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Abstract: The present study encompasses a thorough analysis of the vibrations in a splash musical
cymbal. The analysis is performed using a hybrid methodology that combines experimental measure-
ments with parametric computer-aided design and finite element method simulations. Experimental
measurements, including electronic speckle pattern interferometry, and impulse response measure-
ments are conducted. The interferometric measurements are used as a reference for the evaluation
of finite element method modal analysis results. The modal damping ratio is calculated via the
impulse response measurements and is adopted by the corresponding simulations. Two different
approximations are employed for the computer-aided design and finite element method models: one
using three-point arcs and the other using lines to describe the non-smooth curvature introduced
during manufacturing finishing procedures. The numerical models employing the latter approxima-
tion exhibit better agreement with experimental results. The numerical results demonstrate that the
cymbal geometrical characteristics, such as the non-smooth curvature and thickness, greatly affect
the vibrational behavior of the percussion instrument. These results are of valuable importance for
the development of vibroacoustic numerical models that will accurately simulate the sound synthesis
of cymbals.

Keywords: percussion instruments; impact hammer; electronic speckle pattern interferometry; finite
element method

1. Introduction

Percussion instruments are widely used for creating rhythm in music [1]. Such instru-
ments are the basis for numerous acoustical studies, a summary of which was given by
Rossing [2]. A large part of such studies concerns cymbals, which can be played either alone
or as part of a drum set. The latter is an assembly of individual percussion instruments,
such as bass and snare drums, which primarily emit sound by hitting a membrane under
tension. Cymbals also constitute part of a drum set and an individual area of study, due
to the complexity of their sound. Cymbals vary in both diameter (from 8 to 30 in) and
material. They are usually made of copper-based alloys such as bronze and brass.

The literature [3–16] contains experimental and numerical studies analyzing the vi-
brational behavior of musical instruments. The normal modes of musical instruments
are experimentally measured using a variety of techniques [3], one of which includes the
excitation with an impact hammer and the response detection via an accelerometer. The
sound is mostly recorded using a single or several microphones [4]. The evolution of
holography has provided an additional method for the recording of the vibration modes.
Electronic speckle pattern interferometry (ESPI) is a laser-based method, which enables
the visualization of the normal modes and the vibration amplitude [5,6]. Finite element

Vibration 2024, 7, 146–160. https://doi.org/10.3390/vibration7010008 https://www.mdpi.com/journal/vibration

https://doi.org/10.3390/vibration7010008
https://doi.org/10.3390/vibration7010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vibration
https://www.mdpi.com
https://orcid.org/0000-0002-9429-8754
https://orcid.org/0000-0002-7945-1140
https://orcid.org/0000-0001-9254-5320
https://orcid.org/0000-0003-4285-3784
https://orcid.org/0000-0001-6684-0086
https://orcid.org/0000-0003-0691-2468
https://orcid.org/0000-0003-4823-0350
https://doi.org/10.3390/vibration7010008
https://www.mdpi.com/journal/vibration
https://www.mdpi.com/article/10.3390/vibration7010008?type=check_update&version=1


Vibration 2024, 7 147

method (FEM) and boundary element method (BEM) analysis are used to numerically
investigate the vibrational and acoustic behavior of musical instruments based on their
structural characteristics [7–9]. The modeling of musical instruments can be used for the
reconstruction of old musical instruments [10] but can also be the basis for sound synthesis
of the instruments under investigation [11–13].

Wilbur and Rossing [17] measured more than 100 modes of vibration in a 46 cm diam-
eter crash cymbal using electronic TV holography as the cymbal was driven sinusoidally at
an amplitude not leading to nonlinear vibrational behavior, while Fletcher discussed the
nonlinearity and the chaotic vibrational behavior in cymbal acoustics [18]. Such nonlinear
and chaotic behavior is strongly related to the sound generation by cymbals, as was ex-
plicitly presented by Fletcher and Rossing [19]. TV holography was used to visualize such
effects [20]. A study in cymbals combining FEM modeling, measurements and holography
was performed by Perrin et al. [21]. In continuation of his work, Perrin discussed the non-
constant thickness of the cymbal considering varying thickness in the FEM simulations [22].
The variation in thickness and the curvature of the cymbals was the focus point of the
detailed theoretical studies of Duccechi et al. [11] and Nguyen et al. [12]; however, the
results were not validated by experimental measurements. Recently, Kaselouris et al. [8]
performed numerical simulations which included modal and frequency response function
finite element analysis, frequency domain and time domain FEM-BEM analysis to study
the vibroacoustic behavior of crash and splash cymbals and simulated the motion of a real
drumstick for the excitation and vibration of cymbals based on real motion capture data
in [7].

