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Abstract: Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in
humans, horses, and some bird species. Since the initial introduction of WNV to the United States
(US), approximately 30,000 horses have been impacted by West Nile neurologic disease and hundreds
of additional horses are infected each year. Research describing the drivers of West Nile disease
in horses is greatly needed to better anticipate the spatial and temporal extent of disease risk, improve
disease surveillance, and alleviate future economic impacts to the equine industry and private horse
owners. To help meet this need, we integrated techniques from spatiotemporal epidemiology, eco-
phylogenetics, and distributional ecology to assess West Nile disease risk in horses throughout the
contiguous US. Our integrated approach considered horse abundance and virus exposure, vector and
host distributions, and a variety of extrinsic climatic, socio-economic, and environmental risk factors.
Birds are WNV reservoir hosts, and therefore we quantified avian host community dynamics across
the continental US to show intra-annual variability in host phylogenetic structure and demonstrate
host phylodiversity as a mechanism for virus amplification in time and virus dilution in space. We
identified drought as a potential amplifier of virus transmission and demonstrated the importance
of accounting for spatial non-stationarity when quantifying interaction between disease risk and
meteorological influences such as temperature and precipitation. Our results delineated the timing
and location of several areas at high risk of West Nile disease and can be used to prioritize vaccination
programs and optimize virus surveillance and monitoring.

Keywords: West Nile virus; horses; equine; mosquito; eco-phylogenetics; avian reservoir; spatial
non-stationarity; disease biogeography; Bayesian
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1. Introduction

Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in
humans, horses, and some bird species [1–3]. The virus is a member of the Flaviviridae
family and belongs to the same sero-group as the arthropod-borne viruses (arboviruses)
Japanese encephalitis virus, Usutu virus, Murray Valley encephalitis virus, and St. Louis en-
cephalitis virus [4–7]. WNV is the most common cause of neuroinvasive arboviral disease in
the contiguous US: the average human incidence was recently estimated by Curren et al. [8]
to be 0.44 cases/100,000 persons and we [9] calculated estimates approximately 10% higher
at 0.48 cases/100,000 after accounting for uneven reporting and environmental risk factors.
Less is known about risk factors contributing to WNV infection of horses. In the years
immediately following the 1999 US introduction of WNV, equine WNV vaccines were
rapidly developed and licensed [10,11]: however, despite the initial post-invasion push to
reduce what can be substantial economic impacts to horse owners, there has yet to be a
large-scale, comprehensive analysis of equine West Nile disease (WND) in the US [12–14].
Research describing the abiotic and biotic drivers of equine WND is needed to anticipate the
spatial and temporal distribution of disease risk, improve disease surveillance, and avoid
economic impacts to the agricultural industry and private horse owners.

Since introduction in 1999, WNV has infected more than 27,000 horses in the US,
with mortality rates estimated between 30 and 50% and neurologic symptoms that include
stumbling, aimless wandering, convulsions, inability to swallow, impaired vision, teeth
grinding, hind limb weakness, paralysis, and coma [15–19]. Due to research funding
reductions over the past decade, there have been calls to designate WND as a neglected
disease, but given its recent US introduction, WND is generally considered an emerging
disease in the US and a re-emerging disease globally [14,20–22].

WNV was originally described from Uganda in 1937 [23] and then subsequently
identified at locations throughout Africa, Asia, and Europe over the next half-century,
though the virus was not considered a serious equine health or economic issue until the
mid-1990s [14,24]. Prior to the mid-1990s, equine seropositivity rates as high as 54% were
reported from Northern Africa (1950s) and isolated horse epizootics with mortality were
documented in Europe (1962–1963). Because such epizootics were infrequent, WNV was
not perceived as major threat to agriculture [24,25]. Perceptions changed in the 1990s
when virus reemergence resulted in a marked increase in the number and severity of
equine WNV infections worldwide and coincided with virus introduction and spread
in the Western Hemisphere [26–29]. A 1996 outbreak in Morocco affected 94 horses, of
which 45% died; 58% equine seroprevalence was estimated in herds near Tuscany (Italy)
in 1998 after 14 horses from the region displayed neurologic symptoms; 75 horses were
infected in Israel between 1998 and 2000, of which 20% died; and France confirmed
76 infected horses in 2000 after more than 130 displayed signs of disease [24,30,31]. In the
Western Hemisphere, 20 horses were infected in New York during the year of initial virus
introduction (1999), with 63 more confirmed equine cases across the Northeastern US in
2000 [32,33]. Between 2000 and 2005, WNV rapidly spread across the Western Hemisphere
with serologic evidence or confirmed neurologic disease reported in horses from all states
in the contiguous US as well as Canada, the Caribbean, Mexico, Central America, and South
America [28,34,35]. Given the extraordinary rapidity with which WNV can move across
large distances and impact agriculture, the equine industry, and private horse owners,
studies to elucidate the drivers of enzootic transmission are urgently needed to assess
prevailing risk and to forecast future disease outbreaks.

Although WNV readily infects horses, they are “dead-end” hosts [36] that do not con-
tribute to forward transmission. The virus is maintained in cycles involving ornithophilic
mosquito vectors (primarily species within the genus Culex) and avian reservoir host
species [2]. Thus, we applied a disease biogeography approach to analyze spatiotemporal
relationships among four major WNV system components: (1) horse hosts, (2) mosquito
vectors, (3) avian reservoir hosts, and (4) extrinsic climatic, socio-economic, and envi-
ronmental factors. Disease biogeography leverages quantitative methods common to
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distributional ecology to investigate infectious disease from an integrated ecological and
epidemiological perspective [37,38]. Our aim was to assess equine WND risk from the
ecological-epidemiology perspective that risk is dependent on prevailing rates of equine
WNV infection and the location-specific exposure of horses to WNV, as well as the complex
network of biotic and abiotic environmental factors that mediate reservoir and vector
spatiotemporal distributions. To this end, we estimated the “absolute” and “relative” risk
of equine WND, where absolute risk was defined as the total number of cases predicted for
a given time, location, and horse population (abundance) and relative risk was the ratio of
absolute risk to the expected case number based on disease rates for the larger US over the
period of record.

We place our analysis within the disease biogeography paradigm because our frame-
work was derived from human epidemiology methods with risk estimates contingent on
(horse) population incidence and disease exposure rather than environmental suitability,
occurrence probability, or abundance as is standard for niche models [38–41]. This distinc-
tion is important to understand technical aspects of model statistical implementation and is
central to interpreting WNV ecology. In contrast to pathogens such as avian influenza virus
that may be transmitted by both environmental and avian reservoirs [42–44], free WNV
(outside of host or vector bodies) is not known to significantly contribute to disease propa-
gation, and therefore the geographic distribution of WNV is likely little restricted by abiotic
environmental conditions beyond those that shape host and vector species occurrence.
Stated differently, the WNV “niche” is better described by host and vector availability, com-
petency, and community assembly than it is by the climate or edaphic conditions external
to these organisms. Because WNV nidality was assumed to be a reflection of highly-mobile
avian host availability [45], we adopted a modern niche concept [46] that expanded on
inclusion of the abiotic environment (Grinnellian niche), pathogen interactions with hosts
and vectors (Eltonian niche), and the pathogen’s fundamental niche (Hutchinsonian niche)
to quantify shifts in virus distributions due to access and transport by competent avian
hosts [41,47].

Avian species in the Order Passeriformes serve as the principal WNV reservoirs [48–52].
Passeriformes (perching birds) are the largest and most diverse clade of birds in the world,
show variable WNV competence, and exhibit a wide range of long-distance and local
dispersal behaviors making selection of any one species as a representative or archetypal
virus reservoir problematic [53,54]. Further complicating analysis, pathogen hosts do
not function in isolation and are instead embedded in a local community with interacting
organisms (hosts and non-hosts) that is, in turn, nested within a larger host metacommunity
at the landscape scale. The nested, hierarchical structure of pathogen–host interactions
gives rise to cross-scale dynamics that influence prevalence at the local scale (county-
scale) and transmission processes at the landscape scale (continental-scale) as communities
are bridged by reservoir migration and dispersal [55,56]. Techniques from phylogenetic
community ecology (eco-phylogenetics) have potential to untangle cross-scale transmission
dynamics in the WNV system. Eco-phylogenetics represent the merger of community
ecology with phylogenetics and are increasingly being used to investigate host–parasite
and disease systems [57–59].

Although predicting risk of disease transmission in multi-host systems is an outstand-
ing challenge in infectious disease ecology, an improved understanding of the evolutionary
and phylogenetic aspects of host community assembly and composition may help gar-
ner insight into virus dilution and amplification effects at the community and landscape
scales [56,59]. Virus dilution and amplification effects in relation to host diversity have
been proposed to shape WNV transmission [60–64]. Our objective was to explain WND
biogeography and to assess horse WND risk across the US by integrating spatiotemporal
epidemiology, eco-phylogenetics, and distributional ecology.
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2. Materials and Methods
2.1. Study Area and Disease Data

Our study area encompassed the contiguous US which includes a geographic extent
greater than 9.8 million km2. Equine WND incidence data were acquired from the Centers
for Disease Control and Prevention (CDC) [65] as a text file. Tabulated data provided the
number of confirmed horse WND cases reported within each US county between 2009
and 2018. We used the reported case onset date to aggregate case counts to occurrence
month. Cases documented between 2009 and 2017 were used for model training and those
reported in 2018 were partitioned for out-of-sample model validation.

