
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2.2. Imaging System

The natural luminosity of streamers and flames is recorded by a Vision Research
Phantom V710 high-speed CMOS camera coupled with a Nikon 55 mm f/2.8. For each
point tested, a maximum of 63 consecutive combustion events can be recorded. A common
trigger signal, derived from an automotive camshaft position sensor (Bosch 0232103052),
ensures the synchronization between imaging data and indicating data, thus allowing
matching of flame development 2D information (on a swirl plane) and in-cylinder pressure
trace of the same cycle (Figure 2). The high-speed camera starts recording when the rising
edge of the trigger signal is detected. A tunable pre-trigger length allowed the setting of
several frames to be acquired even before the rising edge. According to the characteristics
of the optical apparatus, each frame is composed of 512 × 512 pixels to detect the whole
flame evolution inside the optical limit. The maximum allowable sampling rate of 25 kHz is
used, corresponding to a temporal resolution of 0.24 CAD/frame at 1000 rpm. A summary
of the main optical parameter is shown in Table 2. An in-house MATLAB code is used
by the research group to extract quantitative information from the grayscale combustion
images acquired by the high-speed camera. In the following sections, a detailed description
of the algorithms used in [44] can be found.

Figure 2. Area of the combustion chamber detected by the high-speed camera.

Table 2. Optical access engine features.

Feature Value Unit

Image resolution 512 × 512 pixel

Sampling rate 25 kHz

Exposure time 49 µs

Bit depth 12 Bit

Spatial resolution 124 µm/pixel

Temporal resolution (@1000rpm) 0.24 CAD/frame

2.3. Igniter

The experimental campaign is developed by using a radio-frequency (RF) advanced
corona ignition system, i.e., the Barrier Discharge Igniter (BDI), provided by Federal Mogul
Powertrain, a Tenneco group company [47–49] (Figure 3). The igniter generates ionization
waves called streamers that start the combustion process using thermal, kinetic, and
transport effects [50,51]. When the applied electric field overcomes a critical threshold,
such streamers start from the annular grounded electrode placed on the base circumference
of the igniter and propagate in a volumetric way on the surface of the dielectric material
that covers the counter electrode (Figure 3) [52]. The presence of the dielectric layer is
crucial to prevent the streamer-to-arc transition, and therefore to maintain the discharge in
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low-temperature plasma mode [52]. The absence of a prominent ground electrode reduces
heat losses and avoids hot points for pre-ignition. Moreover, the power electrode is not
directly exposed to the action of excited species produced during the discharge.

Figure 3. Barrier Discharge Igniter with focus on the streamers’ evolution around the firing end.

Upon receiving the trigger signal from the ECU, the igniter is powered by a dedicated
electronic system (ACIS Box) at 1.04 MHz, corresponding to the resonance frequency of
the equivalent RLC circuit [47]. Corona behavior is controlled by managing two setting
parameters: duration (ton) and driving voltage (Vd) [53,54]. The first one represents the
activation time of the igniters and plays an important role in reducing the cycle-to-cycle
variability [55]. The second one, proportional to the electrode voltage [49], is responsible
for the corona development around the igniter copula. Once Vd is set, the electronic system
magnifies the voltage up to a proportional value (supplied voltage, Vs) and provides it to
the coil. This latter amplifies the voltage to the firing end up to Ve to produce the discharge.

3. Test Campaign

The algorithms compared in this work are tested on the image dataset of [44] (Table 3).
In such work, BDI proved to be able to extend the lean stable limit of the traditional spark (λ
= 1.6) up to λ = 1.8. Tests were carried out at low load and with the engine operating at 1000
rpm. The igniter was tested, with a safety margin to prevent device issues [47,49], using
extreme control parameters, i.e., ton = 1500 us and Vd = 60 V. All tests were carried out with
the ignition timing set to achieve the Maximum Brake Torque (MBT), which was found
with the APmax occurring around 11–14 CAD aTDC. Each tested point was considered
stable if featured with a CoVIMEP < 4% [14]. First, the Mask R-CNN approach was tested
on a weakly lean case (λ = 1.4). After that, the neural structure was tested up to the lean
stable limits performed by the corona device.

Table 3. Main technical characteristics of the experimental points chosen to develop and test the
methodology proposed in the present work.