In the present research work, an 8 in. cymbal made of MS63 alloy [23] is studied via
experimental measurements, such as frequency response function (FRF) techniques using
an impact hammer and ESPI, and via FEM FRF and FEM modal analysis. The main scope
of this study is to investigate computationally the influence of the cymbal’s geometry in
its vibrational behavior with reference to the experimental measurements, for vibration
amplitudes not leading to nonlinear and chaotic behavior. Therefore, parametric CAD
designs of the cymbal are modeled and simulated by FEM. The curved axisymmetric
surface profile of the cymbal is computationally designed by two different approximations:
(a) by three-point arcs and (b) by lines that may describe the non-smooth curvature of
the cymbal, which is introduced from the finishing procedures during manufacturing. In
the second approximation, three intervals of sampling points are considered resulting in
different CAD geometries. Uniform and varying thickness distributions are considered.
The results of the modal analysis for the two approaches, i.e., the computed frequencies of
the vibrational modes, are compared in relation to the corresponding ESPI experimental
results, which are considered as a reference. The FEM models developed based on the
second approximation agree better with the ESPI results due to the modeled non-smooth
geometry. FRF FEM simulations are further performed to the CAD-FEM models, whose
computed frequencies are at an average difference ratio lower than 5%, compared to the
corresponding reference experimental results. In addition to the proposed CAD-FEM
simulation approaches, a novel aspect of the current study is the calculation of the modal
damping ratio via the FRF experimental measurements and its adoption by the numerical
simulations. The FRF computational results are compared with the experimental FRF
measurements demonstrating a satisfactory agreement. The numerical results show that
the cymbal geometrical characteristics, such as the non-smooth curvature, greatly affect the
vibrational behavior of the percussion instrument.

To the authors’ knowledge, this is the first time that a detailed CAD-FEM parametric
study along with experimental measurements have been used to investigate the vibrational
behavior of a cymbal. The upper limit of the frequency range 0–2.5 kHz used in this
vibrational study is based on the experimental works of Perrin [21,22] and Wilbur and
Rossing [17], which measured the dominant modes of vibration for a crash and a splash
cymbal in the linear regime, since the nonlinear and chaotic behavior for higher frequencies
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is out of the scope of this work. Herein, the amplitude of the vibrations is lower than the
thickness of the cymbal, eliminating the generation of nonlinear vibrations [19].

Furthermore, the findings of this research that highlight the importance of the accurate
geometrical characteristics to the vibrational behavior of the instrument hold significant
importance in advancing the creation of accurate numerical models for vibroacoustic
simulations and synthesizing the sound of cymbals. Such CAD-FEM models are nowadays
used in sound emission modeling and simulation studies [7,24,25]. However, achieving a
high level of agreement between the recorded and simulated sounds is still challenging,
primarily attributed to the intricate nonlinear behavior exhibited by cymbals and the
accuracy of the CAD-FEM geometrical parameters.

2. Experimental Measurements

In this section, the experimental procedure, set-ups for the impulse response measure-
ments and the ESPI measurements are described.

2.1. Impulse Response Measurements

A widely used descriptor of a linear system is the FRF, which is the complex ratio
between the system output and input. In acoustic measurements, the input of a system is
a force, while the output is a quantity related to motion. If the latter is acceleration, the
corresponding FRF is termed accelerance. Two estimators are used for measurements, H1
in case of noise in the output signal and H2 in case of noise in the input signal. For the
presented measurements, the estimator H2 was used, which is described by

H2(ω) =
Gaa(ω)

GFa(ω)
(1)

where Gaa(ω) is the auto-spectrum of the acceleration and GFa(ω) is the cross-spectrum of
the force and the acceleration [26].

