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Abstract: Co-infection of plant hosts by two or more viruses is common in agricultural crops and
natural plant communities. A variety of models have been used to investigate the dynamics of
co-infection which track only the disease status of infected and co-infected plants, and which do
not explicitly track the density of inoculative vectors. Much less attention has been paid to the
role of vector transmission in co-infection, that is, acquisition and inoculation and their synergistic
and antagonistic interactions. In this investigation, a general epidemiological model is formulated
for one vector species and one plant species with potential co-infection in the host plant by two
viruses. The basic reproduction number provides conditions for successful invasion of a single virus.
We derive a new invasion threshold which provides conditions for successful invasion of a second
virus. These two thresholds highlight some key epidemiological parameters important in vector
transmission. To illustrate the flexibility of our model, we examine numerically two special cases of
viral invasion. In the first case, one virus species depends on an autonomous virus for its successful
transmission and in the second case, both viruses are unable to invade alone but can co-infect the
host plant when prevalence is high.

Keywords: co-infection; invasion reproduction number; vector transmission

1. Introduction

Transmission is a key element in understanding the epidemiology of plant virus diseases,
particularly those transmitted by arthropod vectors [1–4]. In general, four modes of transmission,
non-persistent, semi-persistent, persistent-circulative and persistent-propagative, can be distinguished.
Each of these modes has a characteristic time period for acquisition from infected plants, retention in
the vector, and inoculation to healthy plants [5], although some virus groups such as the torradoviruses
do not fit neatly into these categories [6]. Other aspects important for arthropod transmission include
transovarial and transtadial transmission, and the “helper strategy” [3] in which a helper virus can
be transmitted by the vector but the dependent virus can only be transmitted in the presence of the
helper, a strategy modelled by Zhang et al. [7].

Co-infection of hosts by two or more plant viruses is common in both agricultural crops [8,9]
and natural plant communities [10,11]. Because of this, the literature on co-infection by plant viruses
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is extensive, although often not related to transmission. Indeed, extending epidemiological models
to go beyond a single pathogen species was relatively-recently highlighted as a key challenge in
modeling plant diseases in [12] (challenge 4). Co-infection almost always leads to interactions
between viruses during transmission and within-plant processes that can strongly influence disease
development in individual plants and ultimately spread in a plant population. The strength and
direction of interactions can vary with both negative and facilitating effects, involving within-cell
processes, cell-to-cell movement, vector acquisition and inoculation, symptom development and
virulence, and yield loss. Reports on cellular interactions have been the most prevalent, mostly for
replication rates and virus titre, but some studies have shown clear interactions with vectors over short
(epidemiological) and long-term (evolutionary) time scales [13].

Most experimental studies on the relationship between co-infection and transmission have been
done for viruses with non-persistent transmission by aphids. Syller [14] reviewed the literature on
“simultaneous” transmission of plant viruses by vectors, emphasizing the acquisition component
of transmission with little consideration of inoculation. The use of the term “simultaneous” is
ambiguous—what seems to be suggested is that two different virus particles can be acquired
instantaneously by a vector during a single probe where there is spatial separation between two
viruses. However, for non-persistent transmission, with a following probe [15] on the same or
different plant, one of the viruses can become detached and no longer be available for inoculation.
Transmission can present a real bottleneck in the virus life cycle [16]. In a subsequent review, Syller and
Grupa [17] differentiate between simultaneous inoculation (which they call co-infection) and sequential
inoculation (which they call super-infection). They claim that synergistic interactions within-plants
most often arise between unrelated viruses. Synergism is defined as a facilitative effect in which
accumulation of one or both viruses in the host plant increases; in the case of the effect on just one
virus, it has been called asymmetric synergism [18]. Synergism has also been used to describe more
severe disease symptoms than induced by either virus alone. Syller and Grupa [17] concentrate more
on antagonistic effects, such as cross protection [19] or, as has been termed “super-infection exclusion”
in which related viruses or virus strains are used preventively to exclude more virulent strains. Mascia
and Gallitelli [20] note the contributions that mathematical modeling could make “in forecasting
challenges deriving from the great variety of pathways of synergistic and antagonistic interactions”
(p. 176).

Co-infection can cover scenarios ranging from two viruses (or virus strains)/one vector through
to many viruses/many vectors, but with some nuances. There is an extensive literature on co-infection
across this range. Some representative but not exhaustive publications are noted in Table 1, together
with some key messages. Many publications acknowledge that there are several or many (in the
case of aphids) vector species for a given plant virus, but the experiments reported only involve one
vector. Similarly, the same virus and vector can infect more than one host (cucumber mosaic virus is
an extreme example) and hence cause more than one disease. Co-infection with virus strains differing
in virulence (or other characteristic) can lead to the same set of interactions and consequences as
found with virus species. A good example of two strains of the same virus species with shared vector
species is potato virus Y (PVY) [21–23] on potato and other hosts [15]. There are many examples
of two co-infecting virus species with a shared vector species [24–26]. Similarly, there are many
cases where two co-infecting viruses have quite different vectors taxonomically [27]. Co-infection is
manifested in more complex situations with multiple viruses and vectors such as with grapevine leafroll
disease [28,29] and sweet potato virus disease (SPVD) [30]. At an even higher level of complexity,
the ecological networks formed by multiple co-infecting viruses and multiple hosts were analyzed
by McLeish et al. [31].
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Table 1. Summary of some representative experimental work on co-infection at different levels of complexity.

Pathosystem Authors Key message

Two virus strains Potato virus Y (PYV) —Myzus persicae
(host Capsicum annuum) Moury et al. [15]

Two strains were equally transmissible and competition was studied to estimate the size of bottlenecks
imposed by vector transmission. If there was a cost of virulence, modelling showed that virulent strains
would go extinct.

PVYNTN compared with other
strains—Myzus persicae

Srinivasan et al. [21]
Previous work had suggested some specificity in transmission of strains. The rate of infection for PVYNTN

was higher than for other strains, a vector-related outcome as this was not observed with mechanical
transmission.

PVYNTN compared with PVYO—Myzus
persicae

Carroll et al. [22]
The necrotic strain was transmitted more efficiently than the wild-type. Co-infection would more likely result
from inoculation by multiple aphids feeding on plants infected with the different strains rather than by single
aphids feeding on multiple plants infected with the different strains.

Two virus
species—common
vector

Barley yellow dwarf virus/cereal
yellow dwarf virus—Rhopalosiphum padi Lacroix et al. [24] The co-inoculation of BYDV-PAV lowered the CYDV-RPV infection rate but only at low nutrient supply rates.

Broader environmental and nutritional factors can alter co-infection interactions and outcomes.

Watermelon mosaic virus/zucchini
yellow mosaic virus—Aphis gossypii Salvaudon et al. [25]

ZYMV accumulated at similar rates in single and mixed infections, whereas WMV was much reduced in the
presence of ZYMV. ZYMV also induced host changes that gave strong vector preference for infected plants;
whereas WMV did not, although it was still readily acquired from mixed infections.