λ IT, CAD aTDC IMEP, bar CoVIMEP, %

1.4 26 3.19 1.21

1.5 32 2.95 1.21

1.6 38 2.93 1.14

1.7 44 2.70 1.71

1.8 56 2.52 3.52

4. Methods

In this section, the structures and the functionalities of the algorithm used in [44] and
the one proposed in the herein work are discussed.

4.1. Base Reference

The algorithm dedicated to the post-processing of the combustion images performs
the operations of ignition detection, image filtering, contouring and binarization of the
frames (Figure 4) [14].
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Figure 4. Representation of the main post-processing steps applied to the original image.

Each recorded image is filtered by a 3 × 3 pixel median spatial filter, in order to
reduce the salt and pepper noise. In a centrally located sub-area of 220 × 220 pixel, the
determination of the average maximum gray level (MGLavg), in the first 50 frames, allows
us to detect the start of the ignition. MGLavg (Equation (1)) and its standard deviation
MGLmax,dev (Equation (2)) are determined by the following formulas:

MGLavg =
1
n

n

∑
j=1

MGLj (1)

MGLavg,dev
max
1≤j≤n

{
MGLj − MGLavg

}
(2)

where n is the dimension of the statistic window and j is the frame index in the statistic
window (j ≤ n). The detection condition of the first ignition event can be therefore expressed
as follows (Equation (3)):

MGLi > MGLavg + K × MGLmax,dev (3)

where i is the frame index after the statistics window (i > n) and K is an arbitrary constant.
The final process of binarization converts the grayscale images into black (unburned area
with pixel values equal to zero) and white (burned area with pixel values equal to one)
ones, to extract quantitative information expressed through the equivalent flame area Aeq
in mm2 (Equation (4)) and equivalent flame radius Req in mm.

Aeq = π ∗ r2
eq = nb∗sc2 (4)

where nb is the number of white pixels and sc the scaling factor [mm/pixel]. The binariza-
tion threshold is evaluated with a semi-automatic algorithm, proposed by Shawal et al. [56].
From the first ignition event detected, the threshold TH of each subsequent image is set
proportionally to the average gray level AVGj of the previous image (Equation (5)):

THj = AVGj × K1 + K2 (5)

The constant K1 e K2 are preliminarily chosen by the user on the basis of the algorithm
output, i.e., Req, to correctly reproduce the flame front evolution, minimizing any underes-
timates and overestimates of the flame front. Once the choice has been made, the method is
applied to all the combustions analyzed. At ultra-lean conditions, where the brightness
is very low, the instant of kernel formation can be demanding to identify [22] (Figure A1).
Different operators could produce quite different results; therefore, these results are of
questionable value. As a consequence, innovative algorithms are mandatory to overcome
these issues.
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4.2. Mask R-CNN

The Mask R-CNN approach used in this work to detect the evolution process of the
flame front follows the structure reported in [57], which efficiently detects objects in an
image while simultaneously generating a high-quality segmentation mask for each instance.
The method starts from the Faster R-CNN architecture, which presents two outputs for each
candidate object: a class label and a bounding-box offset [38]. In addition, a third branch
that outputs the object mask in a much finer spatial layout and a pixel-to-pixel alignment
operation have been added to the base structure. Faster R-CNN consists of two stages:
the first one (Region Proposal Network (RPN)) proposes candidate object bounding boxes,
while the second one performs classification and bounding-box regression, starting from
the features extracted from each candidate box using RoIPool [58,59]. RoIPool operation
extracts a small feature map from RoI and quantizes a floating-number RoI to the discrete
granularity of the feature map. This number is subdivided into quantized spatial bins, and
then the feature values covered by each bin are aggregated. The quantification process has
a negative effect on predicting pixel-accurate masks [57]. Mask R-CNN adopts the same
first RPN stage and, in a second stage, predicts in parallel the class box and box offset and
generates a binary m × m mask for each RoI using FCN [60]. Thus, unlike the class labels
and box offset, each layer in the mask branch maintains the explicit m × m object spatial
layout without collapsing into short output vectors by fully connected layers. To avoid
issues of RoIPool previously described, a RoIAlign layer removes the harsh quantization,
aligning the extracted features with the input [57]. The herein neural network structure
tested is based on convolutional ResNet-101-FPN backbone architectures, used for feature
extraction over an entire image, and on a network head for bounding-box recognition
(classification and regression) and mask prediction separately applied to each RoI [57].
ResNet-101 is a convolutional neural network that is 101 layers deep. Such pretrained
network can classify images into over 1000 object categories [61]. The Feature Pyramid
Network (FPN) uses top-down architecture with lateral connections to build an in-network
feature pyramid from a single-scale input [62]. ResNet-101-FPN backbone for feature
extraction with Mask R-CNN gives excellent gains in both accuracy and speed [62]. The
network head architecture includes the fifth stage of ResNet used in [63], to which a mask
branch is added. In other words, from the pretrained backbone [62], the training is realized
on the three layers of the network head [57] based on images of the flame front evolution.

