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Abstract: Picornaviruses are associated with acute and chronic diseases. The clinical manifestations
of infections are often mild, but infections may also lead to respiratory symptoms, gastroenteritis,
myocarditis, meningitis, hepatitis, and poliomyelitis, with serious impacts on human health and
economic losses in animal husbandry. Thus far, research on picornaviruses has mainly focused on
structural proteins such as VP1, whereas the non-structural protein 2B, which plays vital roles in the life
cycle of the viruses and exhibits a viroporin or viroporin-like activity, has been overlooked. Viroporins
are viral proteins containing at least one amphipathic α-helical structure, which oligomerizes to form
transmembrane hydrophilic pores. In this review, we mainly summarize recent research data on
the viroporin or viroporin-like activity of 2B proteins, which affects the biological function of the
membrane, regulates cell death, and affects the host immune response. Considering these mechanisms,
the potential application of the 2B protein as a candidate target for antiviral drug development is
discussed, along with research challenges and prospects toward realizing a novel treatment strategy
for picornavirus infections.
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1. Introduction

The Picornaviridae family consists of 35 genera and 80 species, mainly including Enterovirus,
Hepatovirus, Cardiovirus, Aphthovirus, and Rhinovirus [1]. To date, research on picornaviruses has mainly
focused on enterovirus (EV) 71, coxsackievirus (CV), poliovirus (PV), encephalomyocarditis virus
(EMCV), foot-and-mouth disease virus (FMDV), human rhinovirus (HRV), and hepatitis A virus (HAV).
Picornavirus infections can cause enormous damage in humans and animals. The EV71, CVA16,
and CVA10 cause hand, foot, and mouth disease in millions of children in Asia-Pacific region each
year and can cause more serious clinical symptoms such as aseptic meningitis, acute flaccid paralysis,
and neurological respiratory syndrome [1–3].

Picornaviruses are non-enveloped spherical viruses with an icosahedral-structured viral capsid.
The picornaviral genome consists of a single-stranded positive-sense RNA, which is approximately
6.7–10.1 kilobases in length, with a highly conserved structure, including a 5′-noncoding region
(5’-NCR), an open reading frame, a 3′-NCR, and a 3′-end polyA tail [1]. The 5′-NCR contains multiple
RNA secondary structural elements, including the internal ribosome entry site. The open reading
frame of the viral genome consists of three regions: P1, P2, and P3. The P1 region is translated and
processed to form the structural proteins VP1, VP2, VP3, and VP4, which compose the capsid structure

Viruses 2019, 11, 510; doi:10.3390/v11060510 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-8950-6133
http://www.mdpi.com/1999-4915/11/6/510?type=check_update&version=1
http://dx.doi.org/10.3390/v11060510
http://www.mdpi.com/journal/viruses


Viruses 2019, 11, 510 2 of 16

of a picornavirus. The P2 and P3 regions are separately translated to the non-structural proteins 2A, 2B,
and 2C and 3A, 3B, 3C, and 3D, respectively. The majority of related research has focused on structural
proteins of picornaviruses, such as VP1, whereas the importance of the non-structural protein 2B has
been relatively overlooked.

Viroporins are proteins found in a variety of viruses and are generally comprised of 50 to
120 amino acids. Each viroporin contains a highly hydrophobic domain capable of forming at least one
amphipathic α-helical structure, which oligomerizes to form transmembrane hydrophilic pores [4,5].
The 2B protein is a crucial component of picornaviruses that exhibits viroporin or viroporin-like activity,
plays a key role in the picornavirus life cycle by inducing a series of cytotoxic reactions to promote
picornaviral replication and release [6–14]. The 2B protein has a highly conserved sequence, which can
be exploited for viral detection [15–17], vaccine development [18–20], and RNA interference [21–25].
In addition, the 2B protein exhibits a viroporin or viroporin-like activity, and thus, targeted drugs
against viroporin could potentially target 2B protein as a novel strategy to treat or prevent picornavirus
infections. However, the detailed mechanism of action of the 2B protein has not been elucidated to date.
Therefore, here, we review the recent research data on the role of the 2B protein in the picornaviral life
cycle and discuss its possible application in antiviral therapy.

