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Abstract: Influenza A viruses continue to be a serious health risk to people and result in a large-scale
socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but
through the accumulation of mutations or genetic reassortment, they can overcome interspecies
barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically
infect humans and exhibit limited human-to-human transmission. However, further adaptation
of these viruses to humans may result in airborne transmissible viruses with pandemic potential.
Therefore, we are beginning to understand genetic changes and mechanisms that may influence
interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A
viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission
of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains
with pandemic potential and the prevention of pandemics.

Keywords: influenza A virus; cross-species transmission; molecular mechanisms; adaptive mutations;
reassortment

1. Introduction

Influenza viruses are segmented, capsular, negative-sense RNA viruses that are mem-
bers of the Orthomyxoviridae family. They can be categorized into four groups, A, B, C, and
D, according to the antigenic variations in nucleoprotein (NP) and matrix protein (M). Only
influenza A viruses are capable of causing viral pandemics [1]. Influenza A viruses are
divided into different subtypes based on the antigenicity of their hemagglutinin (HA) and
neuraminidase (NA) membrane glycoproteins [2,3]. Wild aquatic birds are natural hosts
of influenza A viruses [4]. However, through reassortment or adaptive mutations, some
subtypes can overcome the host barrier and spread to poultry and mammals, including
people, leading to occasional illnesses, epidemics, and pandemics [5].

Influenza A viruses continue to endanger human health throughout the world and
have resulted in significant socio-economic losses. There are approximately 1 billion cases
of seasonal influenza that occur annually, with 3–5 million of those cases being severe [6].
An influenza A virus is also a zoonotic pathogen with a multitude of hosts, allowing for
interspecies transmission (birds → other mammals/humans), adaptation of new hosts, and
the emergence of novel pandemics [7]. Properties that promote interspecies adaptation
of viruses include extracellular properties (the stability of virions and the HA protein,
virion morphology, balance of HA binding, and NA receptor-destroying activities) and
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intracellular properties (receptor-binding specificity by the HA protein, HA stability, poly-
merase efficiency, and interferon antagonism) [8]. Currently, there have been reports of
cross-species transmission of avian influenza viruses such as H3N8, H5N6, H5N8, H10N3,
and H7N4 [9–13]. The viruses have been observed in mammals by breaking the host barrier
through multi-site adaptive changes and reassortment. “Antigenic drift” (accumulation
of substitutions in the HA and NA proteins) and “antigenic shift” (recombination of gene
segments) are responsible for the phenotypic diversity of influenza A viruses [14,15]. Four
global pandemics have been triggered by influenza viruses of the H1, H2, and H3 subtypes
in the last 100 years [16]. Unlike seasonal influenza, pandemic viruses result from antigenic
switching and are unpredictable [17]. Pre-existing host antibodies offer little protection
against these new viruses [18]. Furthermore, animals such as ferrets and pigs, which have
both avian and human receptors, play a role as a mixing vessel for the reassortment and
generation of the new influenza A virus’s phenotypes [19]. The 2009 pandemic H1N1
(pdmH1N1) was caused by a novel swine-origin recombinant virus, which contained gene
segments from three different swine flu lineages [20]. The ability of zoonotic influenza
viruses to become airborne should probably be considered an important determinant in
crossing the barrier of animal-to-human transmission [21]. Airborne transmission is also the
main mode of influenza virus transmission between humans [22]. It has been determined
that all influenza viruses responsible for the four recorded pandemics had airborne trans-
mission. This implies that acquiring airborne transmission ability is essential for influenza
viruses to adapt to human hosts and have pandemic potential [22]. Consequently, we
summarize genetic changes and mechanisms that may influence interspecific adaptation,
cross-species transmission, and pandemic potential of influenza A viruses and discuss
the phenotypic traits associated with airborne transmission of influenza A viruses. This
facilitates the monitoring of the virus and the conduct of risk assessments, as well as the
prevention of outbreaks of new pandemic influenza viruses.

