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Abstract: Differences in SARS-CoV-2-specific immune responses have been observed between in-
dividuals following natural infection or vaccination. In addition to already known factors, such
as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of
infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained
by structural differences brought about by genetic variation in the human leukocyte antigen (HLA)
molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic
cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte
responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to
induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells
then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic
variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there
is evidence that heterogeneity in antibody response might be related to HLA variation, there are
conflicting findings due in part to differences in study designs. We provide insight into why more
research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune
response will help to optimize diagnostic tools and lead to the development of new vaccines and
therapeutics against SARS-CoV-2 and other infectious diseases.
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1. Introduction

SARS-CoV-2 infection leads to a diverse spectrum of clinical outcomes ranging from
asymptomatic to critical clinical presentation and death. Established factors influencing
these diverse clinical outcomes include age, sex, racial ancestry, comorbidities, coinfections,
and SARS-CoV-2 variants [1–7]. Additionally, genetic factors may play a significant role in
the pathogenesis of COVID-19-associated severity, reviewed in [8].

The human leukocyte antigen (HLA) system plays a crucial role in the host’s immune
response during an encounter with an infectious agent [9]. The HLA system is further
classified into HLA class I (HLA-A, HLA-B, and HLA-C) and HLA class II (HLA-DR,
HLA-DQ, and HLA-DP). Whereas HLA class I is involved in the presentation of antigens
in an endogenous pathway, HLA class II is engaged in an exogenous antigen presentation
pathway [9]. HLA class I molecules are expressed on all nucleated cells and HLA class II
molecules are expressed on specialized or professional antigen-presenting cells (APCs),
such as dendritic cells, macrophages, and mature B cells. The HLA genes are located within
the major histocompatibility complex (MHC). In humans, the MHC gene locus located in
the short arm of chromosome six is among the most complex systems in humans. There are
more than 15,000 genetic variations in the HLA class I and class II genes [9]; this, combined
with the heterogeneity in antibody response and the variability of analytic methods have
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made it difficult to study. Nevertheless, among the genetic factors that determine the
clinical outcome upon exposure to antigens, the HLA system plays a pivotal role in the
immune response to various infections, such as viral hepatitis, dengue, HIV-1, Mycobac-
terium tuberculosis, and malaria, as well as small pox, rotavirus, measles-mumps-rubella,
and influenza vaccines [10–22]. Likewise, emerging data show that polymorphisms in the
HLA system may confer protection from or susceptibility to infection and severe disease in
patients with SARS-CoV-2 infection, reviewed in [23,24]. In addition, the genetic makeup
of an individual host may also modulate the response to SARS-CoV-2 vaccination [24,25].
Indeed, differences in SARS-CoV-2-specific immune responses have been observed between
individuals following SARS-CoV-2 infection or vaccination [26–29], and HLA variation
may contribute to such differences [24,25].

Understanding the underlying mechanisms of the relationship between HLA variation
and SARS-CoV-2-specific antibody responses may provide an avenue for the development
of novel therapeutic and preventive strategies for SARS-CoV-2, and consequently, the
prevention of long-term sequelae of SARS-CoV-2 infection. In this article, we review the
current evidence and discuss future prospects.

2. Host Immune Response to SARS-CoV-2: Innate and Adaptive Immunity

SARS-CoV-2 enters the respiratory tract’s airway epithelial cells via the angiotensin-
converting enzyme 2 (ACE2)—the host receptor for the receptor-binding domain (RBD) of
the spike protein of SARS-CoV-2 [30]. The cell surface-associated transmembrane serine
protease (TMPRSS2) regulates the binding of the RBD to the ACE2 receptor that eventually
triggers endocytosis of the virus, followed by the release of the viral mRNA into the host
cells’ cytoplasm [31]. Within the cytoplasm, the virus hijacks the host cell machinery to
initiate the replication and release of new viral particles. The release of damage-associated
molecular patterns (DAMP) along with microorganism-associated molecular patterns
(MAMPs) is followed by the host’s pattern-recognition receptors (PRRs) recognizing the
neighboring airway cells, and the recruitment of a multitude of immune cells, including
APCs, which present SARS-CoV-2 antigens during the generation of adaptive immune
responses. Hence, the initial immune response characterized by the activation of innate
immunity is followed by a virus-specific adaptive immune response.