Rice tungro spherical virus/rice tungro
bacilliform virus—Nephottetix virescens Holt and Chancellor [26]

Infection by each virus alone results in less pronounced symptoms. RTBV is retained in the vector for
a longer period. When a vector carries both viruses, co-inoculation is common. When inoculative with RSTV
alone the infection probability is higher.

Two virus
species—multiple
vector species

Bean pod mottle virus—Epilachna
varivestis/soybean mosaic virus—Aphis
glycines

Peñaflor et al. [27]

Singly-infected plants with either BPMV or SMV increased soybean palatability, potentially enhancing
acquisition of BPMV from BPMV plants and secondary infection of BPMV from SMV plants. BPMV infection
had little effect on A. glycines, whereas SMV infection reduced aphid population growth but increased the
preference for infected plants. With co-infection, effects on population growth were reversed and aphids
showed a preference for co-infected plants.

Multiple virus
species—multiple
vector species

Grapevine leafroll-associated viruses
(GLRaVs)—mealybugs/scale insects Naidu et al. [28] The exact role of GLRaVs in disease etiology remains unclear. With mealybugs, transmission is of

a semi-persistent manner with a lack of vector-virus specificity.

Blaisdell et al. [29] Co-infections of GLRaVs are frequent in grapevines although with some spatial separation with implications
for transmission and epidemiology.

Sweet potato chlorotic stunt
virus/sweet potato feathery mottle
virus/multiple viruses—multiple
vector species

Untiveros et al. [30]
Six viruses from the same or different virus families interacted synergistically with sweet potato virus disease,
with increased disease symptoms, virus accumulation and movement in plants, and reduced yield of storage
roots. All inoculations were made by grafting; no conclusions can be drawn on vector transmission effects.

Multiple virus
species—multiple
vector species,
multiple hosts

Ecological networks formed by multiple
co-infecting viruses in multiple hosts McLeish et al. [31]

Co-infection networks were found to lead to strong non-random associations compared with single infections.
Single infections were mostly related to habitat parameters, whereas co-infections were more related to
ecological heterogeneity and ecosystem-level processes.
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In this paper, we formulate a general epidemiological model for one vector species and one
plant species that allows for co-infection of the host plant by two virus species or strains. The model
is used to investigate the role of vector transmission on co-infection, specifically acquisition and
inoculation, as well as antagonistic and synergistic interactions. The basic reproduction number
provides a condition for invasion of a single virus infection. For co-infection, we derive a new invasion
threshold. Given that a single virus can persist in the host plant, the invasion threshold highlights some
key epidemiological parameters for successful co-infection. In addition, we investigate the roles of the
vector acquisition and inoculation parameters when one virus depends on an autonomous virus for its
successful transmission, or when both viruses are unable to invade alone but can facilitate co-infection
if they occur in high enough prevalences. We also explicitly test when the simplifications—which are
almost always left implicit—in models which do not explicitly include the infection status of vectors
lead to potentially misleading results.

2. Materials and Methods

2.1. Modelling

The general epidemiological model for vectors and plants consists of a system of differential
equations with either infection by a single virus, or co-infection by two viruses (species or strains).
For simplicity, we refer to the two viruses as virus A and virus B. We make several simplifying
assumptions. The two viruses are not transmitted vertically in the plant population (no transmission
by seeds or other propagating material) nor in the vector (no transovarial transmission). The plants
can be infected by a single virus or co-infected by both viruses. The vectors are only inoculative with
a single virus; namely, we assume that acquisition of the first virus precludes inoculation by a second
virus by the same vector for as long as the vector retains the first virus. This assumption applies to
both modes of transmission. For non-persistent transmission, it may arise because stylet receptor sites
are saturated by the first virus. For persistent-circulative transmission, it may be due to a phenomenon
similar to “super-infection exclusion" taking place in the vector [16], or simply that the first virus
moves back to the salivary glands faster than the second. In addition, the latent stages in the vector
and plant are ignored. The following compartmental diagrams in Figure 1 illustrate the rates of change
between the vector and plant stages. The vector and plant models are described in more detail below.
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Figure 1. Compartmental diagrams (left) for the vector model and (right) the host plant model,
described by the differential Equations (1) and (2), respectively. Meanings of the symbols for model
parameters are summarised in Table 2.

The vector model has three stages, X = the density of non-infective vectors, ZA = the density of
infective vectors carrying virus A and ZB = the density of infective vectors carrying virus B (for vectors,
“infective” more accurately means “inoculative”). The total vector density is V = X + ZA + ZB.
The parameters Λ = net vector birth rate, c = per capita vector death rate, Φ = number of plants
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visited per unit time by a single vector, αi = probability a non-infective vector acquires a single
virus from an infected plant Ii, i = A, B, AB, per plant visit and δi = per capita vector recovery
rate from virus i = A, B. The parameters εA and εB multiplying the acquisition probability αAB
are the conditional probabilities that either virus A or B are acquired, given that acquisition is from
a co-infected plant, εA + εB = 1. All of the parameters are non-negative. They are summarised in
Table 2. With these assumptions, as well as the assumption of frequency-dependent transmission with
P being the total plant population density, the vector model takes the following form:

Vector



dX
dt

= Λ−ΦX [αA IA + αB IB + αAB IAB] /P− cX + δAZA + δBZB

dZA
dt

= ΦX [αA IA + εAαAB IAB] /P− (c + δA)ZA

dZB
dt

= ΦX [αB IB + εBαAB IAB] /P− (c + δB)ZB.

(1)

The plant model consists of four stages, S = density of healthy plants, and three different classes
for infection, IA, IB and IAB, equal to the density of infected plants carrying only virus A, virus B or
both viruses, respectively. The total plant population density is P = S + IA + IB + IAB. The parameters
for the plant model include σ = net planting rate, µ = per capita rate of harvesting/mortality,
θi = probability an infective vector Zi inoculates a healthy plant with virus i = A, B per plant visit,
ω = per capita recovery rate in a plant infected with a single virus, and ωi = per capita viral recovery
rate of virus i in a co-infected plant IAB, i = A, B. The parameters γA and γB denote the synergistic or
antagonistic interactions between the viruses within the plant when infective vectors inoculate a plant
carrying a different virus, i.e., account for the probability of a second infection being either increased
or reduced relative to a healthy plant. The plant model is

Plant



dS
dt

= σ−ΦS[θAZA + θBZB]/P− µS + ω(IA + IB)

dIA
dt

= ΦθAZAS/P−ΦγBθBZB IA/P− (µ + ω)IA + ωA IAB

dIB
dt

= ΦθBZBS/P−ΦγAθAZA IB/P− (µ + ω)IB + ωB IAB

dIAB
dt

= Φ[γBθBZB IA + γAθAZA IB]/P− (µ + ωA + ωB)IAB.

