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Abstract: Nuclear transport and vesicle trafficking are key cellular functions involved in the patho-
genesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin
(IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects
actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first
analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative
patients by assessing the gene expression of the respective host cell drug targets importins and Rho
GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and
CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with
Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect
that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also
impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of
IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results
showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments.
These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2
infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when
used at clinically-relevant concentrations.

Keywords: SARS-CoV-2; COVID-19; drug repurposing; antihelmintic drug; lipophilic statin; host
cell antiviral response; ivermectin; atorvastatin

1. Introduction

Since the early days of the coronavirus disease 2019 (COVID-19) pandemic, drug
repurposing has aroused great interest in the development of novel antiviral therapies.
This concept, also called rediscovering or therapeutic indication expansion, implies es-
tablishing new medical uses for already known drugs [1]. Different agents have been
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investigated for antiviral activity against severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) including antimalarials, antiparasitics, antibiotics, antihypertensives, and
hypoglycemics [2].

Many drugs with potential effects in COVID-19 infection have also been previously
explored as repurposed options for cancer treatment, and suggestive similarities were
found to exist between antitumor and host-based antiviral mechanisms [3]. Clinically
approved drugs could be used to target intracellular mechanisms in host cells that are
essential for viral replication. In this regard, nuclear transport and vesicle trafficking
are key cellular functions involved in the pathogenesis of RNA viruses and also during
cancer development.

Ivermectin (IVM) is a well-known antihelmintic drug with reported antiviral activity
against Dengue, Zika and Influenza virus [4]. Among the pleiotropic effects on virus-
infected host cells, IVM is capable of interfering with importin α/β-mediated nuclear
transport, thus inhibiting nuclear import mechanisms of viral proteins and reducing viral
replication [5]. Early in the COVID-19 pandemic, Caly et al. communicated a potent
activity of high concentrations of IVM (IC50 of about 2.5 µM) against SARS-CoV-2 in Vero
cell cultures [6]. However, a question remains whether these high concentrations can be
effectively achieved clinically at safe doses. Recently, we reported the results of a proof-of-
concept randomized clinical trial in hospitalized COVID-19 patients receiving high oral
doses of IVM (0.6 mg/kg/day) [7]. Although no differences between treated and control
patients were observed in SARS-CoV-2 viral load, a concentration-dependent antiviral
activity was noticed after five days of IVM treatment. A relationship was identified between
high IVM plasma concentrations (>160 ng/mL) and significant increases of SARS-CoV-2
viral decay rates in respiratory secretions [7].

Beyond the obvious importance of dosing schedules and tissue concentrations of
IVM, it is also attractive to search for drug combinations that could potentiate its antiviral
mechanism in host cells. Lipophilic statins used in the treatment of hypercholesterolemia
such as atorvastatin (ATV) are well-tolerated compounds with antitumor activity that are
interesting host-based drug candidates for SARS-CoV-2 in combination with IVM [3]. It
is known that statins reduce membrane localization of Rho GTPases, thus affecting intra-
cellular signaling involved in the organization of actin cytoskeleton during the metastatic
process [8]. Interestingly, the Rho GTPases Rho A and CDC42 are also responsible for
actin-dependent host cell protein trafficking, playing important roles in the intracellular
transport of viral proteins [9].

In the present work, we first analyzed susceptibility infection profiles in SARS-CoV-
2-positive versus -negative patients in a case-control study (GSE152075), evaluating the
expression of the respective host cell drug targets importins and Rho GTPases. We then
modeled the infection in vitro using Poly(I:C), a synthetic analog of viral double-stranded
RNA, assessing IVM and ATV effects on drug targets at the transcriptional level. Finally,
we conducted a confocal microscopy study to analyze the in vitro effects of IVM on nuclear
localization of importin α, alone and in combination with ATV, at potentially clinically-
relevant concentrations.

2. Materials and Methods
2.1. Analysis of Publicly Available RNA-Seq Datasets

RNA-Seq data analysis from COVID-19 and non-COVID-19 patients was performed
as previously described [10]. We downloaded the GSE152075 dataset [11], which contains
pseudoaligned pre-processed RNA-Seq data and clinico-pathological information from
430 SARS-CoV-2 positive and 54 negative patients.

For RNA-Seq analysis from in vitro and in vivo experiments, we used GSE147507
dataset [12], which contains RNA-Seq data from: (i) independent biological triplicates
of transformed lung alveolar cells (A549) transduced with a vector expressing human
ACE2 infected with SARS-CoV-2 (MOI: 2) or mock-phosphate-buffered saline (PBS); and
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(ii) tracheal samples from 4-month-old ferrets intranasally infected with 5 × 104 PFU of
SARS-CoV-2 or mock-PBS.

