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Abstract: Surveillance of the evolving SARS-COV-2 genome combined with epidemiological moni-
toring and emerging vaccination became paramount tasks to control the pandemic which is rapidly 
changing in time and space. Genomic surveillance must combine generation and sharing sequence 
data with appropriate bioinformatics monitoring and analysis methods. We applied molecular por-
trayal using self-organizing maps machine learning (SOM portrayal) to characterize the diversity of 
the virus genomes, their mutual relatedness and development since the beginning of the pandemic. 
The genetic landscape obtained visualizes the relevant mutations in a lineage-specific fashion and 
provides developmental paths in genetic state space from early lineages towards the variants of 
concern alpha, beta, gamma and delta. The different genes of the virus have specific footprints in 
the landscape reflecting their biological impact. SOM portrayal provides a novel option for ‘bioin-
formatics surveillance’ of the pandemic, with strong odds regarding visualization, intuitive percep-
tion and ‘personalization’ of the mutational patterns of the virus genomes. 
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1. Introduction 
As of July 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 

causative agent of COVID-19 pandemic, accounted for more than 190 million infections 
and more than four million deaths worldwide. Day by day nearly half a million new cases 
were diagnosed and more than 8000 people die, a rate which is roughly as high as during 
the first wave of the pandemic in spring 2020. During 2020, the first year of the pandemic 
spread, research efforts focused on three major issues: firstly sequence analysis of the 
early root-variants of the virus to discover its origin, develop PCR-tests and to design 
vaccines; secondly, monitoring epidemic numbers (daily incidence, deaths etc.) of the 
pandemic to identify factors which reduce its spread and local outbreak events in the con-
text of non-pharmaceutical interventions (NPI, e.g., mask wearing, social distancing, lock-
down measures) including prognostic modelling and epidemiological surveillance; and 
thirdly, understanding the clinics and the molecular mechanisms of the disease to im-
prove treatment and medical interventions from short (-ICU) to long (-COVID) time 
scales. Systematic sequencing was not among the top research and surveillance issues on 
global scale, presumably because the emergence of SARS-CoV-2 in late 2019 was followed 
by a period of apparent evolutionary stasis of the virus genome lasting nearly one year 
[1]. Compared to other viruses such as HIV, SARS-CoV-2 was found to change much more 
slowly during its spread. 

Citation: Schmidt, M.; Arshad, M.; 

Bernhart, S.H.; Hakobyan, S.;  

Arakelyan, A.; Loeffler-Wirth, H.; 

Binder, H. The Evolving Faces of the 

SARS-CoV-2 Genome. Viruses 2021, 

13, 1764. https://doi.org/10.3390/ 

v13091764 

Academic Editor: Roger Frutos 

Received: 3 August 2021 

Accepted: 2 September 2021 

Published: 3 September 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Viruses 2021, 13, 1764 2 of 40 
 

 

‘The coronavirus is mutating—does it matter?’ Nature was asking in September 2020 
[2]. It seemed that slightly varying SARS-CoV-2 strains did not have major impact on the 
course of the pandemic, ‘…but they might in future’, it had been concluded [2]. The ’fu-
ture’ just began immediately after this statement in autumn 2020: SARS-CoV-2 evolution 
emerged into ‘variants of concern’ (VOCs), which developed mutations that impact virus 
characteristics in terms of increased transmissibility and changed antigenicity [3–6]. VOCs 
were nick-named as ‘British’, ‘Brazilian’, ‘South-African’ and ‘Indian’ according to the re-
gion of first appearance or first documentation. They replaced previous variants and gave 
rise to oscillating waves of incidence around the world until now. 

Sequencing and the use of pathogen genomes on large scale became a ‘first-need’ task 
to track the spread of the virus, to study local outbreaks, to track transmission, to flag key 
mutations and, last but not least, to support political decision-making [7]. Moreover, the 
prospect of reduced vaccine potency from fast-spreading SARS-CoV-2 variants now has 
spurred a global rush to increase genomic surveillance. Virus sequences are now being 
generated and shared at an unprecedented rate and opened a new age of virus genomic 
studies. More than two million SARS-CoV2 sequences are available in total and thousands 
of new sequences coming in each day via GISAID (the Global Initiative on Sharing All 
Influenza Data) to permit a near real-time surveillance of the pandemic [8,9] for a better 
understanding of the dynamics of viral spread and evolution [10]. Sequencing provided 
a detailed picture of the changing virus, presumably the best documented virus evolu-
tionary process so far. Phylogenies are updated and published on a daily basis on 
nextstrain.org, which is crucial for quickly identifying and tracking emergent strains. 

Bioinformatics tools and opportunities are buckling under the flood of coronavirus 
genome sequences and under the pressure of task they are needed for; e.g., to help control 
the pandemic [11]. It is also difficult to infer a reliable phylogeny due to the large number 
of sequences in conjunction with the relatively low number of mutations in a relatively 
small genome. Methods to disentangle the evolution and spread of COVID-19 should be 
considered and interpreted with caution [11]. Nature now asked ‘How to fix the bioinfor-
matics bottleneck?’ and suggested that researchers must move beyond the limitations of 
existing tools [11]. 

We here aim at glimpsing at SARS-COV-2 genome diversity in time and space using 
‘Self Organizing Map (SOM) portrayal’, a machine-learning based method, which has 
been proven in numerous applications in omics-bioinformatics, mostly transcriptomic 
studies of genomic regulation in health and disease [12–14]. The method offers two major 
opportunities: firstly, it ‘portrays’ high-dimensional data by providing personal images 
visualizing, e.g., the faces of personalized tumor transcriptomes. Portraits then can be in-
spected and compared without deeper bioinformatics expertise. Secondly, it reduces di-
mensionality in a harmonized way, meaning that all relevant aspects of information are 
maintained and remain hidden but available for detailed downstream analysis [15]. We 
recently adjusted the method to infer developmental trajectories in sample and gene state 
space to describe tissue differentiation [16]. Application of SOM portrayal to large world-
wide collections of genomic data, namely of humans [17] and vine accessions [18], deci-
phered genomic footprints of human migration and of dissemination vine cultivation over 
geographic regions during the last thousands of years. In continuation of this concept, we 
aimed at characterizing footprints of the spread and evolution in the SARS-COV-2 ge-
nome since its emergence in late 2019 by means of SOM portrayal. After introducing the 
method, we delineate the distribution of virus variants in space and time, chart the ge-
nomic landscapes to draft trajectories of virus evolution. We provide an interactive tool 
for browsing the SOM portraits of the virus variants, and we extend the method to add 
new genomes to the existing landscape. 
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2. Materials and Methods 
2.1. SARS-COV-2 Genome Data and Preprocessing 

SARS-COV-2 genome data were taken from NCBI virus database on 14th of April 
2021. After removing short sequence snippets, the original data set consisted of 65,359 
SARS-COV-2 genomes assigned to different labeling schemes (Table A1) [6–10,17], 
namely those (i) of the World Health Organization (WHO) using Greek letters for Variants 
of Concern (VOCs) and Variants of Interest (VOIs); (ii) clades proposed by the GISAID 
(Global Initiative on Sharing All Influenza Data) [9], (iii) lineages suggested by the PAN-
GOLIN (Phylogenetic Assignment of Named Global Outbreak LINeages) tool [19], (iv) 
the years-and-letter nomenclature code introduced by Nextstrain, all combined with in-
formation about date and geographic location, when and where the respective samples 
were collected. Sequences were downloaded as FASTA files and mapped to the reference 
genome (NC_045512.2m WIV04, [20]) using BLAST to obtain the mutated positions in 
terms of SNVs (Single Nucleotide Variants) for each variant of the genome. Overall 19,656 
SNVs out of the full genome length of 30,402 nts were found mutated at minimum once 
in the whole data set. For efficient computation, we downscaled the number of SARS-
COV-2 variants by selecting around 10–80 genomes from the pool of each of the VOC/VOI 
clades and by selecting the same number of variants randomly from the remaining not-
VOC/VOI clades, which results in 483 genomes in the final data set overall mutated at 
2004 SNV positions. The final data matrix for subsequent SOM training thus consists of 
2004 SNVs x 483 variants of the virus (Figure 1). Genomic data for analysis extension were 
downloaded from GISAID’s EpiCoV Database (https://www.gisaid.org/, accessed on 16 
June 2021) and processed as mentioned above. 

 
Figure 1. SOM pipeline for portraying the SARS-COV-2 genomes. Data processing includes 
downscaling of the number of available variants and transformation of the relevant genome size by 
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SOM training. It clusters mutation profiles across variants and visualizes them as ‘portraits’, i.e., 
three dimensional images of the mutation score as a function of the relevant mutations. We use 
projection of the SNV-score into the x-y plane spanned the meta-SNVs in the SOM grid in the fol-
lowing. Data size reduces by a factor of 103 after processing. 

