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Abstract: The energy storage system (ESS) plays a crucial role in electric vehicles (EVs),
impacting their performance and efficiency. While batteries are the standard choice for
energy storage, they come with drawbacks like low power density and limited life cycles,
which can hinder pure battery electric vehicles (PBEVs). To address these issues, a hybrid
energy storage system (HESS) that combines a battery with a supercapacitor provides a
more effective solution. The battery delivers consistent power, while the supercapacitor
manages peak power demands and regenerative braking energy. This study proposes a new
energy management strategy for the HESS, an advanced adaptive rule-based algorithm.
The results of the standard rule-based and adaptive rule-based algorithms are used to
verify the proposed control algorithm. The system was modeled in MATLAB/Simulink
and evaluated across three driving cycles—UDDS, NYCC, and Japan1015—while varying
states of charge for the supercapacitors. The findings indicate that the HESS significantly
alleviates battery stress compared to a pure battery system, enhancing both efficiency
and lifespan. Among the algorithms tested, the advanced adaptive rule-based algorithm
yielded the best results, increasing the number of viable drive cycles.

Keywords: batteries; supercapacitors; adaptive algorithm; hybrid energy storage; electric vehicle

1. Introduction
The growing interest in the energy storage system (ESS) stems from the need to shift

from fossil fuels to renewable resources for energy production, driven by two awarenesses:
the eventual depletion of petroleum reserves and the issue of global warming. This shift
has led to a significant increase in the number of electric vehicles (EVs) on the market,
due to advancements in power electronic converters, their eco-friendliness, and the ability
to regenerate energy through braking. EVs are more efficient than conventional vehicles,
require less maintenance due to fewer moving parts, and have a significant impact on
reducing air pollution. Since the 1970s, the amount of emissions produced worldwide by
burning fossil fuels has grown by 90% and, in 2014, emissions reached an all-time high of
approximately 36.1 Gt. A national goal in certain nations is now lowering CO2 emissions.
Canada, for instance, wants to reduce its greenhouse gas emissions from 2007 levels by
33 percent by 2020 and 80 percent by 2050. The transportation industry is one of the biggest
producers of greenhouse gases. The consumption of fossil fuels by internal combustion
engine (ICE) cars is the primary cause of 82.5 percent of transportation emissions in Canada,
which come from road transportation [1].
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Although batteries are the most common energy storage systems (ESSs) and show
significant potential for supporting clean energy [2], studies indicate that a single electric
system cannot yet match the performance of internal combustion engines [3–6]. Conse-
quently, considerable research has focused on improving battery cells for electric vehicle
(EV) applications. Lead–acid batteries account for 40–45% of global battery sales due to
their availability, reliability, and affordability [7]. Meanwhile, lithium-ion batteries are
widely used in battery electric vehicles (BEVs) for their superior specific energy and power
densities. Research suggests that BEVs require batteries with a specific energy of approxi-
mately 0.235 kWh/kg and a specific power of around 0.470 kW/kg to meet performance
targets. To cover a distance of 500 km, around 100 kg of lithium-ion batteries would be
needed, providing energy comparable to a full tank of gasoline. Additionally, studies
show that EV drivers travel an average of 20,000 km annually, using roughly 2.7 kWh for
every 50 km driven, highlighting the efficiency and suitability of lithium-ion batteries for
long-distance EV use [8,9].

The electric vehicle industry continues to face several challenges that demand the
attention of researchers and industry experts [5,10,11]. One of the key limitations of battery
electric vehicles (BEVs) is their limited life cycle and low power density. A promising
solution to these challenges is the adoption of a hybrid energy storage system for EV
applications [12–14]. A HESS integrates two or more types of energy storage devices,
such as batteries, fuel cells, flywheels, or supercapacitors, to enhance energy delivery
performance. In this system, a primary energy storage device, like a battery or fuel cell
with high energy density, provides a steady power supply to the load, while an auxiliary
device, such as a supercapacitor or flywheel with high power density, responds rapidly
to sudden changes in power demand. This synergy allows the HESS to efficiently handle
both continuous energy needs and dynamic load fluctuations, improving the overall
performance and longevity of the system [15,16].

