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Abstract: Singapore grouper iridovirus (SGIV) is a virus with high fatality rate in the grouper culture
industry. The outbreak of SGIV is often accompanied by a large number of grouper deaths, which
has a great impact on the economy. Therefore, it is of great significance to find effective drugs
against SGIV. It has been reported that edaravone is a broad-spectrum antiviral drug, most widely
used clinically in recent years, but no report has been found exploring the effect of edaravone on
SGIV infections. In this study, we evaluated the antiviral effect of edaravone against SGIV, and the
anti-SGIV mechanism of edaravone was also explored. It was found that the safe concentration of
edaravone on grouper spleen (GS) cells was 50 µg/mL, and it possessed antiviral activity against
SGIV infection in a dose-dependent manner. Furthermore, edaravone could significantly disrupt
SGIV particles and interference with SGIV binding to host cells, as well as SGIV replication in host
cells. However, edaravone was not effective during the SGIV invasion into host cells. This study
was the first time that it was determined that edaravone could exert antiviral effects in response to
SGIV infection by directly interfering with the processes of SGIV infecting cells, aiming to provide a
theoretical basis for the control of grouper virus disease.

Keywords: grouper iridovirus; edaravone; antiviral effect

1. Introduction

Grouper (Epinephelus spp.) is an important cultured species in the aquaculture industry.
The China Fisheries Statistical Yearbook [1] shows that the production of grouper culture
in China reached 192,045 tons in 2020. With the increasing scale of grouper culture, aquatic
environmental problems have become more and more serious, and the deterioration of
the environment has led to an increasing probability of pathogen outbreaks, which now
seriously threatens the sustainable development of the grouper culture industry [2].

Iridescent virus is one of the most damaging pathogenic viruses in aquatic diseases and
has been isolated from more than 100 fish species worldwide. Singapore grouper iridovirus
(SGIV) belongs to the iridovirus family [3]. Infection of grouper with SGIV results in some
typical clinical signs, such as spleen and liver enlargement and mass mortality, within
1–2 weeks [4]. At present, vaccines and drugs are some of the effective means to prevent
and control SGIV [5]. It is shown that two previous vaccines for SGIV offer some protection
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against SGIV infection in grouper [6]. Liu et al. found that a subunit vaccine containing the
recombinant major capsid protein (MCP) of Taiwan grouper iridovirus (TGIV) was effective
in protecting grouper, with a relative survival rate of 86% [7]. However, the protective
effect of vaccines must be carried out before infection in order to produce effective immune
effect. Thus, vaccines only can be used as a means for virus prevention. On the other hand,
problems of inactivation, strict requirements for storage conditions, and unclear doses
seriously affect the application of the vaccine in the aquaculture industry [7,8]. Therefore,
we need to develop antiviral agents that are safe for aquaculture and simple to handle.

It has been reported that chemical drugs are still the most powerful “weapon” in
response to virus infections, due to their single component and stable structure [9]. Many
chemical drugs have the ability to restrict virus infection, such as ribavirin, which has an
inhibitory effect on human norovirus [10]; it also can inhibit the replication of HSV-1, HSV-2,
culex virus, rotavirus, etc. [11]. Moreover, the receiver can also limit the replication of the
ebola virus [12]. Brouwers et al. found that chloroquine inhibited HIV replication in a dose-
dependent manner in vitro [13]. Additionally, antiviral chemical drugs against aquatic
animal viruses were increasingly studied. For example, ribavirin inhibits largemouth
black bass elasmobranch virus (MSRV) in vitro [14], and it also inhibits viral hemorrhagic
septicemia virus (VHSV) [15] and tilapia lake virus (TiLV) [16]. Metformin can interfere
with SGIV binding to host cells and replication, as well as impairing SGIV particles [4].
The above reports indicate that the use of drugs to treat viral infections has great potential
for application.