2. Transmission Modes of the Influenza A Virus

Influenza viruses transmit through multiple modes, including contact (either direct
or through a contaminated surface) and inhalation of expelled respiratory droplets or
aerosols, the latter two being collectively referred to as airborne [22,23]. In previous
studies, droplet diameter was frequently employed as a demarcation between droplet and
aerosol transmission, most commonly 5 µm [24]. Droplet transmission (>5 µm) and aerosol
transmission (≤5 µm) differ in terms of generation mode, aerodynamics, infectivity, and
infection route. Droplets are usually produced by the patient through coughing, sneezing,
or speaking, and due to gravity, have a restricted transmission distance and are suspended
in the air for a brief period of time [25]. However, viruses are very efficiently spread
through aerosols by the patient’s breathing alone [26]. Small aerosols are also more likely
to penetrate deep into the alveoli and cause dramatic host responses [26,27]. In addition to
the respiratory tract, the conjunctiva and digestive tract are also important routes of aerosol
infection [28]. Aerosols may be the main mode of virus transmission in particular scenarios,
such as poorly ventilated homes, hospital departments, and wards [29]. It is unclear how
much each transmission route contributes to the overall viral propagation capacity, and
further research is still required through extensive data collection and modeling. Recently,
researchers have questioned the demarcation between droplets and aerosols because it
is not based on the well-defined physical properties of droplets or their dynamics in a
complex physical environment [30,31]. Viral transmissivity is a continuum that depends on
numerous factors (gravitational settling rate, transport, and dispersion in a turbulent air jet,
viral load and viral shedding, virus inactivation) that cannot be adequately characterized by
a single droplet diameter. Therefore, an airborne transmission mode based on the physical
properties of exhaled droplets and their interactions with the environment and human
behavior can be used to replace the existing artificial dichotomy [30,32].

Both droplets and aerosols can facilitate efficient host-to-host transmission of influenza
viruses. Therefore, it is crucial to comprehend the mechanisms of cross-species and airborne
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transmission of influenza A viruses and to explore the mutational pathways in the evolution
of viruses [21]. Several requirements that we believe are important for influenza A viruses to
become airborne are as follows: 1⃝ Influenza virions can attach to the appropriate cells in the
upper respiratory tract and replicate efficiently. 2⃝ Virions are relatively stable and remain
infectious while transiting between and within hosts. 3⃝ Virions can be efficiently released
outside the cell, leaving the upper respiratory tract as single particles and being expelled
in large numbers. The requirements and corresponding mechanisms are summarized in
Table 1.

Table 1. Requirements and corresponding mechanisms for cross-species transmission and adaptation
of influenza A viruses to new hosts.

Requirements Corresponding Mechanisms

1⃝ Influenza virions can attach to the appropriate cells in the
upper respiratory tract and replicate efficiently.

Alteration in HA receptor binding specificity to facilitate viral
infection.

Enhancement of viral polymerase activity to increase the
number of viruses in the respiratory tract and efficiently releases
them into the air.

2⃝ Virions are relatively stable and remain infectious while
transiting between and within hosts. The occurrence of adaptive mutations to improve HA stability.

3⃝ Virions can be efficiently released outside the cell, leaving the
upper respiratory tract as single particles and being expelled in
large numbers.

Maintenance of the functional balance of HA-NA to produce
single-particle viruses

1⃝ 2⃝ 3⃝ Reassortment of genes in different segments to help the virus be
airborne.

3. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species
Transmission and New Host Adaptation
3.1. Acquisition of HA Human Receptor Binding Preference

The receptor-binding preference of influenza A viruses is critical for successful cross-
species transmission of the virus from animal hosts to humans [33]. Studies have demon-
strated that avian influenza viruses terminal sialic acid (SA) residues on glycans that are
linked to the penultimate galactose through an α-2,3 linkage (SAα-2,3Gal), while human
influenza viruses terminal sialic acid residues on glycans that are linked to the penultimate
galactose through an α-2,6 linkage (SAα-2,6Gal) [34]. The expression and distribution of
SA receptors in tissues may in part contribute to the host range and interspecific adaptation
of virus infections [35]. In most avian species, avian-type receptors (SAα-2,3Gal) dominate
in tracheal epithelial cells. In contrast, the human upper respiratory tract is rich in SA with
α-2,6-linked carbohydrates and thus might be infected by human influenza viruses [36,37].
Both seasonal and pandemic influenza viruses have a high propensity for attaching to
human receptors, according to a retrospective analysis by researchers. This preference
contributes to virus attachment and efficient replication in the human upper respiratory
tract [38]. The human lower respiratory tract contains SAα-2,3Gal, which could explain
why avian influenza viruses are able to infect humans and cause a strong host response [39].