During the generation of adaptive immune responses, the HLA molecules are in-
volved in SARS-CoV-2 antigen presentation [32,33]. Following SARS-CoV-2 infection or
vaccination, the spike antigen is taken up by antigen presenting cells, such as dendritic cells,
macrophages, and B-cells, and processed into smaller peptides. As depicted in Figure 1,
dendritic cells and alveolar macrophages present the peptides associated with HLA class
I molecules to the T cell receptor (TCR) of cytotoxic CD8+ T cells (CTLs), leading to the
death of SARS-CoV-2 infected cells [34–36]. On the other hand, dendritic cells present the
peptides with HLA class II molecules to the TCR of naïve CD4+ helper (TH0) cells that
differentiate into T follicular helper cells (TFH) that, in turn, induce B cell differentiation in
the germinal center of draining lymph nodes that will eventually mature into memory B
cells and plasma cells [37,38]. The plasma cells secrete SARS-CoV-2 specific neutralizing
antibodies that block the interaction between the virus and the ACE-2 receptor [39,40]. In
addition to inducing B cell differentiation, CD4+ T cells also induce the activation of CD8+
CTLs [41,42]. Differences in antibody responses have been observed based on the antigen
target, including the spike protein and its RBD, and the nucleocapsid protein (NP), with the
former correlating with viral neutralization [43,44]. Additionally, antibodies may play a pro-
tective role through the mechanisms involving antibody-mediated phagocytosis (AMP) or
antibody-dependent cellular cytotoxicity (ADCC), by involving macrophages and natural
killer cells, respectively [43,44]. Although immunoglobulin G (IgG) are relevant to durable
humoral immune responses, immunoglobulin M (IgM) isotypes play a significant role
during the acute phase of infection, and immunoglobulin A (IgA) antibodies are involved
in the mucosal defense against SARS-CoV-2 [43,44]. The activation of SARS-CoV-2-specific
immune cells leads to the death of infected cells, and the majority of patients subsequently
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clear the virus and recover [36]. In contrast, in those who develop severe disease, cytokines
and chemokines continue to attract monocytes, macrophages, neutrophils, and T cells to
the site of the infection, promoting further inflammation and the uncontrolled production
of pro-inflammatory cytokines (also known as a cytokine storm), vascular endotheliitis,
thrombosis, and angiogenesis [31,45,46].
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TFH: T follicular helper cells. Figure made using BioRender. 

Figure 1. HLA variation determines SARS-CoV-2-specific antibody response. In this example, we
present different scenarios suggesting differential SARS-CoV-2-specific antibody response impacted
by variation in the HLA class II molecule. (A) MHC-II molecule binding to SARS-CoV-2 peptides
induces efficient CD4+ T cell and antibody response leading to viral neutralization, ADCC, and the
death of SARS-CoV-2 infected cells. (B) Polymorphic MHC-II molecule binding to viral peptide fails
to stimulate CD4+ T cells and results in low antibody titer, lack of ADCC, and ADP. Abbreviations:
Ab: antibody; ADCC: antibody-dependent cellular (NK cell) cytotoxicity; ADP: antibody-dependent
phagocytosis; HLA: human leukocyte antigen; MØ: macrophage; MHC: major histocompatibility
complex; nAbs: neutralizing antibodies; TH0: CD4+ helper cells; TH: T helper; TFH: T follicular
helper cells. Figure made using BioRender.
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One of the most peculiar characteristics of SARS-CoV-2 infection, in terms of the
humoral antibody responses, is the extreme inter-individual variability. Although the exact
underlying mechanism(s) have not been fully elucidated, the observed inter-individual vari-
ability in antibody responses has previously been associated with age [47,48], sex [48], co-
morbid conditions [48–51], smoking [47,48], COVID-19 severity [51,52], medications [49,50],
viral lineage [53,54], SARS-CoV-2 vaccination type and dose [28,55,56], hybrid immu-
nity [57,58], and time since SARS-CoV-2 infection or vaccination [59]. HLA alleles exhibit
a high degree of variation [9]. Whether the differences observed in SARS-CoV-2 specific
antibody responses between individuals are due to differences in the capability of the HLA
molecules in presenting several peptides is not fully understood.