2. Structure and Cellular Location of the Picornaviral 2B Protein

The picornaviral 2B protein is a relatively short molecule, containing a maximum of two predicted
putative transmembrane hydrophobic helices, along with N- and C-terminal domains, which are
connected by a short stretch of amino acid residues. The α-helix-turn-α-helix sequence of the 2B
protein is the basis for forming a transmembrane pore through homo-multimerization and the major
determinant of the 2B protein function [4,11,26–30]. A computational approach has demonstrated that
the EV 2B protein is a tetramer, and 2B proteins with different orientations have different activities [31,32].
The 2B protein belongs to the type II family of viroporins, which can be further divided into different
types according to the number and orientation of the membrane-spanning domains (Figure 1). In type
IIA viroporins, the N- and C-termini stretch to the organelle lumen, such as in the 2B protein of
CVB3 [6,9,26,33], whereas the N- and C-termini of type IIB viroporins face the cytoplasmic matrix,
such as in PV [9,27,34] and FMDV [7,14,28]. In addition, the C-terminus of the HAV 2B protein has a
viroporin-like activity [11].

Picornaviral 2B proteins target the membrane and form pores mainly through their transmembrane
regions. The protein molecules are first inserted into the membrane individually and then self-interact
and homo-oligomerize to form higher-order structures, which are important for the pore-forming
activity, determined by the specific sequence and structure [4,34,35]. The majority of 2B proteins are
localized to organelles, with predominant co-localization with the Golgi apparatus and the endoplasmic
reticulum (ER) in CVB3, PV, and HRV14 (Figure 1) [36]. The HRV16 and FMDV 2B proteins are mainly
localized to the ER, whereas the EMCV 2B protein is not localized to either the Golgi complex or the
ER [28,36,37]. Seggewiss et al. [38] found that the HAV 2B protein was not localized to the ER either
but was involved in the amendment of the ER–Golgi apparatus intermediate compartment. Since the
protein structure determines its ultimate function and 2B proteins belonging to different viroporin
species show both similarities and differences in their functions, much insight can be gained from
research on the same viroporin 2B protein and on different viroporins.
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Figure 1. The structure and localization of 2B protein have effects on cell membrane permeability.
Picornavirus infects the host cell, and then viral gene encodes 2B proteins. The 2B protein belongs
to the type II family of viroporins, including two transmembrane hydrophobic helices which are the
basis for forming a transmembrane pore that results in the changes in cell membrane permeability.
In type IIA viroporins, the N- and C-termini stretch to the organelle lumen, whereas the N- and
C-termini of type II B viroporins face the cytoplasmic matrix. The majority of 2B proteins are localized to
organelles, with predominant co-localization with the Golgi apparatus and the endoplasmic reticulum
(ER), resulting in an obvious decrease in Ca2+ of the ER and Golgi complex, along with a decrease in
calcium uptake by the mitochondrion, and causing an influx of extracellular Ca2+.

3. Biological Functions of the Picornaviral 2B Protein

The 2B protein can induce many cellular reactions, such as changing membrane permeability,
regulating apoptosis and autophagy, and affecting host immune responses. These functions are all
related to changes in ion concentrations, especially of calcium ions (Ca2+). Therefore, here, we mostly
focus on the role of Ca2+ in these 2B protein activities.

3.1. Change in Membrane Permeability

A common feature of infection by animal viruses is the damage to the ion balance in host cells.
The picornaviral 2B protein may change the membrane permeability of target cells, disturbing the ion
balance, especially that of Ca2+, in organelles, such as the ER and the Golgi apparatus (Figure 1) [6,36,39].
The changes in membrane permeability, caused by the 2B protein, have also been suggested to be
regulated by the content of specific membrane phospholipids [11,40]. The Ca2+ are involved in the
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activation of enzymes in cells and play a crucial role in viral replication and other viral biological
processes [41–43]. However, the role of the 2B protein in Ca2+ homeostasis remains unclear.