The HESS faces two primary challenges: selecting the appropriate topology and
developing an efficient energy management system (EMS). The EMS plays a critical role
in controlling the power flow between the HESS and the load, which directly impacts
system performance. Various control strategies, such as optimization-based and rule-based
methods, are employed to manage power distribution. The main goal of the EMS is to
improve the performance, efficiency, and lifespan of the HESS by ensuring smooth and
effective power flow management. However, implementing optimized control strategies
can be computationally intensive, presenting challenges in executing the EMS in real time
on a standalone embedded system.

Numerous studies have explored different topologies for battery–supercapacitor hy-
brid systems in electric vehicles [17–20]. Figure 1 illustrates various HESS topologies [21].
The simplest configuration, shown in Figure 1a, involves a direct connection between the
battery and supercapacitor, with a DC-DC converter managing power flow. However,
this setup restricts the supercapacitor’s performance and requires a full-sized DC-DC con-
verter to handle energy distribution [22,23]. The topology in Figure 1b improves safety
by ensuring that battery power remains within a safe operating range using a DC-DC
converter, while the supercapacitor acts as an energy buffer with a limited operational
range [19]. Figure 1c presents a widely adopted topology [24,25] where a DC-DC converter
is employed to interface the supercapacitor with the DC bus, enabling precise control
of power flow. This configuration allows the supercapacitor to operate across a broad
voltage range, which enhances overall system efficiency by reducing the load on the battery
and minimizing battery current. Additionally, this topology improves system reliability,
ensuring uninterrupted power flow even in the event of a DC-DC converter failure. Two
separate DC-DC converters, shown in Figure 1d,e, are utilized to regulate power flow from
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the battery and the supercapacitor independently [26,27]. The arrangement in Figure 1f is
subjected to the same limitations as the type in Figure 1d,e, where batteries and superca-
pacitors are connected in parallel via two DC-DC converters separately. This configuration
is called the active HESS.
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Figure 1. The main topologies for the HESS in the literature. (a) passive topology, (b) semi-active
topology type 1, (c) semi-active topology type 2, (d) active topology type 1, (e) active topology type 2,
(f) active topology type 3.

The energy management system is essential in active and semi-active topologies of
hybrid energy storage systems. Its main function is to distribute power between the battery
and supercapacitor, optimizing the overall performance of the HESS. EMS strategies for
electric vehicles (EVs) can be generally divided into three categories: optimization-based,
rule-based, and pattern-recognition approaches. Extensive research has outlined the unique
characteristics of each strategy. Figure 2 illustrates an overview of the main categories of
energy management systems.
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To maximize the benefits of combining multiple energy sources and enhance the life
cycle and system efficiency of electric vehicles, it is crucial to employ a suitable topology for
the HESS [28,29]. EV batteries typically have a lifespan from approximately 8 to 10 years,
determined by the loss in battery capacity compared to the initial capacity. An appropriate
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range for the percentage deterioration is generally considered to be between twenty and
thirty percent [30,31]. SOC functions mainly establish the power battery model. The state
of charge of the battery is determined by battery capacitance, the initial SOC value, and
battery current, which is used to identify the open circuit voltage and resistance value [32].

Two cascaded fuzzy logic controllers and model predictive control (MPC) are proposed
to regulate induction motor speed and minimize state of health (SOH) degradation and the
reduction of state of charge (SOC) for lithium-ion (Li-ion) batteries. The battery information
was used to tune the parameters of the MPC, where a fuzzy logic controller was used
to modify the MPC objective function. NEDC and US06 drive cycles were implemented
to validate the proposed controllers [33]. The fuzzy logic controller is proposed for the
HESS in [34], and the simulation results using Siemens Simcenter Flomaster and ADVISOR
programs in the New European Driving Cycle (NEDC) show that the HESS is effective,
reducing battery currents by approximately 29%, reducing battery heat generation by
46.84%, and minimizing capacity loss. The system also improves driving range by 3.4%
and lowers average energy consumption by 20.43%. An advanced adaptive controller and
a fuzzy adaptive controller were developed to manage the energy distribution between
the battery and the supercapacitor. The algorithms were tested on three real-world driving
cycles—uphill, downhill, and city tour—at three different speeds, 50 km/h, 60 km/h, and
70 km/h, to assess their performance. A new strategy integrates advanced fuzzy logic to
optimize braking force distribution under varying conditions for EVs [35]. This approach
contributes to sustainable electric vehicle performance and increased vehicle mileage.