Edaravone, a member of the chemical class, is derived from pyrazolone and was
first marketed in Japan in 2001 for the treatment of cerebral infarction [17,18]. It has been
confirmed that edaravone has a wide range of applications, including the treatment of
neurological disorders, central nervous system diseases (Alzheimer’s disease, ALS), cardio-
vascular dysfunction, chronic obstructive pulmonary disease (COPD), and drug-induced
chronic kidney injury [19]. Edaravone shows high and balanced antioxidant activity com-
pared with other antioxidants such as uric acid, glutathione and Trolox, and has a broad
applicability to a wide range of free radicals [20]. Moreover, the effects of anti-inflammatory,
anti-cytokine, immunomodulatory, anti-apoptotic, anti-necrotic, anti-fibrotic, membrane
stabilization, protection against lung surface active substances and protection against I/R-
induced injury in several organs are also the characteristic of edaravone [21]. The report
showed that edaravone inhibits the toxicity of cationic liposomes to cells by eliminating
the cell-damaging ROS generated during lipofection [22]. Edaravone increases zonula
occludens-1 protein (ZO-1) expression at the mRNA and protein levels. Simultaneously,
edaravone inhibits permeability changes in human pulmonary microvascular endothelial
cells (PMVEC) by enhancing vascular endothelial cadherin to intervene in the treatment of
ARDS [23]. The use of edaravone greatly improved CSDS-induced depression and anxiety
behaviors. In addition, edaravone significantly attenuated CSDS-induced neuronal loss,
microglial activation, astrocyte dysfunction, oxidative stress damage, energy metabolism
and activation of pro-inflammatory cytokines in the hippocampus (Hip) and mPFC of
mice [24].

However, there are no reports on the use of edaravone for the control of viral diseases
in grouper. Our object in this study was to investigate the role and the mechanism of the
action of edaravone in SGIV infection in vitro, aiming to address the need for an effective
therapeutic agent for iridovirus infection during aquaculture.

2. Materials and Methods
2.1. Cells and Viruses

Grouper spleen (GS) cells were isolated and preserved in our laboratory. GS cells were
cultured at 28 ◦C in Leibovitz’s-15 medium (Gibco, Grand Island, NY, USA) containing
10% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA) [25]. The SGIV was
isolated from hybrid grouper reared in Guangxi (Epinephelus fuscoguttatus ♀× Ephinephelus
lanceolatus ♂). The aptamer LYGV1, which can specifically identify SGIV-infected GS
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cells [26], was screened using the SELEX technique. The aptamer LYGV1 was labeled
with 6-carboxyfluorescein (FAM) and synthesized by Sangon Biotech (Shanghai, China).
Edaravone was purchased from Chengdu Herbpurify Co., Ltd. (Chengdu, China).

2.2. Determination of the Safe Concentration of Edaravone

The cells (1 × 105 cells/well) were seeded into 96-well plates and incubated in a cell
culture incubator at 28 ◦C for 18 h. Cells were incubated with edaravone (50, 125, 250, 500,
1000 and 2000 µg/mL) or L-15 medium alone for 48 h at 28 ◦C. The cell morphology was
observed using an inverted microscope (Nikon, Ts2, Japan, Tokyo Metropolis) for 48 h, and
then 10 µL/well of CCK-8 solution was added to the cells and incubated at 28 ◦C for 4 h.
The effect of edaravone on the cell viability was determined by measuring the absorbance
at 450 nm using an enzyme-labeled instrument (Thermo, Waltham, MA, USA). The cell
viability was calculated according to the following formula: Cell viability rate = Absorbance
of cells in treatment group/absorbance of cells in control group × 100%.