(2)

The parameters εi and γi, i = A, B, reflect the fact that vector acquisition or inoculation with
co-infection may differ from a single virus infection [24,25,30]. The acquisition of a single virus from
a co-infected plant IAB may be greater or less than acquisition from a plant infected with a single virus
(e.g., εAαAB > αA or εAαAB < αA). In addition, the inoculation of a second virus into an infected plant
may be greater or less than inoculation of a healthy plant (e.g., γBθB > θB or γBθB < θB).



Viruses 2019, 11, 1153 6 of 25

Table 2. Summary of model parameters for plants and vectors. All parameters are non-negative.

Vector Default Values Default Values
Parameters Sections 3.1 and 3.2, Appendices B and C Section 3.3

Λ vector birth rate 10/month/area 1/month/area
c per capita vector natural death rate 1/month 1/month
Φ number of plants visited/time by a vector 1/day 8.33/day

δA
per capita infective vector recovery rate from
virus A 3/month 0.66/day

δB
per capita infective vector recovery rate from
virus B 3/month 1.33/day

αA
probability non-infective vector acquires virus
A from IA per plant visit 0.2 0.005

αB
probability non-infective vector acquires virus
B from IB per plant visit 0 0.005

αAB
probability non-infective vector acquires
a single virus, A or B, from IAB per plant visit 0.5 0.15

εA

conditional probability of acquiring virus A
from a co-infected plant IAB, given a successful
acquisition

0.5 0.5

εB

conditional probability of acquiring virus B
from co-infected plant IAB, given a successful
acquisition (εB = 1− εA)

0.5 0.5

Plant Default Values Default Values
Parameters Sections 3.1 and 3.2, Appendices B and C Section 3.3

µ per capita mortality and or harvest of plants 1/year 1/year
σ seeding or planting rate 1000/year/area 100/year/area

θA
probability an infective vector with virus A
inoculates a healthy plant per visit 0.8 0.8

θB
probability an infective vector with virus B
inoculates a healthy plant per visit 0.5 0.5

γA

relative inoculation success of virus A (as
compared to a heathy plant) in a plant IB,
infected with a single virus B

0.9 0.5

γB

relative inoculation success of virus B (as
compared to a healthy plant) in a plant IA,
infected with a single virus A

0.25, 0.9 0.5

ω
per-capita viral A or B loss rate in a plant
infected with single virus 0 0.001/day

ωA
per-capita viral B loss rate (A is retained) from
a co-infected plant IAB

0 0.001/day

ωB
per-capita viral A loss rate (B is retained) from
a co-infected plant IAB

0 0.001/day

2.2. Invasion Thresholds

Two important disease threshold parameters are derived from models (1) and (2), the basic
reproduction number and the invasion reproduction number. The density of non-infective vectors at
the disease-free equilibrium (DFE) in the vector model (1) is X = Λ/c = V̄ and the density of healthy
plants at the DFE plant model (2) is S = σ/µ = P̄. The basic reproduction number can be computed
from the next generation matrix approach [32–36] (Appendix A). Here it is defined as the maximum of
two reproduction numbers,

R0 = max
{

ΦV̄αAΦθA

P̄(c + δA)(µ + ω)
,

ΦV̄αBΦθB

P̄(c + δB)(µ + ω)

}
= max{R0A,R0B}. (3)

The two terms in the preceding definition are basic reproduction numbers corresponding to
infection with either virus A or virus B,R0A andR0B, respectively. If the basic reproduction number
for virus A exceeds the value of one,R0A > 1, then virus A can invade the disease-free vector-plant
system and if R0B > 1, then virus B can invade. An epidemiological interpretation of R0A is that if
one vector inoculative with virus A is introduced into a healthy vector-plant system, it will inoculate
and infect plants at a rate of ΦθA during the period of time 1/(c + δA) the vector is infective. From an
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infected plant, a non-infective vector will acquire the virus at a rate ΦαAV̄/P̄ during the period of
time 1/(µ + ω) the plant is infected. If the product of these two expressions exceeds the value of
one, then one infective vector (or infected plant) will generate more than one infective vector (or
infected plant), resulting in an epidemic. In general, ifR0 > 1, then either virus A or B can invade the
vector-plant system.

An invasion reproduction number can be derived if the system is already infected with a single
virus. We consider whether virus B can invade when the system is at the virus A equilibrium,
i.e., R0A > 1. The endemic equilibrium values for (X, ZA, S, IA) with virus A are (V̄ − zaeq, zaeq,
P− iaeq, iaeq). These endemic values can be expressed in terms of the basic reproduction numberR0A:

zaeq =
(R0A − 1)V̄

R0A +
ΦθAV̄

P̄(µ + ω)

and iaeq =
(R0A − 1)P̄

R0A +
ΦαA

(c + δA)

. (4)

To determine whether virus B can invade, we apply the next generation matrix approach to
derive an invasion matrix MinvB from which an invasion reproduction numberRinvB can be computed
(Appendix B). We assume that the vector-plant system is at the virus A equilibrium, defined in (4),
with the remaining states ZB, IB, and IAB set equal to zero. An invasion matrix for the system (1)–(2)
is defined as follows:

MinvB =


0

ΦX̄αB
κ1

ΦX̄εBαAB

P̄κ2

ΦθBS̄
P̄(c + δB)

0
ωB
κ2

ΦγBθBiaeq

P̄(c + δB)

ΦγAθAzaeq

κ1
0


, (5)

where S̄ = P̄ − iaeq, X̄ = V̄ − zaeq, κ1 = (µ + ω)P̄ + ΦγAθAzaeq and κ2 = µ + ωA + ωB.
A mathematical definition of the invasion reproduction number is the spectral radius of the invasion
matrix, that is,RinvB = ρ(MinvB). An epidemiological interpretation ofRinvB is the average number
of new states, ZB, IB or IAB, that are produced after introduction of an average of one infective vector
or infected plant containing virus B, ZB, IB or IAB, into the system infected with virus A. IfRinvB > 1,
then virus B can invade and if RinvB < 1, then virus B cannot invade. Each element in matrix
MinvB can be interpreted in terms of producing new infective vectors or infected plants, ZB, IB or IAB.
For example, the entry in the second row and first column,

ΦθBS̄
P̄(c + δB)

,

can be interpreted as the average number of new infected plants IB that are produced when one
infective vector ZB is introduced into the vector-plant system (where virus A has already invaded).

Since the invasion matrix (5) has non-negative entries, an increase (or a decrease) in any matrix
entry also increases (or decreases) the invasion reproduction number [37]. In particular, if the
inoculation probability θB for virus B increases so does the invasion reproduction number. The direction
of change for the invasion reproduction number is not as straightforward if the vector visitation rate Φ
or parameters related to virus A are changed, as the equilibrium values iaeq and zaeq also change.

