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Abstract: Respiratory syncytial virus (RSV) is an important etiological agent of respiratory infection
in children for which no specific treatment option is available. The RSV virion contains two surface
glycoproteins (F and G) that are vital for the initial phases of infection, making them critical targets
for RSV therapeutics. Recent studies have identified the broad-spectrum antiviral properties of
silver nanoparticles (AgNPs) against respiratory pathogens, such as adenovirus, parainfluenza,
and influenza. AgNPs achieve this by attaching to viral glycoproteins, blocking entry into the host
cell. The objective of this study was to evaluate the antiviral and immunomodulatory effects of
AgNPs in RSV infection. Herein we demonstrate AgNP-mediated reduction in RSV replication,
both in epithelial cell lines and in experimentally infected BALB/c mice. Marked reduction in
pro-inflammatory cytokines (i.e., IL-1α, IL-6, TNF-α) and pro-inflammatory chemokines (i.e., CCL2,
CCL3, CCL5) was also observed. Conversely, CXCL1, G-CSF, and GM-CSF were increased in
RSV-infected mice treated with AgNPs, consistent with an increase of neutrophil recruitment and
activation in the lung tissue. Following experimental antibody-dependent depletion of neutrophils,
the antiviral effect of AgNPs in mice treated was ablated. To our knowledge, this is the first in vivo
report demonstrating antiviral activity of AgNPs during RSV infection.

Keywords: respiratory syncytial virus; silver nanoparticles; AgNP; neutrophils; anti-Ly6G; antiviral;
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1. Introduction

Since its discovery more than 60 years ago, respiratory syncytial virus (RSV) has been recognized
as the leading cause of lower respiratory tract illness (LRTI) in infants and young children worldwide [1].
RSV, of the family Pneumoviridae, has a genome comprised of non-segmented negative-sense RNA
that encodes eleven viral proteins [2]. Infection with RSV typically begins in the epithelium of the
upper respiratory tract and rapidly descends to the lower airways by intracellular transmission [3].
It is responsible for a variety of symptoms ranging from a low-grade fever to severe bronchiolitis
or pneumonia [4]. On average, there are 33.1 million new infections each year, with 3.2 million
hospital admissions, and 59,600 in-hospital deaths in children less than five years of age [4,5].
Currently, Palivizumab, a monoclonal antibody, is the only prophylactic medication approved for use
in infants [6–8]. To date, there are no effective vaccines or specific treatment options for RSV infections.

Nanomedicine is a fast-growing field that utilizes nanotechnology to enhance applications, such
as pharmaceuticals, diagnostic devices, and drug delivery systems [9–11]. Nanomaterials range in
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size from 1–100 nm and are classified according to their size, shape, and biological interactions [12,13].
Silver nanoparticles (AgNPs), defined as a cluster of colloidal silver, have been utilized in experimental
models of infectious diseases as engineered AgNPs display the antimicrobial properties of bulk silver,
with a significant reduction in the toxic effects observed with silver ions [14,15]. The antimicrobial
effects of AgNPs are accomplished by a unique physiochemical property which allows for a large
surface area to volume ratio, generating more efficient contact with microorganisms and enhancing
interactions with microbial proteins [16,17]. This has garnered much success on an antibacterial
platform, allowing for potential alternatives to antibiotic-resistant strains of bacteria, improved wound
healing, and antibacterial coatings for medical materials, such as stents, catheters and orthopedic
implants [18,19]. AgNPs have also demonstrated promising antiviral capabilities with viruses, such as
HIV, Tacaraibe virus, and several respiratory pathogens, including adenovirus, parainfluenza and
influenza (H3N2) [20–24].

As an antiviral agent, AgNPs have been proposed to interfere with viral replication by two
separate mechanisms. The first is by binding via sulfur-bearing residues on surface glycoproteins,
preventing the attachment and entry of the virus into the host cell [23]. The second mechanism involves
AgNPs crossing the cell membrane and effectively blocking cellular factors necessary for the proper
assembly of viral progeny [25,26]. The RSV virion contains two surface glycoproteins (F and G) that
it utilizes to gain access to the host cell, where it replicates primarily within the cytoplasm [27,28].
Therefore, AgNPs have the potential to block entry of RSV by binding of surface glycoproteins and/or
inhibit the spread of RSV from within the host cell.