A hybrid energy storage system with different batteries and supercapacitors for electric
buses is investigated in [36]. In addition to the prior comparison, an economic analysis
is conducted from the perspective of life cycle costs. According to the conclusion, the
option containing the (SCs/AGM batteries) is the best in terms of cost and is followed
by SCs and lithium-ion batteries. The control algorithms for the HESS proposed in [37]
Incorporate the road slope during the driving journey to optimize the driving range
of electric vehicles. A meta rule-based energy management strategy (EMS) for hybrid
electric vehicles is presented in [38]. It is intended to enhance battery performance and
energy efficiency without depending on predetermined driving patterns. Clustering and
feature selection based on mutual information is used to calculate the parameters of
the ideal energy management rule, which is represented as a segmented folding line by
assessing the outcomes of dynamic programming. The meta rule-based EMS exhibits
great computational efficiency appropriate for real-time applications and drastically lowers
Li-ion battery Ampere-hour throughput (up to 17% and 16.6%, respectively) in comparison
to DPR-based and LSTM-based EMSs.

Proportional integral (PI), model predictive control (MPC), and radial basis function
(RBF) controllers were tested for the HESS in [39]. The results demonstrate significant
improvements in energy efficiency, battery state of charge (SOC) management, and system
responsiveness, with the radial basis function (RBF) controller outperforming traditional
methods, particularly in dynamic and unpredictable conditions. The rule-based control
strategy is proposed to control energy flow and limit the power drawn from the battery
in the HESS of the EV. The fuzzy logic controllers are used alongside the rule-based
strategy to enhance the performance of the hybrid energy storage system and promote
more efficient energy usage in electric vehicles [40]. Additionally, the investigation explores
rule-based active power-sharing strategies in the HESS, where various methods were tried
to maximize power distribution between the battery and ultracapacitor according to load
fluctuations, peak load requirements, and state of charge (SOC). The results proved that the
HESS approach reduces battery stress while offering effective control that enhances system
stability and energy management [41]. Lastly, the adaptive rule-based energy management
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method is proposed to maximize the performance of the HESS [42]. According to the results
of the proposed approach, the HESS can decrease the average output power changing
rate of the battery by up to 76.5%, and it can also significantly reduce the average battery
current in both the propelling and regeneration modes.

2. System Structure and Modeling
In the literature, previous research on energy management systems for hybrid energy

storage systems in electric vehicles has often neglected the importance of regenerative
energy during deceleration in the driving cycle [43]. Neglecting this factor may lead to the
inability to absorb the regenerative energy during vehicle deceleration by the supercapaci-
tor, if the state of charge of the supercapacitor is at the maximum level. This study aims to
fill this gap by proposing an intelligent energy management system tailored for HESSs in
EVs, enabling the continuous capture of regenerative energy. The proposed EMS actively
estimates the amount of regenerative energy produced throughout the driving cycle and
modifies the control algorithm as needed. By optimizing the supercapacitor’s use to meet
the vehicle’s load current, the system keeps the state of charge below the maximum limit,
ensuring there is enough capacity to store regenerative energy. This smart control strategy
promotes efficient energy recovery during deceleration, enhancing the advantages of the
regenerative braking system.

2.1. Hybrid Energy Storage System Model

This study utilizes a semi-active topology for hybrid energy storage systems to meet
the energy demands of electric vehicles (EVs). An energy management system is proposed
to optimally distribute energy between the battery and supercapacitor, effectively limiting
battery current. The supercapacitor stores regenerative energy during braking and provides
the peak current required by the EV, while the battery supplies power during low traction
and steady-state operation. The control algorithm adjusts the duty cycle of the DC-DC
converter to regulate the energy flow from the supercapacitor. Figure 3 illustrates the HESS
architecture for the EV used in this study.
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Tables 1 and 2 show the main parameters of the battery model and capacitor used in
the current research.
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Table 1. Battery model parameters.

Parameter Value

Capacity 100 Ah
Nominal voltage 500 V
Internal resistance 0.125 Ohm
Stored energy 50 kWh
Initial BSOC(0) 0.95

Table 2. Supercapacitor model parameters.