2.3. Formal Reduction to a Model That Does Not Track Vectors Explicitly

The vector-plant system can be reduced to a simplified plant model, where the vectors are not
explicitly included (Appendix C). If the vector recovery rates, δA and δB, are sufficiently large, then
the vector population dynamics occur on a faster time scale than the plant population dynamics.
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The differential equations for the vector model (1) and the plant host model (2) can be approximated
by another plant model without the vector variables:

dS
dt

= σ− Φ2V̄
P2 S

(
θ̂A [αA IA + εAαAB IAB] + θ̂B [αB IB + εBαAB IAB]

)
− µS + ω(IA + IB)

dIA
dt

=
Φ2V̄
P2

(
θ̂AS [αA IA + εAαAB IAB]− γB θ̂B IA [αB IB + εBαAB IAB]

)
− (µ + ω)IA + ωA IAB

dIB
dt

=
Φ2V̄
P2

(
θ̂BS [αB IB + εBαAB IAB]− γA θ̂A IB [αA IA + εAαAB IAB]

)
− (µ + ω)IB + ωB IAB

dIAB
dt

=
Φ2V̄
P2

(
γB θ̂B IA [αB IB + εBαAB IAB] + γA θ̂A IB [αA IA + εAαAB IAB]

)
− (µ + ωA + ωB)IAB,

(6)

where parameters θ̂i = θi/(c + δi) for i = A, B. To distinguish the two sets of models, we will refer to
the simplified plant model (6) as the vector-implicit model and to the vector-plant model (1) and (2) as
the vector-explicit model.

The vector-implicit model retains the inoculation and acquisition terms. At the DFE, the basic
reproduction number is the same as in (3). But the equilibrium for virus A (S̄, ĪA) differs from the
vector-explicit model,

S̄ =
P̄
R0A

and ĪA = P̄
(

1− 1
R0A

)
. (7)

An invasion matrix for the vector-implicit model whenR0A > 1 can be computed by a method
similar to the computation of the invasion matrix in (5) (Appendix C). Invasion of virus B (via plants
infected with virus B, IB or IAB) is successful if the spectral radius of the following invasion matrix
exceeds the value of one:

MinvB =


Φ2V̄αB θ̂BS̄

η

Φ2V̄ θ̂BαABεBS̄ + P̄2ωB

P̄2(µ + ωA + ωB)
Φ2V̄ ĪA[γAαA θ̂A + γBαB θ̂B]

η

Φ2V̄γB θ̂BαABεB ĪA

P̄2(µ + ωA + ωB)

 , (8)

where η = P̄2(µ + ω) + Φ2V̄γAαA θ̂A ĪA.

3. Results

The effect of vector transmission on virus establishment in the vector-explicit model is examined
in several numerical examples. In addition, the conditions for invasion of a second virus in the
vector-explicit model are compared to the vector-implicit model.

3.1. Only One Virus Can Invade in Absence of the Other

We assume that virus A can invade and persist in the vector-explicit model but not virus B.
In particular, the acquisition probability of virus B is set to zero, αB = 0, and all other acquisition and
inoculation probabilities are positive. We investigate the invasion reproduction number as a function
of the remaining acquisition and inoculation parameters, αA, θA and θB, whose values lie in [0, 1].
Table 2 is a summary of the default parameter values. The parameter values are chosen consistent with
those summarised by Jeger et al. [5], but based on a time unit of one month. For each of the acquisition
or inoculation parameters, Figure 2 shows a graph of the equilibrium prevalences for infective vectors
and infected plants with virus A (with za = zaeq/V̄ and ia = iaeq/P̄) and the invasion reproduction
curves. Two different invasion reproduction curves are graphed, one with γB = 0.9 (solid invasion
curve) and the other with γB = 0.25 (dashed invasion curve). Parameter γB denotes the inoculation
success of virus B on a plant infected with virus A, relative to a healthy plant. Small values of γB
decrease the likelihood of a successful invasion of virus B.
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Figure 2. For the vector-explicit model, the virus A equilibrium prevalences for the vector za = zaeq/V̄
and for the host ia = iaeq/P̄ are graphed in panels (A,C,E) and the corresponding invasion reproduction
numbersRinvB are graphed in panels (B,D,F) as a function of acquisition (αA) or inoculation (θA and
θB) parameters. Virus B may invade the virus A equilibrium if the invasion reproduction number is
greater than the threshold value one. The parameters values that are not varied are fixed at their
default values (see Table 2): Λ = 10 per month per unit area, Φ = 30 per month, c = 1 per month,
αA = 0.2, αB = 0, αAB = 0.5, εA = εB = 0.5, δA = δB = 3 per month, µ = 1/12 per month, σ = 1000µ

(1000 per year per unit area), θA = 0.8, θB = 0.5 and ω = ωA = ωB = 0. Parameter values for the two
invasion reproduction curves in (B,E,F) are γB = 0.9 for the solid curve and γB = 0.25 for the dashed
curve. (B) The two black circles on the solid curve are at values of αA = 0.1, 0.8; (D) θA = 0.3, 0.8;
(F) θB = 0.2, 0.8. The invasion reproduction number isRinvB = ρ(MinvB) as defined in (5).

As the acquisition probability αA increases (Figure 2A,B), there is initially an increase in the
invasion reproduction number but then it decreases as αA approaches one. From the invasion matrix
MinvB in (5), it can be seen that some of the matrix entries increase and some decrease with an increase in
αA, resulting in potential increases or decreases in the invasion reproduction number. The equilibrium
prevalences iaeq and zaeq increase with αA which provide more opportunities for an infective vector ZB
to inoculate infected plants iaeq and more opportunities for an infected plant IB to become inoculated
from infective vectors zaeq. But the density of healthy plants, S̄ in matrix (5), and the density of
non-infective vectors, X̄ in matrix (5), decrease with increases in αA which provide fewer opportunities
for ZB to inoculate healthy plants or for non-infective vectors to acquire virus B from a co-infected
plant IAB. For a relative inoculation success ratio of γB = 0.9 (solid invasion curve), the invasion
reproduction number exceeds the threshold value of one for a range of αA values but for γB = 0.25
(dashed invasion curve), the invasion reproduction number never exceeds the value of one.

As the inoculation probability θA increases in Figure 2C,D, a similar effect on the invasion
reproduction number could occur as for αA but the decrease in the invasion reproduction number is
not seen for these parameter values. The reduction in healthy plants and non-infective vectors is not
as severe as for αA. Changes in the inoculation probability θB do not affect equilibrium prevalences
iaeq and zaeq. Therefore, as θB increases, so does the invasion reproduction number (Figure 2E,F).
Similarly, for large values of γB, the invasion reproduction number increases (Figure A1 in Appendix B).
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Parameter values in Figure 2, indicated by the black circles on the invasion curves, represent
either a successful (RinvB > 1) or an unsuccessful (RinvB < 1) invasion of virus B. For these parameter
values, the infection prevalence of viruses A and B in the plant population are graphed as functions of
time in Figure A2 (Appendix B).