2.2. Mutation Coding, SOM Training and Genome Portrayal 
Next, we coded each sequence position in each variant by its mutation status using a 

binary code with the value ‘0′ for not-mutated ones and ‘1′ for mutated ones, which pro-
vides a SNV- profile for each genome position across all variants of the virus (Figure 1, 
top right). Then, each SNV-profile was centralized by subtracting the respective mean 
SNV-score averaged over all variants in order to highlight the variability of individual 
strains and prepare data for efficient clustering. In the next step, the centralized SNV-
profiles were used to train a Self-Organizing Map (SOM). SOM training translates the 
original data matrix into a data matrix of reduced dimensionality of K = 35 × 35 = 1225, so-
called meta-SNV profiles. Hereby, the term ‘profile’ denotes the vector of SNV score val-
ues across the virus variants. The SOM training algorithm distributes the SNV-profiles 
over the K meta-SNPs by minimizing the Euclidean distance as cost function. Each meta-
SNV profile of the trained SOM can be interpreted as the mean profile averaged over all 
SNV profiles of the respective meta-SNV cluster. The meta-SNV values of each variant are 
visualized by arranging them into a quadratic K = 35 × 35 grid and using a red to blue 
color- code for maximum to minimum SNV score-values in each of the images. This way 
they ‘portray’ the genetic landscape of each virus genome studied where red areas refer 
to predominantly mutated and blue areas to predominantly not mutated sequence posi-
tions. As an alternative, we applied ‘coastline’ images which use a logarithmic scale high-
lighting areas of mainly mutated and not mutated meta-SNVs in red and blue colors, re-
spectively [15]. 

We used the SOM analysis pipeline as implemented in the publicly available R pack-
age oposSOM [21]. Variants were labelled according to their GISAID, Pangolin or 
VOC/VOI (variant of concern/variant of interest) assignment, and by using our pattern 
type (PAT, see below) classification (Table A1, Appendix A). Mean class portraits were 
obtained by averaging the meta-SNV values of the respective individual variant portraits 
over the respective class. The effect of parameter variation in terms of SOM and sample 
size optimization is addressed in Figure A1 (Appendix B). 

2.3. Spot Detection, Pattern Types (PATs) and Diversity Analysis 
The self-organization during the SOM training distributes the SNV profiles over the 

map such that similar profiles are mapped to neighboring positions whereas dissimilar 
ones are located more distantly. This leads to spot-like regions (red areas in the portraits) 
referring to correlated SNV-profiles showing high SNV scores in the respective variant. 
We used previously developed segmentation algorithms [15,22] to extract the so-called 
spot-clusters from these regions. Each of the spot-clusters includes typically a few dozen 
to hundreds of SNVs. One portrait can contain more than one spot. Variants can be sub-
sequently classified by mutual similarity of their spot patterns into pattern types (PATs, 
see Results section). Sample diversity analysis was performed based on the variant por-
traits using phylogenetic similarity tree, independent component analysis and sample 
SOM plots as implemented in oposSOM [21,23] and also using URD-pseudotime analysis 
(program ‘URD’ [24]). 

2.4. Extension SOM (xSOM) 
The extension SOM method (xSOM) [25] aims at adding new, secondary data (e.g., 

newly sequenced SARS- COV2 variants) to an already existing SOM in order to maintain 
original distribution of SNV in the map and therefore also the spot-clusters defined for 
the sake of comparison. For this, the original SOM algorithm was adapted to realize stand-
ard meta-SNV training for the variants already contained in the original SOM training 
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and a passive, ‘piggyback’ training of the meta-SNVs for the extension data. This ap-
proach provides unchanged meta-SNV scores for the original variant data and appropri-
ately trained meta-SNV scores for the additional data. We used xSOM to portray the 
SARS-COV-2 genomes collected from 36 COVID-19 patients in Armenia (24 in January, 
12 in March) [26] and to extend the world data with selected variants such as the ‘Indian’ 
variant delta. 

2.5. SARS-COV-2 oposSOM Browser and Epidemiological Numbers 
Further details of the analysis of the SARS-COV-2 genome addressed in this publica-

tion can be interactively discovered using the oposSOM browser [27] available online via 
the IZBI web page (https://www.izbi.uni-leipzig.de/opossom-browser/ and 
https://apps.health-atlas.de/opossom-browser/?dataset=12). The browser enables selec-
tion and visualization of SNVs in the genome landscape, and assessment of similarity re-
lations between the variants and lineages together with their individual SOM portraits 
(see also Appendix B, Figures A11 and A12). 

Plots of the numbers of cases (incidence) and number of deaths (death toll) as a func-
tion of time from early 2020 to summer 2021 were generated using the COVID-19 viewer 
(https://www.izbi.uni-leipzig.de/current-projects/covid19-viewer/, accessed on 17 July 
2021) [28]. Composition of variants were downloaded as genomic metadata from 
GISAID’s EpiCoV Database (https://www.gisaid.org/, accessed on 5 July 2021) to generate 
stacked area plots for each region (R-package ggplot2) by plotting the proportions of total 
number of sequences over time from January 2020 until June 2021, colored by Variants 
and GISAID Clade’. 

3. Results 
3.1. The Pandemic until Summer 2021: Waves of Incidence and Variants 

After the first wave of COVID-19 incidence in winter/spring 2020, another two waves 
of the pandemic were observed worldwide so far, and a fourth wave is presently emerg-
ing (Figure 2a). The death toll of the plague directly follows the incidence in similar waves 
oscillating about 10,000 victims per day worldwide. The plot of cumulative deaths versus 
incidence increases linearly until summer 2020 which indicates no fundamental improve-
ment of the worldwide situation. The steeper slope until summer 2020 presumably reflects 
the underestimation of incidence numbers because of relatively small test rates in the first 
months of the pandemic (Figure 2b). 

According to GISAID nomenclature system, most of the currently sequenced SARS-
COV-2 genomes were assigned to one of eight major clades (not clustered genomes were 
assigned to a ninth clade O), which include the SARS-COV-2 virus reference strain (clade 
L) and other early variants and thus better resolving the non-VOC genomes appearing 
especially in 2020 [29,30]. The initial variants of the virus L, S, O and V were replaced 
progressively by clades G, GH, GR and GV (Figure 2c). The amount of these early variants 
S, V, and GH decays with time while GR, GV and GRY (including the VOCs) increases 
with differences between the geographic regions (see next subsection). Consideration of 
variants of concern/interest (VOC/VOI) shows that particularly these variants appear in 
the second half of 2020 and became the dominating ones in 2021. VOCs, assigned by Greek 
letters according to WHO recommendation [3], were often named by their region of ap-
pearance such as the ‘British’ variant alpha, the ‘South African’ variant beta, the ‘Brazilian’ 
variant gamma and the ‘Indian’ variant delta. While the first three variants partly distrib-
ute in parallel (see next subsection), the delta strain drives the fourth wave on global scale. 
Mean SOM portraits of the different classes were generated by applying machine learning 
to the data set of nearly 500 variants to visualize their mutational landscapes. The non-
VOC portraits are virtually similar and show extended red areas of elevated SNV-load in 
the left lower part of the map (Figure 2d). In contrast, the portraits of the VOC groups 
show specific spot areas of increased SNV load (see white arrows in Figure 2d). These 

https://www.izbi.uni-leipzig.de/opossom-browser/
https://www.gisaid.org/
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changing mutational patterns reflect the fact that the emergence of SARS-COV-2 in late 
2019 was followed by a period of relative evolutionary stasis lasting nearly one year. Since 
late 2020, however, SARS-COV-2 evolution has been characterized by the emergence of 
sets of mutations, in the context of ‘variants of concern’ (VOCs), that impact virus charac-
teristics, including transmissibility and antigenicity, probably in response to the changing 
immune profile of the human population [1]. 

 
Figure 2. The pandemic in summer 2021. (a) Incidence (reported new cases per day) and deaths (per 
day) worldwide divide into four major waves. The relatively low incidence in the first wave pre-
sumably attributes to the relatively small number of tests available until summer 2021. Genetic var-
iants of SARS-COV-2 evolve roughly from non-VOCs (variants of concern) towards VOCs assigned 
by Greek letters. The increment of transmissibility is given in units of the effective reproduction 
number [31]. (b) The cumulative number of deaths is plotted as a function of the cumulative number 
of cases (in double logarithmic scale). The decreased slope after summer 2020 indicates reduced 
death rates. (c) The composition of cases is split according to genetic groups using GISAID and 
WHO VOC/VOI nomenclatures. Cases from GISAID lineages were separately considered for VOC 
and non-VOC memberships. (d) Mean SOM portraits of the different groups visualize the respective 
mutational landscapes which are partly similar, especially for non-VOC GISAID classes but mark-
edly different for most VOC/VOI-lineages. Red spot areas of high mutational load are shown by 
white arrows. 