3. HLA Variation and Humoral Immunity in SARS-CoV-2

We conducted a literature search of the databases in PubMed and Google Scholar
with the keywords “HLA” and “antibody response”, or “immunoglobulin response”, in
individuals following “SARS-CoV-2 infection”, or “COVID-19”, and/or “vaccination”.
The study cohort characteristics, including infection status, vaccination status, number of
study participants and date, and antibody response-type determinations are summarized in
Table 1. There was extreme heterogeneity in the study designs, sample sizes, and duration of
follow-up [60–69]. In addition, the humoral immune responses were assessed by measuring
antibody titers based on anti-RBD IgG isotypes in two-thirds of the studies [60–62,64,66,68],
and three studies determined anti-Spike IgG isotype levels [61,63,65]. In another study, the
antibody levels evaluated included anti-RBD IgA isotype and anti-NP total Ig levels [66].
Only three studies determined the levels of neutralizing antibodies [64,66,67]. Whereas
high antibody responders were defined as those having the top 25th or 33rd percentile of
the titer distribution [60,64,67], low antibody response was defined as having the lowest 5th
or 33rd percentile of the titer distribution [65,68]. Other investigators compared differences
in the median or mean titers between carriers and non-carriers [61–67]. While all the studies
included MHC class II association with antibody responses, only five studied MHC class I
association with antibody responses. Except for one study [61] which included children, all
the remaining studies included adults only.

Table 1. Studies on HLA variants and association with antibody responses.

Study Cohort Characteristics Antibody Response

References
Infection Status Vaccination Number of

Individuals

Date Antibody
Response
Assessed

Antibody
Response
Assessed

No prior infection BNT162b2 100
7 and 39 days
after second
vaccine dose

Anti-RBD IgG [60]

With or without
prior infection

ChAdOx1
or ChAdOx1+
BNT162b2 or

mRNA-1273 or
NVX-CoV2373

1076
or 1677

28 days after first
vaccine dose

or 28 to 184 days
after second
vaccine dose

Anti-RBD and/or
anti-S IgG [61]

With or without
prior infection BNT162b2 420 Unknown Anti-RBD IgG [62]

No prior infection mRNA1273 87
30 days

after second
vaccine dose

Anti-S IgG [63]
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Table 1. Cont.

Study Cohort Characteristics Antibody Response

References
Infection Status Vaccination Number of

Individuals

Date Antibody
Response
Assessed

Antibody
Response
Assessed

No prior infection BNT162b2 87
144 days

after second
vaccine dose

Anti-RBD IgG and
Neutralizing
Antibodies

[64]

No prior infection BNT162b2 111
14+ days

after second
vaccine dose

Anti-S IgG [65]

Prior infection None 119
>46 to >97 days

after end of
symptoms

Anti-RBD IgG,
Anti-RBD IgA,

Anti-NP total Ig,
and Neutralizing

antibodies

[66]

Prior Infection None 84
26 and

61 days after
symptom onset

Neutralizing
antibodies [67]

No prior BNT162b2 56

2 weeks to
4 months

after second
vaccine dose

Anti-RBD IgG [68]

Prior infection
With or without

BNT162b2 or
ChAdOx1

49 12 months after
PCR positivity Anti-RBD IgG [69]

Abbreviations: Ig: immunoglobulin; NP: nucleocapsid protein; RBD: receptor-binding domain; S: spike antigen.