Parameter Value

Rated voltage 300 V
Resistance 2.1 mΩ
Rated capacitance 100 F
Initial SCsoc(0) 0.92, 0.51, 0.20

2.2. Electric Vehicle Model

To achieve lower energy usage, an accurate model of EV performance is necessary.
While some researchers have utilized ADVISOR to do thorough performance assess-
ments for a variety of vehicles, others have used MATLAB/Simulink to construct the
EV model [4,44–48]. A thorough explanation of the vehicle dynamic system is presented
in [10,49,50]. Table 3 shows the primary parameters of the EV model; the completed model
of the EV’s HESS using MATLAB/Simulink is shown in Figure 4 [28,37,51]. The energy
consumption of an electric vehicle is intricately linked to its operating speed due to several
factors that influence overall efficiency. At higher speeds, the aerodynamic drag increases
exponentially, requiring the vehicle’s motor to work harder to overcome this resistance [52].
Furthermore, an accurate model of the DC-DC converter in an EV is essential because
it governs the conversion of electrical power between the battery, motor, and auxiliary
systems [53].
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Table 3. Electric vehicle model parameters.

Parameter Value

Vehicle mass (Mv) 1325 kg
Frontal area (Af) 2.57 m2

Drag coefficient (Cd) 0.26
Wheel radius 0.3 m
Gravity acceleration (g) 9.8 ms−2

Rolling resistance (µrr) 0.0048
Air density (ρ) 1.29 kg·m−3

3. Designing the Energy Management System of the HESS
Designing a hybrid energy storage system that combines batteries and supercapacitors

for electric vehicles poses a significant challenge in real-time energy demand allocation
between the primary and auxiliary storage devices. This study investigates a semi-active
hybrid energy storage system configuration tailored for EV applications. In real-time
control situations, energy management systems typically prefer rule-based strategies over-
optimization methods, primarily because the optimization process requires a significant
amount of computation time. The proposed advanced adaptive rule-based control algo-
rithm presents a practical and efficient solution for managing energy in hybrid energy
storage systems in real-time.

Three different rule-based algorithms were tested in this research: a standard rule-
based algorithm, an adaptive rule-based algorithm, and an advanced adaptive rule-based
algorithm. These algorithms were tested in various states of supercapacitor charge to
validate the proposed control algorithms of the HESS in different situations. In the first
case, the initial state of charge (SOC) for the supercapacitors was high, at 92%; in the second
case, it was moderate, at 51%; and in the third case, it was low, at 20%. The selection of
specific drive cycles for testing in automotive and emissions research is crucial to ensure
that the results represent real-world driving conditions. In this research, the drive cycles
selected are the Urban Dynamometer Driving Schedule (UDDS), the New York City Cycle
(NYCC), and the Japan 10-15 Mode Cycle (Japan1015). These drive cycles are commonly
used and well recognized for several reasons, including ensuring geographic diversity,
which is essential because driving patterns, road infrastructure, and emissions regulations
can vary significantly between regions.

3.1. The Standard Rule-Based Algorithm of the HESS

The hybrid energy storage system in [51] was developed to manage power flow using
two approaches based on a Rule-Based Linear Quadratic Regulator. Typically, the bat-
tery is responsible for meeting low load demands, while supercapacitors are employed
to address high load demands. The HESS for electric vehicles was simulated using MAT-
LAB/Simulink. The effectiveness of the algorithms was assessed across three standard
driving cycles: the Urban Dynamometer Driving Schedule (UDDS), the New York City
Cycle (NYCC), and the Japan1015 driving cycle.

Instantaneous allocation of the HESS current for various drive cycles is achieved
through the standard rule-based algorithm. The algorithm is designed to maintain the
battery current (Ib(t)) at a specified target value (Ib_max) while effectively distributing
the vehicle load current between the battery and supercapacitor throughout any driving
cycle. It manages the energy flow within the hybrid energy storage system across various
operational scenarios by taking into account the total demand load current (It(t)), the state
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of charge of the supercapacitor (SOCsc), and the direction of energy flow. The operational
parameters of the algorithm are defined as per Equation (1)

If (I t > 0) and (It < Ib_max) then Ico = 0
If (I t > 0) and

(
It > Ib_max

)
and (SOCSC > SOCSC_min) then Ico = (It − Ib_max)

If (I t < 0) and (SOCSC < SOCSC_max) then Ico = It

(1)

where

It ≈ total load current of the vehicle.
Ico ≈ output current of DC-DC converter.
Ib_max ≈ maximum battery current.
Vco ≈ output voltage of DC-DC converter.
SOCB ≈ battery state of charge.
SOCSC ≈ supercapacitor state of charge.

