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Abstract: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disrupts the blood-
testis barrier (BTB), resulting in alterations in spermatogenesis. However, whether BTB-related
proteins (such as ZO-1, claudin11, N-cadherin, and CX43) are targeted by SARS-CoV-2 remains to
be clarified. BTB is a physical barrier between the blood vessels and the seminiferous tubules of
the animal testis, and it is one of the tightest blood-tissue barriers in the mammalian body. In this
study, we investigated the effects of viral proteins, via ectopic expression of individual viral proteins,
on BTB-related proteins, the secretion of immune factors, and the formation and degradation of
autophagosomes in human primary Sertoli cells. Our study demonstrated that ectopic expression of
viral E (envelope protein) and M (membrane protein) induced the expressions of ZO-1 and claudin11,
promoted the formation of autophagosomes, and inhibited autophagy flux. S (spike protein) reduced
the expression of ZO-1, N-cadherin, and CX43, induced the expression of claudin11, and inhibited
the formation and degradation of autophagosomes. N (nucleocapsid protein) reduced the expression
of ZO-1, claudin11, and N-cadherin. All the structural proteins (SPs) E, M, N, and S increased the
expression of the FasL gene, and the E protein promoted the expression and secretion of FasL and
TGF-β proteins and the expression of IL-1. Blockage of autophagy by specific inhibitors resulted in
the suppression of BTB-related proteins by the SPs. Our results indicated that SARS-CoV-2 SPs (E, M,
and S) regulate BTB-related proteins through autophagy.
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1. Introduction

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2), becomes a pandemic worldwide. The main symp-
toms of COVID-19 include various degrees of respiratory symptoms ranging from mild
cough to chest pain and dyspnea [1]. Other symptoms include diarrhea [2], myocarditis [3],
and neurological manifestations [4]. In addition, the SARS CoV-2 receptor angiotensin-
converting enzyme 2 (ACE2) is highly expressed in the testicular tissue [5,6]. Although the
SARS-CoV-2 viral particle was not detectable in semen [7,8], the viral RNA was detected
in semen and testicular tissues [9]. Clinical reports showed that a moderate COVID-19
infection, without hospitalization, is associated with azoospermia for four weeks [10].
Autopsy reports indicated that a severe COVID-19 infection results in significant changes
in the spatial arrangement of testicular cells, a reduction of BTB-related proteins, and an
up-regulation of immune factors [11]. The genome of SARS-CoV-2 is a single-stranded,
positive-sense RNA molecule that encodes 29 proteins, including four SPs (E, M, N, and S),
16 nonstructural proteins (Nsp1-16), and nine accessory proteins (ORFs). M, the envelope
protein, determines viral shape. E interacts with M to form the viral membrane [12]. N,

Viruses 2023, 15, 1272. https://doi.org/10.3390/v15061272 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15061272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-0771-1791
https://doi.org/10.3390/v15061272
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15061272?type=check_update&version=2


Viruses 2023, 15, 1272 2 of 14

which forms the nucleocapsid, is closely related to testicular hormonal imbalance [13].
S, which binds to host cell receptors and mediates viral and host membrane attachment and
fusion, was detectable in the endothelia of the BTB, spermatogenic cells, and stromal cells
in the seminiferous tubules, and sperms in the epididymis [14]. Thus, the ability of SARS
CoV-2 and its SPs to alter the male reproductive system needs to be further addressed.

Spermatogenesis occurs in a particular microenvironment composed of BTB and im-
mune barriers. The BTB is a physical barrier between the blood vessels and the seminiferous
tubules of the testis. The primary cells that form BTB are Sertoli cells, also known as ‘nurse’
cells, which provide nutrients, paracrine factors, cytokines, and other biomolecules to
support germ cell development [15]. The adjacent Sertoli cells form the BTB through tight
junctions (TJ), gap junctions (GJ), and adhesion junctions (AJ) [16]. The TJ, which is the
main component of BTB, comprises occludin, ZO-1, and claudin [16]. The GJ-associated
connexin-43 (CX43) maintains BTB integrity by regulating the expression and distribution
of TJ-associated proteins [17]. Aberrant expression of the AJ-associated N-cadherin and
β-catenin indicates BTB disruption [18,19]. The immune barrier-associated cytokines FasL,
TGF-β, IL1α, and IL6, expressed in the Sertoli cells, play roles in modulating immune
responses in the testis [20]. Both barriers of the physical BTB and the immune cytokines are
essential for the homeostasis of spermatogenesis.