Initial studies only indicated that host cells had elevated the Ca2+ levels, owing to the expression
of the 2B protein [9,28,29,36,44–46], but the mechanism was not clarified. Since then, some researchers
have proposed that the decrease in the concentration of Ca2+ stored in organelles triggers the opening
of specific calcium ion channels on the plasma membrane of cells, causing an influx of extracellular
Ca2+ [29]. This idea was supported by the findings that expression of the CVB3 and PV 2B proteins
resulted in an obvious decrease in the Ca2+ concentration in the ER and Golgi complex, along with a
decrease in calcium uptake by the mitochondria. Meanwhile, the increased Ca2+ level in the cytoplasm
was suggested to be mainly due to the influx of extracellular Ca2+ [36,44,45]. Similarly, the expression
of the HRV 2B protein was shown to decrease the Ca2+ concentrations in the ER and Golgi apparatus,
whereas the EMCV 2B protein only significantly reduced the Ca2+ concentration in the ER [36].
In contrast, other studies showed that expression of the HAV and FMDV 2B proteins elevated the
cytoplasmic Ca2+ level but did not alter the level of stored Ca2+ in organelles, such as the ER and
Golgi complex [28,36]. Taken together, these studies suggest that there are different mechanisms by
which 2B proteins affect the Ca2+ concentrations, depending on the virus type. Furthermore, it is
unknown whether Ca2+ directly pass through the channel formed by the 2B protein. Pham et al. [47]
demonstrated, using a planar lipid bilayer and liposome patch-clamp electrophysiological technique,
that the rotavirus non-structural protein 4 (NSP4) viroporin region acts as a Ca2+ conduction channel.

Although there is currently no direct evidence that the 2B protein can directly induce the observed
changes in the Ca2+ concentration in host cells upon infection, the above-reviewed studies suggest an
association, and the mechanism requires further investigation. Given the importance of Ca2+ signaling
for numerous cellular processes, further studies on picornaviral 2B protein function should include
determination of the Ca2+ concentration, which may provide more insight into the detailed function of
the 2B protein. In particular, the 2B protein may change the Ca2+ concentration to regulate autophagy
and apoptosiswhich are distinct cell death mechanisms controlled by the virus to effectively evade the
host immunity, thereby promoting viral replication and release [48–52].

3.2. Regulation of Host Cell Apoptosis and Autophagy

Picornaviruses can form new cytoplasmic vesicles by inducing membrane remodeling, thereby
promoting their own proliferation [39,53,54]. The 2B protein is capable of binding to the membrane
and inducing target membrane remodeling to form a unique membrane structure that can serve as a
viral replication site. This site, known as the viroplasm, is generated from the ER to accumulate all of
the cellular components required for viral replication (Figure 2) [13,39,54–56]. The viroplasm is also
the main membrane source of autophagy [54,57].

The CVB3 2B protein is dependent on its transmembrane hydrophobic region to induce
autophagy [8], which may be related to alterations in membrane permeability, especially with
regard to the Ca2+ concentration. Moreover, at an early stage of FMDV cell infection, the virus
specifically recognizes and binds to the cell surface receptors, and the 2B protein rapidly upregulates
the autophagy pathway, leading to punctate aggregation of a large number of autophagy marker
proteins, such as the microtubule-associated protein 1 light chain 3 (MAP1-LC3) [28,58]. In addition,
rotavirus encodes the NSP4 viroporin, which releases the ER-stored Ca2+ into the cytoplasm, thereby
activating the Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β) signaling pathway, leading to
autophagy (Figure 2) [59]. Further, CVB4 induces autophagy in a calpain-dependent manner, causing
an accumulation of LC3 lipids and autophagosomes [60]. Considering the ability of the 2B protein to
alter cellular calcium homeostasis, along with its viroporin-like activity, it is feasible that the 2B protein
may regulate autophagy mainly by changing the Ca2+ concentration.