We removed samples with >70% of total genes with 0 sequence reads, considering
them as very low-quality samples that might introduce a bias. Normalization, batch effect
correction, and differential expression were performed with R package DEseq2 v1.28.1 [13].
Age was categorized according to the WHO guidelines [14]: <30 years old, every 10 years
between 30 and 70 years old, and ≥70 years old as described [15]. To stratify COVID-19
positive patients based on viral load at the time of diagnosis, we used the PCR cycle
threshold (Ct) of the N1 viral gene amplification as a surrogate variable for viral load
(Ct > 24 = low; Ct = 24–19 = medium; Ct < 19 = high).

Microarray analysis from human microvascular endothelial cells (HMVEC) treated
or not with ATV (10 µM 24 h) were performed using differential expression data from the
GSE8686 dataset [16].

2.2. Drugs and Reagents

IVM (MW 875 g/mol; PubChem ID 24278497) and ATV calcium trihydrate (MW
1209.4 g/mol; PubChem ID 656846) were obtained from Elea-Phoenix (Buenos Aires,
Argentina), following the Good Manufacturing Practices standards (lot numbers 227974
and 223557, respectively). Compounds were first resuspended in dimethyl sulfoxide
(DMSO) generating concentrated stocks of 11.4 and 10 mM, respectively, and aliquoted
at −20 ◦C. Final working concentrations were achieved after serial dilutions using PBS.
Control groups were treated with PBS plus corresponding DMSO concentrations as the
vehicle. Immunolabeling of cells was conducted using a primary anti-importin α (KPNA2)
antibody generated in rabbit at 1/250 dilution and a secondary polyclonal anti-rabbit IgG
generated in goat conjugated with Alexa 594 at 1/200 dilution (Abcam, Cambridge, UK).
High molecular weight Poly(I:C) was purchased from InvivoGen (San Diego, CA, USA)
and prepared according to manufacturer’s instructions. Briefly, endotoxin-free water was
added to Poly(I:C) at a final concentration of 1 mg/mL, incubated at 65 ◦C for 10 min,
aliquoted, and stored at −20 ◦C until use.

2.3. Cell Lines and Culture Conditions

Human cervix adenocarcinoma HeLa (ATCC® CCL-2™), human lung carcinoma A549
(ATCC® CCL-185™), and green monkey kidney epithelium Vero (ATCC® CCL-81™) cells
were grown in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Rockville, MD, USA)
plus 10% fetal bovine serum (FBS), 2 mM glutamine, and 80 µg/mL gentamycin in a
monolayer culture, at 37 ◦C in a humidified atmosphere of 5% CO2. Cells were harvested
using a trypsin/EDTA solution (Gibco) diluted in PBS and routinely tested for mycoplasma.

2.4. Poly(I:C) Treatment

Poly(I:C) intracellular administration was performed by transfection with Lipofec-
tamine LTX (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions
at a final concentration of Poly(I:C) of 10 µg/mL. Briefly, A549 cells were plated in 6-well
flat bottom plates at a density of 2 × 105 cells in complete DMEM, allowed to attach
overnight, and then transfected with Poly(I:C) or water as mock in DMEM without FBS and
antibiotics. After 6 h, the media were replaced and cells were treated with IVM (2.5 µM)
and ATV (10 µM) alone or in combination.

2.5. RNA Isolation, c-DNA Synthesis, and Quantitative Real-Time PCR (RT-qPCR)

Total RNA was isolated with Quick-Zol (Kalium technologies, Buenos Aires, Ar-
gentina) according to the manufacturer’s protocol. cDNAs were synthesized with Rever-
tAid Premium First Strand cDNA Synthesis Kit (Fermentas, Waltham, MA, USA) and used
for real-time PCR amplification with Taq DNA Polymerase (Invitrogen, Waltham, MA,
USA) in a QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA,
USA). PPIA was used as the internal reference gene. Data were analyzed using the method
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of 2-∆∆CT [17]. Table 1 describes the forward and reverse primer sequences designed
specifically for each species to avoid cross-reactivity.

Table 1. Table of primers, containing the gene name, sequences, and annealing temperature (T◦ An.).

Gene Forward (5′–3′) Reverse (5′–3′) T◦ An.