Autophagy plays a vital role in regulating cell growth, differentiation, and patho-
genesis. Autophagy also participates in regulating BTB function. Induction of autophagy
with zearalenone (ZEA) results in BTB destruction, and inhibition of autophagy with
3-methyladenine (3MA) or chloroquine (CQ) reduces the effects of ZEA on BTB [21]. SARS-
CoV-2 causes autophagy to support optimal virus replication, and ectopic expression of the
E protein activates autophagy, resulting in metabolic alterations, including the shutoff of
protein synthesis and mobilization of cellular resources [22]. The ORF7a protein initiates
autophagy and promotes viral replication [23], and inhibition of autophagy suppresses
SARS-CoV-2 replication [24]. Accordingly, SARS-CoV-2 infection may induce autophagy to
disrupt male reproductive ability [25]; however, the mechanism for SARS-CoV-2-induced
autophagy in the alteration of BTB should be determined.

This research explored the effect of SARS-CoV-2 SPs on BTB-related proteins and
autophagy in primary Sertoli cells. It also investigated the mechanism by which SARS-
CoV-2-induced autophagy impairs BTB and the male reproductive system.

2. Materials and Methods
2.1. Cells and Plasmids

The primary human Sertoli cells (Sciencell, San Diego, CA, USA, Cat. #4520) were
maintained in Sertoli Cell Medium (SerCM) with 5% heat-inactivated fetal bovine serum,
1% Sertoli Cell Growth Supplement, 100 U/mL penicillin, and 100 mg/mL streptomycin
(Sciencell, San Diego, CA, USA) under 5% CO2 at 37 ◦C. The eukaryotic overexpression vec-
tors of pEGFP-N1-HnCoV-E (GFP-E), pEGFP-N1-HnCoV-M (GFP-M), pEGFP-N1-HnCoV-
N (GFP-N), and pEGFP-N1-HnCoV-S (GFP-S) were constructed by Shanghai General
Biotech Co., Ltd. (Shanghai, China). The sequence information for the inserted DNA
fragment is listed in Supplementary Materials.

2.2. Reagents and Antibodies

Rabbit antibodies specific to LC3 (L7543), ZO-1 (SAB5700645), occludin (SAB5700784),
claudin 11 (ABT148), and pSQSTM1/P62 (SAB5700845) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Rabbit antibodies specific to CX43 (A00599), N-cadherin
(BA0673), and β-catenin (BA0426) were purchased from Boster (Wuhan, China). In addition,
3-methyladenine (3-MA) (A8780) was purchased from Solarbio (Beijing, China).

2.3. Cell Transfection

The Sertoli cells were seeded on 6-well plates. When 60–70% confluence was achieved,
the cells were transfected with 2.5 µg plasmids [GFP-E, GFP-M, GFP-N, GFP-S, and pEGFP-
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N1 (GFP-V)] using 7.5 µL of Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA), respec-
tively, according to the manufacturer’s instructions. At 48 h post-transfection, the cells were
collected for transmission electron microscopy (TEM), immunoblotting, enzyme-linked
immunosorbent assay (ELISA), quantitative real-time PCR (qPCR), and the cell supernatant
was harvested for ELISA.

2.4. Biochemical Intervention

For autophagy inhibition experiments, Sertoli cells were seeded on 6-well plates and
pretreated with 3 MA (5 mmol/mL) for 6 h. The inoculum was removed and washed
twice with 0.01 M phosphate-buffered saline (PBS; pH 7.4), then transfected with 2.5 µg of
plasmids (GFP-E, GFP-M, GFP-N, GFP-S, and GFP-V). The cells were then incubated in a
fresh medium containing 3-MA for 48 h and subsequently collected for immunoblotting.

2.5. Transmission Electron Microscopy

Transfected Sertoli cells were digested by pancreatic enzymes, washed twice with PBS,
centrifuged at 1500 r/min for 5 min, and the deposits were fixed by ice-cold glutaraldehyde
at 4 ◦C for 1 h. The samples were dehydrated and embedded, then ultrathin sectioning
images were observed and taken under the JEM-1400 transmission electron microscope
(JEOL Ltd., Tokyo, Japan).