2.2. Virus Surveillance

The number of sentinel animal, avian, and mosquito WNV detections reported to the
CDC were also obtained for the study period (CDC, 2019). ArboNET is a passive surveil-
lance system. It is dependent on clinicians considering the diagnosis of an arboviral disease
and obtaining the appropriate diagnostic test, and reporting of laboratory-confirmed cases
to public health authorities. Diagnosis and reporting are incomplete, and the incidence of
arboviral diseases is underestimated. We combined these virus detection reports and then
aggregated to the county and month of detection to create a WNV surveillance covariate.

To help account for variation in county surveillance and reporting, we generalized
(spatial and temporally smoothed) the WNV surveillance covariate by estimating virus
detection probability for each county and month using the following formula,

pv
st ∼ binomial(πv

st)

logit(πv
st) = ξv

s + γv
t (1)

where the probability of virus detection (pv
st) in county s and time t (month of year) followed

a binomial likelihood with a mean πv
st and a response variable coded as,

pv
st =

{
1, if virus detected in county, and
0, otherwise.

The ξv
s term shown in Equation (1) symbolizes a spatial covariate constructed using a

Besag–York–Mollié (BYM) configuration (Besag et al., 1991) that included scaling between
structured and unstructured BYM components to improve estimates [66–69]. The ξv

s
covariate quantified spatial dependencies between counties based on a neighborhood graph
(adjacency matrix), which we constructed using the spdep package [70], with contiguity
based on a “queen” configuration (only one adjoining point needed to define a neighbor).
We found that the 3109 counties in the US had between 1 and 14 neighbors, with an
average of 5.78 adjoining neighbors per county. This same neighborhood graph was
also used for disease modeling decribed in Section 2.6. A monthly time trend (γv

t ) was
added using a first-order (one time-step) random walk (curvilinear response) defined as
γt = γt−1 + ∆γt, with the current time step based on the prior step plus an incremental
∆γt, where ∆γt = N (0, σ2) and included an enforced sum to zero constraint (centered
on zero).

2.3. Climate Data

Mean monthly maximum temperature and total precipitation data for the US (2009–2018)
were acquired from the PRISM Climate Group at a 4 km grid resolution [71] using the
prism package [72]. Monthly mean temperature and precipitation estimates were then
averaged by county.

Weekly drought indices reporting the areal proportion of each county subject to six dif-
ferent drought stages were obtained from the US DroughtMonitor (https://droughtmonitor.
unl.edu/) (accessed on 2 July 2021) and averaged to monthly values. The US Drought
Monitor produces categorical drought stages based on a combination of metrics: the

https://droughtmonitor.unl.edu/
https://droughtmonitor.unl.edu/
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Palmer Drought Severity Index, NOAA’s Climate Prediction Center Soil Moisture Model
percentiles, USGS Weekly Streamflow percentiles, Standardized Precipitation Index, and ex-
pert opinion. Arranged from the least to most dry stage, the reported drought levels
included No Drought, Abnormally Dry, Moderate Drought, Severe Drought, Extreme
Drought, and Exceptional Drought.

2.4. Avian Host Occurrence, Prevalence, and Phylogenetic Data

Several model covariates were developed to evaluate relationships between avian
WNV host species and equine WND occurrence. To develop avian covariates, we cross-
referenced US occurrences of Order Passeriformes (perching birds) documented in the
Cornell Lab of Ornithology eBird database [73] with those species analyzed by Jetz et al. [74]
and archived in the Global Phylogeny of Birds (https://birdtree.org/) (accessed on 2 July
2021). We further cross-referenced the species common to both eBird (US occurrences
only) and the Jetz et al. [74] phylogeny to the avian host competency database published
by Tolsá et al. [54]. The Tolsá et al. [54] database reported estimated WNV host competency
(molecular prevalence) for approximately half (163) of the 303 Passeriform species available
from eBird and also represented in the global bird phylogeny.

We cloned the entire eBird database to the USDA SCINet High-Performance Com-
puting System (https://scinet.usda.gov/) (accessed on 15 July 2021), extracted individual
bird occurrences using the auk package [75], and then spatially and temporally matched
occurrences by US County to produce a database indicating the presence or absence of
each species in each county (3109) during each month of the year (January–December).
To qualify as a presence, we required that a minimum of two species-specific observations
be documented by eBird for a given county and month. We next constructed avian com-
munity matrices and calculated county-level species richness (number of unique species)
under two different species pool assumptions: a “dynamic” species pool and a “static”
species pool assumption. We use the term “dynamic” to refer to a species pool that varies
intra-annually (monthly) such that the pool includes only those avian species present
during a given month. By comparison, we use the term “static” to describe a species pool
inclusive of all avian species observed during the combined months May–August, which
define the primary WND outbreak season in the US [76,77].

Eco-phylogenetic analysis was conducted by first extracting 1000 bootstrap replicate
trees from the Global Phylogeny of Birds using tools available at the https://birdtree.
org/ (accessed on 12 July 2021) website. The tool facilitated the process of trimming
the full, time-calibrated phylogeny to our Passeriform species pool (303 species) before
sampling this subset from a pseudo−posterior distribution [74]. We then downloaded and
summarized the replicate trees through construction of a maximum clade credibility tree
using TreeAnnotator (http://beast.community/treeannotator) (accessed on 12 July 2021)
and the BEAST 2 package [78]. We used the resulting consensus tree, our eBird based avian
community matrices, and the picante package [79] to calculate mean phylogenetic distance
(branch lengths between species), mean nearest taxon distance, which describes the average
genetic distance between nearest neighbors (sister species) within a community [57], mean
pairwise distance (average phylogenetic distance among co-occurring species pairs in a
community, see Cadotte and Davies [80]), and evolutionary distinctiveness or the degree
of a species’ isolation on the phylogeny [81]. As previously described for species richness,
each phylodiversity metric was calculated under two different species pool assumptions: a
monthly varying dynamic species pool and a static species pool representing the WND
outbreak season of May–August. Each phylodiversity metric was compared to a null model
derived from 999 random permutations of consensus tree tips and nationwide species
pools (static and dynamic versions) to determine statistical importance and the degree of
deviation from species pool averages.

Dynamic and static versions of avian host WNV molecular prevalence were estimated
by matching species-specific prevalence estimates [54] to the corresponding bird species
occurring in each county by month (dynamic) and during the peak outbreak season (static)

https://birdtree.org/
https://scinet.usda.gov/
https://birdtree.org/
https://birdtree.org/
http://beast.community/treeannotator
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before averaging across species (county-level mean community prevalence). Because avian
host community composition varies through time (e.g., due to migration), averaging
dynamic and static molecular prevalence by county produced estimates for mean host
community prevalence that fluctuated intra-annually.

2.5. Land Cover and Human Demographic Information

To characterize typical land use and elevation by county, we obtained remote sensing
data (GeoTiff format) from the Global 1 km Consensus Land Cover data set [82] and the
Earth Environment Digital Elevation Model [83]. The land cover data set indicated the
proportion of twelve different land cover types at a 1 km2 resolution. We aggregated
elevation and land cover information to the county-level based on the mean elevation
and the mean land cover proportion in each county. Descriptors for each land cover
type are provided in the Results section and can be reviewed at the Earth Environment
website http://www.earthenv.org/ (accessed on 15 July 2021).

County-level data reflecting human population density, median household income,
and the percent of the population in poverty were obtained from the US Census Bureau
(https://www.census.gov/) (accessed on 10 July 2021)and the Small Area Income and
Poverty Estimates (SAIPE) Program within the US Census Bureau [84] using the censusapi
package [85].

All data were scaled and centered for ease of post-modeling interpretation. Multi-
collinearity between candidate covariates was assessed using collinearity diagnostics for
independent variables [86] as facilitated by the perturb package [87]. High multicollinear-
ity between several covariates required that multiple model versions be constructed and
evaluated. This iterative process is described further below.

2.6. Disease Model

Bayesian epidemiological models were constructed to estimate WND relative risk and
disease caseloads for horses located in the conterminous US. Our statistical model was of
the form,

Ost|rst ∼ Poisson(µst) (2)

µst = Estrst (3)

log(µst) = log(Est) + log(rst), (4)

where the number of horse WND cases (Ost) was conditional on relative risk (rst) and
followed a Poisson distribution with a mean µst (Equation (2)). Est is the expected
disease case counts in each US County s (s = 1, 2, 3, . . . , 3109) during each month t
(t = January, February, March, . . . , December) between the years 2009 and 2017. Veteri-
narian reported WNV horse infections were obtained from the CDC as non-negative
integers without any accompanying information describing the age, physical condition,
or ownership of horses. Standardization by specific risk groups is the preferred method
to estimate expected disease cases [88]. However, lacking detailed horse information, we
calculated expected counts (Est) by multiplying the average rate for the period of record by
the number of horses in each county (s).