PPIA GGTATAAAAGGGGCGGGAGG CTGCAAACAGCTCAAAGGAGAC 60◦

NFKB ACTCGCCACCCGGCTTCAGA GGGCCATCTGCTGTTGGCAGT 60◦

KPNA7 AGGACATGGAGCTGAGAAGTC GACTGACCGCCATCCTCTG 57◦

KPNA5 GCATTAAGGGCAGTTGGT CAGTCCAGCAGGCTTCTTT 57◦

KPNA2 GTGGACCCTTTGAACGCAGT TTGAATCTGTGAAGACGGGCA 60◦

RHOA AAGGACCAGTTCCCAGAGGT AGCCAACTCTACCTGCTTTCC 58◦

RAC1 CCCCCTATCCTATCCGCAAAC AACACATCGGCAATCGGCTT 58◦

CDC42 AGGCTGTCAAGTATGTGGAGTG TCTTCTTCGGTTCTGGAGGC 60◦

2.6. Cell Viability Assay

Cytostatic effects of IVM on Hela and Vero cells were measured using the 3-(4,5-
dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay (Sigma-Aldrich, St
Louis, MO, USA) [18]. Briefly, cells were plated in 96-well flat bottom plates at a density
of 5 × 103 cells per 200 µL in complete D-MEM, allowed to attach overnight, and then
treated for 48 h with increasing concentrations of IVM (2.5, 5, and 25 µM). After adding
20 µL of MTT reagent to each well, plates were incubated for 2.5 h. Formazan crystals were
solubilized using DMSO and the absorbance of each well was measured at 570 nm. The
optical density of the vehicle-treated control cells was taken as 100% viability.

2.7. Immunofluorescence Staining of Importin α

Briefly, 2 × 104 cells were seeded on glass coverslips in 24-well flat bottom plates
and cultured for 48 h in complete growth medium. After reaching ≈40% confluence, cells
were exposed to different drug concentrations for 1–24 h and then fixed with 10% neutral
buffered formalin for 10 min at 4 ◦C. After permeabilizing and blocking with 0.2% Triton
X-100 and 4% FBS in PBS, respectively, cells were incubated with a primary rabbit anti-
Importin α antibody for 1 h at 37 ◦C. Importin α-bound antibodies were detected with a
secondary goat polyclonal Alexa 594-conjugated antibody for 40 min at room temperature
and nuclei were labeled with DAPI (Vector Laboratories, Peterborough, UK) [19]. Absence
of immunofluorescence staining was confirmed when the primary antibody was omitted.

2.8. Confocal Microscopy Studies and Acquisition Settings

Nuclear/cytoplasmic importin α distribution in Hela and Vero cells was assessed
using a TCS SP8 confocal laser scanning microscope (CLSM, Leica Microsystems, Wetzlar,
Germany). CLSM was equipped with a 405 nm diode and 561 nm helium-neon lasers and
operated by the Leica Application Suite X program (LAS X V3.7.2, Leica Microsystems).
Twelve-bit images with 1024 × 1024-pixel resolution were obtained by sequential scanning
using a 63× oil immersion objective. Pinhole and gain values were set at 1 and 600,
respectively. LAS X software was used for the analysis of digitized CLSM images in order
to calculate the nuclear/cytoplasmic fluorescence ratio (Fn/Fc), following the formula:
Fn/Fc = (Fn − Fb)/(Fc − Fb), where Fb is the background autofluorescence [5,20,21]. Two
independent trained operators used a semi-automated hand-drawn polygon contouring
system to delineate specific ROIs for nuclear or cytoplasmic fluorescence quantification [22].
Single cell values were averaged for a minimum of 40 cells per experimental condition as
a result of two or three independent experiments to correct for variations in expression
levels [23,24].

2.9. Statistics

To determine statistical differences between categorical groups in gene expression
analysis, we performed two-tailed Welch’s t tests when the assumption normality was
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maintained and Wilcoxon rank sum test when we could not assume normal distribution.
Two-sided, increasing and decreasing Jonckheere–Terpstra trend tests (with 500 permuta-
tions) were used to determine statistical trends between gene expression and age groups. To
study pairwise correlations between continuous variables, the Spearman’s rank correlation
coefficient was calculated. We did not correct the p-value for multiple testing. All results
were plotted using ggplot2 [25], ggpubr [26], and GGally [27] in R [28].

For confocal microscopy and cellular studies, in order to compare differences be-
tween two experimental groups, two-tailed Mann–Whitney or t-tests were used for non-
parametric or normal distribution of data, respectively. In case of more than two experi-
mental groups, ANOVA analysis with Tukey’s multiple comparisons post-test was used.
Kruskal–Wallis analysis with Dunn’s multiple comparisons post-test was used in the case
of non-parametric distribution of data. Data were derived from at least two or three inde-
pendent experiments, unless stated otherwise. Data were presented as mean ± standard
error of mean (SEM), scattered dot blot with median ± quartiles, or violin plots.

Differences were considered statistically significant at a level of p < 0.05. Data pro-
cessing and statistical analysis was performed using the Prism 6.1 Software (GraphPad
Holdings, CA, USA).

3. Results
3.1. Expression of the Importin Family Genes in SARS-CoV-2-Positive and -Negative Patients

We used the publicly available RNA sequencing dataset GSE152075 to evaluate the
expression of the importin family genes (Importin α5 (KPNA1), Importin α1 (KPNA2),
Importin α4 (KPNA3), Importin α3 (KPNA4), Importin α6 (KPNA5), Importin α7 (KPNA6),
Importin α8 (KPNA7), and Importin β1 (KPNB1)) in COVID-19 positive and negative pa-
tients (Figure 1A). This set contained transcriptomic data from nasopharyngeal swabs from
430 SARS-CoV-2-positive and 54 SARS-CoV-2-negative patients. Patient demographics are
available in Table S1.