3.2. Comparison with Results of Model That Does Not Track Vectors Explicitly

The dynamics of the vector-implicit model in Figure 3 are compared to the vector-explicit model
when the same parameter values as in Figure 2 are applied. The differences in the invasion matrices
and the virus A equilibrium values in the two models impact the invasion outcome. For the default
parameter values in Table 2, the infected plant prevalences and the invasion reproduction values
are larger in the vector-implicit model than in the vector-explicit model. The vector-implicit model
predicts greater likelihood of co-infection than in the vector-explicit model. The differences may be
attributed to the fact that the assumptions which led to the reduction to a plant model do not hold for all
transmission classes. One of the assumptions in the vector-implicit model is that the infective vector life
cycle is short, such as in non-persistent transmission. But in these examples, the parameter values for
the vectors’ infective period, 1/δA and 1/δB, are equal to 10 days, characteristic of persistent-circulative
transmission [5]. These differences between the vector-explicit model and the vector-implicit model
illustrate the importance of considering the mode of vector transmission in models of vectored
plant viruses.

In Appendix C, additional invasion reproduction curves are graphed for different values of the
relative inoculation success of viruses A and B, γA and γB in Figure A3 and as a function of vector
recovery δA in Figure A5. Also, the infection prevalence of viruses A and B in the plant population
for parameter values indicated by the black circles in Figure 3 are graphed as functions of time in
Figure A4.
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Figure 3. For the vector-implicit model, the virus A host equilibrium prevalences iaeq/P̄ are graphed
in panels (A,C,E) and the corresponding invasion reproduction numbers RinvB are graphed in
panels (B,D,F) as a function of the acquisition (θA) and inoculation (θA and θB) parameters. The same
parameter values are applied as in the vector-explicit model in Figure 2. The three black circles on
the solid curve in (B) are at values of αA = 0.05, 0.1, 0.8; in (D) θA = 0.2, 0.3, 0.8; (F) θB = 0.05, 0.2, 0.8.
The invasion reproduction number equalsRinvB = ρ(MinvB) as defined in (8).
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3.3. Neither Virus Can Invade in Absence of the Other

In this example, we assume neither virus can invade the vector-explicit model in the absence of
the other virus, i.e., R0A < 1 andR0B < 1. There is only the disease-free equilibrium (DFE), which is
always locally stable, and, for certain parameter values, we found numerically up to two co-infection
equilibria. One of the latter is stable, so that the vector-explicit model is bistable. In the following
analysis, we define fa and fb as the initial prevalences of virus A and virus B in the plant population,
i.e., fa = (IA + IAB)/P ∈ [0, 1] and fB = (IB + IAB)/P ∈ [0, 1], respectively. For these prevalences,
we will assume the following initial conditions of the plant population

S(0) = (1− fa)(1− fb)P̄, IA(0) = fa(1− fb)P̄, IB(0) = fb(1− fa)P̄, and IAB(0) = fa fb P̄, (9)

where P̄ = σ/µ. For the initial conditions of the vector population, we assume

X(0) =

(
1−

f 2
a + f 2

b
fa + fb

)
V̄, ZA(0) =

f 2
a

fa + fb
V̄, and ZB(0) =

f 2
b

fa + fb
V̄, (10)

where V̄ = Λ/c, and which accounts for the fact that the initial prevalences of the viruses in the vectors
cannot add beyond one because there is no co-infection.

Figure 4A presents the bistable scenario and graphs the basins of attraction for the two stable
equilibria as a function of the initial prevalences of virus A and virus B. In this graph, the origin
represents the DFE, and the point representing the stable co-infection equilibrium indicates the virus
prevalences at this equilibrium. The basin of attraction of an equilibrium is the set of initial conditions
that will lead to that equilibrium in the long-run. As the system is bistable, there are two basins
of attraction: one for the DFE which comprises smaller initial virus prevalences, and one for the
co-infection state which comprises larger initial virus prevalences. The two basins of attraction are
separated by a curve, the so-called separatrix. The time plots in Figure 4B illustrate that initial
virus prevalences on one side of the separatrix approach the DFE in the long-run, while initial virus
prevalences from the other side approach the co-infection state in the long-run.

Figure 5A shows the separatrix for varying values of the vector mortality, c. The basin of attraction
of the co-infection equilibrium expands in size when vector mortality is decreased. The size of the basin
of attraction is also a measure of the resilience of the corresponding equilibrium, because the larger
the basin of attraction, the more resistant the equilibrium against perturbations. That is, decreasing
vector mortality enhances the resilience of the co-infection equilibrium, whereas increasing vector
mortality enhances the resilience of the DFE. Now consider a given initial condition marked by the
star in Figure 5A. Depending on the value of vector mortality, the same initial condition leads either
to the disappearance of both viruses from the system (for larger vector mortalities) or to co-infection
(for smaller vector mortalities). This is shown in Figure 5B. Notably, there is no gradual transition
between these different outcomes. Instead, there is a rather drastic establishment of co-infection at
high prevalence levels once both viruses can persist.

Note that the separatrix between the two basins of attraction is asymmetric for the set of parameter
values considered thus far. This is due to the different transmission potentials of the two viruses,
as expressed by the different values ofR0A = 0.95 andR0A = 0.02 (when c = 1). Figure 6 demonstrates
that the ‘asymmetry’ in the basins of attraction can be ‘reversed’ when, for instance, the value of
εA = 1− εB is decreased. This increases the conditional probability of vectors to acquire virus B from
co-infected plants. That is, an advantage for virus B in the competition for vectors can compensate for
the disadvantages of virus B assumed in the other parameter values.
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Figure 4. (A) The basins of attraction of the disease-free equilibrium (DFE) (white region) and the
co-infected equilibrium (shaded region) are graphed as a function of the initial frequency fa of virus A
and frequency fb of virus B in the plant population. See Equations (9) and (10) for the initial conditions.
The points mark the prevalences of virus A and B in the plant population at the DFE (at the origin)
and the stable co-infection equilibrium (in the interior). The gray square marks the relative frequency
of virus A and B in the vector population at the stable co-infection equilibrium. The blue cross and
red asterisk indicate initial conditions in different basins of attraction, for which time plots show
convergence either to the DFE (IAB = 0) or to the co-infection equilibrium (IAB/P > 0) in (B).
Parameter values are Λ = 1, Φ = 250, c = 1, αA = 0.005, αB = 0.0005, αAB = 0.15, εA = εB = 0.5,
δA = 20, δB = 40, µ = 1/12, σ = 100µ, θA = 0.8, θB = 0.4, ω = µ/2 = ωA = ωB, γA = γB = 0.5 such
thatR0A = 0.95 andR0B = 0.02.
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Figure 5. (A) The changes in the size of the basins of attraction for the DFE and the co-infected
equilibrium are graphed as a function of the initial frequency fa of virus A and fb of virus B when the
death rate of vectors decreases from c = 1.0 to c = 0.7, with values of c = 0.7, 0.8, 0.9, 1.0. The boundary
separating the two basins of attraction at c = 0.7 is closest to the origin=DFE and at c = 1.0 is furthest
from the origin. Other parameter values are as in Figure 4. The star symbol marks the initial condition
for the disease progress curves in (B), which shows the time series of the prevalence of co-infected
plants for varying levels of per-capita plant mortality, c. Initial conditions are fixed at (9) and (10) with
initial virus prevalences fa = fb = 0.1 in the plant population.
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Figure 6. Basins of attraction for the DFE and the co-infection equilibrium for different values of εA

and εB = 1− εA. The blue curve with ε = 0.5 corresponds to the separatrix shown in Figure 4 with
R0A = 0.95,R0B = 0.02. Decreasing εA, i.e. increasing εB, reverses the asymmetry in the basins
of attraction.