3.2. COVID-19 in Time and Space 
Next, we resolve the dynamics of COVID-19 incidences (Figure 3a), deaths (Figure 

A2) and variant composition (Figure 3b) between different regions of the world. The 
global patterns of the four-waves are modified into specific courses, of, e.g., relatively 
small incidences in Asia and Africa in 2020 followed by a strong wave in 2021 or of the 
steadily increasing (until spring 2021) incidence in South America. The death toll virtually 
follows the courses of incidence as a rule of thumb (Figure A2). Early GISAID-lineages (L, 
S, O, V) were found in Asia with relatively high abundances, while GISAID non-VOC 
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variants GH and GV appeared specifically in North America and Europe, respectively. 
Gamma (‘Brazilian’) and beta (‘South African’) VOC lineages distributed specifically in 
South America and Africa, respectively, while alpha (‘British’) and later delta (‘Indian’) 
variants dominated in the other regions of the world. Region-specific genomic portraits 
confirm the global picture (Figure A4). Plots of cumulative data and trajectory views are 
provided in Appendix B to complete the number-characteristics of the pandemic (Figures 
A2 and A3). Note also that one observes even inside a certain region marked differences, 
e.g., between the respective countries. This level of resolution is beyond the scope of this 
work. However, the interested reader can generate incidence- and death-courses for more 
than 180 countries based on daily updated data at https://www.izbi.uni-leipzig.de/cur-
rent-projects/covid19-viewer/. 

In summary, dynamics of COVID-19 in space and time show both common and spe-
cific features. The pandemic manifested different waves since spring 2020 around the 
world with ups- and downs in a region-specific fashion, having mostly direct conse-
quences on death toll (Figure A2). In parallel, the SARS-COV-2 genome mutated giving 
rise to a sequence of variants arising and being replaced by others afterwards. Variants of 
concern (VOCs) became dominating since late 2020 where alpha, beta, gamma arising in 
parallel all becoming presently replaced by the ‘Indian’ delta variant. Often appearance 
of VOCs is associated with increased incidence reflecting the evolution of the virus to-
wards increased infectivity (transmissibility) and/or better adaption to hosts physiology 
and virulence [10,32–35]. 
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Figure 3. COVID-19 in time and space. (a) Incidence (in units of reported COVID-19 cases per day 
and per 100,000 of population) since January 2020 in different regions of the world. VOCs/VOIs 
(Greek letters) refer to the most abundant variants taken from part b. Plots were generated using 
the COVID-19 viewer (https://www.izbi.uni-leipzig.de/current-projects/covid19-viewer/, down-
loaded at 17 July 2021) [28]. (b) Composition of COVID-19 cases regarding VOC/VOIs (left part) and 
GISAID (right part) grouping schemes. GISAID-clades were separately specified for VOC/VOI and 
non-VOC containing groups. SOM portraits of the different classes taken from the different regions 
were shown in Figure A2. 

3.3. SOM Portrayal of the SARS-COV-2 Mutational Patterns 
Our SOM method provides an individual ‘portrait’ of the mutation patterns of each 

of the virus genomes explicitly considered in this study. (Supplementary Materials: File 
S1; examples are shown in Figure A5. The portraits illustrate individual features and 
partly deviating or even showing outlier properties.). The SOM portrayal method com-
bines supervised and un-supervised clustering in a two-step approach. Firstly, the SNVs 
were distributed on the quadratic grid of 35x 35 micro-clusters each collecting mutually 
similar SNV-profiles. These so-called meta-SNVs cluster together into red spot-like areas 
of high mutational load in the individual portraits owing to the self-organizing properties 
of the algorithm. These ‘spot-clusters’ collect co-mutated SNVs across the virus genomes. 



Viruses 2021, 13, 1764 9 of 40 
 

 

Most of the portraits, especially of the VOC/VOI variants, show only one out of six domi-
nant spots observed in the different portraits (Figures 2d and 4a), which were labeled by 
capital letters A–F. Clustering of the SOM-portraits provided five major pattern types 
(PATs) where four were dominated by one of the spots and a fifth one by two spots (see 
spot frequency distributions in Figure 4a). PATs were named by their dominating spot A–
D and EF, respectively, e.g., PAT A type portraits preferentially express spot A and PAT 
EF types express spots E and/or F (Figure 4a). 

 
Figure 4. Pattern type (PAT) clustering and comparison with VOCs/VOIs. (a) PAT clustering is ap-
plied to all variant portraits to obtain five major PATs labelled by letters A–D and EF in agreement 
with the dominating spot(s) in each of them. Spot frequency distributions reveal that most portraits 
show only one spot of co-mutated SNV as indicated by the arrows. Coastline portraits use a 
smoother color scale to better visualize the borderline between positive (red) and negative (blue) 
values of the SNV score. (b) The PATs occupy different branches of the similarity tree, which mostly 
agree with classification schemes using variants of concern and interest (VOCs/VOIs) labelled by 
Greek letters and the GISAID clades. The temporal evolution along the tree is indicated by the arrow 
in correspondence to the composition dynamics shown in Figure 3b. (c) Pairwise mapping of the 
different classes illustrate their mutual correspondence. 

Based on the portraits, we generated a similarity tree to visualize their relatedness 
(Figure 4b). Most of the variants from each of the PATs occupy a separate side branch of 
the similarity tree which virtually agree with VOC/VOI and partly GISAID lineages, 
namely, PAT C with beta (β, B.1.351, ‘South-African’ variant), PAT B with eta (η, B.1.525, 
‘Nigerian’ variant) and PAT D with epsilon (ε, B.1.427 and B.1.429, ‘Californian’ variant, 
since July 2021 not further considered as VOI by WHO) (Figure 4b). PAT A splits into two 
VOCs (alpha and gamma), and GISAID clades (GRY and GR), referring to ‘British’ and 
‘Brazilian’ Pangolin lineages B.1.117 and P1, respectively. In summary, data driven clus-
tering of the SOM portraits of the SARS-COV-2 genomes provides five major pattern types 
corresponding to accepted classification schemes of the virus. Hereby it was our aim to 
see whether dimension reduction as provided by SOM modifies previous classification 
schemes of the SARS-COV-2 genomes. It turned out that dimension reduction by means 
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of SOM-portrayal virtually preserves accepted classifications of the variants. Mutual rela-
tions between PATs, GISAID and VOCs/VOIs mostly, but not always, match (Figure 4c), 
mainly due to slightly different grouping criteria such as geographic appearance 
(GISAID), ‘concern’-characteristics and strict genetic similarity (PAT) which will be dis-
cussed below. 

3.4. Relation to the SARS-COV-2 Genome: Spots and SNV-Floor 
In the SARS-COV-2 genome, mutations distribute over genes coding basic structural 

proteins of the virus and ORFs (open reading frames) [36–38]. ORFs are defined as con-
tiguous stretches with a start and a stop codon and a ‘protein-coding’ meaning, i.e., trans-
lation into a functional protein that contributes to viral transmission, replication, immune 
avoidance or overall fitness or that can encode an antigen detectable by the immune sys-
tem or a diagnostic test [39]. The longest, ORF1ab, occupies more than two thirds of the 
genome. The genes encode the spike glycoprotein (S), the envelope small membrane pro-
tein (E), the membrane protein (M) and nucleoprotein (N) (Figure 5a). ‘Mutations Of Con-
cern’ (MOCs) were selected from https://covariants.org/ (at 17 July 2021) as non-synony-
mous mutations across the SARS-COV-2 genome. Group portraits are shown in Figure 5b 
where the portraits of VOCs/VOIs eta, beta and epsilon virtually match the portraits of 
PATs B, C and D, respectively (see also Figure 4c). PAT A splits into VOCs alpha (B.1.117) 
and gamma (P1) both showing very similar portraits with a slight shift of the mutational 
load as revealed by the difference portrait. PAT EF (non-VOC) splits into two major por-
traits, referring, e.g., to lineage B.1.526 (Iota, ι), expressing spot F and of lineage B.1.617.1 
(kappa, κ), expressing spot E. VOCs/VOIs and MOCs cluster together in the heatmap after 
two-way hierarchical clustering, thus indicating mutual impact of MOCs and VOCs, 
where the latter ones accumulate in the spots (Figure 5a). Less discriminative SNVs form 
a sort of ‘floor’ of mutations. The population map visualizes the distribution of SNVs in 
the SOM (Figure 5c). The mutation floor overall occupies a region in the left lower half of 
the map while the spots accumulate SNV in localized areas containing between 38 (spot 
B and D) and 207 (spot E) SNVs (Table A2). Hence, a set of SNV across the SARS-COV-2 
genome accumulates in the spot areas and drives the grouping of variants into PATs and 
VOCs/VOIs. 
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Figure 5. Mutations of SARS-COV-2 and spot patterns. (a) Mutations along the virus genome were grouped by PATs (part 
above) and by hierarchical two-way clustering (part below). Most mutations of concern/interest (MOCs/MOIs, taken from 
https://covariants.org/ at 17 July 2021 as non-synonymous mutations across the SARS-COV-2 genome) group together 
confirming their relevance to distinguish PATs and VOCs. (b) SOM portrayal provides five major PATs, each showing a 
characteristic portrait with one characteristic spot of co-mutated sequence positions. PATs and VOCs mostly map in a 
one-to-one fashion except VOCs alpha and gamma both included in PAT A. The difference map indicates a slight shift of 
the mutational load across the meta-SNV between both VOCs (c) The mutation map visualizes the number of SNVs per 
metagene. Empty metagenes are white. Red circles indicate the spots with the number of included SNVs. 