Results showed that COVID-19 patients had higher KPNA5 (Figure 1F.I) and lower
KPNA7 (Figure 1H.I) expression compared with non-COVID-19 patients (p = 0.0025 and,
p = 0.0017, respectively). Decrease in KPNA3 (p = 0.0526) and increase in KPNB1 (p = 0.054)
expressions were found with marginal significance in COVID-19 patients (Figure 1D.I,I.I).
No statistical differences for the other importin genes were observed between COVID-19
and non-COVID-19 patients (Figure 1A.I,B.I,C.I,E.I,G.I).

Since age and sex have been reported as risk factors for SARS-CoV-2 infection, we
additionally assessed the association between the importins’ gene expression and these
risk factors. When assessing gene expression in patients categorized by age, we found that
age increase was significantly associated with lower KPNA2, KPNA3, KPNA4, KPNA6,
and KPNB1 expression (p-trend decreasing = 0.01; p-trend decreasing = 0.004; p-trend
decreasing = 0.04, p-trend decreasing = 0.002; p-trend decreasing = 0.004 respectively)
and higher KPNA7 expression in COVID-19 patients (p-trend increasing = 0.016), but not
in non-COVID-19 patients (Figure 1B(I,II)). No statistical differences were found when
comparing between male and female patients (Figure S1A). To further our analysis, we
categorized patients based on their viral load at time of diagnosis. We used the PCR cycle
threshold (Ct) of the N1 viral gene amplification as a surrogate variable for viral load
(Figure S2). The analysis showed similar results to the unstratified analysis.

Results were then validated in the GSE147507 dataset, which covers transcriptomic
data from A549 cells infected or not with SARS-CoV-2 as well as data from trachea biopsies
of 4-month-old ferrets harvested three days after SARS-CoV-2 infection or mock treatment
(Figure S3A). When analyzing gene expression in A549 cells, results showed a decrease in
KPNA2 (p = 0.0285) and an increase in KPNA5 (p = 0.0266) upon viral infection (Figure S3B).
Additionally, ferret infection with SARS-CoV-2 showed an increase in KPNA1, KPNA4, and
KPNA5 expression (p = 0.0473, p = 0.0449, and p = 0.0371, respectively) when compared
with the mock treatment (Figure S3C). Interestingly, KPNA5 appears upregulated upon
infection, across the different datasets.
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Figure 1. Expression of the importin family genes in COVID-19 and non-COVID-19 patients. (A) Experimental design
of the GSE152075 dataset, composed of transcriptome data from nasopharyngeal swabs collected from 430 COVID-19
and 54 non-COVID-19 patients. (B–I) Gene expression analysis for importin genes (B) KPNA1, (C) KPNA2, (D) KPNA3,
(E) KPNA4, (F) KPNA5, (G) KPNA6, (H) KPNA7, and (I) KPNB1. Each gene is divided in two panels: (I) COVID-19 versus
non-COVID-19 patients (p-values correspond to Wilcoxon rank-sum test, except when the assumption normality was main-
tained, then two-tail Welch’s t test was used). (II) COVID-19 and non-COVID-19 patients categorized by age groups (p-values
correspond to increasing and decreasing Jonckheere–Terpstra trend tests). Blue boxes indicate genes with significant or
marginal significant p-value when comparing gene expression between COVID-19 and non-COVID-19 patients.
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3.2. Expression of the Rho GTPase Family Genes in SARS-CoV-2-Positive and -Negative Patients

Since viral infection relies on intra-cellular protein transport modulated by Rho GT-
Pases, we sought to evaluate changes in the gene expression of these proteins upon SARS-
CoV-2 infection. The Rho GTPase genes Ras Homolog Family Member A (RHOA), Rac
Family Small GTPase 1 (RAC1) and Cell Division Cycle 42 (CDC42) were assessed.

Results show that RHOA and CDC42 expression was significantly decreased (p = 0.0036,
p = 0.0044, respectively) in COVID-19 compared with non-COVID-19 patients (Figure 2A.I,B.I).
All three Rho GTPases, RHOA, CDC42, and RAC1, showed a significant decrease in gene ex-
pression upon age in COVID-19 patients (Figure 2A.II,B.II,C.II; p-trend decreasing = 0.002,
p-trend decreasing = 0.008, p-trend decreasing = 0.004, respectively). No statistical differ-
ences were found when comparing between male and female patients (Figure S1B).

Regarding the infection in A549 cells, no changes were observed when assessing gene
expression of the Rho GTPase family compared with the controls (Figure S3B). The ferret
infection dataset did not provide RNA-Seq reads for the Rho GTPases.