Based on the success of AgNPs with similar pathogens, the current study was designed to analyze
the antiviral and immunomodulatory capacity of AgNPs against RSV infection, utilizing both in vitro
and in vivo models. Here we show significant reductions of RSV replication in A549 and HEp-2 cell
lines, as well as in experimentally infected BALB/c mice. We also demonstrate a shift in the cytokine
profile within the bronchoalveolar lavage fluid (BALF) of mice inoculated with AgNP-RSV to one
that supports neutrophil recruitment and activation. Upon depletion of neutrophils with anti-Ly6G,
the antiviral effects of AgNPs were reversed, suggesting neutrophils as a primary mechanism to the
antiviral activity presented by AgNPs in vivo. This study gives insight into the antiviral mechanisms
of AgNPs and their potential therapeutic application for RSV infections.

2. Materials and Methods

2.1. RSV Preparation

RSV Long strain was grown in HEp-2 cells and purified by centrifugation on discontinuous sucrose
gradients. The titer of viral pools was determined by a methylcellulose plaque assay using HEp-2
cells, as described previously [29–31]. Virus pools were aliquoted, quick-frozen on dry ice-alcohol,
and stored at −80 ◦C until needed.

2.2. PVP-Coated Silver Nanoparticles (AgNP)

10 nm poly-vinylpyrrolidone (PVP) coated biopure silver nanospheres were purchased from
NanoComposix Inc. (San Diego, CA, USA). The PVP coating was chosen for its tight association
with the silver particle, making the AgNP as stable as possible in a variety of different environments.
Per the manufacturer, the AgNPs used in this study have a mass concentration of 1 mg/mL with a size
distribution of 8–12 nm. The AgNPs exhibited an optimal density of 155 cm−1 and a peak wavelength of
390 nm. Endotoxin concentrations were less than 5 EU/mL, and silver purity was 99.99%. TEM images
of the AgNPs provided by the manufacturer are available upon request. For in vitro analyses, AgNPs
were diluted in F12K or MEM (110 mM glutamine, 100 IU/mL penicillin, and 100 µg/mL streptomycin)
to a total volume of 1 mL. For in vivo analyses, AgNPs were diluted in sterile phosphate-buffered
saline (PBS) prior to mice inoculation.
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2.3. Studies In Vitro

A549 cells, a human alveolar type II-like epithelial cell line, and HEp-2 Cells (American Type
Culture Collection, Manassas, VA, USA) were grown in F12K and MEM, respectively. Media contained
10% (vol/vol) FBS, 10 mM glutamine, 100 IU/mL penicillin, and 100 µg/mL streptomycin. Confluent
monolayers were infected with RSV treated with varying doses of AgNPs (0, 10, 25 or 50 µg/mL).
Samples were incubated with shaking for 1 h at room temperature prior to plating. A549 cells were
infected at a multiplicity of infection (MOI) of 1 for 24 h. HEp-2 cells were infected at an MOI of 0.01 for
48 h. Supernatants were aliquoted and stored at −80 ◦C. To evaluate viral titer, serial five-fold dilutions
of infected supernatants were determined by plaque assay on HEp-2 cells under methylcellulose overlay.
Plaques were visualized five days later, and viral titers were calculated as PFU/mL. Additionally,
CXCL8 (IL-8) and CCL5 (RANTES) were also quantified by an enzyme-linked immunosorbent assay
(ELISA) (R&D Systems, Minneapolis, MN, USA).

The toxicity of AgNPs on epithelial cells was assessed in vitro with an A549 cell line, using lactate
dehydrogenase (LDH) activity as an index of cellular damage. To measure LDH activity, A549 epithelial
cells were exposed to varying doses of AgNPs (0, 10, and 50 µg/mL) for 24 h. LDH in the medium was
measured by colorimetric assay using a commercially available kit (Cayman Chemical, Ann arbor, MI,
USA) following the manufacturer’s instructions. This assay measures cellular damage in response
to chemical compounds or environmental factors using a coupled two-step reaction, as previously
described [32].

2.4. Viral Infection of BALB/c Mice

Female, 10 to 12-week-old BALB/c mice were purchased from Jackson Laboratory (Bar Harbor,
ME, USA) and housed under pathogen-free conditions in the animal research facility of the University
of Texas Medical Branch (UTMB), Galveston, Tex. All care and procedures involving mice in this study
were in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health and UTMB institutional guidelines for animal care. A mixture
of Ketamine (90–150 mg/kg) and Xylazine (7.5–16 mg/kg) was administered by intraperitoneal (IP)
injection for anesthesia and euthanasia. This protocol was approved by the Institutional Animal Care
and Use Committee of UTMB (protocol number 9001002I).