Though research on the association between HLA variants and humoral immune
responses is emerging, the reports revealed conflicting results (Figure 2). Several recent
studies provided evidence that specific HLA variation, namely DQA1*03:03, DQB1*06,
DRB1*03:01, or DRB1*07:01, enhanced the serological response post vaccination [60–64].
In a study conducted in Japan involving 100 health care workers, vaccination with the
BNT162b2 vaccine was followed by a significant anti-RBD IgG response in individuals with
the DQA1*03:03:01 haplotype [60]. Interestingly, individuals who received two doses of
the BNT162b2 vaccine and carry the DQB1*06:01 allele also showed protection against the
decline of anti-RBD IgG titers [60]. A recent study by Mentzer and colleagues in the UK
performed one of the most detailed HLA class II genomic analyses with the largest sample
size (n = 2753) undertaken to date [61]. In this study, the investigators reported significantly
higher levels of anti-RBD and/or anti-S IgG antibody responses in individuals carrying.
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DQB1*06 alleles who received the ChAdOx1 one vaccine dose or were boosted with
the same vaccine, or the BNT162b2 or mRNA-1273 vaccines. Interestingly, individuals
carrying the DQB1*06 allele were less likely to exhibit breakthrough infections compared to
non-carriers. Furthermore, memory B-cell responses in DQB1*06 carriers were increased fol-
lowing vaccination, and anti-RBD IgG production in a cohort of individuals who received
a booster vaccination persisted for several months. In another study of 420 UK participants
who received a single dose of the BNT162b2 vaccine post natural infection, individuals with
the DRB1*03:01 allele demonstrated higher titers of anti-RBD IgG, although the antibody
titer abated (average of 121 days) after a second dose of the same vaccine, despite sus-
tained T cell responses against the spike protein [62]. Interestingly, individuals carrying the
DRB1*13:02 allele in this study exhibited a greater susceptibility to symptomatic disease [62].
Similarly, a study conducted in Spain demonstrated high anti-Spike IgG titers among 87 in-
dividuals with the DRB1*07:01 allele and DRB1*07:01~DQA1*02:01~DQB1*02:02 haplotype
30 days after a second dose of the mRNA-1273 SARS-CoV-2 vaccine [63]. A recent study
by Higuchi et al. of 87 Japanese patients with rheumatoid arthritis, who were vaccinated
with the BNT162b2 vaccine, demonstrated that DRB1*12:01 allele carrier frequency was
higher in those individuals with high anti-RBD and neutralizing antibody responders [64].
Additionally, allele carrier frequencies of DRB1*15:01 were higher in those individuals with
high neutralizing antibody responses [64].

Other studies have documented the HLA variations that led to a reduced serological
response post vaccination or post infection. Cocchiolo et al. studied 111 individuals without
prior infection who received two BNT162b2 SARS-CoV-2 vaccine doses [65]. This study
documented a weak anti-Spike IgG response that was less than 5% of the lowest community
antibody response 14+ days after the second vaccine dose, in individuals carrying A*03:01,
A*33:03, and B*58:01 alleles, and A*24:02~C*07:01~B*18:01~DRB1*11:04 haplotype. Another
study by Fischer et al. investigated 119 COVID-19 convalescent adults, with a median
follow-up of 250 days, who were unvaccinated [66]. In this study, individuals with the
the B*35:01 and DRB1*01:01 alleles exhibited reduced titers of anti-RBD IgG and anti-NP
total IgG. Likewise, Gutiérrez-Bautista et al. demonstrated that individuals carrying the
allele DRB1*01:01 exhibited low anti-S antibody levels 30 days after a second dose of the
mRNA-1273 vaccine [63]. Despite lower antibody levels, both alleles were also associated
with a shorter duration of COVID-19 disease, suggesting the protective role of specific HLA
variations. Notably, it is assumed that higher antibody levels are generally associated with
protection. However, previous studies have documented that higher antibody titers can be
associated with COVID-19 severity [43,44], although another study found that more severe
illness was associated with higher ratios of anti-NP antibodies compared to anti-Spike/RBD
antibodies [52]. Hence, whether the protective effects of B*35:01 and DRB1*01:01 alleles on
COVID-19 clinical outcomes [66] is related to the generation of antibodies remains to be
determined. Further, a low anti-Spike IgG titer was noted in the UK study in individuals
carrying the DRB1*04:04 variant after a single BNT162b2 mRNA-based vaccination in
patients with prior SARS-CoV-2 infection [62].