Rearranging Equation (4) allowed for estimation of log risk using a number of random
(non-linear) spatial and temporal effects as well as several fixed (linear) covariates of
interest as potential risk indicators. The log-risk linear predictor can be represented as,

log(rst) = α + βx · Xst + ζSVC + ξs + ϕt + γt + δst (5)

ζSVC =
m

∑
k

f (ξk
s SVCk

st) (6)

where α is an intercept approximating mean WND risk and the β (β = β1, . . . , βx) terms
signify coefficients implemented as fixed covariates (Xst). The ζSVC shown in Equation (5)

http://www.earthenv.org/
https://www.census.gov/
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stands for spatially varying coefficients (SVC) and is detailed in Equation (6), where the
f (·) represents statistical functions included to assess temperature and precipitation as spa-
tially variable disease indicators. Because relationships between WND and climate were
assumed to vary by location, climate covariates were designed to provide location-specific
coefficient estimates. That is, rather than estimating a single coefficient that reflects the asso-
ciation of WND to temperature nationwide, the model instead provided a separate, “local”
coefficient for WND–temperature correspondence in each US County. The SVCk

st term in
f (·) represents temperature (k = 1) or precipitation (k = 2) at location s and time t with local
coefficients that vary according to the latent Gaussian spatial process ξk

s . The spatial effect
ξk

s utilized a Besag formulation (Besag et al., 1991) to approximate a Gaussian Markov ran-
dom field with individual counties considered conditionally independent unless adjoining
as neighbors (sharing at least one connecting point along geographic boundaries).

In addition to the spatial covariates used to estimate SVCs, a separate spatial effect
(ξs) was included to quantify model latencies (errors) due to unmeasured or unmodeled
variables, spatial autocorrelation, and other data biases. The statistical implementation for
ξs was comparable to that of ξk

s but incorporated a BYM configuration (Besag et al., 1991)
with scaling between components [66–69] as described for WNV surveillance in Section 2.2.
A zero mean constraint (centering on zero) was also enforced in ξs to help reduce con-
founding between covariates. A zero mean constraint was not used for ξk

s because doing
so might have unintentionally altered the magnitudes of SVC estimates.

Beyond the spatial covariates described above, the model included spatiotemporal
effects to account for ordered time (γt), unstructured time (ϕt), and space–time interaction
(δst). Ordered time (γt, Equation (5)) was specified using a first-order random walk as
used in Section 2.2 to temporally smooth virus detection estimates. Unstructured time (ϕt,
Equation (5)) and space–time interaction (δst, Equation (5)) were modeled as independent
and identically distributed random effects with months (time steps) used as variable
levels for unstructured time and county-month combinations used as variable groups
for space–time interaction. The random walk helped identify within year time trends,
the unstructured time effect captured temporal variation outside of the ordered time
trend, and space–time interaction helped detect locations that departed from average
risk trends for the study period. Because our model exhibited high-dimensionality, we
applied Integrated Laplace Approximation using the INLA package as an alternative to
computationally demanding Markov chain Monte Carlo methods [89–91]. Spatiotemporal
effects were specified with weakly informative Penalizing Complexity priors [69,92] having
parameters p1 = 1 and p2 = 0.001 with enforced zero mean constraints to help reduce
confounding. All fixed effects were assigned vague zero mean normal priors with a
0.0001 precision.

2.7. Model Selection, Consensus, and Validation

A total of 39 climatic, phylogenetic, and environmental variables were assessed as po-
tential equine WND risk indicators. To avoid multicolinearity among variables, a consensus
modeling approach was adopted such that 12 different models were iteratively constructed
using data years 2009 to 2017 before application of model averaging [93,94]. As previously
described, collinearity diagnostics for independent variables [86] were applied to ensure
that the variable combinations specific to individual models posed a low risk of multicol-
inearity. Comparison of the 12 candidate models revealed that marginal likelihoods and
Watanabe-Akaike information criteria (WAIC) among the top 7 models fell within 1% of
each other. Therefore, each model was assigned even weighting during model averaging
(mean consensus). Because correlative relationships among input covariates and between
the covariates and estimated risk were potentially informative from a systems perspective,
we visualized all correlative relationships concurrently through network analysis [95,96].
Model validation was conducted through comparison of averaged model estimates to cases
reported in 2018 (out-of-sample) using Brier [97] and logarithmic [98] scores. To accomplish
this, model predicted 1-case exceedance probabilities for equine WND cases were com-
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pared to the county and month-specific case counts reported in 2018. Network analyses
conducted during initial covariate selection and model development were then repeated
following model validation to concurrently assess relationships between estimated WND
risk and the original input covariates. A list of covariates specific to each model and maps
depicting 1-case exceedance probabilities in relation to 2018 reported cases are provided in
Appendix A (see Figures A1 and A2).

3. Results

Network analysis revealed graph structure (network graph topology) among disease
risk indicators (graph nodes) such that covariates from similar groups (e.g., climate, host
phylogenetics, land cover) were positioned in relatively close proximity whereas covariates
from different groups were at distance (Figure 1). For example, avian species richness
(Richness) exhibited strong negative correlation to virus molecular prevalence (Figure 1
[left graph]) and a robust positive correlation to phylogenetic distance (Figure 1 [right
graph]), yet these three variables were clustered (grouped) together with other avian
community covariates (e.g., nearest taxon, pairwise taxa) due to overall similarity. In a
comparable manner, covariates reflecting different drought stages were clustered (Figure 1,
right side of both graphs) as were those for land cover (Figure 1, bottom center of both
graphs). Estimated risk occupied a graph position nearest virus covariates (prevalence and
surveillance) and avian host factors suggesting stronger correlative relationships to these
indicators than to land cover or climate variables.

Figure 1. Network—correlation correlation graph. Networks display negative (left) and positive (right) correlations among evaluated
input covariates and model estimated risk (larger text, upper left in each graph). Network nodes are labeled to indicate model covariate
name and are sized to reflect the absolute magnitude of average Pearson linear correlation (r). Graph edges (lines) are color coded to
indicate polarity (blue = negative, red = positive) with widths sized according to legend at bottom to signify absolute magnitude of
pairwise correlation (range = −1 to +1). Graph structure among node positions (groups, clusters, or nestedness) approximate average
connectivity (“node comunities”).

Spatial and temporal smoothing of reported WNV detections from sentinel animal,
bird, and mosquito surveillance produced monthly, county-specific estimates for WNV
detection probability in the US (Figure 2). The WNV surveillance covariate was found
to be an important predictor of WND risk with increased virus detection probability
corresponding to increased disease risk (Table 1).

We identified 303 Passeriform species common to both the Cornell Lab of Ornithology
eBird database [73] and the Global Phylogeny of Birds [74]. Metadata symbolized with the
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maximum clade credibility tree show the proportion of US Counties where each species has
been observed and documented by the eBird database (Figure 3). The tree also indicates
the species-specific WNV molecular prevalence as estimated by Tolsá et al. [54]. Figure A3
provided with Appendix A lists species names, the proportion of occupied counties,
and prevalence for each tree tip.

100%50%25%0% 75%

West Nile Virus Detection Probability

Figure 2. WNV detection probability. WNV surveillance covariate estimated from virus detections reported to the CDC.
Mapped counties are color coded according to legend at bottom to indicate WNV detection probability (converted to percent
chance). Darker tones indicate an elevated chance of virus detection whereas lighter tones represent a lesser chance of
detection. Covariate construction is detailed in Section 2.2.

Table 1. Estimated coefficients for equine WND. Mean, standard deviation (SD) and 95% Credible
Intervals. Coefficients are on the log scale with covariates judged to be significant based on credible
intervals shown in bold text.