3.5. Cartography of the Mutational Landscape 
Next, we characterize the mutational landscape as provided by the SOM more in de-

tail. The spot summary map visualizes high mutational load across all genomes in red and 
low load in blue (green refers to intermediate values, Figure 6a). The landscape accumu-
lates MOCs in the spots and distributes floor-SNV in a more extended area. Interestingly, 
the spots can be positioned along a tree-structure resembling the similarity trees in Figure 
4b. It reflects correspondence between the diversity space spanned by the variants and the 
SNVs, respectively. The composition maps of PATs (calculated as local percentage of 
SNVs referring to the different PATs and visualized as pie-charts) reveals virtually 100% 
enrichment of different PATs around the spots except spot F and an area of mixed com-
position referring to the SNV-floor (Figure 6b, left part and Figure 6d). The percentage of 
SNVs in the S-gene (coding the S-glycoprotein) is nearly twice as large in spot A (and thus 
PAT A) compared with spot D reflecting an increase of the relative mutational load in this 
gene from PATs D, and EF towards PATs A–C paralleled by the decrease of the mutational 
load in ORF1a,b (Figure 6b and middle and Figure 6d for comparison with the respective 
percentages across all SNV and nucleotides of the SARS-COV-2 genome). The percentage 
of SNVs of the N gene is large in PAT A, B and D indicating subtle shifts between the 
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different genes as a result of evolutionary adaptation [39]. SNVs in N involve a B-cell 
epitope, suggesting immune-avoidance selection [39,40]. The S-genes divides into differ-
ent parts, namely, S1 coding the ‘spike’ (pointing towards the host, see scheme in Figure 
6e) and including the RBD (receptor binding domain), as well as the S2 region anchoring 
the protein in the virus membrane. The RBD, in particular, is the target of most therapeu-
tics and is the major antigen against which the virus-host innately generates neutralizing 
antibodies [10]. 

 
Figure 6. Cartography of the SARS-COV-2 mutational landscape. (a) The summary map visualizes 
the mutational load across the SOM. The tree inside the SOM serves as a guide for the eye to illus-
trate similarity relations in analogy to the similarity tree in Figure 4b with WHO (Greek) lettering 
for VOCs/VOIs. (b) The composition maps visualize local composition SNVs regarding PATs, genes 
and parts of the spike gene across the SOM as pie-diagrams in units of percent. The dotted curves 
in the PAT-map separate regions of virtually unique PAT composition. The numbers in the %gene 
and %spike maps indicate percentages of the S-gene and of the receptor binding domain (RBD) in 
the spot areas, respectively. They vary markedly, e.g., between spot A (right upper corner) and D 
(left lower corner). (c) The spot profiles of the SNV score show the mutational load of the included 
SNVs across the variants. High load of the spots assigns them to the respective PATs. (d) The com-
positions of SNV regarding PATs, gene and spike region across in the different spots in analogy to 
part (b). (e) The legend (green background) assigns the color code for the genes, the regions of the 
spike protein, the distribution of mutations across the S-gene in the different PATs (SNVs are as-
signed in Figure A7) and the percentages of SNVs and nucleotides in the different SARS-COV-2 
genes and the S-genes. The plot of the SNV along the S-gene reflects their accumulation particularly 
in the spike and RBD-parts [1]. 

Percentage of SNVs in S1 markedly increased in PAT A and C compared with the 
other PATs. Hence, detailed segmentation of the SOM with respect to the mutational load 
and distribution of SNVs across the PATs and genes of the SARS-COV-2 genome charac-
terize the mutational landscape of the variants in a systematic fashion. The spot profiles 
of the SNV score provide a perpendicular view on the landscape across the variants: a 
high score value is found for the enriched PATs and VOCs/VOIs (Figure 6c). The profiles 
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reveal also differences between VOCs alpha and gamma (systematically smaller score) in 
PAT A and of VOI epsilon in PAT D (score biased towards larger values). Resorting of 
variants according to the GISAID nomenclature links it with VOC/VOI and PAT group-
ings and indicates the partly fuzzy relationships (Figure A6). In summary, SOM provides 
a highly resolved mutational landscape showing the distribution of SNVs across the 
SARS-COV-2 genome and their appearance in the different virus types. 

3.6. SNV Mapping of the SARS-COV-2 Genes 
Gene-wise SNV-maps and -profiles provide information about their distribution in 

the mutational landscape and biased appearance in the different PATs and lineages (Fig-
ure 7a). SNV of most genes are found either in different spots or the area of the SNV-floor. 
These distributions in the SNV-landscape transform into mean SNV-profiles of the differ-
ent genes reflecting their mutational load across the variants. For example, the profiles of 
the S- and the N-genes resemble a combination of the profiles of spots A–C with increased 
mutational load in the respective PATs A–C (compare with Figure 6c), which reflects the 
enrichment of mutations in the S- and N-genes (and, partly also in ORF1a,b) in the 
VOCs/VOIs alpha, beta, gamma, eta see also Figure 6b, middle). The E-gene shows a high 
SNV-score in PATs B and C (VOC/VOIs eta and beta, respectively) and the M-gene in 
PATs B and D (VOC/VOIs eta and epsilon, respectively). ORF8 shows a specifically en-
larged SNV-score in PAT B (VOI eta) and ORF8 in PAT A (VOC alpha). ORF10 lacks spe-
cific association with PATs or VOCs/VOIs. The overview table in Figure 7b reveals that 
the S- and N-genes are widely mutated across the VOCs/VOIs. VOI eta (PAT B) shows 
broadest mutational load across the genes encoding the structural proteins of the virus. 
Interestingly, these distributions resemble the distribution of a high-confidence protein-
coding gene set obtained recently by comparative genomics to consider evolutionary con-
straint, and to prioritize functional mutations [39] (Figure A8). Single SNV-profiles of the 
MOCs of the S-gene assign their appearance in single VOCs/VOIs or combinations of them 
(Figure 7c). For example, deletions delH69 and delH70, both located in spot A, are found 
in VOCs/VOIs eta and alpha while SNV T20N appears in VOC gamma only. Notably, 
immunogenic epitopes targeting hosts immune response enrich in the N-, S- and also 
ORF1a,b genes and associate with the high mutational load especially in the alpha, beta 
and gamma VOCs [40] suggesting their immune evading potency (Figure 7b). Note also 
that genes without structural impact can host such epitopes and play roles in immune 
response. 

In summary, SNV maps and profiles of the SARS-COV-2 genes reveal mutational 
hotspots in the different variants with potential functional impact related to evolution-
driven virulence, transmission and/or immune evasion. Mapping of a set of high-confi-
dence SNV markers mostly from the ORF1a,b- and S-genes for different VOCs to the SOM 
confirms this view [39] (Figure A8). 
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Figure 7. Mapping mutations. (a) SNVs from the SARS-COV-2 genes are mapped into the SOM and 
depicted as SNV-score profiles sorted using PATs and VOCs/VOIs. Specifically increased muta-
tional load is found for the different genes except ORF7a and 10. (b) Summary of the mutational 
load and of immunogenic epitopes of structural proteins and ORFs across the variant types as esti-
mated using the SNV-score and data taken from [40], respectively. The spike and nucleocapsid pro-
teins are most affected by SNV. VOI eta (PAT B) shows widest effect across the SARS-COV-2 ge-
nome. Epitopes are enriched in N, S and orf1a/b. (c) Mutations of concern (MOC) were selected from 
https://covariants.org/ at 17th July 2021 (Figure 5a). Spot location and VOC/VOI(s) showing the mu-
tations (only S-gene) were listed. Part of SNVs appear either in one VOCs/VOIs (table above) or 
combinations of them (table below) as illustrated by their SNV-score profiles. Red text color marks 
high-confidence SNVs taken from [39] (Figure A8), asterisk marks MOCs as assigned in 
https://www.nytimes.com/interactive/2021/health/coronavirus-variant-tracker.html#Q677. 

3.7. Development SARS-COV-2 in Variant and SNV Space 
In the next step, we tried to describe development of the SARS-COV-2 genome from 

its early root variants towards the VOCs/VOIs appearing in the last months. Above, we 
applied phylogenetic tree analysis to visualize similarities between the different SARS-
COV-2 types and their dynamics (Figure 4b). In addition, we applied independent com-
ponent analysis (ICA) of the SOM portraits, which overall reveals another interesting de-
tail: PATs A, B and C (and the respective VOCs/VOIs alpha/gamma, eta and beta) each 
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distributes along one of the first three independent component coordinate axes (IC1–IC3) 
meaning that their genomes evolve virtually independent of each other (Figure 8a). This 
result is not really surprising because each of these three PATs is characterized by only 
one major single spot of co-mutated SNVs which do not mutually mix and thus appear 
virtually independently (Figure 4a). The same argument applies to PAT D (VOI epsilon) 
which distributes roughly along IC2 as PAT A, however, over a much smaller distance 
and in opposite direction. 