Contrary to the evidence presented above, there is literature that supports the lack of
an association between antibody response and HLA variation. In the study conducted in
Japan by Khor et al., no association was shown between anti-RBD IgG responses and poly-
morphisms in the MHC class I HLA locus-A*, -B*, -C*, DPA1*, DPB1*, DQA1*, DQB1*, and
DRB1* [60]. Likewise, Astbury et al. showed no association between antibody production
and several DRB1* alleles [62]. Notably, this study demonstrated no association between
anti-RBD response and the DRB1*07:01 allele, although in a previous study, DRB1*07:01
was associated with high anti-S antibody responses [63]. Fisher et al. also demonstrated
that there was no association between B*15:01 or DQB1*03:02 and anti-RBD responses, nor
between B*35:01 or DRB1*01:01 and anti-RBD IgA and neutralizing antibodies after natural
SARS-CoV-2 infection [66]. Another study undertaken in Austria found no association
between neutralizing IgG antibodies and COVID-19 patients (n = 84) with A*20, B*35,
C*14, DPB1*23, DQB1*05, and DRB1*13 polymorphisms [67]. A smaller study involving
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56 patients conducted in Italy by Ragone et al. demonstrated no association between DRB1*
or DQA1* and anti-RBD IgG titers in healthy individuals, measured two weeks to four
months after two doses of BNT162b2 vaccination [68]. Another recent study conducted
in Germany, in albeit a small number of COVID-19 patients (n = 49) who were either
unvaccinated or received the BNT162b2 or ChAdOx1 vaccines, demonstrated that there
was no association between A*01, A*02, A*24, B*44, C*04, C*07, DP*04, DQ*03, DQ*05,
DQ*06, or DR*13 and anti-RBD IgG responses [69].

4. SARS-CoV-2 Peptide Epitope Binding Affinity and Antibody Response

HLA molecules can only present SARS-CoV-2 peptides that have binding epitopes
compatible with its specific antigen binding cleft [29–31]. This leads to a mechanism
whereby different HLA alleles present diverse peptides derived from the same SARS-CoV-2
antigen. Having certain alleles can make the SARS-CoV-2 antigenic presentation more
efficient, leading to a better humoral immune response, both in terms of quantity and
breadth (or affinity). Thus, the presence of HLA molecules capable of presenting several
peptides will lead to a more efficient humoral immune response with a higher antibody titer.
Antibodies that functionally neutralize correlate with protective capacity [36,43,44]. On the
contrary, some unique HLA variants with the capacity to handle a very limited number of
antigens are faced with the consequences of an inefficient humoral immune response. Thus,
the differences in the capabilities of the HLA alleles in handling SARS-CoV-2 antigens may
be the reason for the observed differences in anti-SARS-CoV-2-specific immune responses
between individuals, the clinical severity of COVID-19, and vaccine efficacy.