The standard rule-based algorithm enables the HESS to deliver current from the battery
to the EV when the total load current of the EV is below the maximum battery current
value (Ib_max). It also restricts the battery current to Ib_max during high-load drive cycles.
Furthermore, the algorithm utilizes the supercapacitor to capture all regenerative energy
during deceleration in the drive cycle. The amount of regenerative energy absorbed by the
supercapacitor, ranging from its initial voltage to its final voltage, is computed according
to Equation (2). Additionally, the algorithm establishes the state of charge condition for
the supercapacitor, as specified in Equation (3). Figure 5 illustrates the flowchart for the
standard rule-based algorithm.

∆EnSC =
C0

2
(Vsc(0)

2 − Vsc(t)
2) (2)

SCsoc_max ≥ SCsoc > SCsoc_min (3)
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3.2. The Adaptive Rule-Based Algorithm of the HESS

An adaptive control method is employed to enhance system performance by dynami-
cally adjusting the algorithm’s coefficients. This adaptive algorithm determines the total
current demand required for a specific drive cycle, as well as the regenerative current,
by taking into account factors such as the electric vehicle (EV) model parameters, vehicle
speed, and road slope. In the HESS, the allocation of energy between the battery and
the supercapacitor is independently optimized. The energy management system (EMS)
estimates the potential regenerative energy and establishes an energy-sharing ratio (R)
between the battery and the supercapacitor, ensuring the HESS operates efficiently and
that the supercapacitor captures all regenerative energy during the chosen drive cycle.
The energy-sharing ratio (R) in the adaptive rule-based algorithm is adjusted based on
the drive cycle. Figure 6 presents the flowchart of the adaptive rule-based algorithm. The
supercapacitor supports the battery by supplying the electric vehicle (EV) load current,
with the energy-sharing percentage (R) varying across different drive cycles. The EMS
continuously monitors the actual EV load current and the supercapacitor’s state of charge
to determine the appropriate energy-sharing ratio within the HESS.
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3.3. The Advanced Adaptive Rule-Based Algorithm of the HESS

The proposed adaptive rule-based algorithm determines the energy-sharing ratio (R)
between the battery and supercapacitor by estimating the regenerative energy from the
selected drive cycle. In the enhanced version of this algorithm, both the energy-sharing
ratio (R) and the maximum allowable battery current (Ib_max) are adjusted based on the
amount of regenerative energy available in the drive cycle. This approach ensures that the
supercapacitor handles peak loads and works alongside the battery to manage the transient
load demands of the electric vehicle (EV). The primary goal of this control algorithm is to
maximize the reuse of regenerative energy within the same drive cycle, ensuring sufficient
capacity to absorb energy during acceleration. Figure 7 illustrates the flowchart of the
proposed advanced adaptive rule-based algorithm.
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4. Results and Discussion
4.1. The Results of the Standard Rule-Based Algorithm

This section analyzes the performance of the standard rule-based algorithm for the
hybrid energy storage system across three different standard drive cycles: UDDS, NYCC,
and Japan1015. The total current demand in the electric vehicle (EV) varies in response to
the vehicle’s speed profile. In this setup, the battery supplies the low load current, while
the supercapacitor manages the peak load demands. Additionally, during deceleration,
the supercapacitor captures regenerative energy. Figure 8 illustrates the EV’s overall load
current, along with the corresponding currents from the battery and supercapacitor, across
the UDDS, NYCC, and Japan1015 drive cycles.
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Figure 8. HESS currents during first case using the standard rule-based algorithm for (a) UDDS,
(b) NYCC, and (c) Japan1015.

Figure 9 shows the variations in the battery state of charge in the UDDS, NYCC, and
Japan1015 drive cycles. After completing one cycle in the first case, the final battery SOC is
0.9258 for UDDS, 0.947 for NYCC, and 0.942 for Japan1015.
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Figure 9. The battery states of charge in the three cases using the standard rule-based algorithm for
UDDS, NYCC, and Japan1015 drive cycles.