The dosage of AgNPs was calculated based on the weight of the animals. All inoculants were
incubated with shaking for 1 h at room temperature prior to inoculation. Under light anesthesia, mice
were intranasally inoculated with 100 µL of sterile PBS as a mock inoculation, AgNPs (2 mg/kg or
4 mg/kg) diluted in PBS (denoted as AgNP-PBS), RSV diluted in PBS at a dose of 5 × 106 PFU (denoted
as RSV), or RSV mixed with AgNPs (2 mg/kg or 4 mg/kg) diluted in PBS (denoted as AgNP-RSV).
Animals from all groups were evaluated on a daily basis for weight loss, illness score, and presence of
respiratory symptoms. The percentage of bodyweight change was plotted over time. Clinical illness
scores were visually determined by two investigators using a standardized 0–5 grading system (0-no
disease, 1-slightly ruffled fur, 2-full ruffled fur, 3-ruffled fur and hunched back, 4-ruffled fur, hunched
back and inactive, and 5-death). These parameters have been shown to closely correlate with lung
pathology in experimental infection of mice [33–35].

Determination of viral copy number and Mus musculus MX dynamin-like GTPase 1 (Mx1) in
the mouse lung was done using quantitative real-time PCR (qRT-PCR). Total RNA was extracted
using a ToTALLY RNA kit (catalog number AM1910; Ambion, Austin, TX, USA). RNA samples
were quantified by a NanoDrop spectrophotometer and quality was analyzed on an RNA Nano-drop
by the Agilent 2100 bioanalyzer (Agilent Technologies). Synthesis of cDNA was performed with
1 µg of total RNA in a 20 µL reaction mixture by using TaqMan Reverse Transcription Reagents
kit from ABI (catalog number N8080234; Applied Biosystems). Amplification was done using 1 µL
of cDNA in a total volume of 25 µL using the Faststart Universal SYBR green Master Mix (Roche
Applied Science #04913850001). The RSV N-specific reverse transcriptase (RT) primer contained
a tag sequence from the bacterial chloramphenicol resistance (Cmr) gene to generate the cDNA,
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because of self-priming exhibited by RSV RNA. To detect the RSV genome (-) strand, we used
RSV N RT primer 5′-CTGCGATGAGTGGCAGGCACTACAGTGTATTAGACTTRACAGCAGAAG-3′.
For PCR assays, we used RSV tag primer CTGCGATGAGTGGCAGGC and primer RSV P
GCATCTTCTCCATGRAATTCAGG. To detect Mx1, the mRNA sequence reported under GenBank
accession number NM_010846 was used to design amplification primers for qRT-PCR assays. 18S
RNA was used as a housekeeping gene for normalization. PCR assays were run in the ABI Prism 7500
Sequence Detection System. Triplicate cycle threshold (CT) values were analyzed in Microsoft Excel by
the comparative CT (∆∆CT) method according to the manufacturer’s instructions (Applied Biosystems).
The amount of target (2−∆∆CT) was obtained by normalization to the endogenous reference (18S) sample.
RNA isolation, primer design, and qRT-PCR assays were performed at the Molecular Genomics Core,
UTMB, Galveston [36,37].

2.5. Airway Obstruction

Airway obstruction was measured in unrestrained mice at days one and five post-infection (p.i.)
using whole-body barometric plethysmography (Buxco Electronics, Troy, NY, USA) to record enhanced
pause (Penh), as previously described [33]. Penh is a dimensionless value that represents a function of
the ratio of peak expiratory flow to peak inspiratory flow and a function of the timing of expiration.
To establish baseline airway obstruction values, mice were acclimatized to the chambers for five
minutes, and respiratory activity was recorded for five minutes. This protocol was designed by Buxco
Electronics, and the laboratory staff was trained by the company on the use of this protocol.