2.6. Reverse Transcription PCR (RT-PCR)

The total RNA of cell samples was extracted from Sertoli cells using Trizol reagent
according to the manufacturer’s instructions (Solarbio, Beijing, China). First-strand cDNA
was synthesized using a PrimeScriptTM RT reagent kit with gDNA Eraser (TaKaRa, Beijing,
China). Primer GFP (Table 1) was designed according to the vector’s multiple cloning site to
amplify the inserted genes of SARS-CoV-2 SPs in the pEGFP-N1 vector. The PCR reactions
were performed in a total volume of 20 µL, containing 10 µL of 2× Es Taq MasterMix, 2 µL
of cDNA template, 1 µL of forward and reverse primers, respectively, and 6 µL of sterile
H2O. The reaction conditions were as follows: 94 ◦C for 5 min; 38 cycles at 94 ◦C for 30 s;
53 ◦C for 30 s; 72 ◦C for 4 min; and a final extension at 72 ◦C for 5 min. The results were
analyzed using 1% agarose gel electrophoresis.

Table 1. The sequence of primers used in this study.

Genes Forward Primer (5′–3′) Reverse Primer (5′–3′)

ZO-1 CGGTGGTAACTTTGAGA TCTGAGATGGAGGTGGGT
Occludin GTGCCATCATTGCGGGATTC AGGTGGATATTCCCTGA

Claudin11 TGTTGGGCTTCATTCTCG GGCGGTCACGATGTTGT
β-catenin GGTCCGAGTGCTGCTCATG GCTGTCAGGTTTGATCCCATC

N-cadherin CTGAAGCCAACCTTAACTGA TGTCCCATTCCAAACCTG
CX43 TCGCCTATGTCTCCTCCTG AGGTCGCTGGTCCACAAT
FasL GTTCTGGTTGCCTTGGTA GTGGCCTATTTGCTTCTC

TGF-β1 TCCACGGAGAAGAACTGC CAGGCTCCAAATGTAGGG
IL-1 AGTGCTGCTGAAGGAGAT TGGATGGGCAACTGATGT
IL-6 GGAGACTTGCCTGGTGAA AGCTCTGGCTTGTTCCTC

β-actin GAAATCGTGCGTGACATCAAAG TGTAGTTTCATGGATGCCACAG
GFP CTCAGATCTCGAGCTCAAGC TGGCGACCGGTGGATC

2.7. Quantitative Real-Time PCR (qPCR)

To examine the influence of SARS-CoV-2 SPs on genes’ expression, total RNA was
prepared as in RT-PCR. cDNA was synthesized with 2 µg of total RNA using TransScript
One-Step gDNA Removal and cDNA Synthesis SuperMix according to the reagent’s manual
(TransGen Biotech, Beijing, China). qPCR was carried out using TB Green Premix Ex Taq II
(Takara, Beijing, China) on a qPCR system (Bio-Rad, CA 94547, Hercules, CA, USA) with
the following cycling profile: 5 min at 95 ◦C, followed by 40 cycles of 10 s at 95 ◦C, 20 s at
56 ◦C, and 20 s at 72 ◦C. The data were expressed as a relative fold change compared to the
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average value of the control group (GFP-V). The specific primer sequences (forward and
reverse, respectively) for the reference genes were listed in Table 1. β-actin was used as an
endogenous control gene.

2.8. Immunoblotting Analysis

To examine the influence of SARS-CoV-2 SPs on protein expression, transfected cells
were digested by trypsin and suspended in 1 mL of PBS. Following centrifugation, cell
pellets were resuspended in a cell lysis buffer (P0013, Beyotime, Shanghai, China) and
centrifuged at 15,000× g for 10 min at 4 ◦C. The protein quantification of cell extracts
was determined by the BCA Protein Assay Kit (P0009, Beyotime, Shanghai, China). The
samples were separated by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). The proteins were transferred to a PVDF membrane (Millipore, Boston, MA,
USA). The membrane was blocked with 5% skim milk in TBST for 1 h and then incubated
with the first antibody at 4 ◦C overnight, then with the second antibody for 2 h. The protein
bands were visualized with Clarity Western ECL Substrate (Bio-Rad, Hercules, CA, USA).