To further determine that 50 µg/mL is the safe cell concentration of edaravone, we
tested the cytotoxicity of edaravone using laser scanning confocal microscopy (LSCM,
Nikon, C2, Japan, Tokyo Metropolis) observation. Briefly, the cells (1 × 105 cells/well) were
seeded in a 35 mm glass-bottom dish and incubated in a cell incubator at 28 ◦C for 18 h.
Edaravone, with a concentration of 50 µg/mL, was added to incubate the cells for 48 h; the
cells incubated with L15 medium were used as control. After that, the cells were fixed with
4% paraformaldehyde for 1 h at 4 ◦C, and washed three times, and subsequently incubated
with keratin (Anti-pan Cytokeratin). Finally, keratin was labeled with FAM-FITC. The cell
morphology was observed using laser scanning confocal microscopy (LSCM, Nikon, C2,
Japan, Tokyo Metropolis).

2.3. Confirmation of Gene Expression by RT-qPCR

The cells (8 × 105 cells/well) were seeded into 12-well plates and incubated in a cell
culture incubator at 28 ◦C for 18 h. The cells were treated with SGIV or SGIV+edaravone
(50, 25, 12.5 µg/mL) for 48 h. The cytopathic effect of each group was observed using a
light microscope, and the cells from each group were collected for total RNA extraction to
detect the expression of the major capsid protein (MCP) and vesicle protein (VP19) of SGIV
by RT-qPCR, the β-actin gene (β-Actin) was used as an internal reference [27]. The primers
used for RT-qPCR are listed in Table 1.

Table 1. The primers used for detecting Singapore grouper iridovirus (SGIV) infection in RT-qPCR.

Primer Sequences

qMCP-F 5′-GCACGCTTCTCTCACCTTCA-3′

qMCP-R 5′-AACGGCAACGGGAGCACTA-3′

qVP19-F 5′-TCCAAGGGAGAAACTGTAAG-3′

qVP19-R 5′-GGGGTAAGCGTGAAGACT-3′

β-actin-F 5′-TACGAGCTGCCTGACGGACA-3′

β-actin-R 5′-GGCTGTGATCTCCTTCTGCA-3′

2.4. Aptamer (LYGV1)-Based Fluorescent Molecular Probe (AFMP) Monitoring of SGIV Infection

To further confirm the antiviral efficacy of edaravone, we used the FAM fluorescently
labeled aptamer LYGV1 to detect SGIV infection using flow cytometry. In short, the cells
were treated with SGIV or SGIV+edaravone (50, 25, 12.5 µg/mL), and cells treated with L15
medium alone were used as control; 48 h afterward, the cells in each group were collected to
be incubated with FAM-labeled aptamer LYGV1 for 30 min at 4 ◦C. Then they were washed
twice with PBS. Finally, the cells were resuspended and analyzed using flow cytometry.
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2.5. Antiviral Mechanism of Edaravone against SGIV Infection: Effect of Edaravone on
SGIV Particles

The cells (8 × 105 cells/well) were seeded into 12-well plates and incubated in a cell
incubator at 28 ◦C for 18 h. Edaravone (50 µg/mL) and SGIV were co-incubated at 4 ◦C for
2 h. The virus was collected by centrifugation at 25,000 g for 30 min at 4 ◦C and resuspended
in 100 µL TN buffer. Subsequently, 10 µL of the treated virus particles was added to the
cells in the 12-well plate. SGIV without edaravone treatment was the control group. After
48 h, the cells of each group were collected to extract total RNA for the detection of SGIV
MCP and VP19 expression by RT-qPCR. Moreover, we also characterized SGIV infection
by viral titer determination. The viral titers of SGIV in each group were determined by
50% tissue culture infectious dose (TCID50), as previously described.

2.6. Antiviral Mechanism of Edaravone against SGIV Infection: Effect of Edaravone on SGIV
Binding to Host Cells

The cells (8 × 105 cells/well) were seeded into 12-well plates and incubated at 28 ◦C
for 18 h. The cells were treated with edaravone (50 µg/mL) +SGIV for 30 min at 4 ◦C.
After removing the supernatant, the cells were washed twice with L15 medium and then
cultivation continued for 12 h at 28 ◦C. The cells of each group were collected to extract
total RNA for the detection of SGIV MCP and VP19 expression by RT-qPCR. The cells
treated with SGIV only were used as control.