Figure 1 shows the experimental setup for the FRF measurements. A grid of 144 mea-
surement points is selected on the cymbal (16 radii, along which 9 points are used at 1 cm
distance). The cymbal is excited by an impact hammer (Model 086E80, PCB, Depew, NY,
USA), and the response is captured by a miniature accelerometer (Model TLD352A56,
PCB, Depew, NY, USA), with a mass of ~1.5 g, which is insignificant with respect to the
mass of the cymbal. The cymbal is clamped at the hole by a nut, tightened using a torque
gauge (Model BTG, Tohnichi, Tokyo, Japan) to secure the clamped boundary conditions.
The accelerometer is attached, like a sticker, to a single observation point, commonly hit
during playing at the area of the bow, and the excitation is applied at each one of the
aforementioned grid points. At each measurement point, an average of ten hammer hits is
used for the calculation of the FRF. Following the analysis of another study [27], a similar
space-averaged approach for all measurement points was carried out. The recording of
the signals and the subsequent analysis is performed by a real-time multi-analyzer (Model
OR34, OROS, Inovallée, Meylan, France). For the frequency analysis, the sampling fre-
quency is 51.2 kHz, providing 6401 FFT lines with 3.125 Hz frequency resolution. It must be
noted that the signal recorded by the accelerometer can be converted by the multi-analyzer
to wav file. This is not the case in relevant studies, where the radiated sound is recorded by
microphone at a distance from the cymbal.
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Figure 1. Top: Experimental setup for the measurement of the frequency response function using 
an impact hammer (IH) and an accelerometer (A). SA: signal analyzer; C: cymbal; PC: computer 
with software. Bottom: Experimental setup for the electronic speckle pattern interferometry meas-
urements. CW laser: 532 nm single longitudinal continuous-wave laser; BS: beam splitter; M: mirror; 
L: diverging lens; F: variable neutral density filter; BE: beam expander; CCD: camera with beam 
splitter; C: cymbal; PZ: piezoelectric actuator; GEN: signal generator; AMP: signal amplifier; OSC: 
oscilloscope; PC: computer with specially developed software. 
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The impulse response measurements can determine, among other things, the ampli-

tude and the phase of the indicator used. Therefore, the normal modes can be further an-
alyzed by visualization, which can be implemented using holographic methods [19,28,29]. 
In the present study, the electronic speckle pattern interferometry (ESPI) [5,6] is used for 
visualizing the normal modes of the vibrating cymbal. 

Figure 1 shows the ESPI experimental setup: the beam of a continuous-wave (CW) 
single longitudinal mode laser (Model LCX 532, 532 nm, 170 mW, Oxxius, Lannion, France) 
is split into two parts by means of a cube beam splitter (BS): one part, referred to as the 
object beam, is used for the illumination of the vibrating cymbal after expansion by a di-
verging lens (L). The cymbal is vibrated by means of a mini piezoelectric actuator (PZ) 
controlled by a signal generator (GEN) providing a sinusoidal excitation signal which is 
appropriately amplified (AMP). The resonances of the modal measurements determine 
the frequency of the sine signal. An oscilloscope (OSC) is used to accurately monitor and 
control the PZ input voltage. The intensity of the second beam (reference beam) is con-
trolled by a variable neutral density filter (F) and is expanded by means of a beam ex-
pander (BE). The reflected object beam and the reference beam are superimposed on a 
CCD camera detector with the use of an integrated beam splitter. 

A camera captures sequential images of intensity 𝛪ଵ and 𝛪ଶ, and the intensity of their 
subtraction is given by [5]. 

Figure 1. (Top): Experimental setup for the measurement of the frequency response function using
an impact hammer (IH) and an accelerometer (A). SA: signal analyzer; C: cymbal; PC: computer
with software. (Bottom): Experimental setup for the electronic speckle pattern interferometry
measurements. CW laser: 532 nm single longitudinal continuous-wave laser; BS: beam splitter; M:
mirror; L: diverging lens; F: variable neutral density filter; BE: beam expander; CCD: camera with
beam splitter; C: cymbal; PZ: piezoelectric actuator; GEN: signal generator; AMP: signal amplifier;
OSC: oscilloscope; PC: computer with specially developed software.