The receptor-binding site (RBS) of HA is formed by the 190 helix, the 130 loop, and
the 220 loop [40]. RBS has a pocket-like shape with a sialic acid binding site, and amino
acid changes in and around it are essential for the specificity of receptor binding and
determining the host range of the virus [41]. The molecular mechanisms by which avian-
specific HAs gain human receptor-binding avidity vary among different subtypes [42].
E190D and G225D for H1, G226L and G228S for H2 and H3 (HA residues here follow H3
numbering unless otherwise stated) not only confer α-2,6 binding and infection of humans
but also successfully spread between human hosts [43–46]. The main reason for the shift
in receptor binding preference is the widening of the binding pocket due to adaptive
mutation [47]. It has been suggested that the G225D substitution induced a significant
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conformational change in the 220-loop, thereby altering the receptor binding specificity [48].
Similarly, the E190D can also expand the binding pocket by changing the conformation
of the 220 loop [49]. The Q226L substitution provides a hydrophobic environment and
prevents the avian receptor from binding in the trans conformation that is associated with
tight binding [50]. The shift of the 220 loop is maximal when both Q226L and G228S substi-
tutions are present [51]. The human H3N8 virus A/Henan/4-10/2022 haemagglutinin has
a degenerative codon in position 228, which could be residue G or S [52]. As previously
reported for H5N1 and H7N9 viruses, the novel virus could be quickly adapted to human
receptor binding by dynamic substitution of key residues of viral proteins [53,54]. In con-
trast, the adaptive replacements needed for the H5, H6, and H7 subtypes of avian influenza
strains to spread in human hosts remain elusive. Observational studies and reverse genetics
studies may assist in the discovery of the corresponding genetic changes [55,56]. The two
substitutions L129V and A134V, which were identified in a virus isolated from a human
case, can change the HA receptor binding preference of H5N1 viruses from SAα-2,3Gal
to SAα-2,3Gal and SAα-2,6Gal [55]. H5N1 virus A/duck/Egypt/10185SS/2010 (dkEgy10,
clade 2.2.1) contains a Q226L mutation, while N224K, Q226L, N158D, and an L133a dele-
tion were identified in A/chicken/Vietnam/NCVD-093/2008 (ckViet08, clade 7.2) [56]. In
conclusion, the structural changes in the RBS of H5N1 viruses mainly focus on alteration of
the length of the 130-loop, alteration of a combination of residue positions in the 130-loop
and 220-loop, mutations in the 190-helix, and removal of a glycosylation sequon at position
158 [57]. The S123P substitution in HA increases the specificity of the H5N6 virus for
human receptor binding. The I151T alteration and residue 129 deletion increase the virus’s
ability to bind to human receptors and infect humans [58]. Similar mutations that confer
human receptor binding preference on H1, H2, and H3 subtypes were introduced to H6N1
A/Taiwan/2013 viruses. It was found that the G225D mutation completely switches speci-
ficity to the human-type receptor [59]. For the H7 subtype, G186V and Q226L mutations
may be important for increasing the human receptor binding preference of viruses [60,61].
The hydrophobic milieu surrounding the 220 loop, engendered by the alterations S138A,
G186V, T221P, and Q226L, facilitates the attachment of H7N9 viruses to the α-2,6 sialic
acid receptor [62]. Several alternative triamino acid mutations (V186G/K-K193T-G228S
or V186N-N224K-G228S) have been shown to switch the receptor specificity of H7N9
HA from avian to human [63]. Furthermore, alterations in glycosylation near HA RBS
would influence its affinity to receptors [64]. The loss of glycosylation at Asn91 has been
demonstrated to affect human receptor binding of H1N1 A/South Carolina/1/18 (SC18)
and a single amino acid D225G mutant of SC18 HA (referred to as NY18) by disrupting
the network of inter-residue interactions in the RBS of SC18 and NY18 [65]. The N-glycans
on HA may also cause steric hindrance near the HA–receptor binding domain, thereby
enhancing the affinity to α2,3 sialic acid [66]. The occurrence of adaptive mutations and
altered glycosylation in or near the HA receptor-binding site are significant factors that
influence viral receptor binding preferences.

Studies of the receptor binding preference of HA in pandemic viruses (those that
are able to achieve airborne transmission) revealed that all viruses exhibited high affinity
binding to human receptors [67–69]. The precise molecular mechanism by which viruses
gain airborne transmission remains unclear. It is hypothesized that respiratory droplets
or aerosols, which contain few particles, require cells to expose sufficient high-affinity
receptors in order to initiate infection and spread between hosts [69]. The relative binding
affinity of HA to human receptors correlates with the transmission efficiency of avian
influenza viruses in mammalian models such as ferrets. The experimental results of
the transmission of influenza A virus H1 [70], H3 [71,72], H5 [73], H7 [74], and H9 [75]
subtypes all support this view (Table 2). The acquisition of human receptor binding
preference by the Tianjin H9N2 isolate is facilitated by the mutation G226L and seven
glycosylation sites (GSs) in the HA protein. Transmission experiments indicated that the
virus is efficiently transmitted between guinea pigs and ferrets through direct contact or
an airborne route [75]. The two strains of H10N3 virus (A/chicken/Jiangsu/0104/2019
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and A/chicken/Jiangsu/0110/2019), which possess the mutation G228S, exhibit dual
receptor binding affinity and are highly mammalian-adapted. They can be transmitted
between chickens through direct contact and efficiently between guinea pigs through
direct contact and respiratory droplets [76] (Table 2). The shift in GS also modifies the
transmissibility of the virus. Abdelwhab et al. (2016) discovered that the removal of
glycosylation at sites 154 and 236 resulted in a reduction in viral release and a delay in
mortality in exposed birds, reducing transmission of the virus from chicken to chicken [77].
The T160A substitution in the A/Vietnam/1203/2004 (H5N1) virus removes the N-linked
glycosylation (NLG) sequence at position 158. The removal of GS works synergistically with
Q226L or Q226L/G228S mutations to affect the receptor binding preference of the virus,
thereby promoting the cross-species transmission of the virus [78,79]. However, possessing
a human receptor binding preference is merely the initial stage for the virus to acquire
pandemic potential. It needs to be combined with other adaptive traits to gain airborne
capacity [76]. The HA G228S mutation increases the virus’s capacity to attach to human
receptors. In conjunction with the PB2 E627K alteration, it facilitates the virus’s effective
airborne transmission among ferrets [71]. In summary, mutations in RBS and glycosylation
modifications around RBS are important factors affecting the receptor-binding specificity of
the influenza A virus. Human receptor binding preferences are also important for viruses’
interspecific adaptation and the acquisition of airborne phenotypes.