We also performed the assay using flow cytometry by treating edaravone (50 µg/mL)
with Cy5-labeled SGIV (Cy5-SGIV) [27] for 2 h at 4 ◦C, while the control group was treated
with Cy5-SGIV only. After 2 h, the cells were collected from each well and washed twice
with PBS. Finally the results were analyzed using flow cytometry.

2.7. Antiviral Mechanism of Edaravone against SGIV Infection: Effect of Edaravone on SGIV
Invading the Host Cells

The cells (8 × 105 cells/well) were seeded into 12-well plates and incubated at 28 ◦C
for 18 h. SGIV was added to the cells for 30 min adsorption at 4 ◦C. After that, the cells were
washed twice with L15 medium and then treated with edaravone (50 µg/mL) for 2 h at
28 ◦C, and the cells treated with L15 medium were used as control. Subsequently, the cells
were harvested from each group after 12 h incubation at 28 ◦C for total RNA extraction,
and the expression of SGIV MCP and VP19 was detected by RT-qPCR.

Furthermore, the effect of edaravone on SGIV invading the host cells also validated
using flow cytometry analysis. The cells were treated with Cy5-SGIV at 4 ◦C for 2 h and
washed twice with L15 medium. Following that, the cells were treated with edaravone
(50 µg/mL) or L15 medium for 2 h at 28 ◦C. The cells were washed twice with PBS after
digesting with proteinase K, and then subjected to flow cytometry for analysis.

2.8. Antiviral Mechanism of Edaravone against SGIV Infection: Effects of Edaravone on SGIV
Replication in Host Cells

The cells (8 × 105 cells/well) were seeded into 12-well plates and incubated at 28 ◦C
for 18 h. The cells were treated with SGIV at 4 ◦C for 30 min and then incubated at 28 ◦C
for 2 h to allow SGIV to enter the host cells. After washing twice with L15 medium, the
cells were incubated with edaravone (50 µg/mL) for 10 h at 28 ◦C. The control group
was SGIV-infected cells that were treated without edaravone. Subsequently, the cells were
collected for total RNA extraction and the expression of SGIV MCP and VP19 was examined
by RT-qPCR.

2.9. Statistical Analysis

The data were presented as three independent experiments with mean ± SD. Re-
sults between groups were analyzed with one-way Student’s t-test in SPSS 16.0 software.
Statistical significance was indicated by *, p < 0.05, and **, p < 0.01, respectively.
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3. Results
3.1. Edaravone at a Safe Working Concentration Exhibited No Cytotoxic Effects

To investigate the safe working concentration of edaravone, edaravone at the concen-
tration of 50, 125, 250, 500, 1000 and 2000 µg/mL was used to treat the GS cells. It was
observed by microscopy that the cell morphology changed significantly at the concentra-
tions higher than 50 µg/mL, while the GS cells grew well, with no change in morphology,
at the concentration of 50 µg/mL (Figure 1A). Cell activity analysis also revealed that the
concentration of 50 µg/mL had no effect on the cell activity, and the results were consistent
with those of the light microscopy (Figure 1B).
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Figure 1. Safe cell concentration of edaravone. (A) It was observed by microscopy that the cell
morphology changed significantly at the concentrations higher than 50 µg/mL. Scale: 100 µm.
(B) Cell activity analysis also revealed that the concentration of 50 µg/mL had no effect on the cell
activity. Data are shown as the mean SD (n = 3), ** indicating p ≤ 0.01, Ns indicating p > 0.05. (C) The
cytoskeleton of the cells incubated with edaravone (50 µg/mL) remained normal compared with the
control cells. Scale: 50 µm.