The peptide-binding affinity of HLA class I alleles shows diverse characteristics. No-
tably, none of the HLA class I variants were associated with a positive SARS-CoV-2-specific
antibody generation [60,65–67]. For example, A*02:06, A*03:01, A*11:01, A*24:02, B*35,
B*35:01, B*52:01, B*58:01, C*03:03, C*07:02, and C*12:02 are associated with low or no
antibody production, despite binding strongly with their respective peptide fragments
(Figure 2) [70–79]. Additionally, A*02:06, B*35:01, and B*58:01 have been shown to be pro-
tective against SARS-CoV-2 infection [66,72,78]. On the contrary, A*03:01, A*11:01, A*24:02,
B*52:01, and C*12:02 are all associated with an increased risk for severe COVID-19 and
to susceptibility for infection with SARS-CoV-2 [72,73,76,80–86]. B*15:01 and C*01:02 are
unable to present sufficient amounts of peptide epitope [66,87,88], and these alleles are also
associated with severe COVID-19, COVID-19-related death, or an increased susceptibil-
ity for SARS-CoV-2 infection [66,75,88,89]. Whether the association of these HLA class I
variants with adverse COVID-19 outcomes is attributed to their lack of antibody and/or
efficient CD8+ CTL response deserves further study. Hence, the most plausible explanation
for MHC class I roles as a protective or detrimental allele might be related to their ability to
modulate the immune response in an antibody-independent manner.

With regards to the MHC class II, peptide-binding prediction analyses have revealed
that DRB1*03:01, DRB1*07:01, and DRB1*12:01 are all associated with a significant in-
crease in SARS-CoV-2-specific antibody responses following the administration of mRNA
SARS-CoV-2 vaccines [62–64], and are also able to bind epitope peptides with a strong affin-
ity [68,71,78,79]. Interestingly, these alleles are associated with protection against severe
COVID-19 as well as reduced susceptibility to SARS-CoV-2 infection [66,72,78,81,85,89,90].
Hence, the protection against and/or reduced susceptibility to COVID-19 in individuals car-
rying these alleles could be attributed, at least in part, to the strong peptide binding affinity
and the increase in antibody responses. Although several HLA class II variants, including
DPA1*01:03, DPA1*02:01, DPB1*02:01, DPB1*04:02, DQB1*03:01, DRB1*01:01, DRB1*04:01,
DRB1*04:02, DRB1*04:05, DRB1*09:01, DRB1*11:01, DRB1*11:04, DRB1*13:01, DRB1*13:02,
and DRB1*15:01, are able to bind SARS-CoV-2 peptides with a strong affinity [71,79,85],
there is no association between these alleles and antibody production [60,62]. On the con-
trary, the study by Higuchi et al. demonstrated that DRB1*15:01 is associated with increased
anti-RBD neutralizing antibody responses [64], and exhibits a strong epitope binding affin-
ity [68,79]. However, it is not associated with protection against severe COVID-19 [89].
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DRB1*04:01 and DRB1*11:04 are both protective against severe COVID-19 and associated
with a reduced susceptibility risk against SARS-CoV-2 infection [85,90,91]. Hence, the pro-
tective role of these alleles might be mediated by antibody-independent mechanisms, such
as through CD4+ and/or CD8+ immune responses. DRB1*09:01, DRB1*11:01, DRB1*13:01,
DRB1*13:02, and DRB1*15:01 are all associated with an increased risk of severe COVID-
19 [62,89,90,92], and may also operate through alternative pathways. Hence, the effect of the
above HLA variants might be attributed to their impact on T cell responses rather than on
humoral immunity. This notion is supported by the study conducted by Astbury et al., who
demonstrated that DRB1*15:01 carriers exhibited a significant increase in T-cell response,
assessed using an IFN-G ELISpot assay, despite the absence of humoral immunity [62].
DRB1*01:01 and DRB1*04:04 exhibit a strong peptide binding affinity [71,79]. However,
both these alleles are associated with a low or no association in antibody production [62,66].
In particular, DRB1*01:01 is associated with a shorter disease duration and protection
against severe COVID-19 [66]. Hence, its protective effects might be related to its actions
through antibody-independent mechanistic pathways involving CD8+ CTLs. Whereas one
report revealed no association between DRB1*07:01 and the anti-RBD level [62], another
study demonstrated that it is associated with increased anti-S levels [63], which might be
attributed to its ability to bind peptide epitopes strongly [71,79]. In addition, DRB1*07:01 is
associated with protection against severe COVID-19 as well as reduced susceptibility risk
for SARS-CoV-2 infection [89,90].