Figure 10 illustrates the changes in the supercapacitor’s state of charge across the three
cases during the UDDS, NYCC, and Japan1015 drive cycles. The supercapacitor discharges
to supply high-load currents and recharges by capturing regenerative energy. In the first
case, the final state of charge reaches a peak of 0.95 for all drive cycles, showing that the
HESS with the rule-based algorithm efficiently recovers energy. Additionally, in the second
and third cases, the supercapacitor gains energy during the UDDS, NYCC, and Japan1015
drive cycles.
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Figure 10. The supercapacitor states of charge in the three cases using the standard rule-based
algorithm for UDDS, NYCC, and Japan1015 drive cycles.

Table 4 provides a summary of the energy consumption for the HESS, battery, and
supercapacitor under the standard rule-based algorithm during the UDDS, NYCC, and
Japan1015 drive cycles. In the first scenario, battery consumption rates were 2.55%, 0.32%,
and 0.84% for the UDDS, NYCC, and Japan1015 cycles, respectively. In the second and
third scenarios, battery consumption percentages increased across all three drive cycles:
UDDS, NYCC, and Japan1015.

Table 4. HESS results using the standard rule-based algorithm for UDDS, NYCC, and Japan1015
drive cycles.

Initial SCsoc(0) UDDS NYCC Japan1015

1st Case
SCsoc = 92%

SOCb(t) % 92.58 94.7 94.2
SOCsc(t) % 95 95 95
Battery Consumption % 2.55 0.32 0.84
Supercapacitor Consumption % −3 −3 −3

2nd Case
SCsoc = 51%

SOCb(t) % 92.37 94.54 94.09
SOCsc(t) % 62.55 61.22 59.68
Battery Consumption % 2.77 0.48 0.96
Supercapacitor Consumption % −21.83 −19.24 −16.24

3rd Case
SCsoc = 20%

SOCb(t) % 92.01 94.53 94.09
SOCsc(t) % 54.69 38.08 35.43
Battery Consumption % 3.15 0.5 0.96
Supercapacitor Consumption % −171 −89 −76

4.2. The Results of the Adaptive Rule-Based Algorithm

This section examines the HESS performance using the adaptive rule-based algorithm
across three different drive cycles. During these cycles, the energy sharing between the bat-
tery and supercapacitor under low load conditions is continuously estimated and adjusted
according to the vehicle’s speed. Figure 11 displays the EV’s total load current, as well as
the battery and supercapacitor currents for the first case throughout the UDDS, NYCC,
and Japan1015 cycles. The results demonstrate that the adaptive rule-based algorithm
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effectively minimized battery strain compared to a system using only a battery, keeping
the battery current within the maximum limit (Ib_max) during the drive.
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Figure 11. HESS currents during first case using the adaptive rule-based algorithm for (a) UDDS,
(b) NYCC, and (c) Japan1015.
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Figure 12 shows the variations in battery state of charge (SoC) across three scenar-
ios during the UDDS, NYCC, and Japan1015 drive cycles using the adaptive rule-based
algorithm. At the end of a single drive cycle in the first scenario, the final battery SoC is
0.9285 for UDDS, 0.9478 for NYCC, and 0.9426 for Japan1015. In comparison, the standard
rule-based algorithm resulted in higher battery energy consumption than the adaptive
algorithm. Furthermore, battery consumption remained the same in the first and second
scenarios for all three drive cycles but increased in the third scenario.
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Figure 12. The battery states of charge in the three cases using the adaptive rule-based algorithm for
UDDS, NYCC, and Japan1015 drive cycles.

In the first scenario, the final supercapacitor SoC for the UDDS, NYCC, and Japan1015
cycles is 0.95, 0.9308, and 0.9365, respectively. These findings indicate that the supercapac-
itor within the HESS system, managed by the adaptive rule-based algorithm, effectively
captures and stores energy across all tested drive cycles. Figure 13 illustrates the changes
in the supercapacitor SoC across the three scenarios for the UDDS, NYCC, and Japan1015
cycles. The results highlight the supercapacitor’s efficiency in balancing energy demands
and maximizing regenerative energy recovery under varying load conditions.

Table 5 summarizes the total energy consumption of the battery and supercapacitor
across three different initial states of charge (SOCs) for the supercapacitor: high, moderate,
and low, using the adaptive rule-based algorithm during the UDDS, NYCC, and Japan1015
drive cycles. This adaptive algorithm is designed to optimize the use of regenerative energy
stored in the supercapacitor to assist the battery in meeting the load demands of the electric
vehicle (EV). The results from all three cases demonstrate that the adaptive rule-based
algorithm effectively manages the supercapacitor’s energy across various SOC levels.