3.3. Gene Correlation Analysis in SARS-CoV-2-Positive and -Negative Patients

Next, pairwise Spearman correlation analyses were performed between genes that had
significant or marginal significant changes in gene expression upon infection with SARS-
CoV-2 in patients (Figure 2D). Patient age was also correlated with gene expression. For
each combination of variables, analyses were performed for all patients, COVID-19 patients
only and non-COVID-19 patients only (Figure 2E). Black boxes indicate combinations
of variables where correlation was significant for COVID-19 patients, but not for non-
COVID-19. Interestingly, RHOA with KPNA7 (r = 0.140, p < 0.01) and CDC42 with KPNA5
(r = 0.474, p < 0.001) showed positive correlations compared with no significant correlations
in non-COVID-19 patients.

3.4. Modulation of Importin and Rho GTPases Transcriptional Expression by IVM and ATV in a
Viral Infection Simulation Context

To further our analysis, we used Poly(I:C), a synthetic dsRNA compound that binds
Toll- like receptor 3 (TLR3), to mimic a viral infection. Poly(I:C) recapitulates many of the
effects observed in viral dsRNA in vitro and in vivo [29]. In this model, we examined the
effect of IVM and ATV on importin family and Rho GTPases gene expression in A549 cells.
We selected the A549 cell line as the lung is the principal homing organ for SARS-CoV-2 [30].
Cells were treated with or without Poly(I:C) and then subjected to high IVM concentration
(2.5 µM for 1 h) alone or in combination with ATV (10 µM for 24 h).

As shown in Figure 3, Poly(I:C) treatment increased NFKB expression, validating the
Poly(I:C) responsiveness of A549 cells. Regarding importin genes, KPNA7 and KPNA5
expressions were reduced in the presence of IVM and ATV alone or in combination. Partic-
ularly, KPNA7 expression was significantly decreased by IVM and IVM combined with
ATV while KPNA5 expression was significantly lower with ATV and IVM alone. KPNA2
expression was not altered by either Poly(I:C) stimulation or ATV and IVM treatments
(Figure 3 and Figure S3A). Regarding Rho GTPases, gene expression of RHOA, RAC1, and
CDC42 was not altered by Poly(I:C). ATV treatment, alone or in combination, increased
RHOA expression (p < 0.05 and p < 0.05, respectively). Conversely, RAC1 expression was
significantly downregulated in the presence of ATV (p < 0.01) or IVM (p < 0.01) while
CDC42 expression was significantly decreased by ATV (p < 0.05) (Figure 3 and Figure S4A).
In parallel, we assessed the GSE8686 dataset that comprises human microvascular endothe-
lial cells (HMVEC) treated or not with the same concentration of ATV (10 µM 24 h). The
data reflect a significant downregulation of RHOA and RAC1 at the transcriptional level
(Figure S4B).
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Figure 2. Expression of the Rho GTPase family genes in COVID-19 and non-COVID-19, and correlation analysis. (A–C) Gene
expression analysis for Rho GTPase genes (A) RHOA, (B) CDC42, and (C) RAC1. Each gene is divided in two panels:
(I) COVID-19 versus non-COVID-19 patients (p-values correspond to Wilcoxon rank-sum test, except when the assumption
normality was maintained, then two-tail Welch’s t test was used). (II) COVID-19 and non-COVID-19 patients categorized
by age groups (p-values correspond to increasing and decreasing Jonckheere–Terpstra trend tests). Light green boxes
indicate genes with significant or marginal significant p-value when comparing gene expression between COVID-19 and
non-COVID-19 patients. (D) Summary of importin and Rho GTPase genes selected for correlation analysis. Red color
represents genes that are downregulated and light green represents genes that are upregulated in COVID-19 and non-
COVID-19 patients. (E) Pairwise Spearman correlation matrix analysis between age, KPNA3, KNA5, KPNA7, KPNB1, RHOA,
and CDC42. The upper half displays the Spearman coefficients (r) considering all patients (Corr.), non-COVID-19 patients
(Neg.), or COVID-19 patients (Pos.). Black boxes highlight genes that have significant correlation in COVID-19, but not in
non-COVID-19 patients. * p < 0.05; ** p < 0.01; *** p < 0.001. The lower half displays the scatterplots.
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Figure 3. Dysregulation of importin and Rho GTPases gene expression in A549 cells transfected with Poly(I:C) and treated
with IVM and ATV. (A) Experimental design of IVM and ATV treatment in a viral infection simulation context. (B) Heatmap
depicting NFKB, KPNA7, KPNA5, KPNA2, RHOA, RAC1, and CDC42 fold changes in mRNA levels assessed by real time
PCR (RT-qPCR) in A549 cells transfected with Poly(I:C) (10 µg/mL) and treated with PBS as the control, IVM (2.5 µM), ATV
(10 µM), or the combination of both drugs (IVM + ATV). Values were normalized using PPIA as a reference gene. Gene
expression for control Poly(I:C) transfected cells was relativized to mock condition. Gene expression for IVM, ATV, and
IVM + ATV treated cells was relativized to the control Poly(I:C) condition. Red, white, and blue represent a fold change >1,
fold change = 1 or fold change <1, respectively. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.5. Effect of IVM and ATV on Importin α Nuclear Accumulation