Covariate Mean SD 2.5 Q 97.5 Q

WNV Surveillance 0.14 0.03 0.09 0.20
Human Population Density −0.03 0.03 −0.09 0.02
Median Household Income −0.12 0.04 −0.19 −0.05
Population in Poverty (%) −0.02 0.03 −0.05 0.01
Evergreen/Deciduous Needleleaf Trees −0.09 0.05 −0.20 0.01
Evergreen Broadleaf Trees −0.01 0.05 −0.10 0.09
Deciduous Broadleaf Trees −0.16 0.10 −0.35 0.04
Mixed/Other Trees −0.20 0.09 −0.38 −0.02
Shrubs 0.05 0.06 −0.07 0.16
Herbaceous Vegetation 0.02 0.08 −0.14 0.18
Cultivated and Managed Vegetation 0.02 0.10 −0.19 0.22
Regularly Flooded Vegetation 0.02 0.05 −0.08 0.11
Urban/Built-Up −0.12 0.05 −0.21 −0.03
Snow/Ice −0.02 0.02 −0.07 0.02
Barren 0.07 0.03 0.01 0.13
Open Water −0.16 0.05 −0.25 −0.06
Elevation −0.11 0.08 −0.26 0.05
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Figure 3. Phylogenetic tree for WNV avian hosts. Phylogenetic tree for 303 Passeriform species. Rectangular boxes near tree
tips are color coded according to the legend at top right (Proportion) to indicate the proportion of US Counties where each
species has been documented to occur. Rectangles coded as dark red indicate the species occurs in a high proportion of
counties whereas lighter, yellow rectangles indicate relatively lower proportions. Circles surrounding tree tips correspond
to legend at bottom right (Prevalence) and signify species-specific WNV molecular prevalence. Tree tips without circles
indicate that prevalence information was not available at time of analysis. Figure A3 provided with Appendix A lists species
names, proportion of occupied counties, and prevalence values for each tree tip.

Combining avian host phylogenetics (Figure 3) with bird occurrence and community
composition information allowed for the estimation and mapping of several phylodiversity
metrics and average host community WNV prevalence. Figure 4 illustrates the phyloge-
netic distance metric as a representative example of these results. However, outcomes
for all phylodiversity and prevalence metrics are provided in Appendix A as maps (see,
Figures A4–A15). As exemplified by phylogenetic distance (Figure 4), estimating com-
munity phylogenetic composition from a temporally dynamic perspective indicated that
average relatedness varied considerably throughout the year.

The strength and importance of avian host community metrics in estimating WND
risk differed by adopted species pool and the specific composition measure (Figure 5).
Coefficient estimates for species richness, phylogenetic distance, mean nearest taxon dis-
tance, evolutionary distinctiveness, mean pairwise taxa distance, and molecular prevalence
are shown under both the dynamic and static species pool assumptions. Coefficients esti-
mated under the dynamic and static assumptions exhibited contrasting polarity (positive
or negative signs) within the same covariate and showed differing influence with respect to
predictive power. The static implementations of mean nearest taxon distance, evolutionary
distinctiveness, and molecular prevalence were determined not to be statistically significant
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based on 95% credible intervals, nor were either the static or dynamic versions of mean
nearest taxa distance. All other covariates were found to be important indicators of WND
risk (Figure 5).

Figure 4. Dynamic and static avian phylogenetic distance. Phylogenetic distance covariate under assumption of dynamic
(monthly) and static (seasonal) species pools. Dynamic version is shown as a monthly varying time-series surrounding the
larger map at center, which represents static phylogenetic distance (May–August). Mapped values have been scaled and
centered to highlight locations subject to relative phylogenetic clustering with blue colors (higher than expected relatedness,
lower mean genetic distances) and phylogenetic over-dispersion with red colors (lower than expected relatedness, higher
mean genetic distances).

Initial inclusion of temperature and precipitation climate variables as fixed model
covariates (Models 1–4, see Figure A1) indicated that both covariates were not significant
as judged by 95% Credible Intervals including the value 0 (zero). However, temperature
and precipitation were found to be important when added as spatially varying coefficients
(Models 5–12, see Figure A1). The relative influence (“effect sizes”) of temperature and
precipitation covariates varied by location and are mapped by US County (Figure 6).

Drought indices were found to be statistically significant in estimating WND risk
and produced coefficients with polarity that differed by drought category and intensity
(Figure 7). The number of WND cases increased as the proportion of land classified as No
Drought (0), Severe Drought (3), and Extreme Drought (4) increased. Conversely, WND
cases decreased as land proportions in the Abnormally Dry (1), Moderate Drought (2),
and Exceptional Drought (5) categories increased, indicating that drought thresholds are
important in understanding WND risk.
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Figure 5. Avian host community composition, phylodiversity, and WNV prevalence posterior distributions. Vertical axis at
left lists covariate names and horizontal axis provides numeric range of coefficient estimates. Distributions are color coded
to indicate if the estimate corresponds to a dynamic (monthly varying) or static (season-based, May–August) avian species
pool. Dashed vertical line intersects zero on horizontal axis to judge credible intervals and covariate polarity. The static
implementations of mean nearest taxon distance, evolutionary distinctiveness, and molecular prevalence were determined
not to be statistically significant based on 95% credible intervals. Neither the static or dynamic versions of mean nearest
taxa distance were significant. All other other covariates were important indicators of WND risk.

WNV surveillance, median household income, and four land cover types were statisti-
cally important indicators of WND risk (Table 1). WNV surveillance and the proportion
of Barren land cover in a county exhibited positive correlation to increased WND cases
whereas other significant variables showed a negative correspondence to WND. Among co-
variates negatively associated with WND was median household income. Coefficients
estimated for median household income indicated that as average income increased within
a county, risk of WND in horses proportionality decreased.

The annual median case rate for equine WND across all US Counties was approx-
imately 3.88 (1.83, 6.67 CI) cases/100,000 horses. However, the distribution of WND
risk exhibited a temporal trend that sharply increased between the months of June and
August (Figure 8) and showed considerable spatial heterogeneity throughout the year
(Figures 9 and A16). Spatial and temporal trends aligned to indicate July–October as
months of highest disease risk with time periods before and after showing markedly
decreased disease rates (Figures 9 and A16). The spatiotemporal distributions of esti-
mated case counts were comparable to those shown for relative risk and are illustrated in
Appendix A (see Figures A17 and A18).
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Figure 6. Spatially varying coefficients (SVCs) for climate. Maps show SVCs for temperature (top) and precipitation
(bottom) by US County. Mapped colors correspond to legend at bottom and are scaled to show relative change (%) in equine
WND cases with respect to the median case rate of 3.88 (1.83, 6.67 CI) cases/100,000 horses. Warm colors (reds) highlight
locations where above average temperature (per 0.62 ◦C anomaly) and precipitation (per 31.52 mm anomaly) correlate to
increased WND cases. Cooler colors (blues) indicate locations where above average temperature and precipitation correlate
with decreased WND cases. Areas shown in white signify locations with little change in WND cases as temperature or
precipitation increase.
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Figure 7. Relationship of drought to equine WND. Vertical axis at left lists US Drought Monitor
categories arranged (top to bottom) from the least to most dry stage. Horizontal axis is scaled to
show relative change (%) in equine WND cases with respect to the median case rate of 3.88 (1.83,
6.67 CI) cases/100,000 horses, which is represented by the dashed vertical line intersecting zero. Point
symbols in main plot area represent the mean coefficient estimate for each drought category with a
corresponding line defining the 95% CI.
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Figure 8. Temporal distribution of equine WND relative risk. Vertical axis at left describes model
estimated log-risk (absolute risk, case counts on the log scale) and corresponds to smooth curve re-
flecting intra-annual changes in case intensity. Light gray lines surrounding smooth curve demarcate
the estimated 95% CI. Horizontal gray line intersecting 0 (zero) on the left vertical axis represents the
US annual median case rate of 3.88 (1.83, 6.67 CI) cases/100,000 horses. Horizontal axis at bottom
lists the month of year. Bar chart in background corresponds to right vertical axis providing monthly
standardized incidence rates (SIR).
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Figure 9. Spatiotemporal distribution of equine WND relative risk. Maps depict the spatial and
temporal distribution of model estimated WND relative risk by US County for the months July–
October. Column aligned at center displays the Contiguous US with lateral columns providing closer
views of locations demarcated on US map at top center. Maps are color coded according to legend at
bottom such that darker tones signify increased risk and lighter tones represent relatively lower risk.
A relative risk value of 1 indicates that model predicted cases were comparable to the expectation
given the number of horses in the county, values below 1 highlight counties with relatively low risk,
and values above 1 suggest increased risk (higher than expected given the horse population).

4. Discussion

As expected, equine WND risk was not uniformly distributed across the US nor
was it constant throughout the year. Nationwide risk patterns generally indicated that
few locations were free of any disease risk during the July–October period, which was
identified as the time of highest risk (Figure 8). However, several multi-county regions
exhibited particularly elevated risk (Figure 9) during this timeframe. High-risk clusters
(relative risk ratio > 1.0) were identified in Central Pennsylvania, Eastern Iowa, West Texas,
Central Montana, Coastal South Atlantic States, Northwest Minnesota, Eastern Washington,
the Idaho-Oregon border, and along the central Gulf coast in a region centered on Lower
Louisiana. Clusters in Central Pennsylvania and Lower Louisiana were the first high-risk,
multi-county areas to emerge following the start of the outbreak season and remained
as the most persistent risk areas as summer transitioned to the fall season. Interestingly,
the Louisiana and Pennsylvania clusters underlie migratory flight paths linking the Gulf
Coast to the Northeastern US that were previously identified as routes of WNV transport
by terrestrial bird (non-waterfowl) species [45]. In addition to high-risk clusters, a number
of relatively isolated areas (1–2 adjoining counties) showed disproportionately high rel-
ative risk based on the associated horse population. For example, individual counties in
Colorado, North Dakota, and California displayed risk twice as high as expected (relative
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risk ratio >2.0). Being a population contingent measure, the variability observed in risk
distribution suggested that, although WNV has been detected throughout the US, environ-
mental conditions at some times and locations are more conducive to disease propagation
than are conditions at other times and locations.