The 2B protein has also been shown to regulate apoptosis through the endogenous pathway,
which can be divided into ER stress and the mitochondrial pathway, providing another potential
mechanism of bypassing the host immune response to facilitate infection [32,37,44,45,48]. The Ca2+
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plays a pivotal role in ER stress-dependent apoptosis by regulating the flow between the ER and
the mitochondria [45,61]. Excessive mitochondrial uptake of Ca2+ exerts a cytotoxic effect because a
high Ca2+ concentration can open numerous mitochondrial transition pores, increase mitochondrial
permeability, and destroy the mitochondrial outer membrane; consequently, cytochrome c and other
proapoptotic factors are released, leading to apoptosis (Figure 2) [9,32,44,45,62]. The CVB3 2B protein
was shown to inhibit caspase activation and cell death induced by actinomycin D and cycloheximide
by regulating the intracellular Ca2+ concentration [44,45]. Additionally, the 2B protein of HRV16
induced an ER stress response, accompanied by an increased expression of cleaved caspase-3 and
CCAAT-enhancer-binding protein homologous protein (CHOP), which might have also involved a
change in the Ca2+ level [37]. Collectively, these results suggest that the 2B protein may regulate
apoptosis by altering calcium homeostasis. Furthermore, the 2B protein can regulate apoptosis through
the mitochondrial pathway. Madan et al. [32] showed that the PV 2B protein interacted with the
mitochondria and altered the mitochondrial morphology, in addition to the release of cytochrome
c after the PV 2B gene expression. Cong et al. [63] reported that the EV71 2B protein was localized
to the mitochondria and induced apoptosis by directly activating the proapoptotic B-cell lymphoma
2-associated X (BAX) protein, without a significant uptake of Ca2+ by the mitochondria. Therefore,
the activation of the mitochondrial apoptotic pathway and subsequent apoptosis, induced by the EV71
2B protein, may not involve Ca2+ signaling. Collectively, picornaviral 2B proteins can induce cell death
in a variety of ways, with Ca2+ playing an important role in most of these mechanisms.

Figure 2. 2B protein regulates autophagy and apoptosis. The 2B protein induces target membrane
remodeling to form the viroplasm, which is generated from the endoplasmic reticulum (ER). The isolation
membrane is produced by the viroplasm. Activation of the Ca2+/calmodulin-dependent kinase kinase-β
(CaMKK-β) signal pathway is due to an increased intracellular calcium concentration. Furthermore,
mitochondrion takes up Ca2+ from the ER, thereby cytochrome cis released, leading to apoptosis.
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3.3. Effect on the Host Immune Response

The host immune system is an important line of defense against pathogens, and pathogens can
affect the immune system in a variety of ways. The 2B protein mainly affects the host immune response
through inflammasome activation and by direct antagonism of the host immune response. Recognition
of pathogens by the immune system is mainly mediated by pathogen-associated molecular pattern
receptors, known as pattern recognition receptors, including nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like helicases, and pyrin
domain-containing 3 (NLRP3) [64–66].

Activation of NLRP3 inflammasome occurs during a period of changes in ion concentrations [67,68].
The NLRP3 belongs to the NLR family of inflammasomes and causes interleukin (IL)-1β and IL-18
secretion via caspase-1 activation [67]. The EMCV, PV, EV71, and HRV 2B proteins all activate the
NLRP3 inflammasome but use distinct mechanisms [12,69]. The HRV and EMCV 2B proteins can
stimulate the NLRP3 inflammasome pathway to activate caspase-1, which catalyzes the proteolysis
of pro-IL-1β to IL-1β, leading to its secretion from across the plasma membrane by inducing a Ca2+

efflux from intracellular storage (Figure 3) [12,69]. Wang et al. [70] found that CVB3-infected cells
induced the NLRP3 activation in association with a K+ efflux. The influenza virus M2 protein, which
is also a viroporin, is capable of transporting Na+ and K+, resulting in activation of the NLRP3
inflammasome [71,72]. Since the CVB3 2B protein acts as a viroporin and can disrupt the intracellular
ion balance [36,46], it has been speculated that the induction of NLRP3 activation in CVB3-infected
cells may be related to the 2B protein.