2.6. Bronchoalveolar Lavage (BAL)

At days one or five p.i., mice were euthanized with an IP injection of ketamine and xylazine
followed by exsanguination via the femoral vessels. An incision was made in the trachea, through
which the lungs were flushed twice with 1 mL of cold sterile PBS to obtain BAL fluid (BALF). The chest
cavity then was opened for lung collection. Total cell counts were determined by trypan blue staining,
followed by counting of viable cells using a hemocytometer. Additionally, 100 µL of BALF was spun
onto glass cytocentrifuge slides and stained with H&E (Hema 3 stain, Fisher Scientific) for differential
cell counts. The remaining BALF was centrifuged and supernatants were collected, and stored at
−80 ◦C until needed for further assays.

2.7. Measurement of Cytokines, Chemokines, Interferon, Total Protein and Elastase

Cytokines, chemokines, interferons, and elastase were all measured using BALF collected at
day one p.i. Total proteins were measured using BALF collected at days one and five p.i. Levels of
cytokines and chemokines in the BALF were determined with a Bio-Plex Pro Mouse Group I 23-plex
panel (BioRad Laboratories, Hercules, CA, USA). Interferon (IFN)-α and IFN-β were measured by
ELISA, following the manufacturer’s protocol (PBL Biomedical Laboratories, Piscataway, NJ, USA).
Total protein concentrations were determined using the Bradford method (BioRad Laboratories,
Hercules, CA, USA). Neutrophil elastase was measured using a neutrophil elastase ELISA kit (R&D
Systems, Minneapolis, MN, USA). Absorbance for all microplate assays was measured on a SpectraMax
190 microplate reader (MDS Analytical Technologies, Sunnydale, CA, USA).

2.8. Neutrophil Depletion in BALB/c Mice

In a separate set of experiments, 10 to 12-week-old female BALB/c mice were depleted of
neutrophils with an IP injection of 200 µg anti-Ly6G (Clone 1A8; Bio X Cell, West Lebanon, NH, USA)
in a final volume of 100 µL, 12 h prior to infection. Anti-Ly6G was diluted in PBS immediately before
being administered to mice. Control mice received the same volume of PBS via IP injection 12 h prior
to infection. For infection, mice were intranasal inoculated with 100 µL RSV diluted in PBS at a dose of
5 × 106 PFU or RSV treated with AgNPs (2 mg/kg or 4 mg/kg) diluted in PBS. Lungs were collected at
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day five p.i. for determination of viral titer CPE plaque assay using lung homogenate (see Section 2.3)
and by qRT-PCR.

2.9. Statistical Analysis

The data were analyzed by a one-way ANOVA followed by Tukey’s post hoc test for samples
with unequal variances (GraphPad Prism 7; GraphPad Software, Inc., San Diego, CA, USA). Results
are expressed as mean ± SEM for each experimental group unless stated otherwise, and p ≤ 0.05 value
was selected to indicate significance.

3. Results

3.1. AgNPs Reduce RSV Replication in Epithelial Cell Lines

The effect of AgNPs on RSV infection was assessed in vitro by plaque assay in two epithelial cell
lines, A549 (MOI: 1; Figure 1A) and HEp-2 (MOI: 0.01; Figure 1B). Following incubation of RSV with
AgNPs (0, 10, 25, and 50 µg/mL), both cell lines demonstrated significant dose-dependent reductions in
RSV replication. The dose of 50 µg/mL AgNP was the most effective in either cell type with a decrease
of RSV replication by 79% in A549 cells and 78% in HEp-2 cells. This decrease was associated with
a significant reduction in CXCL8 (Figure 1C) and CCL5 (Figure 1D) secretion by RSV-infected cells.
Interestingly, the lowest dose of AgNP (10 µg/mL) induced a small increase in viral replication, coupled
with increase secretion of CXCL8 and CCL5 (Figure 1A–D).

In addition to viral replication, the potential toxicity of AgNPs on A549 cells was also assessed
using LDH as an index of cellular damage. There were no notable cytotoxic effects following 24 h of
exposure to either the lowest or highest dose of AgNPs (10 or 50 µg/mL) (Figure 1E).

3.2. AgNPs Reduce RSV Replication in the Lung Tissue of Experimentally Infected Mice

To understand the role of AgNPs in the context of RSV infection in vivo, BALB/c mice were
intranasally inoculated with PBS, AgNP-PBS (2 mg/kg or 4 mg/kg), RSV (5 × 106 PFU), or AgNP-RSV.
Lung tissue was collected at day five p.i. to evaluate RSV copy number by qRT-PCR. Mice treated
with AgNP-RSV had significant reductions in RSV copy number as compared to the RSV untreated
mice (Figure 2A). Of the two AgNP doses, 4 mg/kg AgNP was most significant, with a decrease of 55%.
The dose of 2 mg/kg AgNP elicited a reduction of 45%.