2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

The Fas L, TGF β1, IL-1, and IL-6 in the transfected cells and supernatant were
analyzed using commercial ELISA kits for humans (catalog numbers: Fas L, ml000971; TGF
β1, ml013583; IL-1, ml001554; IL-6, ml001532; Shanghai Enzyme-linked Biotechnology Co.,
Ltd., Shanghai, China) following the manufacturer’s instructions.

2.10. Statistical Analysis

For TEM pictures, five cells from each sample were randomly selected for autophago-
some structure counting. Data from relative qPCR were collected in triplicate and calculated
using 2−∆∆Ct. Immunoblotting images and cell fluorescence photographs were the clearest
ones from repeated performances and were quantified by NIH Image J software (ImageJ
149, NIH, Bethesda, MD, USA). Statistical differences between the means of the two groups
were calculated using the Student’s t-test, and p values of <0.05 were considered to signify
statistically significant differences. The means ± standard deviations were determined
from at least three independent experiments.

3. Results
3.1. Transfection of SARS-CoV-2 Structural Proteins (SPs) in Primary Human Sertoli Cells

To study the function of each SARS-CoV-2 SP, we transiently transfected the primary
human Sertoli cells with plasmid DNA to ectopically express GFP-tagged SPs (GFP-SPs),
including GFP, GFP-E, GFP-M, GFP-N, and GFP-S. Ectopically expressed individual GFP-
SPs in cells were detected under a fluorescence microscope (Figure 1A), gene expression of
individual SPs was determined by the technique of RT-PCR (Figure 1B), and the protein
level of ectopically expressed GFP-SPs was determined by immunoblotting (Figure 1C).
These findings indicated successful transfection and expression of SARS-CoV-2 SPs in the
primary Sertoli cells.

3.2. SARS-CoV-2 SPs Disrupt the Expression of BTB-Related Proteins

To determine the effects of SARS-CoV-2 SPs on BTB-related proteins, Sertoli cells
were transiently transfected with GFP-SARS-CoV-2 SPs plasmids for 48 h. qPCR analy-
sis was used to detect the gene expression of TJ proteins ZO-1, occluding, and claudin-
11; AJ proteins N-cadherin and β-catenin; and GJ proteins CX43. The results demon-
strated that E induced gene expression of ZO-1 and claudin11 (Figure 2(A-a,A-b)) while
reducing N-cadherin (Figure 2(A-d)). M induced gene expression of claudin11 and β-
catenin (Figure 2(A-b,A-e)), while it reduced ZO-1, N-cadherin, and CX43 expression
(Figure 2(A-a,A-d,A-f)). N reduced the gene expression of ZO-1, claudin11, occludin, N-
cadherin, and CX43 (Figure 2(A-a–A-d)). S induced the gene expression of claudin11,
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occluding, and β-catenin (Figure 2(A-b,A-c,A-e)), while it reduced ZO-1, N-cadherin, and
CX43 (Figure 2(A-a,A-d,A-f)).
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the GFP-SARS-CoV-2 SPs, as analyzed by immunoblotting. Cell lysates were prepared from Sertoli
cells expressing each of the SARS-CoV-2 E, M, N, and S and immunoblotted with antibodies against
the GFP.

We verified the level of protein expression by immunoblotting analysis to further sub-
stantiate these findings. The results showed that E and M proteins significantly enhanced
the expression of ZO-1 and claudin11 (Figure 2(B-a–B-c)), while they reduced N-cadherin
expression (Figure 2(B-a,B-e)). N and S significantly reduced the expression of ZO-1 and
N-cadherin (Figure 2(B-a,B-b,B-e)). All the SPs reduced the expression of N-cadherin
(Figure 2(B-a,B-e)). There were no significant changes in occludin, β-catenin, or CX43
expressions (Figure 2(B-a,B-d,B-f,B-g)). However, CX43 presented two closely migrating
bands; the slower-migrating band was significantly enhanced in S ectopic expression cells
(Figure 2(B-a,B-g)). To summarize, E and M enhanced the TJs proteins (ZO-1 and claudin11)
expression while reducing the AJs proteins (N-cadherin). N and S significantly reduced the
expression of TJ (ZO-1) and AJ (N-cadherin) proteins.