2.2. Holographic Measurements

The impulse response measurements can determine, among other things, the ampli-
tude and the phase of the indicator used. Therefore, the normal modes can be further
analyzed by visualization, which can be implemented using holographic methods [19,28,29].
In the present study, the electronic speckle pattern interferometry (ESPI) [5,6] is used for
visualizing the normal modes of the vibrating cymbal.

Figure 1 shows the ESPI experimental setup: the beam of a continuous-wave (CW)
single longitudinal mode laser (Model LCX 532, 532 nm, 170 mW, Oxxius, Lannion, France)
is split into two parts by means of a cube beam splitter (BS): one part, referred to as the
object beam, is used for the illumination of the vibrating cymbal after expansion by a
diverging lens (L). The cymbal is vibrated by means of a mini piezoelectric actuator (PZ)
controlled by a signal generator (GEN) providing a sinusoidal excitation signal which is
appropriately amplified (AMP). The resonances of the modal measurements determine
the frequency of the sine signal. An oscilloscope (OSC) is used to accurately monitor
and control the PZ input voltage. The intensity of the second beam (reference beam) is
controlled by a variable neutral density filter (F) and is expanded by means of a beam
expander (BE). The reflected object beam and the reference beam are superimposed on a
CCD camera detector with the use of an integrated beam splitter.
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A camera captures sequential images of intensity I1 and I2, and the intensity of their
subtraction is given by [5].

I = I1 − I2 =

√
I1 I2

2

∣∣∣(cos φ)Γ2(∆A)2 J0(ΓA)
∣∣∣ (2)

where φ is the phase difference between object and reference beam, Γ = 4π/λ, with λ the
wavelength of the laser beam, A is the vibration amplitude, ∆A is the vibration amplitude
difference between the two images and J0 is the zero order of the Bessel function of the first kind.
The image capturing and the further analysis is performed by specially developed software.

The normal modes occurring at the resonances are shaped by the term |J0(ΓA)|. The
captured interferogram consists of bright and dark fringes, which are equal height curves
with the same vibration amplitude. The bright fringes correspond to the maxima of |J0(ΓA)|.
Supplementary to the roving hammer results, the ESPI images provide spatial information
of the vibrating surface. Additionally, the vibration amplitude, which is perpendicular to
the vibrating surface, can be extracted.

3. Mathematical Modeling

FEM is a powerful method that numerically solves differential equations, which con-
cern engineering and multiphysics problems [30–32]. FEM may simulate the vibroacoustic
behavior of musical instruments and predicting the reaction of music instruments to dif-
ferent loading conditions, vibrations and variations in the conditions of the environment
(such as relative humidity, temperature) [7,8,33]. In this study, modal and FRF analyses
are performed via FEM to study the vibrational behavior of the cymbal. LS-DYNA [34]
solvers performed the frequency domain modal and FRF FEM analysis and the time domain
transient mechanical FEM analysis.

3.1. Mathematical Formulation

The general form of the eigensystem encountered in structural engineering using the
FEM is

[M]

{
∂2U
∂t2

}
+ [K]{U} = 0 (3)

where [M] is the mass matrix, {U} is the displacement vector and [K] is the stiffness matrix.
FRF is computed using the mode superposition method, in the frequency domain [35].
Assuming that the excitation is applied at node j and the response is evaluated for node k,
the acceleration frequency response function Fα may be expressed as:

Fα(xj, xk, ω) = −ω2
N

∑
n=1

φn(xk)

(−ω2 + 2iζnωnω + ω2
n)Mn

Pn(xj) (4)

where Pn(xj) = φn
Tp(xj), φn is the n-th mode shape, p(xj) is the space distribution of the

harmonic force excitation, ωn are the angular eigenfrequencies and ζn is the modal damping
ratio [36]. In the case of point force excitation, p(xj) = 1 at node j in specified direction of
excitation and 0 elsewhere.