In addition to activating the inflammasome, the 2B protein also antagonizes the host immune
response. Both in vitro and in vivo studies have suggested that inhibition of protein trafficking would
effectively allow viral evasion of the host immune response (Figure 3) [73–75]. Moreover, inhibition
of protein transport may be related to changes in the Ca2+ concentration [46]. Similar to the CVB3
2B protein, the 2B proteins of PV, HRV16 and HRV14, were shown to significantly inhibit the protein
transport through the Golgi complex, whereas the HAV, FMDV, and EMCV 2B proteins did not inhibit
the protein transport [36,46,76]. The FMDV 2B and 2C proteins did not block protein secretion, whereas
the transport of proteins from the ER to the Golgi complex were blocked by the FMDV 2BC protein,
and this effect was reproduced upon co-expression of the 2C and 2B genes [7,77]. Collectively, these
findings suggest that the 2B protein may participate in a viral evasion of the host immune response,
mainly by inhibiting protein transport.
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Figure 3. 2B protein affects the host immune response. The 2B protein can stimulate the NLRP3
inflammasome pathway to activate caspase-1, which catalyzes the proteolysis of pro-IL-1β to IL-1β,
which leads to their secretion across the plasma membrane by inducing a Ca2+ efflux from intracellular
storage. Moreover, the 2B protein inhibits protein transport through the Golgi protein which may be
effective to evade the host immune response.

The 2B protein has also been suggested to facilitate the viral evasion of the host immune response
through other means. Thus, the 2B protein antagonizes RIG-I-mediated antiviral responses by inhibiting
the expression of RIG-I as an FMDV-specific reaction [14]. The RNA helicase LGP2 (also known as
DExH-box helicase 58, DHX58) is a crucial factor involved in the host antiviral immune response [78].
The FMDV leader protein (Lpro), 3C protein, and the 2B protein have the ability to induce a decrease in
LGP2 protein expression [79]. In addition, PV 2B variants were shown to inhibit the antiviral interferon
(IFN) system [80], whereas the HAV 2B protein inhibited the synthesis of IFN-β by affecting the
mitochondrial antiviral signaling protein activity, thereby antagonizing the host immune response [81].
Collectively, these evidences indicate that picornaviral 2B proteins can affect the host immune response,
thereby promoting viral amplification or the release of viral particles.

4. Potential Applications of Targeting the Picornaviral 2B Protein

As discussed above, picornaviral 2B proteins have a viroporin or viroporin-like activity and
play an important role in the picornaviral life cycle. Therefore, many common applications targeting
viroporins may be translatable to those targeting 2B proteins. In addition, the 2B protein may serve as a
new target for the development of antiviral drugs. Thus, further studies on the structure and function
of the 2B protein might open up new avenues for the prevention and control of picornaviruses.

4.1. Detection of Picornaviruses

Owing to its highly conserved sequence, the use of the 2B gene as a marker could effectively
improve the accuracy of virus detection. Li et al. [15] designed primers and TaqMan probes, based
on the 2B and 3D regions, which were successfully used in real-time polymerase chain reaction to
accurately detect and quantify FMDV during infection and replication. In addition, Wang et al. [16]
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developed a lateral-flow detection system, which could rapidly and easily detect FMDV using the
2B gene. In addition to gene-based detection, the virus could be detected using a 2B antibody.
Biswal et al. [17] used an indirect enzyme-linked immunoassay based on a recombinant 2B protein to
detect antibodies specific for FMDV. This method can be applied not only to FMDV but also to other
picornaviruses, including CVB3 and EV71.

4.2. Development of Vaccines

Given the significant threat that picornaviruses pose to humans and animals, resulting in
enormous economic damage to the livestock industry, development of picornavirus vaccines is of great
significance. Although inactivated virus vaccines can offer effective prevention, there are associated
residual risk issues, including incomplete virus inactivation and escape during the vaccine production
process [82–84]. Therefore, genetically engineered vaccines are considered more suitable options to
overcome these shortcomings of inactivated viral vaccines. The EV VP1 protein is located outside
the viral membrane and is thus exposed to the greatest amount of immune stress. Accordingly, VP1
shows an extreme serological variability, thus providing the most reliable molecular epidemiological
information. Consequently, the VP1 region of EV71 has become a focus of vaccine research for
picornavirus infections [84]. However, DNA constructs containing the VP1 gene of EV71 showed
low levels of antigenicity. Therefore, there is still a need to develop an effective adjuvant strategy to
increase the antigenicity. One possibility in this regard is the use of recombinant vaccines incorporating
the 2B gene to enhance the efficacy of vaccines.