3.3. SARS-CoV-2 SPs Induce Expression of Immune Factors in Sertoli Cells

As shown by the above results, SARS-CoV-2 SPs disrupted the physical barrier struc-
ture proteins of Sertoli cells, but whether SARS-CoV-2 SPs affected the immunomodulatory
factors of Sertoli cells requires further studies. Here, TGF-β, FasL, IL-1, and IL-6, key
molecules involved in Sertoli cell immunoregulation, were focused on [26]. The qPCR
results showed that all the SPs induced FasL gene expression; in addition, E also induced
the expressions of TGF-β, and IL-1 (Figure 3A).
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Figure 2. The effects of SARS-CoV-2 SPs on the expression of BTB-related proteins. (A) qPCR analysis
of the mRNA expression of BTB-related genes. (A-a–A-f) Sertoli cells were transiently transfected
with SARS-CoV-2 SP, then total RNAs were extracted for qPCR to analyze the mRNA expressions
of ZO-1, claudin11, occludin, N-cadherin, β-catenin, and CX43. β-actin was the internal control.
(B) Immunoblotting analysis of the expressions of BTB-related proteins. (B-a) Sertoli cells were
transiently transfected with SARS-CoV-2 SPs, and then total cellular extracts were analyzed by
immunoblotting of ZO-1, Claudin11, occludin, N-cadherin, β-Catenin, CX43, and GAPDH as the
internal control. (B-b–B-g) The relative levels of the targeted proteins were shown by histograms
representing density readings of the gel bands, and the ratios were calculated relative to the GAPDH
control. The data represent the mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01,
calculated using the Student’s t-test of SARS-CoV-2 SPs transfected cells vs. empty plasmid (GFP-V)
transfected cells.

To further determine protein expression and secretion, ELISA was used to test the
expression of proteins in cell lysate and culture supernatant. The results showed that E
enhanced the expression of FasL, TGF-β, and IL-1. All the SPs enhanced the expression of
FasL and did not significantly affect the secretion of immune factors (Figure 3B).

3.4. SARS-CoV-2 SPs Influence on Sertoli Cells Autophagy

To determine whether SARS-CoV-2 SPs modulate autophagy in Sertoli cells, we first
examined the formation of autophagosome-like vesicles in SP-transfected cells using TEM
and quantitative analyses (Figure 4A). There was a high background level of autophagy
in primary Sertoli cells. It was easy to see the early autophagic vacuoles (AVi), with two
bilayer vesicles and their contents of morphologically intact cytoplasm (black triangle), and
the degradative autophagic vacuoles (AVd), with a high-density electron content (black
stars) (Figure 4(A-a)). The number of AVi and AVd was significantly higher in E and M
ectopic expressed cells, which were mainly AVd (Figure 4(A-b,A-c)). In N and S ectopic
expressed cells, there was a similar number with an empty plasmid, which were mainly
AVi (Figure 4((A-d,A-e)). Quantitative analysis also confirmed this (Figure 4(A-f)).
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Figure 3. The effects of the SARS-CoV-2 SPs on the expressions of TGF-β, FasL, IL-1, and IL-6.
(A) RT-PCR analysis of the mRNA expression of TGF-β, FasL, IL-1, and IL-6. Sertoli cells were
transiently transfected with SARS-CoV-2 SPs for 48 h; then, total RNAs were extracted for qPCR
to analyze the mRNA expression of the genes; β-actin was the internal control. (B) ELISA analysis
of the expression and secretion of TGF-β, FasL, IL-1, and IL-6 proteins in Sertoli cells. Sertoli cells
were transiently transfected with SARS-CoV-2 SPs for 48 h; the cells and culture supernatants were
collected, respectively, and analyzed by ELISA. The results were presented in terms of relative
expression in contrast to an empty plasmid (GFP-V). The data represent the mean ± SD of three
independent experiments. * p < 0.05, ** p < 0.01, calculated using the Student’s t-test of SARS-CoV-2
SPs transfected cells vs. empty plasmid transfected cells.

To further analyze whether SARS-CoV-2 SPs could trigger the autophagy machinery,
we examined the expressions of P62, LC3, and LC3 conversion, which were widely used
as markers for assessing the formation and degradation of autophagosomes [27,28]. The
results showed that the protein level of LC3-II was increased by E and M but decreased by
S (Figure 4(B-a,B-b)). LC3-II and LC3-I were increased by E and M but decreased by N and
S (Figure 4(B-a,B-d)). All SARS-CoV-2 SPs increased the protein level of P62, and S showed
significant differences (Figure 4(B-a,B-c)). Our results indicated that E and M induced the
formation of autophagosomes but did not promote a complete autophagic flux. N and S
proteins inhibited the formation of autophagosomes and impeded complete autophagy
flux, resulting in the accumulation of p62 in cells.