Our analysis revealed that risk spatial and temporal heterogeneity was associated with
a number of virus, avian host, and climatic factors. Perhaps the most intuitive indicator of
disease was detection of the WNV itself, which was found to be the strongest risk correlate
during network analysis (Figure 1) and a robust risk indicator through spatiotemporal
modeling (Figure 2). When mapped as a time-series, virus detection probability suggested
a general shift from south-to-north during the onset of summer (May–June), a majority
coverage of the US during the height of summer (June–September), and a north-to-south
recession associated with the beginning of winter (October–November). During the coldest
months of year (November–April), highest virus occurrence probabilities were predomi-
nantly restricted to southern portions of the US and coastal areas. The apparent annual
movement by WNV aligned with seasonal turnover in the US such that virus detection
likelihood increased along a latitudinal gradient as temperatures warmed. Exceptions
to this latitudinal pattern were identified along the Atlantic and Pacific Coasts where
relatively high virus detection probabilities persisted throughout the winter months. We
interpret these aberrations from the prevailing pattern to be linked to thermal buffering of
coastal areas by oceans. Thermal buffering moderates low-temperature extremes in coastal
areas, among other effects, to provide winter refuge for birds (potential reservoirs) that
might otherwise migrate [99,100]. However, it is also possible that managed water and
sewage systems in some coastal locations facilitate mosquito overwintering [101].

Considering the large geographic extent of our study area, temperature and precipi-
tation were presumed to exhibit spatial non-stationarity with respect to disease risk and
were modeled as spatially varying coefficients (SVC). Spatial non-stationarity describes
ecological relationships that vary by geographic location or across spatial scales [102,103].
As an example of non-stationarity in a disease system, Olson et al. [104] found that precipi-
tation was correlated to elevated malaria incidence in upland areas of the Amazon basin
where water availability was a limiting factor for mosquito habitat. However, precipitation
was negatively correlated with malaria in wetlands, where additional rainfall washed
out existing mosquito habitats adequate for reproduction. Just as precipitation showed
contrasting effects on malaria incidence for upland and wetland locations in the Amazon,
we anticipated that precipitation’s influence on WND risk would vary by location due
to flexible responses by WNV vectors [105] and underlying heterogeneity in prevailing
environmental conditions throughout the US. For example, we assumed that increased
rainfall would affect WNV enzootic transmission in arid and semi-arid locations such as
the Sonoran and Chihuahuan deserts differently than it would in water abundant regions
like those found in the Southeast.

Precipitation coefficients exhibited a spatial distribution (Figure 6) with increased
precipitation corresponding to elevated WND risk across the northernmost western states,
the Northeast, and the majority of Mid-Atlantic states. Increased precipitation was cor-
related with decreased disease risk in states laying immediately west of the Mississippi
flow way, the Southeast, and California. Temperature has been previously linked to WND
outbreaks in the US [106–108]. The resulting pattern shown for temperature coefficients
(Figure 6) indicated that increasing temperature was correlated with increased WND risk
across the Midwest, the Florida peninsula, Texas, and the Dakotas but negatively associ-
ated with WND in the Upper Midwest, non-coastal western states, the extreme Northeast,
and the states of Mississippi, Alabama, and Georgia. Although the regional patterning
shown by mapped temperature and precipitation results (Figure 6) differed with respect to
each other, both largely tracked recognized US regional climatic boundaries [109].
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Drought demonstrated a dynamic relationship to WND in that non-drought condi-
tions were associated with increased risk, but abnormal dryness and moderate drought
had a suppressive effect on disease (Figure 7). As drought intensity increased beyond
moderate levels to reach the severe and extreme stages, disease risk sharply increased
before once again diminishing to have a negative disease influence during periods of
exceptional drought. The dynamic, non-linear correspondence between drought and WND
as drought conditions intensified may be indicative of shifts in vector and host availability.
Although moderate drought conditions may reduce host and vector water access, severe
drought levels may exacerbate the situation sufficiently to instigate vector and host aggre-
gation at the few remaining water sources. As drying conditions further intensify to be
classified at the exceptional level, water becomes so rare as to be a limiting factor for virus
transmission. Drought and other weather extremes may promote pathogen transmission by
concentrating vector and host populations in relatively small areas [107,110,111]. Mosquito
vector and avian host aggregation in response to drought has been found to amplify both
WNV and St. Louis encephalitis virus in the Southeastern US [112]. Alternating periods
of drought and drought-rebound have also been proposed as a mechanism driving WNV
epidemics [113,114]. In the drought and drought-rebound scenarios, drought first produces
elevated WNV prevalence during vector and host aggregation at limited water sources,
and then drought-rebound facilitates virus geographic spread as vectors and hosts disperse
to take advantage of newly available habitat created through augmented precipitation.

Network analysis of the WNV enzootic system indicated that WND risk was more
closely associated with avian host phylogenetic community structure than climatic, land
cover, or human demographic factors (Figure 1). Phylogenetic community structure is
an indicator of disease pressure [115–118] and may have implications for WNV transmis-
sion. If avian species traits connected to virus transmission are evolutionary conserved,
assemblages composed of species with high phylogenetic relatedness may provide greater
opportunity for virus sharing, host switching, and spillover. Phylogenetic conservatism
postulates that the degree of similarity among species traits, behaviors, and niches is cor-
related to the degree of relatedness between those species [119]. From this perspective,
over-dispersion (lower than expected relatedness among co-occurring species) may be
evidence of competitively structured communities whereas phylogenetic clustering (higher
than expected relatedness among co-occurring species) may be indicative of environmental
filtering [57]. That is, areas of over-dispersion identified by our analysis may signify the
occurrence of avian assemblages with greater diversity in terms of both species richness
and physiological traits than is expected based on a random draw from the species pool.
By comparison, clustered communities might represent assemblages with greater related-
ness and more comparable environmental tolerances, physiological characteristics, and life
histories than random. Because birds are highly mobile, the general pattern shown by host
eco-phylogenetic metrics in our study was one of relative phylogenetic over-dispersion in
more southerly and coastal US locations during cooler months (November–March) with
comparative clustering across the majority of mid-western and western states. This pat-
tern changed during warmer months (April–October) to show less overall clustering and
greater over-dispersion nationwide (Figures 4 and A4–A15). The spatiotemporal transitions
observed between areas of over-dispersion and clustering tracked seasonal bird migra-
tion patterns in the US. During winter months, many passerine species relocate to either
southern portions of the US or its thermally buffered coasts to avoid low-temperature
extremes and ground-covering snowfall, whereas, non-migratory species in the clade
typically possess metabolic traits that make them resistant to winter climate [120]. Thus,
winter onset increases species richness at overwintering grounds in the south and along
coasts (i.e., migratory bird influx) while concurrently filtering non-migratory species by
cold-tolerance capacity (environmental filtering). The reverse process occurs as warmer
spring and summer seasons approach, resulting in increased richness and trait diversity
over the terrestrial US as a whole. In support of this interpretation, network analysis
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(Figure 1) and mapped community metrics (Figure 4 vs. Figure A4) show strong, positive
correlation between species richness and phylogenetic distance.

When applied as WND predictive measures (Figure 5), species richness, phylogenetic
distance, and mean nearest taxon were found to positively correlate to outbreak season tim-
ing (Dynamic versions exhibit positive polarity), but negatively associate with disease risk
spatial distributions during the primary season (Static versions exhibit negative polarity).
This signified that avian community composition temporally trended towards becoming
less-related (more diverse, more phylogenetically distant) as WND risk increased moving
into the outbreak season, but as diversity increased at a geographic location, concomitant
disease risk proportionately decreased. In broader ecological terms, return migration from
overwintering areas in the spring increased avian diversity across major portions of the US
and migration timing largely coincided with the onset of the West Nile outbreak season;
however, although the timing of these events was similar, locations with elevated diver-
sity experienced lower WNV transmission rates than did less-diverse locations. Unlike
phylogenetic relatedness measures, host (dynamic) molecular prevalence was negatively
correlated to outbreak season timing, suggesting that average community virus competency
decreased as host diversity and disease risk increased. Molecular prevalence estimated
using a seasonal species pool (Static version) was not a statistically important predictor
of WND risk, but consistent with other host metrics, exhibited an opposite polarity than
that for the monthly varying species pool. The dynamic and static varieties of evolutionary
distinctiveness and mean pairwise taxa were weak or insignificant disease risk indicators.
However, it is worth noting that these measures showed contrasting polarity to species
richness, phylogenetic distance, and Mean nearest taxon, which matches the expectation
given that these measures may reflect host species competition [121]. In its totality, our anal-
ysis of host eco-phylogenetics suggested that avian species diversity is strongly associated
with species migration, amplifies WNV prevalence in the time dimension, and effectively
dilutes the virus in geographic space.