To better resolve the root area of SARS-COV-2 variants involving the early split re-
gion, we applied the so-called sample SOM, which applies SOM to the collection of virus 
variants instead of to their SNV [15]. The sample SOM obtained provides similarity rela-
tions in variant space. Because of the non-linear scaling, this map ‘amplifies’ the area oc-
cupied by PATs EF and D collecting non-VOC variants [15] (Figure 8b). Particularly, the 
non-VOC area forms a sort of source from where the viral genomes developed towards 
different directions, namely towards PAT D/VOI epsilon and towards PATs A, B, C/vari-
ants alpha, gamma, eta and beta, respectively. Detailed inspection of the portraits of se-
lected variants revealed that the developmental tree in variant space (Figure 8b) trans-
forms into a similarly-shaped tree in SNV-space pointing towards SNV arising in the 
VOCs/VOIs (Figure 8c). These latter SNVs locate in ‘peaks’ of high specific mutational 
load while the root area distributes over a wider range assigned as SNV-floor. Hence, the 
two different similarity plots in variant and SNV space visualize two closely related, but 
different aspects of the evolving SARS-COV-2 genomes. In summary, profiling of the mu-
tational load of the different genes indicates mutational drifts with potential functional 
impact such as increased transmissibility (e.g., promoted by the S-gene) or immune eva-
sive functionalities (see below). 
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Figure 8. Similarity landscapes of SARS-COV-2 genomes in variant and SNV space. (a) Independent 
Component Analysis (ICA) revealed that genomes of PATs A, B and C evolve each along one of the 
first three independent components IC1–IC2 indicating mutual independent mutational patterns. 
VOC gamma (‘Brazilian’ variant) is followed by alpha (‘British’ variant) along IC2. (b) The sample 
SOM distributes variants in two dimensions in non-linear scale to better resolving details of the non-
VOC root areas of SARS-COV-2 evolution. Early SARS-COV-2 variants (GISAID clades L, V, S) lo-
cate in the center (red ellipse). Development proceeded towards PAT D to the left and A, B, C to the 
right. PATs A–D refer to VOCs/VOIs as indicated in part a of the figure. The tree (black lines) is 
adapted from Figure 4b. NextStrain nomenclature is indicated using grey background, where A-
labeled clades refer to the early detected ones. The number indicates the year of first report and the 
letter is the count of variants reported, e.g., 20H assigns the South African variant B.1.1351 as de-
tected in 2020 just before the Brazilian (20I) and British (20J) ones. Spike-protein substitutions D614G 
defines an early SNV producing the dominant pandemic forms of the virus [39]. (c) The summary 
SOM visualizes the mutational landscape in SNV-space. VOC/VOI-related SNV protrude as ‘peaks’ 
of their SNV-score while the root region of non-VOC SNV referring to the SNV floor form an ex-
tended area of moderately enhanced SNV-score serving as root area of the evolving VOCs/VOIs. 
Increased mutational load is observed for the structural protein genes S and N (Figure 7b). See also 
Table A2 for the gallery of portraits (Pangolin classes). 
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3.8. Pseudotime Describes Development of the Virus Genomes 
Pseudotime (PT) subsumes bioinformatics analysis concepts to extract dynamic in-

formation from cross-sectional omics data [41]. It is based on similarity measures between 
the virus genomes in multidimensional SNV-space which is downscaled into a low di-
mensional directed tree topology. We applied the URD-method [24] to describe develop-
mental paths from non-VOC root groups towards different VOC/VOIs lineages. It pro-
vided ten branches 1–10 which are also assigned by Greek letters according to the final 
VOC/VOI states accumulating at the end of the branches (Figure 9a). The composition 
plots of the branches as a function of PT indicate the progressive growth of the VOC/VOI 
types at higher PT-values. Coloring using GISAID-nomenclature enabled an alternative 
view which particularly resolves ‘early’ root variants and links them with the ‘late’ 
VOC/VOI types. Overall, one finds four groups of GISAID-specific branches governed by 
clades GR (branches 2–4), G (5, 6, 8), GH (1, 7, 9) and GRY (10), where each branch is 
characterized by its own specifics of dynamically changing composition. The URD-tree 
topology maps onto the phylogenic similarity tree (Figure 9b), which has been extended 
by additional variants using xSOM (see next subsection) to better resolve details, espe-
cially in the root area referring to GISAID-clades L, S, V and O. Accordingly, PT-develop-
ment proceeds mainly from root area at the left to the VOC-tips at the right. As already 
mentioned in the previous subsection, the obtained tree-topology is reproduced in the 
mutational landscape (Figure 9c). The GR-clades occupy pre-tip areas in both, sample and 
SNV space in agreement with the nextstrain-tree analysis (Figure A10). Note also that the 
PT-range is largest for branch no. 9 leading to VOI epsilon and shortest for branch no. 10 
ending in VOC alpha. This scaling corresponds to the number of genomes passed in-be-
tween, meaning that a larger PT-range reflects evolution in ‘small’ steps while the shorter 
PT-range associates with evolutionary hops due to the underlying functional gains in vi-
rus fitness. In summary, PT-analysis enabled a view of developmental paths of the virus 
which links the different nomenclature schemes and scales development in a sort of ‘fit-
ness’ measure inversely related to the PT-increment. 
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Figure 9. Pseudotime (PT) analysis of SARS-COV-2 development. (a) Tree sorts the variants along 
ten branches each leading to one VOC/VOI. The variants were colored using WHO VOC/VOI (left 
part) or GISAID groups. The stacked composition plots reveal that the non-VOC variants were pro-
gressively replaced with VOC variants with increasing PT in a branch specific fashion. (b) The sim-
ilarity tree reflects development of the virus in direction of the arrows. For better resolution, the 
number of SARS-COV-2 genomes was increased to 1241 using xSOM (see next subsection). (c) De-
velopment in SNV-state space between GISAID clades. See also Figures A9 and A10. 

3.9. Extending the Data: xSOM 
SOM is trained based on a set of genomes referring to a certain deadline-date and 

based on a certain selection of ‘individual’ virus genomes. There is interest to consider 
new cases collected after the deadline date to estimate evolving virus genomes or to add 
variants from the past not explicitly considered in the training data. As a first option, one 
can train a new SOM based on the completely new data. That would, however, require 
the full new analysis of SOM topology including spot patterns, their profiles and the dis-
tribution of SNV across the meta-SNV. As an alternative option, we developed the exten-
sion SOM (xSOM) method which maintains the always existing SOM and fits new data to 
its topology in a sort of piggyback approach (Figure 10a). We applied xSOM to generate 
portraits of a series of variants not available in the primary data such as VOC delta (Table 
A1). For a worked example of xSOM, we made use of 36 SARS-COV-2 genomes sequenced 
in Armenia in spring 2021 [26]. Twenty-four variants collected in January were assigned 
to non-VOC genomes (GISAID GH clade) and 9 out of 12 variants collected in March to 
the ‘British’ alpha variant (GISAID GRY-clade), which becomes obvious always after vis-
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ual inspection of their individual portraits (Figure 10b,c). One of the remaining cases as-
signs to non-VOC L-clade and the two others resemble the alpha-variant, however, with 
slightly modified mutation patterns which presumably results from insufficient sequenc-
ing depth and shortcomings of nanopore sequencing [26]. Hence, xSOM provides an op-
tion to add new samples of virus genomes to the presented SOM either retro- or prospec-
tively, however, under the restriction that novel genomes differ not too largely from the 
reference genomes. 

 
Figure 10. Adding new variants to an existing SOM (extension SOM, xSOM). (a) The xSOM method 
uses an always trained SOM as reference (here our 483 variants were used for initial training, Figure 
1). SNVs of the genomes of new variants were distributed among the meta-SNVs according to the 
reference SOM. Their meta-SNV scores were adapted such that they meet the criterion of minimum 
Euclidian distance. For each of the new variants one gets a xSOM portrait. (b) The profile, e.g., of 
spot A, splits into variants of the reference SOM and of the xSOM. (c) The genome SARS-COV-2 
portraits of 36 COVID-19 patients collected in Armenia in January and March 2021 assigned to non-
VOC/GH and predominantly to the ‘British’ variant (alpha/GRY) by comparison with ‘world’-ref-
erence portraits, respectively [26]. (d) Their location in the similarity tree confirms these assign-
ments. 

4. Discussion 
4.1. Trade-offs Shaping the Diversity and Evolution of SARS-COV-2 

Mutations of the SARS-CoV2 genome are increasingly documented around the 
world, enabling systematic views on the evolving virus. They were categorized by differ-
ent nomenclature schemes: GISAID applies a 9-level labeling for major clades based on 
phylogenetic marker mutations from the early variants S, L, V and O via G and GH to-
wards GR and GRY. Nextstrain uses a Year-Letter nomenclature to label clades that per-
sist for at least several months and have significant geographic spread [6]. The Pangolin 
scheme aided in the understanding of patterns and determinants of the global spread of 
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the pandemic strains by a broad-brush categorization of globally circulating diversity us-
ing a not-easy to pronounce letter-number code such as B.1.117 or B.1.351 [19]. For the 
sake of simplicity, these latter variants were re-named by many media outlets, e.g., as 
‘British’ and ‘South African’ variants, respectively. Part of Pangolin-variants were then 
assigned as ‘variants of concern’ (VOCs), others as ‘variants of interest’ (VOIs) or ‘Variants 
of high consequence’ (https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-
info.html at 17 July 2021) to characterize their potential impact on critical SARS-CoV-2 
countermeasures. To quell this sort of ‘Babylonian confusion of tongues’ regarding virus 
names and to avoid geographical stigmas, SARS-Cov-2 variants got Greek letters in May 
2021 by WHO [3], e.g., alpha and beta for the ‘British’ and ‘South African’ VOCs, respec-
tively, not to replace scientific labels but mainly to serve as a handy shorthand for non-
experts who are increasingly losing track of different variant names. 