The training session is realized as follows:

• For each analyzed case (s items), n images of p combustion events (i.e., events X and
Y of Figure 5b) are extracted from the high-speed camera and used as a dataset for
training the three layers of the network head. In other words, the neural architecture
is trained with s × p × n = 5 × 2 × 250 number of items.

• Each item (Figure 5a(A)), i.e., each image portraying the flame front, is segmented
(Figure 5a(B)) by the user via human perception on MakeSense.AI (https://www.
makesense.ai/) and then labeled.

• The output of each item is then imported into Google Colaboratory (https://colab.
research.google.com/) to train the neural architecture. GPU Tesla K80 with CUDA
11.2 is used.

• The fifth epoch of 10 is selected, and its weight is exported, showing the best perfor-
mance in terms of loss and val_loss [64].

The test session is realized, for each operating point, on different combustion events
(Figure 5a(D)) from the ones used for the training session (i.e., event Z of Figure 5b). To
compare the performance of Mask R-CNN with one of BR, a binarization process is applied
to estimate Req without setting any binarization threshold. The process is directly realized
on the obtained Mask, as reported in Figure 5a(F).

https://www.makesense.ai/
https://www.makesense.ai/
https://colab.research.google.com/
https://colab.research.google.com/
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Figure 5. (a) Extraction of the region of interest during the training session and determination of
the binarized image from the Mask. This latter is obtained during the test session starting from the
outputs of the training session. (b) Representation of data division to perform training and test of the
proposed algorithm.

5. Results

The proposed method is preliminarily validated on a specific combustion event at
λ = 1.4. In the test session, the output of the algorithm is compared with binarized images
obtained via human perception and used as Target. Figure 6 shows an example of the main
steps performed in the MATLAB environment. The grayscale raw image (Figure 6a(A))
is converted into a colored one (Figure 6a(B)) using jet colormap with a number of levels
equal to the bit profundity of the original image (255). This action proved to be of pivotal
importance for the determination of the flame contour. The latter is determined by the
user, on the colored image, by red contouring the flame front. To improve the capability of
the following step in binarizing the image, the pixels not belonging to the flame front are
black filled (Figure 6a(C)) based on a critical threshold. Such a value is proportional to the
average level (i.e., noise) of image with no flame evolution occurring (Figure 6b. Finally,
the pixels inside such a defined perimeter are white filled using the imbinarize function,
thus obtaining the image in Figure 6a(D).

The binarized images used as a target and the ones obtained from the proposed algo-
rithm are compared through Aeq by considering characteristic moments of the combustion
development, from the kernel formation until Req = 20 mm is reached. To this end, the abso-
lute relative percentage errors (%ErrAeq = |(Aeq,Mask − Aeq,Target)/Aeq,Target| × 100) made
by the methods in estimating the equivalent flame area of the target are used. Moreover,
the performance of the proposed method is quantified using the evaluation metrics [65],
based on the raster values of the binarized target images. The purpose is to evaluate any
overestimation and/or underestimation performed by the algorithm. The pixels that do
not belong to the edge are indicated as true negative (TN); true positive (TP) refers to the
ones that are correctly detected; false negative (FN) refers to those where the algorithm
has mistakenly not detected the edge; and true negative (TN) refers to those correctly
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indicated as not belonging to the edge. Based on those metrics, the accuracy, sensitivity,
and specificity of the model were computed as below:

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Figure 6. (a) Representation of the main steps used to obtain the target image to be compared to the
proposed algorithm output. (b) Definition of the noise level to be subtracted from (B) to obtain the
image (C). (A′) represents the image with no flame occurring used as a sample to define the noise
level. Figure (B′) shows, in false colors, image (A′), while (C′) is reported to emphasize, from the
minimum to the maximum level, the average level of (A′). The histogram on the right side shows the
level distribution of the pixels of (C′). Image (D) shows the result of the binarization process.