3.2. CAD Modeling

Figure 2b shows a real image of the cymbal geometry studied. The mass weight of the
cymbal is 0.380 kg, and the material thickness is assumed to be constant and uniform. The
average thickness of the cymbal is ~1.2 mm as measured by a digital caliper. The cymbal
radius is 101.6 mm, and its total height is 28 mm. The radius of the flat mounting plateau,
including the hole, is 16 mm. The 8′′ axisymmetric profile of a cross section of the global
geometry is designed on the XZ plane. This profile further revolves about the z-axis cymbal
to generate the surface CAD model of the cymbal.
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Figure 2. (a) First three-point arc approximation; (b) real image of the splash cymbal; (c) second
approximation with lines approximating the non-smooth curvature.

The first modeling approximation is performed by interpolating the bell geometry of
the cymbal by arcs. The CAD profile, where the basic construction dimensions are depicted,
is presented in Figure 2a. The given predefined dimensions are oriented by orange points,
while the curve inflection of the cymbal is indicated at three points, marked green. Based
on their spatial position, the curved geometry is interpolated by two three-point arcs. The
two arcs, after applying the tangent constrain at their connection point, have a radius of
~190 mm and ~138 mm, as presented in Figure 2a.

The second geometrical modeling approximation is performed by the linear inter-
polation of points measured on sequential equidistant intervals, using lines, starting at
the distance of 16 mm from the symmetry axis Z. Different CAD models are developed
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by adopting scanning intervals of 10 mm, 5 mm and 2.5 mm. Figure 2c presents the
axisymmetric profile of the cymbal surface derived by using the interval of 5 mm.

3.3. FEM Modeling and Simulation

The revolved surface geometry of the developed profiles is generated and further
discretized in the FEM pre-processor LS-Prepost. Approximately 25,000 shell (Belytschko
Tsay quadrilateral element) finite elements are generated to model the cymbal. A mesh
independent study is performed to provide this number. Regarding the boundary condi-
tions, a clamped constraint is imposed on the nodes bounding the central hole, simulating
the cymbal’s attachment to a supporting structure [8,20], following the clamped boundary
conditions of the experiments. The material properties of MS63 brass alloy used in the
simulations can be found in [37]. Two CAD-FEM models are developed for the first approx-
imation using three-point arcs with a constant and uniform thickness of 1.2 mm and 1.3 mm.
Additionally, nine CAD-FEM models are developed for the second approximation of lines,
which may describe the non-smooth curvature of the cymbal with constant and uniform
thicknesses of 1.0 mm, 1.1 mm and 1.2 mm for the three scanning intervals. Furthermore,
for the second approximation, two models, with concentrically varying thicknesses, are
also considered for the model developed using the scanning interval of 5 mm. The different
thicknesses are assigned to the three main parts of the cymbal, the bell, the bow and the
edge. The three thickness values for these two cases are (i) 1.3 mm, 1.2 mm and 1.1 mm
and (ii) 1.2 mm, 1.1 mm and 1.0 mm, which are assigned to the bell, bow and edge regions,
respectively.

FEM modal analysis is carried out, and the simulation results are compared to the
experimental ESPI results. FRF FEM simulations are further performed for the three model
cases, whose computed frequencies presented a low average difference ratio, compared to
the corresponding experimental results. The coordinates of the nodal excitation inputs of
the FEM FRF analysis, as well as the nodal response output, are defined according to the
experimental measurements. Since the model is axisymmetric, 9 points with 1 cm distance
along the radius are excited. The FRF observing point is a single point again, following
the experimental measurements. The computed result of the FRF analysis is accelerance,
to be directly comparable to the experimental measurements. A resolution of 0.5 Hz is
considered for the output frequencies of the FRF analysis, and the modal damping ratio
is assumed to be frequency dependent based on our FRF experimental results, which are
described in Section 4.