Over the course of the disease, mice were monitored daily for changes in clinical parameters
(i.e., bodyweight loss and illness score). Mice inoculated with AgNP-PBS did not display any signs
of disease or weight loss over the five-day monitoring period, indicating that AgNPs per se do not
lead to clinical illness in mice. Mice inoculated with either dose of AgNP-RSV did not differ in
bodyweight loss as compared to RSV untreated mice (Figure 2B). Mice inoculated with 4 mg/kg
AgNP-RSV demonstrated a minor increase in illness score only at day five p.i. (Figure 2C). No other
group had any significant changes in illness score over the five-day period.

Next, to assess the effects of AgNPs on pulmonary function, airway obstruction was analyzed by
whole-body plethysmography (Buxco Electronics, Inc., Sharon, CT, USA) and expressed as enhanced
pause (Penh). Mice inoculated with either dose of AgNP-PBS had no notable changes to baseline Penh
at day one or day five p.i. (data not shown). Mice inoculated with AgNP-RSV showed an increasing
trend in baseline Penh values, but were statistically similar to the RSV untreated mice at both time points
(Figure 2D). We also evaluated the concentration of total protein as a marker of epithelial damage and
increased vascular permeability. At day 1 p.i., mice inoculated with 2 mg/kg AgNP-RSV demonstrated
an average value of 0.89 mg/mL, which was a marginal increase compared to the RSV untreated
group that demonstrated total protein levels of 0.66 mg/mL (Figure 2E). Mice inoculated with 4 mg/kg
AgNP-RSV had total protein levels comparable to the RSV untreated mice. At day 5 p.i., mice inoculated
with 4 mg/kg AgNP-RSV demonstrated a significant increase in total protein concentration with a value
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of 2.53 mg/mL as compared to 1.11 mg/mL for RSV untreated mice. Mice inoculated with 2 mg/kg
AgNP-RSV had total protein levels comparable to the RSV untreated mice (Figure 2E).Viruses 2019, 11, x FOR PEER REVIEW 6 of 16 
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Figure 1. Silver nanoparticles (AgNPs) decreased respiratory syncytial virus (RSV) replication in
epithelial cell lines. (A) A549 cells were infected with RSV or AgNP-RSV (0, 10, 25, or 50 µg/mL) at a
multiplicity of infection (MOI) of 1 and (B) HEp-2 cells were infected with RSV or AgNP-RSV at an MOI
of 0.01. Supernatants of infected cells were collected as described in the methods. Viral replication was
determined by plaque assay and (C) CXCL8 and (D) CCL5 levels were determined by enzyme-linked
immunosorbent assay (ELISA). (E) The toxicity of AgNPs (0, 10, and 50 µg/mL) on A549 cells was
determined using LDH as an index of cellular damage. Data are expressed as mean ± SEM and is
representative of three independent experiments. Significant results as compared to the RSV control
are marked with asterisks, and additional comparisons between groups are indicated with brackets
(* for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001, **** for p ≤ 0.0001).
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regardless of infection status. Chemokines associated with viral replication, such as CCL3 (MIP-1α) 
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Figure 2. AgNPs decreased RSV replication in the lung tissue of experimentally infected mice.
Under light anesthesia, mice were intranasally inoculated with either phosphate-buffered saline (PBS),
AgNP-PBS (2 mg/kg or 4 mg/kg), RSV (5 × 106 PFU) or AgNP-RSV. Lung tissue collected at day five p.i.
was measured for (A) viral titer by qRT-PCR. Over the five-day infection period, mice were monitored
daily for changes in (B) bodyweight and (C) illness score. (D) Airway obstruction, represented by
baseline Penh, was assessed by unrestrained plethysmography (Buxco Electronics, Inc., Sharon, CT,
USA). (E) Total protein concentrations of the bronchoalveolar lavage fluid (BALF) at days one and
five p.i. were determined using the Bradford method (BioRad Laboratories, Hercules, CA, USA).
Data are expressed as mean ± SEM (n ≥ 5 mice) and is representative of three independent experiments.
Significant results as compared to the respective control are marked with asterisks, and additional
comparisons between groups are indicated with brackets (* for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001,
**** for p ≤ 0.0001). Not detected (n.d).
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3.3. AgNPs Decrease Many RSV-Induced Cytokines and Chemokines, While Increasing Those Associated with
Neutrophil Recruitment and Activation