Table 5. HESS results using the adaptive rule-based algorithm for UDDS, NYCC, and Japan1015
drive cycles.

Initial SCsoc(0) UDDS NYCC Japan1015

1st Case
SCsoc = 92%

SOCb(t) % 92.58 94.78 94.26
SOCsc(t) % 95 93.08 93.65
Battery Consumption % 2.55% 0.23% 0.78%
Supercapacitor Consumption % −3 −0.91% −1.53%
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Table 5. Cont.

Initial SCsoc(0) UDDS NYCC Japan1015

2nd Case
SCsoc = 51%

SOCb(t) % 92.58 94.78 94.26
SOCsc(t) % 55.68 52.7 53.62
Battery Consumption % 2.55% 0.23% 0.78%
Supercapacitor Consumption % −8.45% −2.63% −4.44%

3rd Case
SCsoc = 20%

SOCb(t) % 92.18 94.75 94.25
SOCsc(t) % 48.39 24.88 26.11
Battery Consumption % 2.97% 0.26% 0.79%
Supercapacitor Consumption % −140% −23.5% −29.6%
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Figure 13. The supercapacitor states of charge in the three cases using the adaptive rule-based
algorithm for UDDS, NYCC, and Japan1015 drive cycles.

4.3. The Results of the Advanced Adaptive Rule-Based Algorithm

This section evaluates the performance of the HESS using the advanced adaptive rule-
based algorithm across three standard drive cycles. In these cycles, both the battery and
supercapacitor handle the low load current, while the supercapacitor manages peak load
demands and captures regenerative energy during deceleration. The advanced adaptive
rule-based algorithm was specifically designed to extend the number of drive cycles. The
key difference between the advanced adaptive and the standard adaptive algorithms lies
in their flexibility. While the standard adaptive algorithm adjusts only the energy-sharing
percentage between the battery and supercapacitor, the advanced adaptive algorithm
dynamically modifies both the maximum battery current and the energy-sharing ratio in
response to the drive cycle. For the UDDS, NYCC, and Japan1015 cycles, the energy-sharing
percentages between the battery and supercapacitor are 0.12, 0.6, and 0.26, respectively.
Figure 14 presents the total EV load current, along with the battery and supercapacitor
currents, for the first scenario during the UDDS, NYCC, and Japan1015 drive cycles.

Figure 15 illustrates the changes in battery state of charge (SoC) across three scenarios
during the UDDS, NYCC, and Japan1015 drive cycles. In the first scenario, the final
battery SoC after a single drive cycle is 0.9267 for UDDS, 0.9480 for NYCC, and 0.9431 for
Japan1015. Compared to the standard rule-based and adaptive rule-based algorithms, the
advanced adaptive rule-based algorithm resulted in lower battery energy consumption
across different supercapacitor SoC levels during the three standard drive cycles.
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Figure 14. HESS currents during first case using the advanced adaptive rule-based algorithm for
(a) UDDS, (b) NYCC, and (c) Japan1015.
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Figure 15. The battery states of charge in the three cases using the advanced adaptive rule-based
algorithm for UDDS, NYCC, and Japan1015 drive cycles.

On the other hand, the final SoC of the supercapacitor in the first scenario is 0.9286
for UDDS, 0.9256 for NYCC, and 0.9263 for Japan1015. These results indicate that the
supercapacitor within the HESS, managed by the advanced adaptive rule-based algorithm,
effectively captures and stores energy throughout all tested drive cycles. Figure 16 shows
the variations in the supercapacitor’s SoC across the three scenarios during the UDDS,
NYCC, and Japan1015 drive cycles.
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Table 6 presents the total energy consumption of the battery and supercapacitor in
the HESS, which employs the advanced adaptive rule-based algorithm, across three dif-
ferent initial states of charge (SOCs) for the supercapacitor during the UDDS, NYCC, and
Japan1015 drive cycles. In the first scenario, the battery energy consumption is recorded
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at 2.45% for UDDS, 0.21% for NYCC, and 0.75% for Japan1015. These findings demon-
strate that the advanced adaptive rule-based algorithm significantly reduces battery energy
consumption compared to both the standard and adaptive rule-based algorithms across
all drive cycles. The proposed advanced algorithm effectively manages energy sharing
between the battery and supercapacitor in the HESS for an electric vehicle (EV), accommo-
dating various initial SOC levels of the supercapacitor.