Our study faced two major data limitations. First, the ArboNET data that served
as a basis for analysis were voluntarily provided to the CDC by counties. As voluntary
data, case counts and virus detections were subject to county-level surveillance, collection,
and reporting biases. Although our temporally and spatially-explicit model framework
aided in accounting for many data biases, it was likely not perfect. Second, data reflecting
equine WNV vaccination practices are not systematically collected in the US and were
therefore not available for model inclusion. We suspect that vaccination practices may
explain some of the WND variation revealed in our study, but controlling for this variation
is problematic in the absence of detailed vaccination information. We did choose to assess
the influence of household income as a potential proxy of vaccination, under the hypothesis
that horses located in relatively high income areas might be more protected from WND due
to owners being able to afford more consistent vaccination. Although we found that WND
risk decreased in areas with increased income (Table 1), the linkage between household
income and horse vaccination rates remains speculative in the absence of additional data.

5. Conclusions

Since initial invasion by WNV in 1999, approximately 30,000 horses in the US have
been affected by neurologic disease and hundreds more are infected by the virus each
year. Because of this, research elucidating the drivers of equine WND is greatly needed
to better anticipate the spatial and temporal distribution of disease risk, improve disease
surveillance, and avoid future economic impacts to the equine industry and private horse
owners. To help meet this need, we applied a disease biogeography perspective and
evaluated spatiotemporal relationships among four components of the WNV system: horse
hosts, mosquito vectors, avian reservoirs, and climatic and demographic factors. Our
findings pinpointed the timing and location of several high-risk WND areas throughout
the US and can be used to prioritize virus surveillance and monitoring. Our analysis
identified drought as a potential mechanism for virus amplification and demonstrated the
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importance of accounting for spatial non-stationarity when quantifying interaction between
disease risk and meteorological influences such as temperature and precipitation. We also
quantified avian host community dynamics across a massive geographic scale to show
intra-annual variability in host phylogenetic structure and demonstrate host phylodiversity
as a mechanism for virus amplification in time and virus dilution in space. Lastly, we
encourage other researchers to expand on our methods for improved understanding of
disease systems and to work towards fuller integration of spatiotemporal epidemiology,
eco-phylogenetics, and distributional ecology.
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Appendix A. Tables and Figures

1 2 3 4 5 6 7 8 9 10 11 12

PPT (non‐SVC) 1 1 1 1

PPT (SVC) 1 1 1 1 1 1 1 1

Temp (non‐SVC) 1 1 1 1

Temp (SVC) 1 1 1 1 1 1 1 1

WNV Surveilance 1 1 1 1 1 1 1 1 1 1 1

Molecular Prevalence (D) 1

Molecular Prevalence (S) 1 1 1

No Drought 1 1 1 1 1 1

Abnormally Dry 1 1

Moderate Drought 1 1 1 1 1 1

Severe Drought 1 1 1 1 1

Extreme Drought 1 1

Exceptional Drought 1 1 1

Evergreen/Deciduous Needleleaf Trees 1 1 1

Evergreen Broadleaf Trees 1 1 1

Deciduous Broadleaf Trees 1 1 1 1

Mixed/Other Trees 1 1 1 1 1 1 1 1

Shrubs 1 1 1

Herbaceous Vegetation 1 1 1

Cultivated and Managed Vegetation 1 1 1 1

Regularly Flooded Vegetation 1 1 1 1

Urban/Built‐up 1 1 1 1 1 1 1 1

Snow/Ice 1 1

Barren 1 1

Open Water 1 1 1 1 1 1 1 1 1 1

Elevation 1 1

Evolutionary Distinctivness (D) 1

Evolutionary Distinctivness (S) 1

Mean Pairwise Taxa (D) 1

Mean Pairwise Taxa (S) 1

Phylogentic Distance (D) 1

Phylogentic Distance (S) 1

Mean Nearest Taxon (D) 1

Mean Nearest Taxon (S) 1

Species Richness (D) 1

Species Richness (S) 1

Human Population Density 1 1 1 1 1 1 1

Median Houshold Income 1 1 1 1 1

Population in Poverty (%) 1 1H
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Figure A1. Evaluated model covariates. Covariates are listed by category in the first column.
Columns following covariate name correspond to twelve models constructed to evaluate covariates
(numbered 1–12) and are shaded by row to indicate covariate inclusion. The abbreviation SVC when
listed with a covariate name indicates implementation as a Spatially Varying Coefficient, parenthetical
listing of (D) signifies the covariate was added under assumption of a dynamic species pool (monthly
varying), and parenthetical (S) indicates use of a static pool (seasonal, months May–August). Models
5–12 included climate SVC covariates and were subjected to model averaging to derive mean
consensus estimates of WND risk.
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1‐Case Exceedance Probability (2018)

Figure A2. Model validation. Top row depicts out-of-sample, model predicted 1-case exceedance probability for the months
July, August, September, and October 2018. Bottom row depicts locations of actual 1-case exceedance as reported to the CDC.
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Tip Species Proportion Prevalence Tip Species Proportion Prevalence Tip Species Proportion Prevalence

1 Acridotheres cristatellus 0.000322 NA 102 Helmitheros vermivorum 0.405918 0.000000 203 Pycnonotus cafer 0.001287 NA

2 Acridotheres tristis 0.001608 0.000000 103 Hirundo rustica 0.999035 0.018350 204 Pycnonotus jocosus 0.001930 NA

3 Agelaius phoeniceus 0.998070 0.076436 104 Hylocichla mustelina 0.690897 0.065725 205 Pygochelidon cyanoleuca 0.000322 NA

4 Agelaius tricolor 0.027662 0.010956 105 Icteria virens 0.756192 0.074419 206 Pyrocephalus rubinus 0.110968 0.050000

5 Aimophila ruficeps 0.076874 0.075257 106 Icterus bullockii 0.229977 0.022887 207 Pytilia melba 0.000322 NA

6 Alauda arvensis 0.000322 NA 107 Icterus cucullatus 0.050177 0.033333 208 Quiscalus major 0.071727 0.019898

7 Ammodramus savannarum 0.724670 0.000000 108 Icterus galbula 0.793181 0.047351 209 Quiscalus mexicanus 0.290769 0.222373

8 Amphispiza bilineata 0.086523 NA 109 Icterus graduacauda 0.014152 NA 210 Quiscalus quiscula 0.936314 0.113762

9 Anthus cervinus 0.002573 NA 110 Icterus gularis 0.003538 0.050000 211 Ramphocelus carbo 0.000322 NA

10 Anthus rubescens 0.763268 NA 111 Icterus icterus 0.000643 NA 212 Regulus calendula 0.967192 0.000000

11 Anthus spragueii 0.083307 NA 112 Icterus parisorum 0.045995 NA 213 Regulus satrapa 0.880026 0.000000

12 Aphelocoma californica 0.040206 NA 113 Icterus pectoralis 0.000965 0.150515 214 Rhodothraupis celaeno 0.001930 NA

13 Aphelocoma coerulescens 0.009006 NA 114 Icterus pustulatus 0.002252 NA 215 Riparia riparia 0.764876 0.000000

14 Aphelocoma insularis 0.000322 NA 115 Icterus spurius 0.856224 0.009404 216 Salpinctes obsoletus 0.190737 NA

15 Arremonops rufivirgatus 0.012223 0.075000 116 Icterus wagleri 0.000322 NA 217 Sayornis nigricans 0.093599 0.000000

16 Auriparus flaviceps 0.052107 0.033333 117 Junco hyemalis 0.953040 0.000000 218 Sayornis phoebe 0.887102 0.013991

17 Baeolophus atricristatus 0.045352 NA 118 Junco phaeonotus 0.003216 NA 219 Sayornis saya 0.275008 NA

18 Baeolophus bicolor 0.699260 0.034233 119 Lamprotornis caudatus 0.000322 0.000000 220 Seiurus aurocapilla 0.692184 0.036250

19 Baeolophus inornatus 0.017691 NA 120 Lanius ludovicianus 0.566098 0.102124 221 Serinus serinus 0.000322 0.000000

20 Baeolophus ridgwayi 0.044387 NA 121 Legatus leucophaius 0.000643 NA 222 Setophaga ruticilla 0.844645 0.006232

21 Baeolophus wollweberi 0.005790 NA 122 Leucosticte atrata 0.027983 NA 223 Sialia currucoides 0.224831 NA

22 Basileuterus culicivorus 0.001287 NA 123 Leucosticte australis 0.016082 NA 224 Sialia mexicana 0.122547 NA

23 Basileuterus rufifrons 0.001930 NA 124 Leucosticte tephrocotis 0.064329 NA 225 Sialia sialis 0.889353 0.061689

24 Bombycilla cedrorum 0.982309 0.031842 125 Limnothlypis swainsonii 0.186234 0.000000 226 Sicalis flaveola 0.003538 0.000000