To investigate the immunomodulatory effects of AgNPs during RSV infection, cytokine and
chemokine concentrations of the BALF at day one p.i. were evaluated by a multiplex cytokine
array. In mice inoculated with AgNPs, regardless of infection status, G-CSF and GM-CSF were
significantly increased (Figure 3A). Conversely, inflammatory and immunomodulatory cytokines,
such as interleukin (IL)-1α, IL-6, IL-9, IL-10, IL-12p40, IL-12-p70, IL-13, and TNF-αwere significantly
decreased in mice inoculated with either dose of AgNP-RSV (Figure 3A). In addition to G-CSF and
GM-CSF, the chemokine CXCL1 (KC) was significantly increased in all mice inoculated with AgNPs,
regardless of infection status. Chemokines associated with viral replication, such as CCL3 (MIP-1α)
and CCL5 (RANTES), were significantly decreased (Figure 3B).Viruses 2019, 11, x FOR PEER REVIEW 9 of 16 
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Next, we wanted to understand if the neutrophils present in the BALF of mice inoculated with 
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Figure 3. AgNPs decrease viral-induced cytokines, while increasing those associated with neutrophil
recruitment and activation. BALF was collected at day one p.i. and analyzed for (A) cytokines,
(B) chemokines and (C) type-I IFNs by Bio-plex, ELISA, and qRT-PCR analysis. Data are expressed as
mean ± SEM (n ≥ 6 mice) and is representative of two independent experiments. Significant results
as compared to the respective control are marked with asterisks (* for p ≤ 0.05, ** for p ≤ 0.01, *** for
p ≤ 0.001, **** for p ≤ 0.0001). Not detected (n.d).
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To assess type-I IFN production, an ELISA (PBL Biomedical Laboratories, Piscataway, NJ, USA)
was conducted at day one p.i. using the BALF of mice inoculated with AgNP-RSV and compared with
RSV untreated mice. This was further supported by testing for the Mx1 gene within the lung tissue by
qRT-PCR. IFN-α, IFN-β, and Mx1 were all significantly decreased following inoculation with either
dose of AgNP-RSV as compared to the RSV untreated mice (Figure 3C).

3.4. AgNPs Increase and Maintain Neutrophil Cell Counts in the BALF, Regardless of Infection Status

To determine whether AgNP treatment affected the cellular composition, BAL samples were
collected from inoculated mice at days one and five p.i. for total and differential cell counts. The total
cell count was significantly greater in the BALF of all AgNP inoculated mice at days one and five,
regardless of infection status (Figure 4A). Differential cell counts revealed this increase to be primarily
due to a significant increase in the number of neutrophils at both time points (Figure 4B,C). Macrophage
cell counts were unaffected in either group at day one p.i. and had an increasing trend in cell count at
day five p.i., regardless of infection status (Figure 4D). Lymphocyte cell counts were comparable to the
respective controls at both days one and five p.i. (Figure 4E).

Next, we wanted to understand if the neutrophils present in the BALF of mice inoculated with
either dose of AgNPs were activated using elastase as a marker of neutrophil activation. BALF collected
at day one p.i. demonstrated significant increases in elastase in all AgNP inoculated mice, regardless of
infection status. A dose-dependent increase in elastase production was observed in AgNP-RSV treated
mice as compared to RSV untreated mice (Figure 4F).