In Figure 7, the overlap of the flame fronts is represented by white and the flame
overestimates with green, whereas violet represents the underestimates made by the
method. The |%ErrAeq| values are colored by following the same criteria. Generally
speaking, the Mask algorithm reproduces both shapes and areas of the Target images.
Considering the equivalent flame area, up to five, CAD aEoD, Mask R-CNN overestimates
the front, while from seven CAD aEoD tends to perform underestimations. However, in
each analyzed crank angle, the %ErrAeq is always lower than 6% and, in particular, in
three of them, assumes values under 4%. The confusion matrix provides more detailed
information about the ability of the predicted images to reproduce the Target shape. In
other words, it allows quantifying any over and underestimations. Specificity levels, always
higher than 98.8%, indicate an excellent capability of Mask R-CNN to correctly detect all
the pixels not belonging to the flame edge, i.e., the overestimations can be considered
circumstantial evidence. Sensitivity levels, always higher than 93%, provide information
about the capability of Mask R-CNN to detect pixels inside the Target boundary; the lower
the sensitivity, the higher the underestimation produced. As reported, Mask R-CNN tends
to gain the underestimation of about 3.5% as CAD aEoD increases. To summarize, the
proposed method produces a slight overestimation in proximity to the kernel formation
and tends to slightly underestimate the front across its evolution. Accuracy levels that are
always higher than 97% prove the Mask R-CNN’s effectiveness to correctly detect pixels
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belonging and not belonging to the flame front. Based on these promising results, the
analysis was extended to the other cases displayed in the Test Campaign section.

Figure 7. Qualitative and quantitative comparison, at different CAD after the end of the discharge,
between the original images and the output of Mask R-CNN, made out to evaluate the effectiveness of
the proposed method. Overestimation of the flame front are indicated in green while underestimation
in purple.

First, at each λ analyzed, a random case is chosen from the recorded 63 to evaluate
the forecasting performance of Mask R-CNN against the one of BR. Figure 8 displays
the equivalent flame radius obtained from both structures (blue curve for BR and red
curve for Mask R-CNN) and the Target values, used as a yardstick (black circles), will be
compared. Such Reqs have been determined every five frames, according to the procedure
previously described. Generally speaking, it is possible to observe that as the mixture
leans out, slower combustion processes take place due to the absence of available fuel [18].
Moreover, the leaner the mixture, the lower the equivalent flame radius at the end of
discharge, synonymous of a combustion process just initiated but not already developed,
as in richer cases. For instance, to reach the optical limit, the 1.8 case takes about 55 CAD
more than the richest case tested. While the λ = 1.5 case reaches Req = 20 mm at about
18 CAD aEoD, the λ = 1.8 needs more than 40 CAD aEoD to reach the same radius value.
At λ = 1.5, the flame front is already well developed at the igniter deactivation, as is
visible from the Req which is higher than 8 mm regardless of the algorithm used. For
each case analyzed, Mask R-CNN is able to detect the kernel formation in advance. This
quality is an essential prerogative for characterizing the ACIS igniters’ ability to guarantee
earlier flame development. At λ = 1.5, considering the higher values of luminosity [22],
no appreciable differences are found between the compared approaches. With slight
underestimations, both algorithms prove to be capable of reproducing the Target trend,
especially after the Req = 20 mm. However, when leaning the mixture, the BR method tends
to amplify the underestimation of the flame front at the initial part of the kernel formation,
while Mask R-CNN satisfactorily reproduces the Target. As mentioned in the Methods
section, the low luminosity complicates the determination of the correct binarization
threshold for BR algorithm. Therefore, the corresponding Req curves are featured by
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delayed growths. The %ERR on the estimation of Req highlights these differences. %ERRReq
is intentionally reported without the absolute value to better distinguish overestimations
and underestimations. For sake of clarity, the results of the extreme operating conditions
tested are reported, i.e., λ = 1.5 and λ = 1.8. In the cases reported, both algorithms perform,
on average, underestimations, especially in the first part of the kernel formation, where the
detected luminosity is very low. However, it is evident that Mask R-CNN can limit these
setbacks with respect to BR.