4. Results and Discussion

The block diagram presented in Figure 3 schematically presents the thirteen CAD-FEM
models developed for the two CAD approaches. Tables 1–5, denoted over the arrows in
the figure, are used for the comparison of the computed resonant frequencies of the FEM
simulation modal analysis and the corresponding frequencies experimentally measured
by ESPI for the first ten representative modes of vibration which are used as a reference.
Measuring the thickness of a cymbal is a challenging task because it typically varies across
the edge of the cymbal, and it is not constant from edge to center. A high-precision digital
caliper is used to measure the thickness of the cymbal, at the edge and the hole at the
bell. The mean thickness is calculated to be ~1.2 mm, as mentioned in Section 3.2, and
therefore, the constant and varying thicknesses of 1.0, 1.1 and 1.3 mm are also studied. For
each FEM model case, the thickness of the cymbal is given in parenthesis, i.e., for Table 1,
FEM (1.2 mm) refers to the FEM model with a thickness of 1.2 mm. Table 1 presents the
two model case results of the first CAD approximation, and Tables 2–4 present the results
of the nine model cases for the second CAD approximation, for the three intervals, from
the coarse scanning of 10 mm (Table 2) to 5 mm (Table 3) and to the density of 2.5 mm
(Table 4). Table 5 presents the results for the two model cases with the varying thickness for
the second CAD approximation and the scanning interval of 5 mm.
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Table 1. FEM results of the first CAD approximation vs. ESPI.

Modes ESPI (Hz) FEM (1.2 mm)
(Hz)

Difference
Ratio%

FEM
(1.3 mm) (Hz)

Difference
Ratio%

(2,0) 210 215 2.3 225 6.9
(3,0) 555 515 7.5 540 2.7
(4,0) 1040 920 12.2 940 10.1
(5,0) 1520 1200 23.5 1235 20.7
(3,1) 1630 1585 2.8 1655 1.5
(4,1) 1740 1600 8.4 1705 2.0
(2,1) 1760 1855 5.3 1900 7.6
(1,1) 1825 2090 13.5 2130 15.4
(6,0) 1885 1435 27.1 1500 22.7
(5,1) 2030 2010 1.0 2160 6.2

Average
difference

ratio%: 10.4

Average
difference
ratio%: 9.6

Table 2. FEM results of the second CAD approximation (scanning interval 10 mm) vs. ESPI.

Modes ESPI
(Hz)

FEM (1.0 mm)
(Hz)

Difference
Ratio%

FEM
(1.1 mm) (Hz)

Difference
Ratio%

FEM
(1.2 mm) (Hz)

Difference
Ratio%

(2,0) 210 230 9.1 235 11.2 240 13.3
(3,0) 555 585 5.3 605 8.6 625 11.9
(4,0) 1040 1100 5.6 1130 8.3 1150 10.0
(5,0) 1520 1580 3.9 1615 6.1 1650 8.2
(3,1) 1630 1645 0.9 1740 6.5 1830 11.6
(4,1) 1740 1620 7.1 1742 0.1 1860 6.7
(2,1) 1760 1760 0.0 1840 4.4 1920 8.7
(1,1) 1825 1835 0.5 1910 4.5 1975 7.9
(6,0) 1885 1820 3.5 1915 1.6 1990 5.4
(5,1) 2030 1850 9.3 1995 1.7 2145 5.5

Average
difference
ratio%: 4.5

Average
difference
ratio%: 5.3

Average
difference
ratio%: 8.9
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Table 3. FEM results of the second CAD approximation (scanning interval 5 mm) vs. ESPI.

Modes ESPI
(Hz)

FEM
(1.0 mm) (Hz)

Difference
Ratio%

FEM
(1.1 mm) (Hz)

Difference
Ratio%

FEM
(1.2 mm) (Hz)

Difference
Ratio%

(2,0) 210 214 1.9 224 6.4 230 9.1
(3,0) 555 555 0.0 575 3.5 590 6.1
(4,0) 1040 1045 0.5 1075 3.3 1100 5.6
(5,0) 1520 1545 1.6 1575 3.5 1605 5.4
(3,1) 1630 1710 4.8 1800 9.9 1880 14.2
(4,1) 1740 1675 3.8 1795 3.1 1915 9.6
(2,1) 1760 1835 4.2 1915 8.4 1990 12.2
(1,1) 1825 1910 4.6 1980 8.1 2045 11.4
(6,0) 1885 1830 3.0 1910 1.3 1980 4.9
(5,1) 2030 1850 9.3 2010 1.0 2165 6.4

Average
difference
ratio%: 3.4

Average
difference
ratio%: 4.9

Average
difference
ratio%: 8.5

Table 4. FEM results of the second CAD approximation (scanning interval 2.5 mm) vs. ESPI.