The cytoskeleton is the main mechanical structure of cells and plays an important role
in cell function. To further verify whether 50 µg/mL is the safe working concentration of
edaravone, we made a thorough inquiry into the effect on the cytoskeleton of edaravone.
We found that the cytoskeleton of the cells incubated with edaravone (50 µg/mL) remained
normal compared with the control cells (Figure 1C), indicating that the safe concentration
of edaravone did not cause any cytotoxic effects. These results were consistent with the
observations from the previous CCK-8 assay, which confirmed that the safe working
concentration of edaravone was ≤ 50 µg/mL

3.2. Inhibition Effects of Edaravone on SGIV Infection

To explore the effect of edaravone on SGIV infection, we treated SGIV-infected cells
with edaravone. GS cells cultured with SGIV + edaravone (50, 25, 12.5 µg/mL) were the
test group, and cells infected with SGIV alone were the control group. Cell morphology
was observed using light microscopy. Few typical cytopathic effects (CPEs) were observed
in cells cultured with SGIV + edaravone (50, 25 µg/mL) (Figure 2A). In addition, the
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expression of the SGIV MCP and VP19 gene was significantly lower in the edaravone
treated group (50 µg/mL, 25 µg/mL) compared to the control (Figure 2B). Similarly, flow
cytometry assays showed a significant decrease in fluorescence intensity in cells treated
with edaravone (Figure 2C).
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Figure 2. Inhibition effects of edaravone on SGIV infection. (A) Cell morphology was observed
using light microscopy. Few typical cytopathic effects (CPEs) were observed in cells cultured with
SGIV + edaravone (50, 25 µg/mL). Scale: 100 µm. (B) The expression of the SGIV MCP gene was
significantly decreased, 11.44-fold (50 µg/mL) and 3.77-fold (25 µg/mL), and the SGIV VP19 gene
was significantly decreased, 10.22-fold (50 µg/mL) and 2.72-fold (25 µg/mL) in the edaravone treated
group compared to the control. (C) Flow cytometry assays showed a significant decrease of 3.08-fold
(50 µg/mL) and 2.29-fold (25 µg/mL) in fluorescence intensity in cells treated with edaravone. Data
are shown as the mean SD (n = 3), ** indicating p ≤ 0.01, * indicating p ≤ 0.05, and Ns indicating
p > 0.05.

3.3. Edaravone Possessed the Ability to Damage the SGIV Particles

For investigating the antiviral mechanism of edaravone against SGIV infection, we
firstly explored the destructive effect of edaravone on SGIV particles. The SGIV-infected
cells treated with edaravone (50 µg/mL) were the test group, and those infected with
SGIV only were the control group. It was shown that the viral MCP and VP19 genes were
significantly down-regulated in the test group compared to the control group (Figure 3A).
Moreover, a significant decrease in the SGIV TCID50 in the test group was observed
(Figure 3B), indicating that edaravone (50 µg/mL) has a destructive effect on SGIV particles.

3.4. Inhibitory Effects of Edaravone on SGIV Binding to Host Cells

To investigate whether edaravone has an effect on the binding of SGIV to host cells, the
effect of edaravone on the binding of SGIV to host cells was first examined by RT-qPCR. The
results revealed that the expression of SGIV MCP and VP19 genes was significantly lower
in the edaravone (50 µg/mL) treated group than that in the control group (Figure 4A). In
addition, flow cytometry results showed that the Cy5 fluorescence signal was significantly
reduced in cells treated with edaravone (50 µg/mL) compared with the control group
(Figure 4B). These results suggested that edaravone (50 µg/mL) could interfere with the
binding of SGIV to host cells.

3.5. Inhibitory Effects of Edaravone on SGIV Replication in Host Cells

The effect of edaravone on SGIV replication in host cells was analyzed by RT-qPCR.
The results showed that the expression of SGIV MCP and VP19 genes was significantly



Viruses 2023, 15, 2237 7 of 12

decreased in the cells treated with edaravone (50 µg/mL) compared to the control group
(Figure 5), suggesting that edaravone could inhibit the replication of SGIV in the cells.
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was significantly decreased, 1.6-fold, and the SGIV VP19 gene was significantly decreased, 1.57-fold,
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3.6. Inhibition Rate of Edaravone in Different Stages of SGIV Infection