Figure 8. Equivalent flame radius at different λ (a–d) produced by BR (blue curve) and Mask R-CNN
(red curve) to be compared with the Target (black round markers). The error in evaluation in the
equivalent flame radius is intentionally reported, at λ = 1.5 and λ = 1.8, without the absolute value to
better distinguish overestimations and underestimations produced by the compared algorithms.

To visualize the effectiveness of the proposed algorithm to recognize the front evolu-
tion in advance, a complementary analysis is carried out, at λ = 1.6 case, by overlapping the
corresponding binarized images (Figure 9). The areas (red contour for Target and white for
Mask R-CNN and BR) are superimposed to visualize the flame-front evolution at each CAD.
This additional analysis is necessary to highlight how the proposed method, despite a slight
underestimation of the front with respect to the Target, still obtains a much better result
than the BR method, which, for about 9 CAD, practically does not detect the combustion
phenomenon. At the end (30 CAD aEoD), as previously reported, both algorithms are able
to reproduce the Target front.
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Figure 9. Comparison between Mask R-CNN outputs and BR ones at different instants after the
end of the discharge at λ = 1.6. The red lines on the images indicate the contour of the Target flame
front whereas the white areas the flame front computed by the algorithms (upper Mask-RCNN and
bottom BR).

Considering that the aim of the research group is to investigate the igniter potentiality
in the leanest stable operating conditions, we tested the two compared methods on 30 events
at λ = 1.8 (Figure 10). The scope of that was to discover if each analyzed event can be
correctly detected by the proposed method.

Figure 10. Dispersion of the equivalent flame radius at λ = 1.8 for both analyzed algorithms ((a) for
base reference and (b) for Mask R-CNN). The blue curve and red curve indicate the corresponding
average value, while the green curve is the case detected as an anomaly from the BR Method. Images
on the right represent the flame front evolution of such a case that Mask R-CNN correctly detects.

Generally speaking, Mask R-CNN detects the flame formation in advance, with a
slight delay in achieving 30 mm compared with BR. Due to flame wrinkling, distortion and
convection, the flame average radius, which can be correctly detected without reaching the
optical boundary, is about 20 mm [19]. Therefore, Mask R-CNN is suitable for providing
detailed information about the igniter’s performance in the first moments of kernel for-
mation. Moreover, concerning the BR method, Mask R-CNN identifies events as regular
combustion instead of misfires or anomalies. In BR, the binarization threshold chosen by
the user could be potentially unsuitable for all the combustion events at the same λ because
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of the different brightness featuring such events. Figure 11 reports images, at different CAD
aEoD, of the original images of the flame front evolution of cases detected as anomalies
by BR. As can be observed, in localized regions of the chamber, the high luminosity level,
which is probably due to the unburned mixture and/or reflection phenomena, makes the
threshold (Equation (5)) unsuitable for detecting the evolution of the combustion process.
On the opposite, Mask can identify such cases. The object and contour identification
make the Mask R-CNN approach highly suitable for the kind of analysis proposed in the
present work.

Figure 11. Evaluation of the metric at λ = 1.8 for two cases. Green area represents the overesti-
mation performed by the tested method on detecting the target flame area; purple area, instead,
the underestimations.

For sake of completeness, we report the Sensitivity (Equation (6)), Specificity (Equation (7)),
and Accuracy levels (Equation (8)) of a random case, correctly identified by BR, at λ = 1.8,
are reported to better highlight the differences between the outputs of the compared
approaches. As observed, Mask R-CNN shows higher levels compared with BR, testifying
more sensibility in identifying the flame front evolution. In particular, the proposed method
always shows confusion matrix values close to 90% and over.