Finally, DQB1*06 is associated with a significant increase in anti-RBD and/or Spike
IgG responses in ChAdOx1 or BNT162b2 vaccinated individuals [61], and exhibits low
peptide-binding affinity [90]. Although Mentzer et al. demonstrated the reduced hazard
of breakthrough infection in vaccinated individuals carrying DQB1*06, this allele has
been associated with an increased susceptibility for SARS-CoV-2 infection in a previous
study [90]. As noted in an earlier section of this review (Figure 2), several HLA class II
variants have been associated with low or weak antibody responses [60,62,66]. A SARS-
CoV-2 peptide-binding prediction analysis demonstrated that DQB1*03:02, DRB1*01:01,
and DRB1*08:01 alleles are unable to bind viral peptides with high affinity [65,67,91], have
a weak or no antibody response [62,66], and are associated with an increased risk for severe
COVID-19 and susceptibility for infection with SARS-CoV-2 [66,71,78,81,91,93]. Taken
together, the association of DQB1*03:02, DRB1*01:01, and DRB1*08:01 alleles with low
SARS-CoV-2 epitope-binding affinity may lead to low or no antibody production, and
increase the risk of individuals for severe COVID-19 outcomes. Additionally, DRB1:01:01
can induce regulatory T cell responses that may inhibit downstream humoral immune
response and antibody generation [94].

5. Conclusions and Future Prospects

The studies reviewed here reveal the inter-individual variations in antibody responses
associated with diverse HLA polymorphisms [60–69]. There are several study design fac-
tors that lead to variable results within the literature, including differences in study cohort
characteristics, the timeframe in which antibody levels were assessed, different instrumen-
tation and cutoffs used for antibody assessment, and types of antibodies assessed (isotypes,
antigen targets, and neutralizing ability) (Table 1). Small sample sizes and extreme allelic
heterogeneity pose significant power limitations. The lack of standardization within SARS-
CoV-2 antibody assays limits comparisons between studies. Further, differences in vaccine
types, SARS-CoV-2 variants, genotyping methods, and algorithms for predicting HLA
haplotype may also impact results [95,96]. For instance, a range of sequencing or geno-
typing technologies were used, including Ion GeneStudio [97], PacBio [98], Illumina, and
Affymetrix [99–101]. The targeted next-generation sequencing panels and/or differences in
the PCR techniques applied had different levels of resolution for HLA calling. An array of
different algorithms were used to predict the HLA genotype, including NGSengine [99],
AllType NGS [102], TypeStream Visual [103], Imputation, and PHASE [104–106], each with
different technical performance parameters which also limit comparisons between studies.
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Given that the CD4+ TFH TCR:MHC class II interaction is necessary for the generation
of antibodies, any associations found between MHC class I and antibody titers [45,46]
may imply a coincidental rather than a causal association. This notion is supported by the
fact that in all the studies included in this review, HLA class I polymorphisms were not
observed to have any effect on SARS-CoV-2-specific antibody responses [61,66–68]. On the
other hand, in the event that future studies demonstrate an association between HLA class
I and antibody responses, the findings might be the result of indirect regulatory pathways
rather than a direct CD8 + TCR:MHC class I interaction. For instance, this notion is supported
by the observation that HLA-B encodes a microRNA that regulates IgA production [107].
Indeed, the fact that some HLA class I alleles have no effect on antibody generation despite a
strong peptide binding affinity implies that such alleles modulate the immune response in an
antibody-independent manner through effects on CD8+ CTL responses.