In this publication, we first documented the serial replacement of the different vari-
ant classes since the early stadium of the pandemic on worldwide scale and its specifics 
in different regions of the world. Changing genomes reflect virus evolution towards in-
creased fitness, first of all, in terms of increased transmissibility due to mutations of the 
spike protein (Figure 11a). The intrinsic reproduction number of the non-VOC of SARS-
COV-2 is about R0 = 2.5–3 [42,43] and thus slightly larger than that of common cold. The 
reproduction number however gained by (10–50)% for the VOIs, by (25–30)% for VOCs 
alpha and beta, by 50% for gamma and by about 100% or even more for delta [31] thus 
reflecting increasing transmissibility in the course of virus development. Delta is on a 
transmission-level comparable with Chicken Pox and thus roughly twice as contiguous as 
the early SARS-COV-2 variants and more infectious than Ebola and Pox (https://www.ny-
times.com/2021/06/22/health/delta-variant-covid.html; 
https://www.bbc.com/news/health-57431420). 

Evolution of the virus can be interpreted as a triple trade-off between virulence (driv-
ing zoonosis presumably from bats to humans and also spread of the virus in the first 
wave of the pandemic), transmissibility (driving the following waves as a series of 
VOCs/VOIs) and immune evasion with possibly increasing impact in future [44] (Figure 
11b). Immunogenic epitopes were identified especially in the N-, S- and partly ORF1a,b 
proteins showing high mutational loads in the VOCs which presumably shape adaptation 
of the virus to hosts immune response, especially in the beta, gamma and partly alpha 
variants [44]. The fatality rate, on the other hand, remained virtually unchanged so far 
(0.1–1% of diseased persons averaged over all ages) [45] but decays dramatically below 
0.001% after full vaccination [46] (https://old.reddit.com/r/dataisbeautiful/com-
ments/osqt5c/oc_covid19_infections_serious_unvaccinated_vs/). Moreover, vaccines 
seemed to be highly effective at preventing symptomatic and severe COVID-19 including 
the delta variant [47]. Full vaccination rates of about 50% in Europe and North America 
are presently opposed by more than two times lower rates in the other parts of the world 
and still far away from herd immunity (>80%). A recent publication suggested eradicabil-
ity of COVID-19 without reaching herd immunity by high vaccination coverage combined 
with SARS-COV-2 variant control to avoid vaccine-escape [48]. Newest data from Israel, 
the ‘first vaccination mover’ worldwide, on the other hand, report a new wave of inci-
dence roughly 6–7 months after more than 50% of the population obtained the second 
vaccination shot (Figure A13). Although the reasons are still not clear, the evolutionary 
trajectory seems to turn towards immune evasion in an influenza-like scenario and/or 
waging hosts immune response requiring regular adaptation of vaccines to new variants 
such as the C.1.2. lineage associated with an increased substitution rate, as was previously 
observed for the VOCs [49]. Moreover, trends towards less or more severe illness are un-
predictable. SARS-COV-2 is replicating in the upper airways, whereas serious disease, if 
it develops, comes later, which can make the host sicker maintaining spread just as fast or 
even faster as before (Figure 11c). Overall, these facts underline the importance of se-
quence-based surveillance of the pathogen with high temporal and regional resolution 
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and using meaningful nomenclatures based on the genetic relatedness of the sequences to 
enable their simplified tabulation for integration with epidemiological analysis [50]. 

 
Figure 11. Understanding the past and predicting the future of COVID-19? (a) Dynamics of variants 
reflect a sequential ‘hostile takeover’ related mainly to increased transmissibility (infectiousness) 
after mutations of the spike protein: D614G made SARS-COV-2 a bit more infectious thus promoting 
spread of the virus around the world causing the first wave of pandemic in 2020. The following 
waves of incidence relate to VOCs which replace each other often in serial order mainly due to 
increasing transmissibility. (b) Evolution of SARS-COV-2 can be roughly understood in terms of a 
trade-off between three factors, virulence, transmissibility and immune evasion (reduced neutrali-
zation sensitivity): Zoonosis (presumably) from bat to humans causes the initial outbreak in Wuhan 
(A-lineage) followed by the spread over the world of B-variants and later in 2020 by mutational 
diversifications into VOI/VOCs mostly driven by increasing transmissibility but also affected by 
immunogenic adaptation. VOCs gamma and beta seem to better evade immune response than alpha 
and VOIs but all became virtually replaced by the highly infectious delta variant during 2021 [44]. 
Future developments are difficult to predict. Possible ways can lead towards further increasing 
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transmissibility (measles-like behavior) or towards immune evasive variants (influenza-like, red 
dashed arrow). In an immune-responding population, the latter options seem more probably re-
quiring repeated vaccinations to overcome escape variants. See text and [44] for a detailed discus-
sion. (c) Evolution of SARS-COV-2 can cause more severe variants if transmission from infected 
persons takes place before severe illness as observed for COVID-19 with an early viral response 
phase followed by pulmonary and later an autoimmune phase related to long-COVID and, in worst 
case, death [51]. 

4.2. Cartography of the Virus Genomes 
We applied machine learning by means of Self Organizing Maps (SOM) to portray 

the mutation patterns of SARS-COV-2. The method provides ‘personalized’ images of in-
dividual virus genomes, which can be simply compared by visual inspection without 
deeper knowledge of the composition and function of the SARS-COV-2 genome. We gen-
erated mean portraits for classes of different nomenclatures thus visualizing the genomic 
relatedness between them. Especially, the portraits of the most VOCs and VOIs reflect 
specific mutational patterns differing from the non-VOC strains, which, in turn, are mu-
tually more similar each to another. The ‘portraits’ of the SARS-COV-2 classes show spe-
cific color patterns visualizing differences in their genomes. We re-classified them using a 
strictly pattern-driven approach proven in previous SOM-portrayal applications [13,14]. 
We applied this PAT-classification to the virus genomes not to further increase the ‘Bab-
ylonian confusion of tongues’ regarding virus genomes but to judge their diversity as seen 
by the SOM-portraits. The obtained PATs well reflect VOC/VOI classes in most cases. 
SOM-portrayal adequately reduces dimension of the data by a factor of thousand and 
visualizes the virus genomes in an acceptable fashion. 

The different portraits were subsumed into a mutational landscape of SARS-COV-2, 
which for the first time cartographies the SNV-space of the virus. It resembles the related-
ness between the variants in variant-space but, in contrast, visualizes the relatedness be-
tween sets of SNVs, co-mutated in a clade-specific fashion. These so-called spots collect 
MOCs, mutations of concern, driving the fitness of the virus impacting its function pref-
erentially of the spike-protein and its receptor binding domain but also of the nucleocap-
sid with immune-evasive consequences and also of other genes including the ORFs 
[35,39,52]. Mutational profiles of the different genes across the lineages provide a simple 
approach to estimate their impact. Most VOCs are affected by mutually independent SNV 
patterns, which evolved along different paths from the common root area, including the 
early virus-spread during the non-VOC period until autumn 2020. This region is evolu-
tionarily uncertain in our map, meaning that it is not clear how near-identical sequences 
reflect developmental paths of the virus [11]. Predicting the future of the pandemic is un-
certain; however, the genetic map visualizes the present situation which was described as 
follows: “If the original Wuhan variant is like a town, the virus has been taking local trains 
to explore the surrounding area, but it has not traveled to the next city—not yet.” [44]. 

SOM portrayal thus combines cartography of the overall mutational landscape of 
SARS-COV-2 with a hierarchy of portraits ranging from the mean portraits of the different 
classes from GISAID, VOC/VOIs and Pangolin down to the ‘personalized’ portraits of the 
individual samples. Simple visual inspection enables to assign them to most of the 
VOCs/VOIs or to identify outliers owing to misclassifications or methodical problems 
such as insufficient sequencing depth. Finding unreliable data is one of the tasks involved 
in fixing the bioinformatics bottleneck in SARS-COV-2 genome surveillance [11], e.g., ow-
ing to the rush of data sharing prior to sufficient quality control of sequence and metadata 
in some cases. In parallel to this publication, we provide an interactive tool to browse the 
presented data set more in detail (see data availability statement below). As a second me-
thodical amendment, we introduced xSOM enabling extension of the existing SOM and 
demonstrated its performance using 36 virus genomes sequenced recently in Armenia by 
means of Nanopore technology [26]. 
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A limitation of our study is its retro perspective character. The SOM is based on a 
data-freeze from April 2021. xSOM enables to consider new genomes from the continu-
ously incoming flow of sequences obtained after the freezing date, given that the new 
sequence fits into the existing state space of the SARS-COV-2 SNV. The presented SOM 
must be ‘renewed’ from time to time to account for novel evolutionary paths. A second 
limitation is the biased sequencing frequency in time and space. Sequencing frequency 
gained strongly in the VOC period since autumn 2020. Moreover, it changes strongly be-
tween countries from, e.g., more than 50% (of infected cases) in Iceland and Australia, 
about 5% in Great Britain, 2% in Germany and less than 0.5% in Russia and Brazil 
(https://www.covid19dataportal.it/highlights/highlight3/, in January 2021). This imbal-
ance will bias the sequence space towards the more frequent variants. SOM partly levels 
this bias owing to its meta-SNV structure. 