Modes ESPI
(Hz)

FEM
(1.0 mm) (Hz)

Difference
Ratio%

FEM
(1.1 mm) (Hz)

Difference
Ratio%

FEM
(1.2 mm) (Hz)

Difference
Ratio%

(2,0) 210 230 9.1 235 11.2 240 13.3
(3,0) 555 580 4.4 605 8.6 620 11.1
(4,0) 1040 1100 5.6 1120 7.4 1145 9.6
(5,0) 1520 1545 1.6 1585 4.2 1620 6.4
(3,1) 1630 1640 0.6 1735 6.2 1825 11.3
(4,1) 1740 1610 7.8 1730 0.6 1855 6.4
(2,1) 1760 1760 0.0 1840 4.4 1920 8.7
(1,1) 1825 1840 0.8 1910 4.6 1980 8.1
(6,0) 1885 1765 6.6 1860 1.3 1940 2.9
(5,1) 2030 1850 9.3 2000 1.5 2150 5.7

Average
difference
ratio%: 4.6

Average
difference
ratio%: 5.0

Average
difference
ratio%: 8.4

Table 5. FEM results of the second CAD approximation (varying thickness and for scanning interval
5 mm) vs. ESPI.

Modes ESPI (Hz) FEM (1.2/1.1/1.0 mm)
(Hz) Difference Ratio% FEM (1.3/1.2/1.1 mm)

(Hz) Difference Ratio%

(2,0) 210 226 7.3 236 11.6
(3,0) 555 561 1.1 582 4.7
(4,0) 1040 1056 1.5 1084 4.1
(5,0) 1520 1553 2.1 1583 4.1
(3,1) 1630 1715 5.1 1809 10.4
(4,1) 1740 1683 3.3 1804 3.6
(2,1) 1760 1838 4.3 1914 8.4
(1,1) 1825 1910 4.5 1980 8.1
(6,0) 1885 1835 2.7 1915 1.6
(5,1) 2030 1866 8.4 2028 0.1

Average difference
ratio%: 4.0

Average difference
ratio%: 5.7
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The percentage difference ratio shown in Tables 1–5 is calculated by:

|V1 − V2|
0.5 × (V1 + V2)

× 100% (5)

where V1, V2 are two different values. The modes of vibration are labeled (m,n), where m
describes the number of nodal diameters and n the number of nodal circles.

Based on the results presented in Tables 1–5, the models of the second CAD geometri-
cal approach approximate the experimental results better, if only the average difference
ratios are considered. However, the simulation results of the model with a thickness of
1.2 mm using the first CAD approach agree well with the ESPI results, for the first two
(2,0) and (3,0) lower frequency modes, while for the (4,0), (5,0), (6,0) modes of the n = 0
family, the deviations compared to ESPI increase. The computed results from the second
CAD approach for the (4,0), (5,0), (6,0) modes agree better with the ESPI measurements.
Furthermore, the results from the three models employing the second CAD approach, with
a scanning interval of 5 mm, demonstrate a lower average difference ratio in comparison
to the corresponding results from the three models with scanning intervals of 10 mm and
2.5 mm, especially for a uniform thickness equal to 1.0 mm. This gap is particularly evident
for modes (2,0), (3,0), (4,0). Also, the model with varying thicknesses of 1.2/1.1/1 mm and
a scanning interval of 5 mm results in an average difference ratio of 4.0%. Upon comparing
the outcomes of the second approximation for models with uniform thicknesses of 1.0 mm
and 1.1 mm and a scanning interval of 5 mm, it becomes evident that the results of the
model featuring a uniform thickness of 1.1 mm exhibit a better agreement with the ESPI
results for mode (4,1) and for the high-frequency vibrational (6,0) and (5,1) modes; however,
the results of the model with a uniform thickness of 1.0 mm demonstrate a better agreement
with the ESPI results for all other vibration modes.

Figure 4 demonstrates ten representative modes of vibration, for the FEM cymbal
model of the second approximation, with a scanning interval 5 mm and a uniform thickness
of 1.0 mm in relation to the ESPI experimental measurements. The modal analysis results
agree qualitatively with the results found in the literature [17,21,22] in the linear regime for
various cymbal diameters.