Notably, two-thirds of the studies documented associations between HLA class II
polymorphisms and antibody responses [60–66]. In addition, alternative immune-genetic
pathways may be involved in the generation of antibodies. Indeed, a more recent report
demonstrated that genetic variation in the 3′ regulatory region 1 (3′RR1) of the human
immunoglobulin heavy chain locus has been associated with significant effects on SARS-
CoV-2-specific antibody responses following BNT162b2 mRNA vaccination [108]. Whereas
single nucleotide polymorphisms (SNPs) in rs373084296, rs7494441, rs12896746, rs12896897,
and rs7144089 of the 3′RR1 of the human immunoglobulin heavy chain were associated
with high levels of antibodies, SNPs in rs12896746, rs12896897, and rs7144089 were linked
to low levels of antibodies (<10th percentile). Alternatively, immunogenicity demonstrated
in response to SARS-CoV-2 may be ascribed to the generation of T-cell responses without
sufficient humoral immune responses [62], or more probably due to the indirect pathways
and impact by non-MHC-related regulatory genes [107,109]. Indeed, a more recent study
demonstrated that non-MHC genes were associated with significant antibody production
in Italian health care workers who received a second dose of the BNT162b2 mRNA-based
or ChAdOx1 adenovirus-based SARS-CoV-2 vaccination [110]. The gene variants involved
included TP53 (rs1042522), ABO (rs657152), APOE (rs7412/rs429358), ACE2 (rs2285666),
HLA-A (rs2571381/rs2499), and CRP (rs2808635/rs876538). All these alleles were associated
with significant increases in anti-spike IgG, as well as neutralizing antibodies, between two
weeks and six months post vaccination.

In addition, recent genome-wide association studies (GWAS) have identified several
SNPs, including the BCL11A (rs1123573) and TAC4 (rs77534576) genes, that are associated
with COVID-19 severity [111]. These genes are involved in B-cell lymphopoiesis, and
the role variants in these loci play in SARS-CoV-2-specific antibody responses deserves
further investigation. Other variations or SNPs related to the host’s PRRs could also affect
antibody responses. For example, PRRs such as the Toll-like receptor 7 (TLR7) are essential
for immune cell activation and the connection to antimicrobial adaptive immunity [112,113].
Hence, individuals with unique loss-of-function (LoF) variants in TLR7 (rs189681811 and
rs147244662) that are associated with COVID-19 severity have been linked with an abro-
gated production of IFNI and II [112]. Whether such early antiviral immune responses
related to LoF variants in TLR7 also affect subsequent SARS-CoV-2-specific humoral immu-
nity remains to be elucidated.

In addition, several authorities have demonstrated the emergence of SARS-CoV-2
variants with an enhanced capability to circumvent antibody responses [114–118]. These
emerging SARS-CoV-2 variants may also have the potential to interact with HLA molecules
with different binding affinity characteristics. Indeed, recent studies have revealed a
dramatic loss of peptide-binding affinity associated with a mutation of the spike protein
in individuals carrying A*02:01, B*07:02, DRB1*03:01, and DRB1*15:01 alleles [58,119–122].
Taken together, the emergence of new SARS-CoV-2 variants will pose a significant challenge
to the development of effective immune responses and warrants further investigation.

In conclusion, the HLA loci are highly heterogeneous [9], and differences in study de-
sign, methodological approaches, and biological complexity have made this region difficult
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to study [95,96]. Thus, further studies using larger cohorts are needed to determine if there
are associations between HLA loci and the SARS-CoV-2-specific immune response. It is ex-
pected that GWAS will provide further evidence about how genetic variation influences the
differential antibody response after SARS-CoV-2 infection and/or vaccination. However,
the molecular pathways involved remain to be elucidated. Replication studies intended to
investigate the functional interactions of causal variants are underway by our group [123].
Ultimately, identifying the underlying immune-genetic mechanisms will pave the way for
the optimization of new diagnostic modalities and the development of improved vaccines
and therapeutic options against SARS-CoV-2 and other infectious diseases.
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