25 Bombycilla garrulus 0.109682 NA 126 Lonchura malacca 0.001287 NA 227 Sitta canadensis 0.866517 0.000000

26 Calamospiza melanocorys 0.170794 0.000000 127 Lonchura punctulata 0.020907 0.025809 228 Sitta carolinensis 0.873593 0.033280

27 Calcarius lapponicus 0.448054 NA 128 Loxia curvirostra 0.343840 0.000000 229 Sitta pusilla 0.235445 0.000000

28 Calcarius ornatus 0.111933 NA 129 Loxia leucoptera 0.141525 NA 230 Sitta pygmaea 0.083950 NA

29 Calcarius pictus 0.053715 NA 130 Melospiza georgiana 0.847218 0.007058 231 Spindalis zena 0.001287 NA

30 Calocitta colliei 0.000643 NA 131 Melospiza lincolnii 0.773561 0.012387 232 Spiza americana 0.684786 0.000000

31 Calocitta formosa 0.000322 NA 132 Melospiza melodia 0.990029 0.027231 233 Spizella atrogularis 0.023159 NA

32 Camptostoma imberbe 0.005468 NA 133 Mimus gilvus 0.000322 0.082874 234 Spizella breweri 0.148601 NA

33 Campylorhynchus brunneicapillus 0.045995 0.000000 134 Mimus gundlachii 0.001287 NA 235 Spizella pallida 0.500161 0.050000

34 Cardellina rubrifrons 0.007076 0.000000 135 Mimus polyglottos 0.841428 0.123759 236 Spizella passerina 0.995497 0.009147

35 Cardinalis cardinalis 0.855902 0.273664 136 Mitrephanes phaeocercus 0.000965 NA 237 Spizella pusilla 0.839820 0.009147

36 Cardinalis sinuatus 0.059183 0.100000 137 Mniotilta varia 0.834030 0.049031 238 Spizella wortheni 0.000322 NA

37 Carduelis carduelis 0.017369 0.000000 138 Molothrus aeneus 0.069797 0.100000 239 Sporophila lineola 0.000322 NA

38 Catharus bicknelli 0.017691 0.000000 139 Molothrus ater 0.998392 0.068381 240 Sporophila torqueola 0.000322 0.100000

39 Catharus fuscescens 0.556127 0.000000 140 Molothrus bonariensis 0.010293 0.000000 241 Stelgidopteryx serripennis 0.972982 0.000000

40 Catharus guttatus 0.892892 0.023405 141 Motacilla alba 0.002895 0.000000 242 Sturnella magna 0.812802 0.050000

41 Catharus minimus 0.497909 0.017709 142 Myadestes townsendi 0.220328 NA 243 Sturnella neglecta 0.465101 NA

42 Catharus ustulatus 0.846574 0.018430 143 Myiarchus cinerascens 0.183017 0.019603 244 Sturnus vulgaris 0.998070 0.108583

43 Catherpes mexicanus 0.125442 NA 144 Myiarchus crinitus 0.832422 0.011297 245 Tachycineta bicolor 0.958508 0.005517

44 Certhia americana 0.824702 NA 145 Myiarchus nuttingi 0.000643 NA 246 Tachycineta cyaneoviridis 0.000322 NA

45 Chamaea fasciata 0.022837 NA 146 Myiarchus sagrae 0.000965 NA 247 Tachycineta thalassina 0.143454 NA

46 Chondestes grammacus 0.557092 0.000000 147 Myiarchus tuberculifer 0.009649 0.066667 248 Taeniopygia guttata 0.002573 NA

47 Cinclus mexicanus 0.095529 NA 148 Myiarchus tyrannulus 0.031521 0.030875 249 Tarsiger cyanurus 0.000643 NA

48 Cistothorus palustris 0.669347 0.014150 149 Myioborus miniatus 0.000643 NA 250 Thraupis episcopus 0.000643 0.118414

49 Cistothorus platensis 0.465745 NA 150 Myioborus pictus 0.017369 NA 251 Thryomanes bewickii 0.218077 0.067323

50 Coccothraustes vespertinus 0.326472 NA 151 Myiodynastes luteiventris 0.004503 NA 252 Thryothorus ludovicianus 0.756835 0.119619

51 Coereba flaveola 0.001287 0.075000 152 Nucifraga columbiana 0.095851 NA 253 Tiaris olivaceus 0.000322 0.100000

52 Contopus caribaeus 0.000322 NA 153 Oenanthe oenanthe 0.005146 0.000000 254 Toxostoma bendirei 0.008363 NA

53 Contopus cooperi 0.567707 0.000000 154 Oporornis agilis 0.193953 0.000000 255 Toxostoma crissale 0.020907 NA

54 Contopus pertinax 0.007076 NA 155 Oreoscoptes montanus 0.138630 NA 256 Toxostoma curvirostre 0.070119 NA

55 Contopus sordidulus 0.170473 0.000000 156 Pachyramphus aglaiae 0.001608 0.000000 257 Toxostoma lecontei 0.005468 NA

56 Contopus virens 0.799614 0.008023 157 Parus major 0.001287 0.254411 258 Toxostoma longirostre 0.017047 0.100000

57 Corvus albus 0.000643 NA 158 Passer domesticus 0.994854 0.140432 259 Toxostoma redivivum 0.016726 0.231996

58 Corvus brachyrhynchos 0.983274 0.243132 159 Passer montanus 0.046317 0.017445 260 Toxostoma rufum 0.889675 0.060414

59 Corvus caurinus 0.001930 NA 160 Passerculus sandwichensis 0.939852 0.000000 261 Troglodytes aedon 0.969444 0.039365

60 Corvus corax 0.400129 0.023299 161 Passerella iliaca 0.779672 0.000000 262 Turdus assimilis 0.000643 NA

61 Corvus cryptoleucus 0.063364 NA 162 Passerina amoena 0.208106 0.000000 263 Turdus grayi 0.009328 0.107327

62 Corvus imparatus 0.000965 NA 163 Passerina caerulea 0.746221 0.019270 264 Turdus iliacus 0.000322 0.000000

63 Corvus ossifragus 0.436475 0.084481 164 Passerina ciris 0.273078 0.020000 265 Turdus migratorius 0.999357 0.123400

64 Corvus splendens 0.000643 NA 165 Passerina cyanea 0.877131 0.033245 266 Turdus plumbeus 0.000965 0.100000

65 Cyanocitta cristata 0.925378 0.103597 166 Passerina versicolor 0.012866 NA 267 Turdus rufopalliatus 0.003216 NA

66 Cyanocitta stelleri 0.112898 NA 167 Perisoreus canadensis 0.084593 NA 268 Tyrannus caudifasciatus 0.000322 0.100000

67 Cyanocompsa parellina 0.000643 0.019395 168 Petrochelidon fulva 0.108073 0.033333 269 Tyrannus couchii 0.031200 NA

68 Cyanocorax yncas 0.012223 0.000000 169 Petrochelidon pyrrhonota 0.937601 NA 270 Tyrannus crassirostris 0.004181 NA

69 Dacnis cayana 0.000322 NA 170 Peucedramus taeniatus 0.006433 NA 271 Tyrannus dominicensis 0.021229 NA

70 Dolichonyx oryzivorus 0.619813 0.042607 171 Phainopepla nitens 0.034095 NA 272 Tyrannus forficatus 0.264715 NA

71 Dumetella carolinensis 0.924091 0.097336 172 Pheucticus chrysopeplus 0.000643 NA 273 Tyrannus melancholicus 0.032165 0.100000

72 Elaenia albiceps 0.000322 NA 173 Pheucticus ludovicianus 0.801544 0.063681 274 Tyrannus savana 0.009328 0.000000

73 Emberiza pusilla 0.000322 NA 174 Pheucticus melanocephalus 0.219041 0.042234 275 Tyrannus tyrannus 0.947893 0.159040

74 Emberiza rustica 0.000322 NA 175 Phylloscopus borealis 0.000322 NA 276 Tyrannus verticalis 0.437440 0.023870

75 Empidonax alnorum 0.391444 NA 176 Phylloscopus fuscatus 0.000322 NA 277 Tyrannus vociferans 0.063043 NA

76 Empidonax difficilis 0.055645 0.000000 177 Phylloscopus inornatus 0.000322 NA 278 Uraeginthus bengalus 0.001608 NA

77 Empidonax flaviventris 0.360566 0.000000 178 Pica hudsonia 0.144098 0.150515 279 Vermivora chrysoptera 0.395947 0.157450

78 Empidonax fulvifrons 0.001608 NA 179 Pica nuttalli 0.009649 NA 280 Vidua chalybeata 0.000965 NA

79 Empidonax hammondii 0.131232 0.000000 180 Pinicola enucleator 0.124156 NA 281 Vidua macroura 0.004181 NA

80 Empidonax minimus 0.691862 0.040000 181 Pipilo chlorurus 0.124156 NA 282 Vidua obtusa 0.000322 NA

81 Empidonax oberholseri 0.133483 0.000000 182 Pipilo erythrophthalmus 0.747507 0.049466 283 Vireo altiloquus 0.009971 0.000000