At present, applications of the 2B gene in recombinant vaccines have mainly concentrated on
FMDV. The addition of a 2B fragment to a vaccine designed with VP1 as the core has been shown to
effectively enhance the vaccine efficacy [18–20] and reduce the dose and side effects [20]. These effects
may be similar to those leading to a greater efficacy of the adenoviral vector vaccine fused to the FMDV
2B protein against serotype O, which is associated with the induction of specific CD4+ and CD8+

protective T cell responses [85]. Therefore, future designs of other picornaviral genetically engineered
vaccines would benefit from the addition of the 2B gene to increase the vaccine efficacy, including the
addition of the 2B gene to a genetically engineered EV vaccine with the VP1 gene as the core.

4.3. Drug Development Strategy for Picornavirus Treatment

Since viroporin plays an important role in all life stages of the virus, it is an attractive antiviral
therapeutic target, and there have been great breakthroughs in this regard. By contrast, research and
development of drugs targeting the 2B protein are relatively delayed. Since 2B proteins have a viroporin
or viroporin-like activity, screening for anti-picornavirus drugs among existing viroporin-targeting
drugs may be a viable approach.

There are four main types of inhibitors of viroporin activity, including adamantane, amiloride,
alkyl iminosugar, and spirane amine [86]. Adamantane (amantadine and rimantadine) inhibits the
M2 channel of influenza A virus by destroying the transmembrane network of hydrogen-bonded
water molecules, thereby inhibiting the viral amplification [87]. In BHK-21 cells infected with FMDV,
the virus titer gradually decreased with an increase in amantadine concentration, which may have
been due to abrogation of the pore-forming activity of the 2B protein and ultimate inhibition of
FMDV replication [28]. However, clinical trials showed that amantadine was not only selective for
specific resistance mutations in hepatitis C virus (HCV) p7 [88], but also caused a rapid emergence of
amantadine-resistant variants of influenza A virus during monotherapy for influenza [89]. Amiloride
is a composite of two drugs, 5-(N,N-hexamethylene) amiloride and a novel inhibitor, BIT225, targeting
HCV p7 and HIV-1 Vpu, which can together block the viroporin ion channel activity or prevent ion
channel formation, resulting in a potent antiviral effect [90–93]. The alkyl iminosugar inhibits the
formation of ion channels by targeting the HCV p7 viroporin [94]. Finally, spirane amines, such as
BL-1743, also inhibit the influenza A virus M2 protein, with an antiviral mechanism similar to that of
amantadine [95].
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There are also other drugs that act as viroporin inhibitors, including 1,3-dibenzyl-5(2H-1,2,3,4-
tetraazol-5-yl) hexahydropyrimidine (CD), N-(1-phenylethyl)-2-[4-(phenylsulfonyl)-1-piperazinyl]-4-
quinazolinamine (LDS25), and 6-methyl-1,3,8-trihydroxyanth-raquinone (Emodin), among
others [88,96,97]. The mechanism of action of these viroporin inhibitors is based on the inhibition of
the viroporin channel activity. Therefore, these drugs may have the potential to be applied for the
treatment of picornavirus infections by targeting the 2B gene. However, this application will require
further detailed investigations and drug screening. Nevertheless, the 2B protein has the potential to
widen the range of antiviral treatment strategies.

Furthermore, specific degradation of complementary mRNA can be triggered by small interfering
RNAs (siRNAs) or folded short hairpin RNAs (shRNAs) [98], which can be explored as an RNA
interference strategy, a relatively novel technology that has already been applied to treat many
important pathogens, including HIV-1, hepatitis B virus, and herpes simplex virus [99–101]. Currently,
shRNAs targeting the highly conserved 2B gene sequence are widely used in picornavirus research,
including FMDV [21,25], EMCV [23], and CVB3 [24], and significant experimental viral suppression
has been achieved. Basically, RNA interference against 2B gene affects the stability and integrity of
the whole viral genome. The high nucleotide sequence conservation makes the 2B gene an attractive
target for RNA interference, which may potentially be effective against multiple picornavirus types,
and open the door for additional siRNA drugs.