The inhibition rate of edaravone on different stages of SGIV infection was examined
by RT-qPCR. According to the expression of the viral MCP gene, it was shown that the
inhibition rates of edaravone (50 µg/mL) on SGIV particles (Test 1), SGIV binding to
host cells (Test 2), and SGIV replication (Test 3), were 38%, 41%, and 92%, respectively
(Figure 6A). Similar results appeared in the expression of the SGIV VP19 genes detection at
different stages of SGIV infection (Figure 6B), revealing that edaravone (50 µg/mL) has
good antiviral activity against SGIV.
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4. Discussion

SGIV is a highly pathogenic iridovirus, which brings huge losses to the healthy
cultivation of grouper. Currently, there are few drugs approved for the treatment of
grouper infected with SGIV. Given that edaravone has many inexpensive and readily
available formulations for clinical use, our goal in this study is to explore the effects of
edaravone on SGIV infection.

Edaravone is a pyrazolone derivative. Pyrazolinone scaffolds are found naturally in
many alkaloids and various drugs [18], and their wide range of biological applications
include anti-inflammatory [28,29], anticancer [30], analgesic [31], anti-diabetic [32], anti-
microbial [33,34], antioxidant [35,36], active binding and enzyme inhibition [37]. Antipyrin,
a derivative of pyrazolone, and its derivative Jodantipyrin have shown good antiviral
effects in the treatment of viral diseases such as tick-borne encephalitis, renal syndrome
hemorrhagic fever, influenza, and hepatitis B-C [38]. Srinivasan et al. synthesized a series
of novel spiro-piperidinyl pyrazolones, several of which exhibited significant antiviral
activity against buffalo orthopox virus (BPXV) [39]. Pyrazolines are structurally similar
to pyrazolones and their derivatives also exhibit significant antiviral activity. Rizvi et al.
obtained a series of novel 2-pyrazolines based on the piperidyl-thienyl ring system, using
synthesis, and found that most of them have anti-HIV-1 activity [40]. Evidence has con-
firmed that triaryl pyrazoline impedes flavivirus infections such as dengue virus, yellow
fever virus, St. Louis encephalitis virus, Western equine encephalitis virus, mouse hepatitis
virus, and vesicular stomatitis virus [41]. Seeing that pyrazolines have an antiviral effect,
we want to investigate whether edaravone also has an antiviral function.

We first evaluated the cell safety concentration of edaravone, because drugs have their
own safe working concentrations, and if the drug concentration is too high, it can have
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toxic effects on the host cells. We found that the safe concentration of edaravone on GS
cells was 50 µg/mL. When the concentration of edaravone was higher than 50 µg/mL,
the morphology of GS cells showed pathological changes and the cell viability decreased
compared with normal GS cells, indicating that the toxicity of edaravone to cells exceeded
a certain concentration. However, the concentration of edaravone at 50 µg/mL had no
significant toxic effects on the cell viability and morphology. After determining the safe
working concentration of edaravone, we analyzed its inhibitory effect on SGIV infection.
Results showed a dose-dependent inhibitory effect of edaravone against SGIV infection.

The cytoskeleton is an interconnected network of filamentous polymers and regulatory
proteins composed of different types of actin, microtubules and intermediate filaments.
The cytoskeleton is responsible for cell shape, whole-cell motility, and organelle motility,
thus playing an important role in various cellular functions. Common cytoskeletal defects,
alterations in microtubule stability, axonal transport, and actin kinetics have been demon-
strated in diseased cells [42–44]. Research pointed out that virus infection was associated
with the cytoskeleton [27]. For instance, spring viraemia of carp virus (SVCV) infection
induces the collapse of the cytoskeletal fiber system and the ring structure, and filament
depolymerization [44]. Given that, we speculate that if the drug has an impact on the
cytoskeleton, it will promote viral infection. Thus, we investigated whether edaravone at
safe working concentrations had an impact on the cytoskeleton. We observed that the GS
cytoskeleton remained normal after incubation with 50 µg/mL of edaravone, indicating
that edaravone at safe working concentrations had no toxic effect on the cells. The results
of cell morphology were consistent with cell viability assays.