4. Discussion

Co-infections are pervasive in plant virus epidemiology; yet, mathematical models keeping track
of co-infections often leave vector dynamics implicit. This is understandable since (i) keeping track of
co-infections makes the models less tractable mathematically, (ii) modeling vector dynamics explicitly
may not be necessary relative to the research question addressed, and (iii) the biological knowledge
or the data may be too scarce to reasonably increase the model’s complexity [38]. Moreover, it is
well known [10,39,40] that vector-implicit models may reasonably approximate vector-explicit models
when vector dynamics can be considered to be fast with respect to epidemiological dynamics in
the plant host population (such as in non-persistent transmission). Although see [41] for a different
model of non-persistent transmission of viruses that goes beyond differential equations to track the
epidemiological effects of vector dynamics.

However, we have showed that vector-implicit and vector-explicit models may yield qualitatively
different results (Figures 2 and 3). The default parameter set we considered were appropriate for
persistent-circulative transmission with vector infective periods of about 10 days (Table 2), and the
qualitative difference in the models’ outcomes highlights a key biological feature of the vector-explicit
model that is not accounted for in its vector-implicit analogue. This key feature is competition for
vectors [16]. Competition occurs because we assumed one vector cannot be inoculative with two
viruses at the same time at the point of inoculation. This assumption may reflect the fact that the
first acquired virus saturates stylet receptor sites in non-persistent transmission, or that it precludes
second inoculation of other viruses as long as the vector retains the first virus. The latter phenomenon
would resemble the so-called “super-infection exclusion” usually associated with the host plant rather
than with the vector [16]. Nevertheless, competitive exclusion (or pre-emptive competition) of one
virus by another can also occur within vectors [42–45]. This way, infective vectors are only able
to inoculate one virus at the point of inoculation. Therefore, viruses indirectly compete for vectors.
However, the vector-implicit model is valid only if the vector recovery rate is sufficiently large, meaning
that the vector loses the virus very quickly after acquisition (as is the case in non-persistent viruses).
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Therefore, it is very unlikely that a virus cannot be transmitted because the vector had already acquired
another virus. These results highlight the importance of the mode of vector transmission in models of
vectored plant viruses.

To illustrate the implications of our model, we considered two distinct special cases with two
viruses (or virus strains) denoted A and B:

i Virus A is able to complete a full infection cycle, invade a disease-free population and settle
at an endemic equilibrium in the absence of virus B. By contrast, virus B can systematically
infect a plant but cannot be acquired by a vector in the absence of co-infection in the host plant.
Successful invasion of virus B depends on a complex relation between vector acquisition and
inoculation rates, the relative inoculation success of viruses A and B and the prevalence of infected
hosts and infective vectors carrying virus A.

ii Virus A and virus B can both complete their infection cycles but are unable to invade a disease-free
population in the absence of the other virus. The only biologically feasible endemic equilibrium is
a co-infection equilibrium. The system will approach the co-infection equilibrium if the initial
prevalences of virus A and B are sufficiently large, i.e., if the initial condition is in the basin
of attraction of the co-infection equilibrium. Otherwise, if the initial virus prevalences are so
low that the initial condition is in the basin of attraction of the disease-free equilibrium, both
viruses will disappear from the system. The separatrix between these two different outcomes
represents a curve of tipping points. On either side of these tipping points, we have contrasting
dynamics, namely a disease-free versus a co-infected system. We have seen that increased
vector mortality rates (e.g., due to vector control programs) moves the separatrix by making
the co-infection equilibrium less resilient. This could lead to an abrupt (rather than gradual)
extinction of co-infection.

In this paper, we have formulated a general epidemiological model for potential co-infection in
a host plant by two virus species or strains. We used the model to investigate the effects of vector
transmission on co-infection, specifically acquisition and inoculation, as well as antagonistic and
synergistic interactions between viruses. We showed that reducing the model to a vector-implicit
model can lose some of the key features gained when the vector is included explicitly (such as
competition for vector). We derived a new invasion threshold that determines whether or not a second
virus can invade a host population in which a first virus had successfully established. The invasion
threshold highlights the key epidemiological parameters that are important for successful co-infection.
However, the invasion threshold only applies near the virus A equilibrium when the invading virus
B species/strain is at low prevalence levels. The dynamics of the models away from the virus A
equilibrium can be quite complex and exhibit bistability, where both the virus A equilibrium and the
co-infection equilibrium are stable. In this case, the initial prevalences of viruses A and B determine
whether virus B can successfully invade. We also investigated the potential for co-infection and the
conditions that need to be satisfied when one virus depends on an autonomous virus for its successful
transmission or when both viruses are unable to invade alone. For persistent-circulative transmission,
competition between viruses/virus strains, either direct or indirect, as they move through the vector is
identified as a key and challenging area for further research that would improve modeling attempts to
predict the epidemiological consequences of co-infection.
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Appendix A. Basic Reproduction Number

Linearization of the system of equations for the infected states (ZA, IA, ZB, IB, IAB) in models (1)
and (2) and evaluated at the DFE, X = Λ/c = V̄, S = σ/µ = P̄, with the remaining states equal to
zero, yields the following Jacobian matrix:

J =



−c− δA
ΦV̄αA

P̄
0 0

ΦV̄εAαAB

P̄
ΦθA −µ−ω 0 0 ωA

0 0 −c− δB
ΦV̄αB

P̄
ΦV̄εBαAB

P̄
0 0 ΦθB −µ−ω ωB
0 0 0 0 −µ−ωA −ωB


.

The two 2× 2 matrices on the diagonal are used to calculate R0A and R0B. For example, the next
generation matrix for virus A is

FAV−1
A =

 0
ΦV̄αA

P̄(µ + ω)
ΦθA

c + δA
0

 ,

where

FA =

 0
ΦV̄αA

P̄
ΦθA 0

 and VA =

(
c + δA 0

0 µ + ω

)
.