To date, there have been few studies specifically focusing on inhibitors of the 2B protein.
Xie et al. [102] found that 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) blocked a chloride-
dependent current, mediated by the EV71 2B protein, and suppressed viral amplification. However,
further research is needed to uncover the underlying mechanism. Despite the many challenges in
drug development, new technologies such as Fourier-transform infrared spectroscopy and design of
molecular dynamics analogs, as well as cryo-electron microscopy and spectroscopy, are expected to
greatly contribute to the development of antiviral drugs.

5. Future Perspectives and Conclusion

Recent studies have gradually clarified the function and the potential of the 2B protein, along with
increasingly recognizing its importance in the viral life cycle. However, there are still some challenges
to overcome in investigations of the picornaviral 2B protein. In particular, its strong hydrophobicity
makes it difficult to achieve soluble expression. Ao et al. [28] conjugated the small ubiquitin-like
modifier (SUMO) protein to the N-terminus of the FMDV 2B protein and successfully achieved
soluble expression. Therefore, this method can be tested for other picornaviral 2B proteins. Moreover,
the detailed molecular mechanism of the action of the 2B protein requires further study, along with the
identification of interactions of 2B protein with host proteins, to better understand the role of the 2B
protein in the pathogenesis of picornaviruses. In murine cells, the 2B protein was suggested to react with
host proteins to promote rhinovirus proliferation [103]. Using a yeast two-hybrid system, the FMDV
2B protein was found to interact with the host elongation factor 1γ (EEF1G), and mislocalization of
EEF1G demonstrated that the EEF1G deletion affected the synthesis of membrane proteins [104,105].
Although a yeast two-hybrid system is a common laboratory protein-screening technique, it has a low
success rate and is time-consuming. Alternatively, affinity purification–mass spectrometry can be used
to overcome these shortcomings, which has already been widely used in studies on Dengue, Zika,
and Ebola viruses [106,107].

At present, the development of antiviral drugs against viroporins is focused on three aspects,
including viroporin and membrane fusion inhibitors, ion channel inhibitors, and targeted viroporin
antibodies [9]. With respect to the biological function of the 2B protein, antiviral drugs targeting the 2B
protein could be designed based on the following three approaches: broad-spectrum screening for
anti-picornavirus drugs among existing viroporin inhibitors, screening for 2B protein and membrane
fusion inhibitors, and screening for 2B protein pore activity inhibitors. As discussed herein, the most
important basis for the function of the 2B protein is that it can be polymerized into pores, thereby
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changing the permeability of the membrane. Therefore, the design of drugs targeting 2B protein should
be based on inhibiting polymerization of the 2B protein into pores, thereby reducing its effects on
cellular ion homeostasis. However, these designs first require detailed determination of the refined
atomic structure of the 2B protein, along with the expansion of screening techniques and applications
of meticulous medicinal chemistry.

Furthermore, to develop better antiviral drugs, it will be necessary to elucidate the exact role
of the 2B protein channel in the viral life cycle. Thus, the main points of focus for research on the
structure and function of the 2B protein toward ultimate drug development are: (1) mechanism
of increasing membrane permeability to disturb the ion balance, (2) regulation of autophagy and
apoptosis, (3) inhibition of the host immune response, and (4) promotion of viral replication and
release. Taken together, as research aimed at further elucidation of the role of the 2B protein progresses,
along with the adoption of new technologies, it is expected that more strategies will come to light for
antiviral drug development and disease control.
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Abbreviations

CV coxsackievirus
PV poliovirus
EMCV encephalomyocarditis virus
EV enterovirus
FMDV foot-and-mouth disease virus
HRV human rhinovirus
NCR noncoding region
ER endoplasmic reticulum
MAP1-LC3 microtubule-associated protein 1 light chain 3
NLRP3 pyrin domain-containing 3
NSP4 non-structural protein 4
CaMKK-β calmodulin-dependent kinase kinase-β
RIG-I retinoic acid-inducible gene-I
shRNA short hairpin RNA
siRNA small interfering RNA
EEF1G elongation factor 1γ
HAV hepatitis A virus
CHOP CCAAT-enhancer-binding protein homologous protein
BAX B-cell lymphoma 2-associated X
NOD nucleotide-binding oligomerization domain
NLR NOD-like receptor
IL interleukin
DHX58 DExH-box helicase 58
IFN interferon
HCV hepatitis C virus
SUMO small ubiquitin-like modifier
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