Viral infection is divided into four processes, including binding, invasion, replication,
and release. The life cycle of a virus begins with the attachment of the virus to the cell
membrane, followed by invasion of the host cell, intracellular replication and release of
viral particles from the host cell. A good understanding of how antiviral drugs exert
their antiviral effects is essential for the development of antiviral drugs [45]. It has been
found that some drugs can interfere with the viral infection process and thus inhibit
viral infection. For example, Xiao et al. showed that Philippine violet showed a good
inhibitory effect on SGIV during the intracellular binding and replication phase of viral
infection in host cells [4]. Liu et al. demonstrated that quercetin exerted antiviral effects
during the SGIV binding phase to cell receptors on the cell membrane [27]. Francesc
et al. found that triaryl pyrazoline worked in the dengue 1 virus replication subsystem,
showing that the drug exerted a broad anti-flavivirus activity by weakly inhibiting viral
translation but significantly inhibiting viral RNA synthesis [41]. Meanwhile, Brankovic
et al. investigated the effect of pyrazolinones on SARS-CoV-2 entry into host cells and
replication-related proteins. They found that pyrazolinones had a high affinity for Mpro and
PLpro of SARS-CoV-2 and exerted antiviral activity by hindering virus–host cell binding
and virus spread [46]. In this study, we discovered that edaravone was able to interfere
with binding to host cells and replication in host cells during SGIV infection; this antiviral
mechanism is similar to the drug described above. Additionally, Obakachi et al. found
that edaravone showed excellent binding ability and high affinity for SARS-CoV-2 spike
glycoprotein (Sgp) and host-cell human angiotensin-converting enzyme 2 protein (hACE-2),
which effectively blocked SARS-CoV-2 entry into cells [47]. However, we could not find
any effect of edaravone on SGIV entry into host cells.

The intact viral structure is essential for the infective ability of the virus. Liu et al.
found that quercetin had a damaging effect on the particles of SGIV, thereby inhibiting the
infective ability of SGIV [27]. Cheng et al. used EGCG to treat the LMBV virus and found
a significant decrease in the infectivity of LMBV [48]. In the present study, we likewise
evaluated the effect of edaravone on SGIV particles. It was shown that pretreatment of the
virus with edaravone resulted in a reduction in viral infectivity, indirectly indicating that
edaravone disrupted SGIV particles.

The innate immune response is the first line of defense of cells against viral invasion.
When a virus invades, the IRF family related to interferon (IFN) can be activated and
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subsequently induce the expression of downstream ISG genes and transcription factors to
suppress viral invasion [49]. Wang et al. found that curcumin modulates NF-κB signaling
pathway-related cellular immune and inflammatory responses to exert the antiviral activity;
they also found that curcumin could enhance the cellular antioxidant capacity through
Nrf2/Keap1 (a typical antioxidant pathway) [50]. It was reported that edaravone could
also effectively inhibit free radical-mediated tissue damage by activating Nrf2/HO-1 and
inhibiting the NFκB signaling pathway [24]. In addition, SGIV infection was able to increase
the production of ROS and damage GS cells [51]. Similarly, edaravone also served as a
broad-spectrum antioxidant, which could scavenge ROS and RNS from aqueous and lipid
environments [21]. Whether edaravone can inhibit SGIV infection through IFN pathway,
the NF-κB signaling pathway, or the antioxidant pathway, needs further investigation.

5. Conclusions

Edaravone has a concentration-dependent inhibitory effect on SGIV infection. More-
over, edaravone can damage SGIV particles and can interfere with the SGIV infection
processes of binding to host cells and replication in host cells. Our results confirm that
edaravone has great potential to be a drug in the prevention and control of SGIV.
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