5. Conclusions 
Despite some early hopes, the pandemic is not over. It further evolves, and new 

waves, driven by new mutations, will arise in time and space, possibly over years. Vac-
cination in combination with surveillance of the SARS-COV-2 genome are key to holding 
the pandemic under control. Genetic control requires close-mashed sequencing combined 
with ‘bioinformatic surveillance’. Machine learning by means of SOM portrayal provides 
a novel option for this latter task, with strong odds regarding visualization, intuitive per-
ception and ‘personalization’ of the mutational patterns of the virus genomes. 

Supplementary Materials: The following material is available online at www.mdpi.com/arti-
cle/10.3390/v13091764/s1. File S1: Gallery of SOM-portraits of SARS-COV-2 genomes (File_S1.PDF); 
File S2: List of SNV (position in the SARS-COV-2 genome, amino-acid substitution, spot). 
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Appendix A: Additional Tables 

Table A1. SARS-COV-2 labeling schemes a and gallery of the respective SOM-portraits. 

WHO a PANGO-LINE GI-SAID Next-Strain PAT 
Portrait 

Standard and Coastline Style 
Variants of Concern (VOCs) 

alpha 
‘British’ variant 

B.1.1.1.7 GRY 20I A 
 

beta 
‘South African’ variant 

B.1.351 GH 20H C 
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gamma 
‘Brasilian’ variant 

P1 GR 20J A 
 

delta b 
‘Indian’ variant 

B1.617.2 G 21A EF 
 

Variants of Interest (VOIs) 

lambda b C37 GR 21G B 
 

eta B.1.525 G 21D B 
 

iota B.1.526 GH 21F EF 
 

kappa B.1.617.1 G 21B EF 
 

Others 

epsilon B.1.427, B.1.429 GH 21C D 
 

zeta b P2 GR 20B EF 
 

Theta b P3 GR 21E EF 
 

 A S 19B EF 
 

 A.1 S 19B EF 
 

 B L 19A EF 
 

 B.1 G/GH 20A EF 
 

 B.1.1 GR 20B EF 
 

 B.1.1.136 GR 20D EF 
 

 B.1.1.186 GR 20D EF 
 

 B.1.1.205 GR 20B EF 
 

 B.1.1.228 GR 20B EF 
 

 B.1.1.231 GR 20B EF 
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 B.1.1.316 GR 20B EF 
 

 B.1.1.434 GR 20B EF 
 

 B.1.1.519 GR 20B EF 
 

 B.1.110 GH 20A EF 
 

 B.1.139 G 20A EF 
 

 B.1.2 GH 20C EF 
 

 B.1.234 G 20A EF 
 

 B.1.274 GH 20A EF 
 

 B.1.298 GH 20A EF 
 

 B.1.305 GH 20C EF 
 

 B.1.360 GH 20C EF 
 

 B.1.400 G - EF 
 

 B.1.517 GH - EF 
 

 B.1.595 GH - D/EF 
 

 B.19 L 19A EF 
 

 B.46 L 19A EF 
 

 C.26 GR 20D EF 
 

 C.35 GR  EF 
 

 D.2 GR  EF 
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 W.1 GV  EF 
 

a Adapted from https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (10 July 2021); for PANGOLIN see 
https://cov-lineages.org/lineage_list.html (at 17th July 2021); b xSOM added. 

Table A2. Spot characteristics. 

Spot 
Enriched 
Lineages 

Number 
of SNVs 

SNV in the Spot a 

A 
Alpha, 
gamma 

72 

Orf1ab: 733, 913, 2110, 2749, 3267, 3828, 5388, 5648, 5986, 6319, 
6613, 6954, 11288, 11289, 11290, 11291, 11292, 11293, 11294, 
11295, 11296, 12778, 13860, 14120, 14676, 15279, 16176, 17259, 
17615 
S: 21614, 21621, 21638, 21765, 21766, 21767, 21768, 21769, 21770, 
21974, 21991, 21992, 21993, 22132, 22812, 23012, 23063, 23271, 
23525, 23604, 23709, 24506, 24642, 24914, 25088 
Orf3a: 26149 
Orf8: 27972 28048 28095 28111 28167 
N: 28280 28281 28282 28512 28877 28878 28881 28882 28883 
28977 
Intergenic: 28271, 29834 

B eta 37 

Orf1ab: 1498, 1594, 1807, 2659, 5869, 6285, 8031, 8323, 8593, 
9565, 12540, 14407, 18171, 18646, 19684, 20724 
S: 21717, 21762, 21764, 22879, 23593, 24224, 24472, 24748 
Orf3a:25613 
E: 26305 
M: 26767 
Orf6: 27205, 27206, 27207 
Orf7a: 27425 
N: 28278, 28279, 28308, 28699 
Intergenic: 12, 29543 

C beta 33 

Orf1ab: 661, 2692, 2830, 3966, 5100, 5230, 8043, 10323, 13620, 
17999, 18525, 19524 
S: 21801, 22206, 22281, 22282, 22283, 22284, 22285, 22286, 22287, 
22288, 22289, 22813, 23664, 24415 
Orf3a: 25904, 26158 
E: 26456 
Orf8: 28253 
Intergenic: 174, 29743, 29754 

D epsilon 46 

Orf1ab: 1059, 2395, 2597, 3817, 8083, 8257, 8895, 8947, 9738, 
9991, 10319 10641, 10831, 12100, 12878, 13019, 13713, 14805, 
16394, 17014, 18424, 19515, 21304 
S: 21600, 22018, 22335, 22597, 22917, 23126, 23155, 24349 
Orf3a: 25563, 25907 
M: 26681 
Orf8: 27964, 27987, 28087, 28191 
N: 28472, 28869, 28887, 28975, 29362, 29402 
Intergenic: 27890, 28272 

https://cov-lineages.org/lineage_list.html
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E kappa 207 

Orf1ab: 445, 490, 1157, 1163, 1578,  1624, 1812, 2227, 2244, 2258, 
2488,  2937, 2973, 3114, 3177, 3355, 3564,  3768, 3896, 3951, 
3952, 3953, 3984,  4002, 4158, 4303, 5140, 5144, 5974,  6033, 
6070, 6317, 6320, 6403, 6441, 6502, 6543, 6606, 6618, 7113, 7540, 
7819, 7833, 7945, 7960, 8140, 8149, 8662, 8782,  9204, 9430, 9805, 
9875, 9996, 10078, 10332, 10456, 10717, 10741, 11008, 11077, 
11453, 11575, 11830, 11866, 12116, 13059, 13094, 13216, 13354, 
14187, 14241, 14316, 14808, 14980, 15102, 15327, 15594, 16647, 
16728, 17140, 17463, 17642, 17676, 17747, 17858, 18060, 18543, 
18555, 18568, 18736, 18981, 19072, 19215, 19422, 19735, 19816, 
19983, 20016, 20091, 20268, 20437, 20629, 21077, 21099, 21255, 
21390, 21516 
S: 21622, 21644, 21773, 21844, 21850, 21986, 22101, 22227, 22326, 
22480, 22591, 22852, 22992, 23120, 23401, 23457, 23577, 23608, 
23624, 24026, 24034, 24076, 24337, 24370, 24727, 24766, 24771, 
24852, 25266 
Orf3a: 25459, 25514, 25515, 25710, 25714, 25757, 25785, 25793, 
25922, 26072, 26162 
E: 26326 
M: 26607, 26669, 26690, 26729, 26801, 26882, 27024, 27059, 27110 
Orf6: 27213, 27281 
Orf7a: 27483, 27579, 27600, 27635, 27679 
Orf7b: 27812 
Orf8: 27923, 27944, 27957, 28077, 28144 
N: 28520, 28657, 28690, 28774, 28854, 28880, 28884, 28885, 28886, 
28888, 28889, 28891, 28894, 28896, 28932, 28961, 29095, 29266, 
29384, 29412, 29445, 29527 
Orf10: 29645 
Intergenic: 13, 19, 80, 173, 180, 201, 205, 221, 29546, 29692, 29700, 
29710, 29803 

F iota 111 

Orf1ab: 565, 686, 687, 688, 689, 690, 691, 692, 693,   694, 1132, 
2644, 2683, 2867, 2945, 3140, 3745, 4456,  6015, 6101, 6379, 6479, 
6751, 7201, 8809, 8890, 9152,  9190, 9289, 9654, 9867, 10029, 
10567, 10705, 10775, 10954, 11117, 11203, 11653, 12043, 12789, 
14210, 16396, 16500, 16569, 16859, 17748, 18452, 18647, 19068, 
19839, 20262, 20592, 21306 
S: 21575, 21642, 21846, 22320, 22957, 22995, 23047, 23248, 23695, 
23731, 23756, 24095, 24432, 24799, 24933, 25340 
Orf3a: 25517, 25587, 25844, 25948, 25968 
M: 26700 
Orf7a: 27534, 27630, 27739 
Orf8: 27925 
N: 28311, 28531, 28706, 28879, 29197, 29311 
Orf10: 29566 
Intergenic: 140, 203, 222, 29738, 29739, 29740, 29741, 29742, 
29744, 29745, 29746, 29747, 29748, 29749, 29750, 29751, 29752, 
29753, 29755, 29756, 29757, 29758, 29759, 29760 

a SNVs were given as sequence position along the SARS-COV-2 genome. They include deletions, 
insertions and substitutions. The respective nucleotides, amino acids and amino acid positions are 
provided in Supplementary Material: File S2). 
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Appendix B: Additional Figures 