3.5. Neutrophils Are a Primary Mechanism of the Antiviral Activity by AgNPs in RSV-Experimentally
Infected Mice

Some studies have shown AgNPs to increase neutrophil cell counts within the BALF of treated
mice, but few have investigated their activity following recruitment [38,39]. Neutrophils have also been
suggested to have antiviral capabilities during RSV infection, leading us to evaluate the function of
neutrophils in AgNP-RSV treated mice. Mice were depleted of neutrophils with an injection of anti-Ly6G
clone 1A8 12 h prior to inoculation with RSV (5 × 106 PFU), or AgNP-RSV. In neutrophil-depleted mice
inoculated with 2 mg/kg AgNP-RSV or 4 mg/kg AgNP-RSV, the viral copy number at day five p.i. was
found to be similar to the viral copy number in neutrophil-depleted RSV untreated mice, indicating a
reversal of the antiviral effect noted in immunocompetent mice (Figure 5A). This was further supported
by a viral plaque assay using the lung homogenate of infected mice (Figure 5B). These results support
neutrophils as a primary mechanism of the antiviral activity generated by AgNPs against experimental
RSV infection in mice.
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Figure 4. AgNPs increase recruitment and activation of neutrophils to the lung, regardless of infection
status. Mice were inoculated with PBS, AgNP-PBS (2 mg/kg or 4 mg/kg), RSV (5 × 106 PFU) or
AgNP-RSV. At days one and five p.i., BALF was collected from all groups and used to obtain (A) total
cell counts, as well as differential cell counts consisting of (C) neutrophils, (D) macrophages, and
(E) lymphocytes. (B) BALF samples collected at days one and five p.i. from PBS untreated and
AgNP-PBS mice were spun on glass slides, stained with H&E, and observed under a light microscope
at 40×magnification. The black arrows indicate neutrophils. (F) Neutrophil elastase concentrations
were measured by ELISA using BALF collected at day one p.i. Data are expressed as mean ± SEM
(n ≥ 6 mice) and is representative of three independent experiments. Significant results as compared
to the respective control are marked with asterisks, and additional comparisons between groups are
indicated with brackets (* for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001, **** for p ≤ 0.0001).
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4. Discussion

RSV accounts for nearly 7% of deaths among infants and young children worldwide, second only
to malaria [40]. Despite this, there is still no effective therapeutic or licensed vaccine currently available
for the treatment of RSV [6]. This has created a high demand for new antivirals and/or therapeutic
agents for the treatment and control of RSV infections. The aim of this study was to evaluate the
antiviral efficacy and immunomodulatory capacity of AgNPs during RSV infection, both in vitro and
in vivo.

In our cell culture analysis, we found a significant dose-dependent reduction of RSV replication
in both HEp-2 and A549 cell lines, with the strongest antiviral effect elicited by a dose of 50 µg/mL
AgNP. In addition, cells exposed to this dose of AgNPs were found to release levels of LDH similar
to that of the control, demonstrating that AgNPs at the dose of 50 µg/mL are not toxic to epithelial
cells. The effectiveness of 50 µg/mL AgNPs in epithelial cell lines is in agreement with work previously
reported examining the effects of AgNPs on influenza strains H1N1 and H3N2 [24,41]. To confirm our
findings in vivo, BALB/c mice were inoculated with AgNP-RSV, and lung tissue was collected at day
five p.i. to evaluate viral titer. Inoculation with AgNP-RSV resulted in significant reductions in viral
titer as compared to RSV untreated mice. This demonstrates, for the first time, the effectiveness of
AgNPs against experimental RSV infection in mice.

The mechanism to the antiviral effect against RSV in epithelial cell lines may be due to be the
attachment of AgNPs to surface glycoproteins [22,23,42]. By doing so, AgNPs would interfere with
RSV’s ability to initiate attachment with the proper receptors, preventing fusion of the virus to the host
cell. This would leave RSV in the extracellular space where it is unable to propagate, resulting in the
reduction of syncytia formation seen in our plaque assays [28,43,44]. The basis of this mechanism has
been investigated with other RNA viruses, such as human immunodeficiency virus type-1 (HIV-1).
AgNPs were shown to directly associate with the surface glycoprotein gp120, preventing HIV-1 from
interacting with host receptors [45]. The gp120 glycoprotein has also been found to have some structural
similarities with the RSV-F surface glycoprotein, supporting the hypothesis of a direct association of
AgNPs with RSV [42,46,47]. Interestingly, exposure of 10 µg/mL AgNP to RSV in A549 and HEp-2 cell
lines resulted in a slight increase in RSV replication and secretion of CXCL8 and CCL5. Though it is
not clear at the present time why a low dose of AgNPs would have such an impact on viral parameters,
we believe that insufficient coating of the virus with AgNPs would allow the virus to continue infecting
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epithelial cells. This enhancement of replication was not appreciated with increasing doses of AgNPs,
suggesting that RSV virions are more efficiently coated with higher doses of AgNPs (Figure 1A,B).