Based on the modal results analysis presented, the CAD models developed based on
the second CAD approximation, with a scanning interval of 5 mm and a uniform thickness
of 1.0 mm and 1.1 mm, as well as the model of varying thicknesses of 1.2/1.1/1.0 mm, are
further studied using FRF FEM analysis. For these three models, the average difference
ratio, compared to ESPI, is less than 5%. The results of this analysis are compared to the
FRF experimental results for the forces of 2.76 N and 34.06 N. The FRF measurement results
follow the hammer-accelerometer measurements which are first conducted. The excitation
of the cymbal is performed by a handheld hammer hitting the 144 grid points. The average
FRF of these 144 excitation points is plotted. The observing point is a single point. During
measurements, the variation in the applied mean force (2.76 N and 34.06 N) is used to
verify that the linear response of the system remains for the frequency interval considered.
It is well known that nonlinear vibrations occur when the amplitude of the vibrations is
greater than the thickness of the cymbal [19], which is not the case in our study, since the
vibration amplitude for both simulation and experimental results is less than 100 µm. A
novel aspect of this study is the experimental measurement of the modal damping ratio,
which is equal to ζn = ∆ω

2ωn
, where ∆ω is the frequency range in which the amplitude of

oscillation becomes A/
√

2, with A being the vibration amplitude at the resonance frequency
ωn. Figure 5 demonstrates the experimentally measured modal damping ratio in relation
to frequency. These values are adopted by the three models with an average difference
ratio of less than 5% vs. ESPI to optimize the numerical approximation.
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Figures 6 and 7 demonstrate one measurement set for each mean force and the three
models for the frequency-dependent modal damping ratio. The graphs in Figures 6 and 7
show the mean accelerance level, presented in descending level order for clarity. Each
force value corresponds to a measurement set and is the mean value of the maximum force
applied to each measured grid point.
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tion results of the model with a thickness of 1.1 mm and the experimental results, presented
in Figures 6 and 7, also agree well at ~2250 Hz. This frequency value corresponds to the (7,0)
vibration mode, as substantiated by both experimental findings and simulation results. The
peak at ~320 Hz corresponds to a bending vibrational mode, as shown by the simulations.
Moreover, the model of 1 mm thickness and the one with varying thicknesses provide the
vibrational mode observed at ~2400 Hz, which is the (6,1) mode of vibration. Furthermore,
the deviations between experimental and numerical results shown in Figures 6 and 7 are
mainly attributed to the fact that the CAD-FEM models approximate the geometry of
the cymbal well, but slight differences still exist in relation to the real non-smooth and
asymmetric micro-geometrical characteristics of the instrument, which are introduced at
the finishing of the cymbal during the manufacturing processes.

5. Conclusions

The study delves into a vibrational analysis of a musical splash cymbal using a combi-
nation of experimental measurements and parametric CAD-FEM modeling and simulations
for vibration amplitudes not leading to nonlinear chaotic behavior. Experimental meth-
ods, including impulse response and ESPI measurements, are conducted and validated
through FEM FRF analysis and modal analysis, respectively. The CAD-FEM models are
developed using two different approximations: three-point arcs and lines, modeling the
non-smooth curvature resulting from finishing procedures during manufacturing. Interest-
ingly, the numerical models employing the latter approximation show a better alignment
with experimental results. The numerical results demonstrate that the cymbal geometrical
characteristics, such as the non-smooth curvature, highly affect the vibrational behavior of
the percussion instrument. In addition to the proposed CAD-FEM simulation approaches,
a novel aspect of this research study is the calculation of the modal damping ratio via the
FRF experimental measurements and its adoption by numerical simulations.

The results of this research study, which highlight the importance of the accurate
geometrical characteristics to the vibrational behavior of the instrument, are of valuable
importance for the development of vibroacoustic numerical models that will accurately
simulate the sound synthesis of cymbals. Such models can aid the generation of lifelike
and dynamic cymbal sounds, enabling manufacturers and musicians to experiment with
different materials, sizes and performance techniques virtually. Nevertheless, attaining
a strong correlation between recorded and simulated cymbal sounds poses a persistent
challenge, largely due to the complex nonlinear characteristics inherent in the vibroacoustic
behavior of cymbals and the geometrical details of the CAD-FEM models.
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