6. Conclusions

The present work proposes evaluating the capability of a Mask R-CNN approach
to detecting the flame front evolution of combustion processes started, on an optical
access engine, by a corona ignition system. The performances of the proposed method
are compared with the ones of the base reference algorithm, used in a previous work by
the same research group, to quantify any differences and improvements. The outputs of
both algorithms are compared with binarized images obtained via human perception and
used as a yardstick. The proposed method is first tested on a weakly lean case (λ = 1.4),
to determine the feasibility and effectiveness of the Mask R-CNN approach. After that,
the neural structure is tested up to the lean stable limits performed by the corona device
(λ = 1.8). The results show that:

At λ = 1.4, Mask R-CNN can reproduce both the area and shape of the target images.
The algorithm performs percentual error in estimating the equivalent flame area, which
is always lower than 6%. The confusion matrix shows values higher than 93%, thus
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testifying the capability of Mask R-CNN to reproduce the shape of the flame front with
extreme accuracy.

From λ = 1.5 to λ = 1.8, in each case analyzed, Mask R-CNN can detect the kernel
formation in advance compared to BR. For instance, at λ = 1.6, for about 9 CAD (≈1500 µs),
BR practically does not detect the combustion phenomenon. This quality is an essential
prerogative to characterize the corona igniters’ capability to guarantee an earlier flame
development. Moreover, this feature allows to approach an almost-perfect correspondence
between indicating and imaging analysis. At λ = 1.5, considering the higher values of lumi-
nosity, no appreciable differences are found between the compared approaches. Instead, by
leaning out the mixture and therefore the luminosity levels, BR tends to amplify the un-
derestimation of the flame front at the initial part of kernel formation, while Mask R-CNN
reproduces the Target, showing percentual errors 50% lower than BR at such initial stage.

The dispersion analysis, performed at λ = 1.8 on 30 combustion cases, highlights that
Mask R-CNN achieves advanced detection of the flame formation, with a slight delay in
achieving the optical boundary if compared to 30 mm. Due to flame wrinkling, distortion
and convection, the flame average radius that can be correctly detected without reaching
the optical boundary is about 20 mm. Therefore, Mask R-CNN can be considered more
suitable for this kind of analysis and for providing detailed information on the igniter’s
performance in the first moments of kernel formation if compared to BR. Moreover, always
with respect to the BR method, Mask R-CNN identifies events as regular combustion
instead of misfires or anomalies.

The confusion matrix at λ = 1.8 certifies the capability of Mask R-CNN to reproduce
the flame front evolution with an accuracy level higher than 95%. Moreover, in the cases
shown, Mask R-CNN shows enhancements in the Sensitivity level of BR by over than 200%.

The capability of the Mask R-CNN algorithm to automatically estimate the binarized
area, without setting a defined binarized threshold permits us to perform an analysis of the
flame front evolution that is completely decoupled from the user’s interpretation.
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Nomenclature

%ERR Percentage Errors.
ACIS Advanced Corona Ignition System.
AI Artificial Intelligence.
aEoD After End of Discharge.
BDI Barrier Discharge Igniter.
BR Base Reference method.
CAD Crank Angle Degree.
CoVIMEP Covariance of IMEP.
CSI Corona Streamer-Type igniter.
DI Direct Injection.
ECU Engine Control Unit.
EGR Exhaust Gas Recirculation.
FPN Feature Pyramid Network.
IMEP Indicated Mean Effective Pressure.
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IT Ignition Timing.
MBT Maximum Brake Torque.
MFB Mass Fraction Burned.
MON Motor Octane Number.
PFI Port Fuel Injection.
R-CNN Region-based Convolutional Neural Network.
Req Equivalent flame radius.
RF Radio Frequency.
Roi Region of Interest.
RON Research Octane Number.
RPN Region Proposal Network.
SI Spark Ignition.
TDC Top Dead Center.
ton Activation time of the igniter.
FN False Negative.
FP False Positive.
ICE Internal Combustion Engine.
TN True Negative.
TP True Positive.
Vd Driving Voltage of the igniter.

Appendix A

Figure A1. (a) Examples of Req not suitable for reproducing the increasing trend of the flame radius
during the development of the combustion process and Req (solid lines) that may be considered
potentially suitable for reproducing the same combustion physical phenomenon. (b) The figures on
the right depict the contouring process, for the potentially right cases, applied to detect the capability
of BR in reproducing the flame front of the original images. (K1

3, K2
3) choice allows us to better

reproduce the flame front, and therefore can be considered the best choice to select.
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