Although a potential direct antiviral mechanism has been previously described, cell culture lacks
the interaction of a complex immune system. Therefore, to elucidate potential antiviral mechanisms
due to AgNPs in vivo, we investigated the cytokine, and cellular composition of the BALF collected
from inoculated mice. AgNP-RSV infected mice were found to have significant reductions in many
pro-inflammatory and viral associated markers, such as IL-6, TNF-α, CCL5 (RANTES), and type I
IFNs. Additionally, significant reductions were also noted with IL-1α, IL-9, IL-10, IL-12p40, IL-12p70,
IL-13, CCL2 (MCP-1), and CCL3 (MIP-1α). Previous data in the field of RSV has suggested that
a downregulation in pro-inflammatory cytokines, such as TNF-α corresponds with significantly
improved clinical disease (i.e., bodyweight loss, illness score, airway obstruction) [48–51]. Conversely,
our study demonstrated no significant changes to clinical parameters in AgNP-RSV inoculated mice,
despite significant decreases in an array of RSV-induced cytokines. Upregulations in cytokines and
chemokines responsible for neutrophil recruitment and/or activation (i.e., elastase, CXCL1, G-CSF, and
GM-CSF) have been linked to heightened airway inflammation and RSV bronchiolitis [52,53]. As shown
in Figure 3, CXCL1, G-CSF, and GM-CSF were all found to be significantly increased following AgNP
inoculation. Therefore, the beneficial effects typically associated with reductions in pro-inflammatory
cytokines are likely counteracted by the strong presence of these neutrophil associated cytokines.

Consistent with increases in cytokines associated with neutrophil recruitment, the number of
neutrophils in the BALF was also found to be significantly increased. These findings are in agreement
with other reports demonstrating an upregulation of neutrophils in many rodent models following
inoculation with AgNPs [38,39]. The mechanism to this neutrophilia is believed to be an initial
stimulation of macrophages to release CXCL1 (KC), but the role of neutrophils during AgNP exposure
is still poorly understood [54]. RSV is also known to induce neutrophilia during the early stages of the
disease, but the activity of neutrophils during RSV infection has only recently begun to be properly
elucidated, and reports remain contradictory [55–61]. Therefore, to evaluate the role of neutrophils
following AgNP-RSV exposure, we depleted mice of neutrophils using an injection of anti-Ly6G.
AgNP-RSV treated mice that had been depleted of neutrophils were found to have viral titers similar
to RSV untreated neutrophil-depleted mice, demonstrating a reversal of the antiviral effect observed in
AgNP-RSV neutrophil immunocompetent mice. These findings suggest AgNPs modulate the function
of neutrophils in RSV infection to enhance their antiviral activity.

Toxicity studies of AgNPs in the lung have been performed in a variety of rodent models and have
shown overall that AgNPs induce minor airway mucosa thickening and cellular infiltration (primarily
neutrophils), but generate no major alterations to lung function, even following 28 days of continuous
exposure [16,62–65]. This is consistent with our findings, which demonstrate a sizable neutrophil
influx to the BAL fluid through day five in mice inoculated with PBS-AgNPs, but without evidence
of clinical disease (i.e., bodyweight-loss, illness score, airway obstruction). Similarly, although both
doses of AgNPs resulted in significantly increased neutrophil recruitment/activation in RSV-infected
mice, clinical parameters were comparable to those observed in RSV-infected untreated mice at the
peak of disease (day 2–4). At the time of recovery (day 5), we observed some delay in the regaining of
bodyweight and clinical disease along with higher total protein content in the BAL only in the group
of infected mice that had received the higher dose of AgNPS (4 mg/kg), a result of the higher number
of activated neutrophils in the BALF (Figure 2) as previously suggested [56]. However, mice that
received the 4 mg/kg AgNP dose also exhibited the largest reduction in RSV lung titers, as well as in
all pro-inflammatory cytokines (i.e., TNF-α, IL-6), suggesting that AgNPs potentiate the neutrophil
anti-RSV activity as their major antiviral function in the experimental mouse model.

In conclusion, our study demonstrates that AgNPs effectively reduce RSV replication and
production of pro-inflammatory cytokines in epithelial cell lines and in mouse lung. In the mouse
model, the antiviral activity appears to be mediated to a large extent by neutrophils, which are
recruited in higher number to the airways and activated via a neutrophil-specific program of cytokines
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that include CXCL1, G-CSF, and GM-CSF. These findings contribute to the understanding of AgNP
bioactivity in the lung while providing insights on the role that neutrophils play in the host response
against infections caused by RSV.
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