3.5. Autophagy Inhibition Suppressed the Effects of SPs on BTB-Related Proteins

To investigate whether autophagy was involved in SARS-CoV-2 SPs affecting BTB-
related proteins, ST cells were treated with the autophagy inhibitor 3MA and then trans-
fected with the SARS-CoV-2 SPs plasmids. The expressions of autophagy marker proteins
and BTB-related proteins were examined by immunoblotting. After being treated with
3MA, the protein level of LC3-II significantly decreased in ST cells, indicating that au-
tophagy was successfully inhibited (Figure 5a). Concerning the BTB-related proteins, the
protein level of ZO-1 was significantly decreased by all SARS-CoV-2 SPs (Figure 5a,b), and
the effects of E and M on ZO-1 expression were opposite to those of blank cells (Figure 2B).
The protein level of claudin11 was significantly increased by E and M (Figure 5a,c), which
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was consistent with blank cells, and the use of 3MA inhibited the promotion effect of
S protein on claudin11 expression (Figure 2B). The E protein reduced the expression of
occludin (Figure 5a,d), which was opposite to that of blank cells (Figure 2B). E and M
proteins significantly enhanced the expression of N-cadherin (Figure 5a,e), which was
the opposite of blank cells (Figure 2B). All the proteins had the same effect on β-catenin
as the cells without 3MA intervention (Figure 5a,f). E protein significantly reduced the
expression of CX43, and M and N proteins enhanced the expression of CX43 (Figure 5a,g).
These findings were the opposite of the blank cells. The electrophoretic variants of the S
protein on CX43 were not visible (Figure 5a,g). All the results together led to the indicated
conclusion that SARS-CoV-2 SPs modulate BTB-related proteins through autophagy.
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Figure 4. SARS-CoV-2 SPs influenced Sertoli cells’ autophagy. (A) TEM images of autophagic
vacuoles in Sertoli cells; (A-a–A-e) cells were studied by electron microscopy at 48 h post-transfection
with plasmids. The black triangles were autophagosomes for early autophagic vacuoles (AVi). The
black stars were degradative autophagic vacuoles (AVd). (A-f) Quantification of the AVis and AVds
per cell image. The average number of vesicles in each cell was obtained from at least five cells.
(B) Immunoblotting analysis of the expressions of autophagy-related proteins. (B-a) The protein level
of LC3 and P62 in Sertoli cells transiently transfected with SARS-CoV-2 structural proteins, with
GAPDH serving as an internal control. (B-b–B-d) The relative levels of the targeted proteins were
shown by histograms representing density readings of the gel bands, and the ratios were calculated
relative to the GAPDH control. The data represent the mean ± SD of three independent experiments.
* p < 0.05, ** p < 0.01, calculated using the Student’s t-test of SARS-CoV-2 SPs transfected cells vs.
empty plasmid transfected cells.
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Figure 5. Inhibiting autophagy with 3-MA suppressed SARS-CoV-2 SPs’ effects on BTB-related
proteins. (a) Sertoli cells were pretreated with 3-MA (5 mM) for 6 h, then transiently transfected
with SARS-CoV-2 SPs. The expression of LC3, ZO-1, claudin11, occludin, N-cadherin, β-catenin,
CX43, and GAPDH (internal control) was analyzed by immunoblotting with specific antibodies as
described in Materials and Methods. (b–g) The relative levels of the targeted proteins were shown by
histograms representing density readings of the gel bands, and the ratios were calculated relative to
the GAPDH control. The data represent the mean ± SD of three independent experiments. * p < 0.05,
** p < 0.01, calculated using the Student’s t-test of SARS-CoV-2 SPs transfected cells vs. empty plasmid
transfected cells.

4. Discussion

It is well known that SARS-CoV-2 uses ACE2 to invade human cells, and the high
expression of AEC2 in Sertoli and germ cells makes the testis a potential target for infec-
tion [29]. It was also confirmed that SARS-CoV-2 disrupted the BTB and the expression of
junctional proteins in vivo [11]. At present, the relationship between SARS-CoV-2 and BTB
is still in the preliminary stage, and the effect of SARS-CoV-2 SPs on BTB at the molecular
level is also unclear. This study investigated the effect of SARS-CoV-2 SPs on BTB-related
proteins and the impact of autophagy on them.