Matrix FA includes the rate of new infections and VA includes all of the other transfer rates.
We define the basic reproduction number as

R0A =
ΦV̄αAΦθA

P̄(c + δA)(µ + ω)
, (A1)

which is the product of the off-diagonal elements in the next generation matrix. The basic
reproduction number is often defined as the spectral radius of the next generation matrix, the square
root of this value,

√
R0A [36]. Both definitions have been applied in vector-host epidemic

models [32,34–36]. Roberts and Heesterbeek [34] call the expression in (A1) the type reproduction
number, whereas Heffernan et al. [32] call it the basic reproduction number and van den Driessche [35]
calls it the target reproduction number. The terms “type” or “target” reproduction numbers are used
in relation to a particular stage or type, where control measures may be targeted. The two expressions,
with or without the square root, are equal at the threshold value of one. We choose the definition
in (A1) for its simplicity and its straightforward epidemiological interpretation. The two expressions
1/(µ + ω) and 1/(c + δA) represent the average infective period of a plant or a vector, respectively.
The entry in the first row and second column is the average number of infective vectors ZA produced
by one infected plant IA during the plants’ infective period and the entry in the second row first
column is the average number of infected plants IA produced by one infective vector ZA during the
vectors’ infective period. Therefore,

R0A =
ΦV̄αA

P̄(µ + ω)
× ΦθA

c + δA
.
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Appendix B. Invasion Reproduction Number

The system of equations for the infected states (ZA, IA, ZB, IB, IAB) are linearized about the virus
A endemic equilibrium. This leads to the Jacobian matrix,

J =

(
Jstab C
O JinvB

)
. (A2)

Matrix Jstab is a 2× 2 stable matrix for the states (ZA, IA) (providedR0A > 1), C is a 2× 3 matrix, O is
a 3× 2 zero matrix, and JinvB is the invasion matrix for virus B. For simplicity, let X̄ = V̄ − zaeq and
S̄ = P̄− iaeq. The two diagonal block matrices in J are defined as

Jstab =

−(c + δA)−
ΦαAiaeq

P̄
ΦX̄αA

P̄
ΦθAX̄

P̄
−(µ + ω)−

ΦθAzaeq

P̄


and

JinvB =


−c− δB

ΦX̄αB

P̄
ΦX̄εBαAB

P̄
ΦθBS̄

P̄
−(µ + ω)−

ΦγAθAzaeq

P̄
ωB

ΦγBθBiaeq

P̄
ΦγAθAzaeq

P̄
−(µ + ωA + ωB)

 .

Invasion of virus B can be determined by computing the eigenvalues of matrix JinvB. Invasion is
successful if matrix JinvB is unstable, i.e., if matrix JinvB has an eigenvalue with positive real part.
However, computation of the three eigenvalues yield complicated expressions in terms of all of the
parameters and do not give a simple criterion for invasion. An alternative is to compute an invasion
reproduction matrix.

To compute the invasion reproduction number, we define JinvB = FinvB − VinvB. An invasion
reproduction number is defined as the spectral radius of the matrix FinvBV−1

invB,

RinvB = ρ(FinvBV−1
invB). (A3)

IfRinvB > 1, then virus B can invade the system. Equivalent thresholds can also be defined using the
next generation matrix approach, such as type or target reproduction numbers [34–36].

We define matrix FinvB as the rate of new infections,

FinvB =


0

ΦX̄αB

P̄
ΦX̄εBαAB

P̄
ΦθBS̄

P̄
0 ωB

ΦγBθBiaeq

P̄
ΦγAθAzaeq

P̄
0

 ,

and matrix VinvB represents other transitions,

VinvB =


c + δB 0 0

0 µ + ω +
ΦγAθAzaeq

P̄
0

0 0 µ + ωA + ωB

 .
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The recovery of virus B from a co-infected plant, ωB, is counted as a new infection in matrix FinvB.
Therefore, the invasion reproduction number is the spectral radius of the following matrix,

MinvB = FinvBV−1
invB =


0

ΦX̄αB
κ1

ΦX̄εBαAB

P̄κ2

ΦθBS̄
P̄(c + δB)

0
ωB
κ2

ΦγBθBiaeq

P̄(c + δB)

ΦγAθAzaeq

κ1
0


, (A4)

where κ1 = (µ + ω)P̄ + ΦγAθAzaeq and κ2 = µ + ωA + ωB. The invasion reproduction number is the
largest positive root of the characteristic equation of matrix MinvB, a cubic equation. Instead of writing
the complex expression for the invasion reproduction number, we interpret how the nonzero entries in
the invasion matrix MinvB affect the invasion reproduction number.

Equilibrium prevalences of virus A in the plant population do not depend on the relative
inoculation success of viruses A or B, parameters γA or γB, but the invasion reproduction curves do
depend on these parameters through the two matrix entries in (A4) in the last row. In Figure A1, three
invasion reproduction curves are graphed for the relative inoculation success ratios γA = 2 and for
γB = 0.1, 0.5, 1. As γB increases, so do the invasion curves.

Figure A2 illustrates the time course of a successful invasion (RinvB > 1) and an unsuccessful
invasion (RinvB < 1) of virus B, corresponding to the two sets of parameter values indicated by the
black circles on the solid invasion curve in Figure 2.
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Figure A1. For the vector-explicit model, virus A equilibrium prevalences for the vector za = zaeq/V̄
and for the host ia = iaeq/P̄ are graphed in (A,C,E) and the corresponding invasion reproduction
curves are graphed in (B,D,F) as a function of acquisition and inoculation parameters. The parameter
values are the same as in Figure 2 with the exception that in panels B, D and F parameters γA = 2 and
γB = 0.1 (solid curve), 0.5 (dashed curve), 1 (dashed-dot curve).
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Figure A2. The time courses of one successful and one unsuccessful invasion of virus B are graphed
for the vector-explicit model. The virus A host prevalences IA/P are graphed in panels (A,C,E) and
the virus B host prevalences IB/P are graphed in panels (B,D,F) for the two sets of parameter values
identified by black circles in Figure 2. The initial condition is perturbed slightly from the virus A
equilibrium, (V̄ − zaeq − 0.1, vaeq, 0.1, P̄− iaeq − 30, iaeq − 10, 10, 20). Parameter values for the graphs
in panels (A–F) are the same as in Figure 2A–F with γB = 0.9.

Appendix C. Reduction to a Vector-Implicit Model

The vector dynamics generally occur on a faster time scale than the plant dynamics. We use this
assumption to make a quasi-steady-state approximation for vector abundances [39]. Consider the
vector model (1), where the total vector population is V = X + ZA + ZB. Assume that the vector
recovery rates, δA and δB, are large (short infective vector life cycle). Summing the differential equations
for X, ZA and ZB leads to the following differential equation for V:

dV
dt

= Λ− cV.

Thus, V(t) = Λ/c + (V(0) − Λ/c)e−ct. For V(0) ≈ Λ/c, it follows that V(t) ≈ Λ/c = V̄ is
approximately constant, an assumption applied in our model. Replace X by V̄ − ZA − ZB in the
differential equations for ZA and ZB and divide by c + δA or c + δB:

ε1
dZA
dt

=
Φ

(c + δA)P
(V̄ − ZA − ZB) [αA IA + εAαAB IAB]− ZA

≈ Φ
(c + δA)P

V̄ [αA IA + εAαAB IAB]− ZA ≈ 0

ε2
dZB
dt

=
Φ

(c + δB)P
(V̄ − ZA − ZB) [αB IB + εBαAB IAB]− ZB

≈ Φ
(c + δB)P

V̄ [αB IB + εBαAB IAB]− ZB ≈ 0.
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In particular, ε1 = 1/(c + δA) � 1 and ε2 = 1/(c + δB) � 1 due to the short life cycle of infective
vectors. In addition, we assumed V̄ ≥ ZA + ZB. This latter assumption holds if the vector visitation
rate is much smaller than the vector death rate plus recovery rate Φ� (c + δi), i = A, B. Solving the
right-hand sides of the differential equations for ZA and ZB leads to

ZA ≈
ΦV̄

(c + δA)P
[αA IA + εAαAB IAB]

ZB ≈
ΦV̄

(c + δB)P
[αB IB + εBαAB IAB] .