82 Empidonax occidentalis 0.087488 NA 183 Pipilo maculatus 0.340946 0.000000 284 Vireo atricapilla 0.020264 NA

83 Empidonax traillii 0.632036 0.000000 184 Piranga bidentata 0.000643 NA 285 Vireo bellii 0.311997 NA

84 Empidonax virescens 0.610807 0.000000 185 Piranga flava 0.021872 NA 286 Vireo cassinii 0.125442 0.000000

85 Empidonax wrightii 0.101319 NA 186 Piranga ludoviciana 0.220650 0.000000 287 Vireo crassirostris 0.001287 NA

86 Eremophila alpestris 0.759730 NA 187 Piranga olivacea 0.661306 0.024852 288 Vireo flavifrons 0.743326 0.000000

87 Erithacus rubecula 0.000322 0.232589 188 Piranga rubra 0.694114 0.049916 289 Vireo flavoviridis 0.009649 0.100000

88 Estrilda melpoda 0.002252 NA 189 Pitangus sulphuratus 0.027018 0.098649 290 Vireo gilvus 0.773882 0.008774

89 Estrilda troglodytes 0.000322 NA 190 Plectrophenax nivalis 0.283049 NA 291 Vireo griseus 0.636217 0.022222

90 Euphagus carolinus 0.624960 NA 191 Ploceus cucullatus 0.001287 0.058621 292 Vireo huttoni 0.052107 NA

91 Euphagus cyanocephalus 0.518495 0.095280 192 Ploceus melanocephalus 0.000643 0.000000 293 Vireo olivaceus 0.892248 0.004782

92 Euplectes afer 0.000322 NA 193 Ploceus vitellinus 0.000322 NA 294 Vireo philadelphicus 0.499839 0.000000

93 Euplectes franciscanus 0.005790 NA 194 Polioptila caerulea 0.898360 0.000000 295 Vireo plumbeus 0.089096 NA

94 Euplectes hordeaceus 0.000643 NA 195 Polioptila californica 0.001930 NA 296 Vireo solitarius 0.729495 0.000000

95 Euplectes orix 0.000322 NA 196 Polioptila melanura 0.020264 0.000000 297 Vireo vicinior 0.030235 NA

96 Foudia madagascariensis 0.000322 NA 197 Polioptila nigriceps 0.001287 NA 298 Volatinia jacarina 0.000322 0.050000

97 Fringilla montifringilla 0.000643 NA 198 Pooecetes gramineus 0.781602 NA 299 Xanthocephalus xanthocephalus 0.453200 0.000000

98 Geothlypis poliocephala 0.000322 0.000000 199 Progne subis 0.845610 0.000000 300 Zonotrichia albicollis 0.930203 0.074735

99 Geothlypis trichas 0.981988 0.032161 200 Protonotaria citrea 0.542940 0.058378 301 Zonotrichia atricapilla 0.067224 0.042235

100 Gracula religiosa 0.000322 NA 201 Prunella montanella 0.000322 NA 302 Zonotrichia leucophrys 0.890318 0.029987

101 Gymnorhinus cyanocephalus 0.064329 NA 202 Psaltriparus minimus 0.110003 0.000000 303 Zonotrichia querula 0.367321 0.000000

Figure A3. Detailed metadata for WNV avian host phylogenetic tree (Figure 3). Columns list the tree tip number
(Tip), species name (Species), the proportion of occupied counties (Proportion), and estimated WNV prevalence for
each avian species.
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Species Richness

Figure A4. Dynamic avian host species richness. Species richness covariate under assumption of a
dynamic species pool (monthly varying). Maps are color coded according to legend at bottom with
darker tones indicating higher species richness.

Species Richness

Figure A5. Static avian host species richness. Species richness covariate under assumption of a static
species pool (May–August). Map is color coded according to legend at bottom with darker tones
indicating higher species richness.



Viruses 2021, 13, 1811 24 of 34

Phylogenetic Distance

Figure A6. Dynamic avian phylogenetic distance. Phylogenetic distance covariate (sum of branch
lengths) under assumption of a dynamic species pool (monthly varying). Mapped values have
been centered to highlight locations subject to relative phylogenetic clustering (higher than expected
relatedness, blue colors) and dispersion (lower than expected relatedness, red colors).

Phylogenetic Distance

Figure A7. Static avian phylogenetic distance. Phylogenetic distance covariate (sum of branch
lengths) under assumption of a static species pool (May–August). Mapped values have been centered
to highlight locations subject to relative phylogenetic clustering (higher than expected relatedness,
blue colors) and dispersion (lower than expected relatedness, red colors).
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Mean Nearest Taxon

Figure A8. Dynamic avian mean nearest taxon distance. Mean nearest taxon covariate under
assumption of a dynamic species pool (monthly varying). Covariate reflects average genetic distance
between nearest neighbors (sister species) within a community. Mapped values have been centered
to highlight locations subject to relative phylogenetic clustering (higher than expected relatedness,
blue colors) and dispersion (lower than expected relatedness, red colors).

Mean Nearest Taxon

Figure A9. Static avian mean nearest taxon distance. Mean nearest taxon covariate under assumption
of a static species pool (May–August). Covariate reflects average genetic distance between nearest
neighbors (sister species) within a community. Mapped values have been centered to highlight
locations subject to relative phylogenetic clustering (higher than expected relatedness, blue colors)
and dispersion (lower than expected relatedness, red colors).
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Evolutionary Distinctiveness

Figure A10. Dynamic avian evolutionary distinctiveness. Evolutionary distinctiveness covariate
under assumption of a dynamic species pool (monthly varying). Covariate reflects degree of species
isolation on the phylogeny or the average distance of a species to all other species in the community.
Mapped counties are color coded according to legend at bottom to indicate increased evolutionary
distinctiveness with darker tones.

Evolutionary Distinctiveness

Figure A11. Static avian evolutionary distinctiveness. Evolutionary distinctiveness covariate under assump-
tion of a static species pool (May–August). Covariate reflects degree of species isolation on the phylogeny or
the average distance of a species to all other species in the community. Mapped counties are color coded
according to legend at bottom to indicate increased evolutionary distinctiveness with darker tones.
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Mean Pairwise Taxa

Figure A12. Dynamic avian mean pairwise taxa distance. Mean pairwise taxa covariate under
assumption of a dynamic species pool (monthly varying). Covariate reflects average phylogenetic
distance among co-occurring species pairs in a community. Mapped values have been centered to
highlight locations subject to relative phylogenetic clustering (higher than expected relatedness, blue
colors) and dispersion (lower than expected relatedness, red colors).

Mean Pairwise Taxa

Figure A13. Static avian mean pairwise taxa distance. Mean pairwise taxa covariate under as-
sumption of a static species pool (May–August). Covariate reflects average phylogenetic distance
among co-occurring species pairs in a community. Mapped values have been centered to highlight
locations subject to relative phylogenetic clustering (higher than expected relatedness, blue colors)
and dispersion (lower than expected relatedness, red colors).
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Mean Molecular Prevalence

Figure A14. Dynamic avian WNV mean molecular prevalence. Molecular prevalence covariate
under assumption of a dynamic species pool (monthly varying). Covariate reflects avian community
average WNV prevalence based on estimates reported by Tolsá et al. [54]. Mapped counties are color
coded according to legend at bottom to indicate increased WNV prevalence with darker tones.

Mean Molecular Prevalence

Figure A15. Static avian WNV mean molecular prevalence. Molecular prevalence covariate under
assumption of a static species pool (May–August). Covariate reflects avian community average
WNV prevalence based on estimates reported by Tolsá et al. [54]. Mapped counties are color coded
according to legend at bottom to indicate increased WNV prevalence with darker tones.
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Figure A16. Spatiotemporal distribution of equine WND relative risk. Maps depict the spatial and
temporal distribution of model estimated WND relative risk by US County and month of year. Maps
are color coded according to legend at bottom such that darker tones signify increased risk and
lighter tones represent relatively lower risk. A relative risk value of 1 indicates that model predicted
cases were comparable to the expectation given the number of horses in the county, values below 1
highlight counties with relatively low risk, and values above 1 suggest increased risk (higher than
expected given the horse population).

Estimated Case Count

Figure A17. Estimated equine WND case counts. Maps depict the spatial and temporal distribution
of model estimated WND cases by US County and month of year. Maps are color coded according
to legend at bottom such that darker tones signify increased case loads and lighter tones represent
relatively lower case counts.
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Estimated Case Count

Figure A18. Estimated equine WND case counts. Maps depict the spatial and temporal distribution
of model estimated WND cases by US County for select months during the peak WND outbreak
season. Maps are color coded according to legend at bottom such that darker tones signify increased
case loads and lighter tones represent relatively lower case counts. Case counts for all months of the
year are provided with Appendix A (see Figure A17).
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