The integrity of BTB is crucial to spermatogenesis because it is a physical barrier and
provides an immune-privileged environment in vivo. Our findings showed that ectopic
expression of SARS-CoV-2 SPs disrupted the expression of BTB-related proteins in Sertoli
cells (Figure 2), indicating that SARS-CoV-2 posed a potential threat to BTB and could
ultimately damage spermatogenesis. There were reports of viral infections destroying BTB,
leading to semen poisoning. Mumps virus infecting Sertoli cells reduces occludin and ZO-1
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levels, impairs BTB integrity, and disrupts BTB function, leading to male infertility [30].
ZIKV infection or E protein overexpression reduces the interaction between F-actin and
ZO-1, disrupting the BTB and enhancing the permeability of the BTB [31]. The effects of
SARS-CoV-2 on cellular junctional proteins are not limited to BTB. The reports of SARS-
CoV-2 on the blood-gas barrier (BGB) showed that the virus triggered an inflammatory
response, disassembly of AJs and TJs, and deposition of fibrin clots in alveolar epithelial
cells (AECs) and endothelial cells (ECs), leading to the disintegration and thickening of the
BGB [32]. Bioinformatics analyses of lung epithelial and alveolar cells with SARS-CoV-2
infection revealed 39 genes related to cell junctions, especially TJs [33]. The clinical sample
demonstrated that SARS-CoV-2 could increase the blood-brain barrier (BBB) permeability
and downregulate the TJs [34]. Further research showed that the S protein regulated the
structure of the cell junction of the BBB, caused inflammatory responses, disrupted the
function of the BBB, and caused neurological symptoms [35]. All the findings suggested
that the modulation of cellular junctional proteins by SARS-CoV-2 was independent of
cell and tissue type. In addition, we showed that, in addition to S, the N proteins also
reduced the expression of junctional proteins. Bioinformatics analysis showed that the E
protein had the structural basis for recognizing the cells’ junctional proteins [36], but E
had no significant modulating function on junctional proteins in the present study. One
interesting finding was that two closely migrating bands were seen on CX43, and the S
protein significantly enhanced the expression of the large band while the small band was
reduced (Figure 2). CX43 is a protein of the gap junction channel, formed by docking two
hexametric hemichannels. An explanation was that the S protein affected CX43 assembly.
CX43 did not have alternative splicing but had transcriptional factor activity to directly
regulate the transcription of N-cadherin [37]. The protein in the nucleus was shown as
two distinct bands [38], and the expression of N-cadherin was significantly reduced in
S-transfected cells. Hence, we suggest another hypothesis that the S reduced the expression
of CX43 in the membrane, enhanced CX43 phosphorylation and transfer into the nucleus,
and interfered with the structure of the gap junction. Further investigations are required to
shed light on this aspect.