(A5)

Let θ̂i = θi/(c + δi) for i = A, B. The vector-implicit model (Equation (6) in the main text) is

dS
dt

= σ− Φ2V̄
P2 S

(
θ̂A [αA IA + εAαAB IAB] + θ̂B [αB IB + εBαAB IAB]

)
− µS + ω(IA + IB)

dIA
dt

=
Φ2V̄
P2

(
θ̂AS [αA IA + εAαAB IAB]− γB θ̂B IA [αB IB + εBαAB IAB]

)
− (µ + ω)IA + ωA IAB

dIB
dt

=
Φ2V̄
P2

(
θ̂BS [αB IB + εBαAB IAB]− γA θ̂A IB [αA IA + εAαAB IAB]

)
− (µ + ω)IB + ωB IAB

dIAB
dt

=
Φ2V̄
P2

(
γB θ̂B IA [αB IB + εBαAB IAB] + γA θ̂A IB [αA IA + εAαAB IAB]

)
− (µ + ωA + ωB)IAB

The vector parameters appear in the transmission coefficients. For example, the transmission
coefficients from a co-infected plant IAB when P = P̄ are

βi =
Φ2V̄
P̄2 θ̂iαAB, i = A, B. (A6)

The basic reproduction number and the invasion matrix for the plant model are calculated by
a method similar to that used for the vector-explicit model. The basic reproduction number for
the vector-implicit model is the same as in (3). The virus A equilibrium (S̄, ĪA) is distinct from the
equilibrium for the vector-explicit model in (4),

S̄ =
P̄
R0A

and ĪA = P̄
(

1− 1
R0A

)
. (A7)

The invasion matrix for virus B, givenR0A > 1, has the following form (matrix (8) in the main text):

MinvB =


Φ2V̄αB θ̂BS̄

η

Φ2V̄ θ̂BαABεBS̄ + P̄2ωB

P̄2(µ + ωA + ωB)
Φ2V̄ ĪA[γAαA θ̂A + γBαB θ̂B]

η

Φ2V̄γB θ̂BαABεB ĪA

P̄2(µ + ωA + ωB)

 ,

where η = P̄2(µ + ω) + Φ2V̄γAαA θ̂A ĪA. The invasion reproduction numberRinvB = ρ(MinvB) is the
largest positive root of the quadratic characteristic equation of matrixMinvB. Alternately, a successful
invasion can be assessed directly from the trace and determinant of the non-negative matrixMinvB [46].
That is,

trace(MinvB)− det(MinvB) > 1 (A8)

if and only ifRinvB > 1.
Condition (A8) for invasion of virus B simplifies in the case that virus B cannot invade alone and

there is no plant recovery, i.e., if αB = 0 (R0B = 0) and in the plant population, ω = 0 = ωA = ωB.
Under these assumptions, condition (A8) can be expressed as
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θ̂BεBαAB

αA θ̂A

(
γB +

γA
1 + (R0A − 1)γA

)
(R0A − 1) > 1.

The preceding condition shows that the invasion success of virus B increases if the parameters related
to virus B are larger than those related to virus A, θ̂BεBαAB > αA θ̂A, or if γB is large.

For the parameter values αB = 0 and ω = 0 = ωA = ωB and the same parameter values
as in Figure A1, the equilibrium prevalences for plants infected with virus A and three invasion
reproduction curves are graphed for the vector-implicit model in Figure A3. In Figure A4, the time
courses of two successful invasions (RinvB > 1) and one unsuccessful invasion (RinvB < 1) are graphed
for the vector-implicit model and for parameter values as in Figure 3.

If the vector recovery rate δA is increased (infective period of vector is shortened) there is better
agreement between the vector-implicit and vector-explicit models. That is, if the vector-explicit model
predicts no invasion of virus B so does the vector-implicit model and vice versa. In addition, the values
of the host equilibrium prevalences for the two models are in closer agreement for large values of
δA. We can see this if we fix the composite parameter θ̂A = θA/(c + δA) = K =constant in the
vector-implicit model but vary θA and δA. The virus A prevalence and the invasion reproduction
number in the vector-implicit model does not change as δA and θA change but this is not the case for the
virus A prevalence and the invasion reproduction number in the vector-explicit model (see Figure A5).
The invasion reproduction number in the vector-implicit model predicts species B invasion success
RinvB > 1 but in the vector-explicit model, a successful invasion occurs only if δA is sufficiently large.
In the example in Figure A5, K = 0.05, γB = 0.9, and αA = 0.3 with other parameter values as in
Table 2. Panels A and B in Figure A5 are the results for the vector-explicit model and panels C and D
are for the vector-implicit model. The invasion curve where RinvB > 1 in the vector-explicit model
predicts a successful invasion only if δA > 7.

0 0.5 1
0

1

2

3
DDDD

0 0.5 1
0

0.5

1
C

0 0.5 1
0

1

2

3 BBBB

0 0.5 1
0

0.5

1
A

0 0.5 1
0

2

4
FFFF

0 0.5 1
0

0.5

1
EEEE

Figure A3. For the vector-implicit model, the virus A host equilibrium prevalences ia = iaeq/P̄
are graphed in panels (A,C,E) and the corresponding invasion reproduction curves are graphed in
panels (B,D,F) as a function of acquisition and inoculation parameters. Parameter values are as in
Figure 3A–F with the exception that in panels B, D and F the parameter values for γA = 2 and for
γB = 0.1 (solid curve), 0.5 (dashed curve), 1 (dashed-dot curve).
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Figure A4. The time courses of two successful invasions and one unsuccessful invasion of virus B are
graphed for the vector-implicit model. The virus A host prevalences IA/P are graphed in panels (A,C,E)
and the virus B host prevalences IB/P are graphed in panels (B,D,F) for the three sets of parameter
values identified by the black circles in Figure 3. The initial condition is perturbed slightly from the
virus A equilibrium, (P̄− 30, ĪA − 10, 10, 20). Parameter values are as in Figure 3A–F with γB = 0.9.
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Figure A5. Comparison of the virus A equilibrium prevalences and invasion reproduction numbers
in the vector-explicit model in (A,B) to the vector-implicit model in (C,D) as a function of vector
recovery rate δA. Parameter values are θ̂A = θA/(c + δA) = 0.05, αA = 0.3, γB = 0.9, δA ∈ [0, 19],
θA = 0.05(c + δA) ∈ [0.05, 1] and other parameter values as in Table 2.
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