Next, we sought to evaluate the effect of IVM on importin α cellular distribution. Cells
were exposed to 2.5 µM IVM for 1 h and nuclear to cytoplasmic importin α distribution
was evaluated in Hela and Vero cells by confocal microscopy. IVM significantly reduced
nuclear accumulation in both cell lines, showing a 20% decrease in comparison to vehicle-
treated cells (p < 0.05; p < 0.0001, respectively) (Figure 4A,B). Representative confocal
images of Hela cells are shown in Figure 4C. To discard any direct cytotoxic effects of the
compound, we evaluated cell viability after 48 h-incubation with increasing concentrations
of IVM. As shown in Figure S5, there were no signs of cytotoxicity when cells were treated
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with 2.5 µM IVM. Additionally, as a positive control of importin α nuclear accumulation,
cells were exposed to an oxidative stress condition induced by hydrogen peroxide [31].
After 1 h-incubation using 200 µM of hydrogen peroxide, a significant increase in 30% in
importin α nuclear accumulation was observed (p < 0.05) (Figure S6).

Figure 4. Effect of IVM and ATV on importin α nuclear accumulation. (A–D). Importin α nuclear to cytoplasmic distribution
was analyzed by confocal microscopy in Hela (A,C) and Vero (B,D) cells treated with 2.5 µM IVM for 1 h (A,B) or 10 µM
ATV for 24 h (C,D). Each data point represents Fn/Fc from a single cell; data were normalized to control cells and
median ± quartiles are indicated. ** p < 0.01; **** p < 0.0001; Mann–Whitney test. (E,F) Representative confocal images of
Hela cells exposed to IVM (E) or ATV (F) showing the effect of the drugs on importin α cellular distribution after treatment.
Scale bar = 20 µm.

As previously mentioned, ATV is a lipophilic statin that affects actin cytoskeleton
organization and, as a consequence, is known to alter protein transport in host cells after
24 h-treatment [8,32]. In this context, we evaluated if ATV was particularly capable of
altering importin α cellular distribution in Hela and Vero cells. Long-term treatment with
10 µM ATV during 24 h caused a significant reduction in importin α nuclear accumulation
in both cell lines, decreasing its nuclear to cytoplasmic localization ratio by 25 and 17%,
respectively (p < 0.0001) (Figure 4D,E). Representative confocal images of ATV-treated Hela
cells are shown in Figure 4F. Short-term exposure to ATV during 1 or 6 h did not have any
impact on importin α cellular distribution (Figure S7).

3.6. Combinational Effect of IVM Plus ATV Treatment on Importin α Nuclear Accumulation

Considering the effect on protein trafficking in general and on importin α cellular
distribution in particular, the combination of IVM and ATV appears to be an interesting
approach in order to achieve greater host-mediated antiviral responses. We further eval-
uated the effect of ATV addition to previously tested IVM concentration (2.5 µM for 1 h).
In both cell lines, the combined treatment resulted in a significant decrease in nuclear
to cytoplasmic importin α distribution when compared to vehicle-treated cells (p < 0.01,
Hela; p < 0.0001, Vero). Even though in Hela cells the combination of IVM and ATV
had an equivalent effect on importin α nuclear accumulation than individual treatments,
in Vero cells, combined treatments showed an additive inhibition of importin α nuclear
accumulation when compared to each monotherapy (p < 0.001) (Figure 5A,B). Additionally,
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it is worth noting that the reduction in nuclear to cytoplasmic importin α distribution in
treated cells was accompanied by a consistent increase in perinuclear importin α accumu-
lation. This perinuclear rim pattern was observed especially in IVM-treated cells, alone
or plus ATV, being possibly related to impaired importin heterodimer formation in the
nuclear proximity.

Figure 5. Evaluation of importin α nuclear accumulation after combination treatment using IVM
plus ATV. (A) Hela and (B) Vero cells were treated with 2.5 µM IVM, 10 µM ATV, or IVM + ATV and
importin α cellular distribution was evaluated by confocal microscopy. Each data point represents
Fn/Fc from a single cell; data were normalized to control cells and median ± quartiles are indicated.
** p < 0.01; *** p < 0.001; **** p < 0.0001 vs. control group; ### p < 0.001 vs. IVM and ATV monother-
apies; Kruskal–Wallis followed by Dunn’s multiple comparisons test. (C) Representative confocal
images of Hela cells treated with IVM, ATV, and IVM + ATV showing a combination treatment effect
on importin α nuclear localization. Scale bar = 20 µm.