In recent years, autophagy has been demonstrated to be involved in various physiolog-
ical functions in vitro and disease responses in vivo, such as the replication of viruses, cell
differentiation, and regulating the course of diseases. Our findings suggested that SARS-
CoV-2 SPs affected the expression of BTB-related proteins through autophagy. The effects
of E, M, and S on the expression of BTB-related proteins were altered when autophagy was
inhibited (Figures 2 and 5). Autophagy regulated the BTB’s structure and barrier function;
di-(2-ethylhexyl) phthalate (DEHP) exposure destroyed rats’ BTB integrity, down-regulated
junctional proteins, and induced the number of autophagosomes and the levels of au-
tophagy markers LC3-II and p62. Inhibition of autophagy by CQ and 3-MA was sufficient
to reduce the effects of DEHP on BTB [39]. Our findings showed that E and M induced
autophagy formation (Figure 4A) but impeded autophagy flux (Figure 4B). Adding 3MA
suppressed the effects of E and M on BTB-related proteins ZO-1, N-cadherin, and β-catenin,
and S on cluadin11 and CX43 (Figure 5). Our findings indicated that the modulatory effects
of E, M, and S on BTB are mediated by autophagy. The N reduced multiple BTB proteins’
expression, but the regulatory pathway was independent of autophagy. It was reported
that the E and M proteins lead to the accumulation of autophagosomes, but the M protein
did not alter P62 protein levels [40], which is different from our results. In a hamster model
and lung samples of COVID-19 patients, phagophore-incorporated autophagy markers
LC3-II and P62 accumulated, but the results indicated that the accumulation was caused
by autophagy inhibition [41]. In another report, the M protein induced mitophagy by
interacting with LC3 [42]. These findings may not seem entirely consistent, but there
was one commonality: SARS-CoV-2 caused the accumulation of autophagosomes in vivo
and in vitro. We believe that the regulation of autophagy by SARS-CoV-2 indicates differ-
ences in tissues and dependence on the cell type in vitro. Single-nucleus and single-cell
sequencing of patient-derived lung and mucosal samples also confirmed this [41].
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The immunomodulatory effect of Sertoli cells plays an essential role in maintaining
the normal function of the BTB. Sertoli cells produce a variety of cytokines, including
chemokines, growth factors, inflammatory mediators, complement inhibitors, and adhesion
molecules, to regulate the immune response of the testes [20]. TGF-β, FasL, IL-1α, and IL-6
were confirmed to regulate testis immunity and maintain tissue immune privileges [20]. In
a herbicide model, 2, 4-dichlorophenoxyacetic acid (2, 4-D) induced testicular injury and
mouse Setoli cell (TM4) apoptosis, and the expression of Fas and FasL was significantly
upregulated. Depletion of Fas by specific shRNA transfection reversed the effects of 2, 4-D
in TM4 cells [43]. TGF-β modulates immune factors to inhibit the immune response in
the testis [44]. In a model of orchitis induced by LPS in bovine Sertoli cells, LPS induced
IL-6 and IL-1 β, and downregulated the expression of ZO-1 and occludin, resulting in
the inflammatory response of Sertoli cells and TJ damage [45]. The immunomodulatory
effect of Sertoli cells was also used in allotransplantation to prolong the transplantation
time and improve the success rate [46]. All the evidence suggested that the ability of
Sertoli cells to immunomodulate was critical for BTB. We tested the effects of SARS-CoV-2
SPs on the expression and secretion of TGF-β, FasL, IL-1, and IL-6. The results showed
that all SARS-CoV-2 SPs could induce the expression of FasL (Figure 3), a pro-apoptotic
molecule called Fas ligand that could induce cell apoptosis. FasL inhibits the testis immune
response by inducing immune cells, such as lymphocytes, to undergo apoptosis in the
testis. SARS-CoV-2 triggers the Fas/FasL signaling pathway to promote apoptosis as
one of the important ways to cause pathological signs [47]. This was consistent with our
results. E protein induced the expression of TGF-β and IL-1. The rest of the proteins had no
significant effects on the expression and secretion of TGF-β, IL-1, or IL-6 (Figure 3). Multiple
reports have shown that the SARS-CoV-2 infection caused a cytokine storm in the body and
triggered an inflammatory response, even in adipose tissue [48]. A single-cell sequencing
of alveolar epithelial cells showed that SARS-CoV-2 induced IL-6 expression [49], and IL-6
has widely been acknowledged to play an important role in COVID-19. However, our
findings showed that SARS-CoV-2 SPs did not significantly increase IL-6 and IL-1 in Sertoli
cells. It is indicated that SARS-CoV-2 causes different inflammatory responses in vivo and
in vitro, or maybe other viral proteins have the function of modulating immune factors.

5. Conclusions

Ectopic expression of SARS-CoV-2 SPs (E, M, N, and S) in primary human Sertoli
cells modulated the expression of BTB-related proteins and autophagy and increased the
expression of FasL. Autophagy mediates the effect of SARS-CoV-2 SP on BTB-related
proteins. The E and M proteins induced the expression of BTB-related proteins ZO-1 and
Claudin11, promoted the formation of autophagosomes, and impeded autophagic flux.
On the contrary, the S protein reduced the expression of BTB-related proteins ZO-1 and
N-cadherin and inhibited autophagosome degradation. The suppression of autophagy
with 3MA showed that the effect of E, M, and S proteins on the BTB-related proteins was
mediated by autophagy. These findings make it necessary to study the effect of SARS-CoV-2
on BTB in vivo and extend research on the SARS-CoV-2’s effect on cell junctions in other
cell types.
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