 
Figure A1. Comparison of SOM- and sample-size using supporting maps. Increasing size of the 
SOM retains its internal structure. In conclusion, SOM of standard size (35 × 35) well reproduces the 
landscape of the data. Supporting maps were described previously [15]. In short: the population 
map shows the number of SNVs per pixel/meta-SNV. Increasing size increases the amount of empty 
meta-SNVs (white) but virtually leaves the occupied meta-SNV unchanged. The variance and en-
tropy maps color code the variance and entropy of the meta-SNV. Largest variance (red) is found in 
the highly populated ‘spot’ areas. Entropy is maximum in the areas of intermediate variance. The 
spot summary map provides an overview about the spots of high mutational load seen in the indi-
vidual portraits of variants. The distance map color codes the intrinsic distance metric of the SOM. 
White ‘halos’ surround clusters of SNV-modes collecting meta-SNV of similar profiles. A nearly 
doubled number of variants (949) mostly of non-VOC types shifts the SNV-floor towards the central 
part of the SOM-image. In conclusion, the particular size of the SOM and number of variants con-
sidered distorts the SNV-landscape obtained but reproduces its basic features. Their interpretation 
relates consequently to the particular parametrization of the SOM. 



Viruses 2021, 13, 1764 29 of 40 
 

 

 
Figure A2. COVID-19 incidences and deaths across the world: number of cases (incidence) and 
number of deaths (both numbers are counted per day and per 100,000 of population) in different 
regions of the world were plotted as a function of date since January 2020. One sees the different 
waves of the pandemic arising, e.g., in Europe in spring 2020 and from autumn 2020 to summer 
2021. Cumulative incidences, deaths and percentages of vaccinated people (first shot) across the 
world are shown in the right (green frame). Graphs were generated using the COVID-19 viewer 
(https://www.izbi.uni-leipzig.de/current-projects/covid19-viewer/, downloaded on 17 July 2021) 
[28]. 

Note: 

Number of cases before summer 2020 (1st. wave) is biased towards small values because of the 
relatively small number of tests. 

Number of deaths roughly followed the number of cases in Asia, South America, Oceania and 
Africa. 

In Europe and North America, the deaths in the last (summer) wave 2021 are relatively small pre-
sumably because of non-pharmaceutical interventions (NPIs), medical measures and also pro-
gressing vaccination. 

South America is leading the number of cases and of deaths at present. North America and Europe 
are leading the vaccination (first dose). 
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Figure A3. Trajectories of the pandemic in log-log scale worldwide and for selected regions (Europe, 
North and South America). (a) The plot of the number of new cases (per day) as a function of cumu-
lative cases visualizes the exponential character of the pandemic as a line (see [28] for the detailed 
description of the method). The exponential growth decelerates since summer 2020 owing to NPIs, 
medical services and vaccination. (b) The number of deaths followed the incidence at the beginning 
of the pandemic (black line) until summer 2020. Then it markedly deviates towards smaller values, 
but it still grows in absolute numbers (the thick grey line serves as guide for the eye). 

 
Figure A4. Portraits of the SARS-COV-2 genomes from different regions of the world for GISAID 
non-VOC, VOC and WHO VOC/VOI groups. The patterns roughly agree with the overall world-
wide portraits (Figure 2d). The portraits of the beta (‘South African’) variant slightly differ between 
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Europe, Africa and North America because of unknown reasons. Lambda (South America) resem-
bles the eta variant. 

 
Figure A5. Examples of SOM-portraits of individual SARS-COV-2 genomes of selected Pangolin-
variants in standard and ‘coastline’ scale (upper and lower raw, respectively). The portraits illus-
trate individual features and partly deviating or even showing outlier properties (red frames). De-
viations can appear because of variable mutations, methodical differences (sequencing depths af-
fecting mutations detected) or classification errors. Portrayal thus enables control of the genomes 
on a ‘personalized’ basis. The full gallery of SOM portraits of SARS-COV-2 genomes studied is pro-
vided in Supplementary Materials: File S1. 
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Figure A6. Spot SNV-profiles across the variants sorted and colored using PAT (left) and GISAID 
(right) classes. WHO VOC/VOI classes are indicated by the second color bar to link both sides. 
VOC/VOI classes uniquely assign to PATs except PAT A which splits into VOCs alpha and gamma. 
In contrast, the relation between GISAID and VOC/VOI groups is fuzzier. For example, gamma 
splits between GISAID GR and GH, which, in turn, contains also epsilon and beta. 

 
Figure A7. Mutations of the S-gene in the PAT’s. Position of the mutation is provided below the 
bars. 
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Figure A8. Map of the high-confidence gene set of mutations taken from [39]. (a) Most of the SNV 
are confirmed in our data as specific for the intended VOC. The respective SNV profiles show mu-
tational load in respective variants. (b) A small fraction of suggested SNVs are not confirmed in our 
data showing mutations in more than one VOC/VOI, in different PATs or even lack marked muta-
tional load. 
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Figure A9. The URD-tree is colored in pseudotime (PT) scale. Most branches cover PT-ranges up to 
PT = 0.5–0.6. Shortest PT range is obtained for VOI alpha and the longest for VOI epsilon. The PT 
range seems to be governed by the number of intermediate virus genomes in between the initial and 
final states. t-SNE (t-distributed neighbor embedding) plots of the variants in PT and GISAID color 
scale reveal that clade GH (including VOI epsilon) covers the widest PT range. 
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Figure A10. Radially displayed phylogenetic tree of of SARS-COV-2 available in February (above) 
and July 2021 (below). The various types are color coded (using GISAID (left part) and PANGOLIN 
(right part) nomenclatures (Source: https://nextstrain.org; 27th July 2021). Only GSAID lineage GRY 
virtually one-to-one matches with VOC alpha. The others VOCs/VOIs distribute over different 
GISAID lineages. Our SNV-spot profiles (Figure A6) reflect these relationships. 

 
Figure A11. Screenshots of the different oposSOM browser functionalities to explore the SARS-
COV-2 variants data. (a) The gene browser shows the SNV profiles and mapping into the SOM grid 

https://nextstrain.org/
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(localization) of selected sequence positions. (b) The module browser provides access to the differ-
ent SOM segmentation methods and shows spot-cluster SNV profiles and associated SNV for the 
interactively selected spot. (c) The sample landscape shown in the phenotype browser can be 
grouped according to a selection of different phenotypes. Here the PANGOLIN classification is 
shown. Hovering the nodes of the landscape provides the variant ID and the corresponding class. 
(d) The sample landscape grouped according to our PAT classification. Clicking any node in the 
graph (i.e., a particular variant sample) reveals further information and the respective meta-SNV 
portrait. See also Figure A12. 

 
Figure A12. Exploring the spanning tree in the oposSOM browser (see also Figure A11d). The tree 
is a similarity presentation of SARS-COV-2 variants enabling an alternative view to phylogenetic 
tree, second level SOM and independent component analysis (see main paper). (a) Tree is colored 
according to pangolin classification. Group portraits around the tree are shown for VOCs/VOIs and 
early lineages A and B. (b) The tree is colored according to detailed pangolin classes. Their portraits 
are listed on the left. Please use the browser tool for detailed inspection. (c) The tree is colored ac-
cording to PATs. PATs A, B, C and D accumulate at the tips of side branches while PAT EF forms 
the central part. 
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Figure A13. Breakthrough infections after vaccination? Israel was the first vaccination mover reach-
ing vaccination of about 50% of population in February–March 2021. About 6–7 months later the 
incidence of COVID-19 (delta variant) strongly gains because of unclear reasons. Possible factors 
are: (i) The amount of vaccination remained clearly below herd immunity level (>80%). (ii) Insuffi-
cient and/or waning protection due to immune evasion of SARS-COV-2 delta. A recent study 
demonstrated that natural immunity confers longer lasting and stronger protection against infec-
tion, symptomatic disease and hospitalization caused by the delta variant of SARS-CoV-2, com-
pared to the BNT162b2 (Biontech-Pfizer) two-dose vaccine-induced immunity [53]. The waning pro-
tection is possible due to the too short interval between first and second dose (3–6 weeks) [40]. De-
layed intervals of 8–12 weeks provide much higher antibody titres reflecting stronger humoral and 
cellular immune responses Moreover, the ‘second moving’ country UK shows an increasing inci-
dence after a first peak, which associated with crowds gathering during the European Cup in foot-
ball. These facts possibly reflect immune evasion of the virus leading to waning immune response 
which raises the need of repeated booster vaccinations. Plots of incidence and vaccination data were 
taken from https://www.izbi.uni-leipzig.de/current-projects/covid19-viewer/ on 30 August 2021. 
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