3.7. Reduction of Importin α Nuclear Accumulation Using a >10-Fold Lower IVM Concentration

Recent results of our proof-of-concept randomized clinical trial showed a relationship
between drug exposure and antiviral activity in patients with plasma IVM concentrations
of 160 ng/mL or higher [7]. Taking into account that the equivalent concentration for
in vitro cell treatment results in approximately 0.2 µM, we analyzed the biological effect of
this achievable, safe, and clinically-relevant concentration. As shown in Figure 6, exposure
for 24 h to an IVM concentration of 0.2 µM caused a similar decrease in importin α nuclear
accumulation compared to a high IVM concentration of 2.5 µM for 1 h, reducing nuclear
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to cytoplasmic importin α distribution by nearly 20% in both Hela (Figure 6A) and Vero
(Figure 6B) cell lines (p < 0.05; p < 0.0001, respectively).

Figure 6. Effect of IVM at low concentration on importin α nuclear accumulation. (A,B) Importin α

nuclear to cytoplasmic distribution evaluated in Hela (A) and Vero (B) cells treated with 0.2 µM IVM
for 24 h. Each data point represents Fn/Fc from a single cell; data were normalized to control cells and
median ± quartiles are indicated. * p < 0.05; **** p < 0.0001; Mann–Whitney test. (C) Representative
confocal images of Hela cells treated with 0.2 µM IVM. Scale bar = 20 µm.

As importin α is involved in the nuclear transport of different cargo proteins, we
additionally evaluated the functional impact of low concentration IVM on the cellular
distribution of one of its reported cargo proteins [5]. As observed in Figure S8, sustained
exposure to 0.2 µM IVM was also associated with a significant reduction in phosphorylated-
p53 nuclear import (p < 0.05).

3.8. Reduction of Importin α Nuclear Accumulation Using IVM at Low Concentration in
Combination with ATV

We finally evaluated the addition of ATV to the low IVM concentration of 0.2 µM
during 24 h. As observed in Figure 7, in all evaluated experimental settings nuclear to
cytoplasmic importin α distribution was significantly reduced when compared to vehicle-
treated cells (p < 0.0001). Despite not reaching statistical significance against IVM or
ATV monotherapies, larger reductions in importin α nuclear accumulation were observed
after IVM plus ATV combined treatments, showing a 38 or 25% reduction in nuclear
to cytoplasmic importin α localization ratio in the Hela (Figure 7A) or Vero (Figure 7B)
cells, respectively.
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Figure 7. Evaluation of importin α nuclear accumulation after combination treatment using IVM
at low concentration plus ATV. (A) Hela and (B) Vero cells were treated with 0.2 µM IVM, 10 µM
ATV, or IVM + ATV and importin α cellular distribution was evaluated by confocal microscopy.
Each data point represents Fn/Fc from a single cell; data were normalized to control cells and
median ± quartiles are indicated. * p < 0.05; *** p < 0.001, **** p < 0.0001 vs. control group; Kruskal–
Wallis followed by Dunn’s multiple comparisons test. (C) Representative confocal images of Hela
cells treated with IVM, ATV, or IVM + ATV showing a combination treatment effect on importin α

nuclear localization when low concentration IVM was used. Scale bar = 20 µm.

4. Discussion

In this work, we have ascertained in patient samples, in an animal model, and in cell
cultures in vitro, significant alterations of the importin family at the transcriptional level
upon SARS-CoV-2 infection. Furthermore, IVM and ATV had significant effects on the tran-
scriptional activity of importins and Rho GTPases upon mimicked viral infection. However,
the main proposed antiviral mechanism of IVM in host cells is thought to be its ability to
interfere with the nuclear transport of viral proteins mediated by importins [4,5,33].

A potent antiviral activity in vitro against SARS-CoV-2 has been communicated using
high IVM concentrations of 2.5 µM [6]. Such concentrations correspond to a plasma
concentration of about 2200 ng/mL, which is much higher than the peak plasma level
normally expected with the standard ivermectin oral dose of 0.2 mg/kg [34,35]. Thus,
the initial enthusiasm for the potential use of IVM in COVID-19 treatment turned into
skepticism based on pharmacology data, suggesting that effective tissue concentrations
may not be achievable in humans. However, IVM is characterized by a wide therapeutic
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index, with doses up to 10 times those usually prescribed for antihelmintic indications
(2 mg/kg), demonstrating good safety and tolerability in healthy volunteers [36].

In the present study, we demonstrated that a concentration as low as 0.2 µM for 24 h
produced a similar effect on the inhibition of importin α nuclear to cytoplasmic distribution
than a concentration of 2.5 µM for 1 h. This observation suggests that a sustained exposure
to lower concentrations of IVM could indeed interfere with the host cell machinery that
the virus requires for replication. Interestingly, results from our clinical trial using a
high dose of IVM of 0.6 mg/kg/day for five consecutive days in hospitalized COVID-19
patients demonstrated a concentration-dependent effect on the viral load of respiratory
secretions. The viral decay rate was significantly greater in patients with IVM plasma levels
of 160 ng/mL or higher [7], a concentration close to the one we observed in vitro effects on
importin α nuclear localization (0.2 µM that corresponds to a concentration of 175 ng/mL).