Table 6. HESS results using the advanced adaptive rule-based algorithm for UDDS, NYCC, and
Japan1015 drive cycles.

Initial SCsoc(0) UDDS NYCC Japan1015

1st Case
SCsoc = 92%

SOCb(t) % 92.67 94.8 94.31
SOCsc(t) % 92.86 92.56 92.63
Battery Consumption % 2.45% 0.21% 0.75%
Supercapacitor Consumption % −0.67% −0.35% −0.42%

2nd Case
SCsoc = 51%

SOCb(t) % 92.67 94.8 94.31
SOCsc(t) % 52.28 51.85 51.96
Battery Consumption % 2.45% 0.21% 0.75%
Supercapacitor Consumption % −1.77% −1% −1.2%

3rd Case
SCsoc = 20%

SOCb(t) % 92.21 94.76 94.25
SOCsc(t) % 47.02 24.6 26.11
Battery Consumption % 2.93% 0.25% 0.79%
Supercapacitor Consumption % −133% −22.08 −29.6%

Finally, the performance of the proposed algorithm was evaluated through three
standard drive cycles: UDDS, NYCC, and Japan1015. Figure 17 illustrates the comparison
of the battery states of charge using the standard rule-based algorithm, the adaptive rule-
based algorithm, and the advanced adaptive rule-based algorithm.
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Table 7 presents a summary of the potential cycles achieved across three distinct cases
utilizing the standard rule-based algorithm, the adaptive rule-based algorithm, and the
advanced adaptive rule-based algorithm.

Table 7. The estimated number of available cycles using the presented algorithms.

Drive Cycle Initial SCsoc(0) Standard
Rule-Based

Adaptive
Rule-Based

Advanced
Adaptive

Rule-Based

UDDS
1st Case 29 29 30
2nd Case 27 29 30
3rd Case 24 25 26

NYCC
1st Case 234 326 357
2nd Case 156 326 357
3rd Case 150 288 300

Japan1015
1st Case 89 96 100
2nd Case 78 96 100
3rd Case 78 95 95

In the first case, the standard adaptive rule-based algorithm enabled the HESS of EV
to complete 29 drive cycles for UDDS, 234 for NYCC, and 89 for Japan1015. In contrast, the
advanced rule-based algorithm significantly enhanced these results, allowing for 30 drive
cycles for UDDS, 357 for NYCC, and 100 for Japan1015. Moreover, this advanced algorithm
also proved effective in extending the number of drive cycles in the second and third
cases for all three cycles: UDDS, NYCC, and Japan1015. This demonstrates the advanced
adaptive rule-based algorithm’s superior capability in optimizing energy management and
performance in varied driving conditions.

5. Conclusions
This research presents a novel energy management strategy for hybrid energy storage

systems in electric vehicles, utilizing a multi-layer control approach. This study introduces
three distinct types of rule-based algorithms: a standard rule-based algorithm, an adap-
tive rule-based algorithm, and an advanced adaptive rule-based algorithm. The standard
rule-based algorithm operates with fixed parameters that do not account for the topograph-
ical characteristics of the route. In contrast, the adaptive rule-based algorithm adjusts its
parameters based on the amount of regenerative energy that can be absorbed during the
journey. The advanced adaptive rule-based algorithm continuously updates its parameters
according to the specific drive cycle selected. To evaluate the performance of these control
strategies, simulations were conducted with various initial states of charge for the superca-
pacitor, set at 92% for high SCSOC, 51% for moderate SCSOC, and 20% for low SCSOC. The
tests were carried out using three standard drive cycles: UDDS, NYCC, and Japan1015. The
results reveal that the standard rule-based algorithm effectively mitigates current peaks
and reduces battery energy consumption when compared to a system relying solely on
a single energy storage battery. The adaptive rule-based algorithm also demonstrates
improvements in reducing battery current peaks and overall consumption. However, the
advanced adaptive algorithm stands out by not only decreasing the battery current peaks
but also increasing the number of possible drive cycles compared with the performance
of the other two algorithms. For future research, the proposed control algorithms will be
implemented in an electric vehicle prototype to further validate the simulation results,
ensuring their practical applicability and effectiveness in real-world situations.
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