A recent work by Kern et al. described an in silico model of SARS-CoV-2 viral kinetics
with acquired immune response to analyze the dynamic impact of different regimens
using repurposed drugs for COVID-19 treatment [37]. They found greatest effects for IVM,
while other drugs such as hydroxychloroquine and lopinavir/ritonavir had little to no
appreciable effect. However, it is important to note that according to this simulation study,
IVM at 0.6 mg/kg/day may have prominent antiviral effects, whereas lower doses of
0.3 mg/kg/day have marginal efficacy [36], which might explain the results of recently
published randomized clinical trials that found no clinically significant effects compared to
the untreated controls [38]. Since patient safety with multiple-day high-dose IVM regimens
was shown [7], the design of further trials to confirm antiviral and clinical efficacy as well as
to explore factors involved in oral bioavailability of the drug, seem to be warranted. Nasal
spray administration is other attractive alternate route that would allow IVM accumulation
in nasopharyngeal tissue [39].

We have also showed that ATV at an in vitro concentration of 10 µM for 24 h is
able to reduce importin α nuclear localization. Moreover, ATV seemed to increase the
inhibitory effect of IVM on importin α in certain experimental conditions. Cholesterol
depletion produced by lipophilic statins causes the shutdown of host cell signaling events
requiring membrane localization such as the Rho GTPases RhoA and CDC42 [9]. In this
regard, several functions that are relevant to viral pathogenesis including actin organization
and intracellular transport depend on Rho GTPase signaling [40]. This may explain the
observed additive effect of ATV and IVM on importin α cellular distribution. Accordingly,
during the in vitro simulated viral infection, combined treatment using ATV plus IVM
as well as both monotherapies separately were capable of reverting Poly(I:C)-induced
NF-κB increased expression in A549 cells. Despite ATV, alone or combined with IVM,
was shown to increase RhoA mRNA expression in Poly(I:C)-transfected cells, variable
results were obtained after analyzing the expression profiles of other Rho GTPases in
cells exposed to different compounds. We know that each Rho GTPase is involved in
specific events related to cell signaling, motility, and intracellular trafficking. In this
regard, RhoA mainly participates in the regulation of endocytosis, Rac1 mediates exocytic
transport by interaction with different effector molecules, and CDC42 is a key regulator
of vesicle trafficking [9]. These contrasting results, involving up- or downregulation of
different Rho GTPase gene expression levels, could be interpreted as specific cellular
adaptation mechanisms in response to the effects of the tested drugs. Our work has several
limitations that should be noted. Regarding the bioinformatics analysis, access to complete
clinical records were unavailable, hence correlation analyses between gene expression and
illness severity or comorbidities could not be performed. Additionally, raw RNA-Seq data
were unavailable, thus we were not able to perform the pre-processing and alignment of
sequences locally. We could, however, curate the pre-processed data by removing samples
with >70% of total genes with 0 sequence reads, considering them as very low-quality
samples that might introduce a bias.

Additional limitations may arise from the selection of Poly(I:C) to mimic viral infection
as opposed to a cell-based infection system when evaluating compounds as potential
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treatments for SARS-CoV-2 infections. However, extensive reports have provided sound
evidence for the use of this model, showcasing how it imitates in vivo responses of the
human lung to viral infection, and how it is currently used to assess expression alterations
of host cell receptors associated with SARS-CoV-2 [41–44].

We also acknowledge that we have only focused on analyzing in vitro drug effects on
host cell processes. Future studies should be performed in A549 lung epithelial cells and
cell-based infection systems using SARS-CoV-2 to elucidate the mechanism of action of
IVM and ATV upon infection. These studies could help to establish a direct association
between drug impact on importin α nuclear transport and the actual reduction of viral load
in vivo. Furthermore, other in vivo mechanisms of action of the drugs should be taken
into consideration. Along with an increasing number of clinical trials assessing the clinical
benefit of IVM for patients with COVID-19 [45], alternate immunological mechanisms
have been proposed [35]. IVM has shown immunomodulatory and anti-inflammatory
properties in mouse models of different diseases [46,47] as well as in SARS-CoV-2-infected
hamsters [48]. Along the same line, statins have prominent in vivo effects on endothelial
cell biology and it has been discussed whether they would be able to act on vascular
dysfunction associated with COVID-19 [49]. Considering its role in hypertension and
coronary disease, ATV was assessed retrospectively in severe COVID-19 patients having
comorbidities, with good results in terms of reducing the need for mechanical ventilation
and in-hospital mortality [50].

Our findings contribute to place IVM and ATV as interesting drugs to target importin-
mediated nuclear trafficking upon SARS-CoV-2 infection that could potentially be trans-
lated to other infections such as Dengue fever, Zika, and Influenza, thus broadening the
spectrum of host-centric antiviral drug repurposing.
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