Table 2. The HA mutation sites that affect HA receptor binding specificity and transmission of the
influenza A virus.

Host Viral
Subtypes Mutations in HA Receptor Binding Impact on Viral

Transmissibility Reference

Guinea pig

H9N2 T187P + M227L Enhanced affinity for
α-2,6 receptors

Effective transmission between
guinea pigs by direct contact [80]

H1N1 E225G Reduced binding affinity
forα-2,6 receptors.

The ability of droplet
transmission between guinea

pigs is lost
[81]

Guinea pig and
ferret H9N2 Q226L

Receptor preference
changed from α-2,3 to

α-2,6 receptors

Effective transmission between
guinea pigs through direct
contact and airborne routes

[75]

Guinea pig and
pig H3N2 E190D V226I G228S

Receptor preference
changed from α-2,3 to

α-2,6 receptors

Effective transmission by
contact [82]

Guinea pig H10N3 G228S
Acquisition of dual
receptor affinity for
α-2,3 and α-2,6

Effective transmission between
guinea pigs by contact and

aerosols
[76]

Seal H3N8 A134T Developed affinity for
α-2,6 receptors

Effective transmission through
respiratory droplets

(Transmission rates: 100%)
[72]

Dog H5N6
Q226L

Glycosylation
deletion at locus 158

Increased affinity for
α-2,6 receptors

Crosses the mammalian host
barrier and is capable of

infecting dogs
[83]

Ferret

H3N8 G228S Enlarged affinity for
α-2,6 receptors

Simultaneous introduction of
the HA G228S and PB2 E627K
mutation sites can cause viral

droplet transmission

[71]

H5N1 Q226S G228S
Receptor preference

changed from α-2,3 to
α-2,6 receptors

Effective airborne transmission [73]

H9N2 I155T H183N A190V Improved affinity for
α-2,6 receptors Effective airborne transmission [84]

Note: Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I), Phenylalanine (F), Proline (P), Threonine
(T), Tryptophane (W), Serine (S), Tyrosine (Y), Cysteine (C), Methionine (M), Aspartic acid (D), Asparagine (N),
Glutamic acid (E), Glutamine (Q), Lysine (K), Arginine (R), Histidine (H).
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3.2. Changes in HA Stability

A critical stage in the infection phase of the influenza virus is the membrane fusion
process mediated by HA. An acidic endosomal environment triggers irreversible conforma-
tional changes in the HA protein, leading to viral fusion with the endosomal membrane and
injecting nucleic acid into the host cells [85,86]. The optimal pH for membrane fusion varies
from host to host [87]. The reasons why HA stability affects the interspecific adaptation
and transmission of influenza A viruses are as follows: Firstly, increased HA stability
boosts the environmental persistence of influenza viruses and prolongs the half-life of virus
transmission between hosts in the external environment [88]. This has been proven by
influenza virus transmission tunnel (IVTT) experiments [89]. Secondly, HA with moderate
acid stability is indispensable to early conformational changes of HA and prevents virus
inactivation before entering mammalian cells [8]. The virus has to pass through the human
nasal airway epithelium, which is known to be mildly acidic, before entering the human
cells [90]. Finally, HA stability affects membrane fusion sites and triggers varying host
responses through distinct pathways, which in turn regulate the infectivity and transmissi-
bility of the virus [90,91]. It is worth noting that the fusion pH of human-adapted subtypes
is in general lower than that of their avian counterparts [92]. HA with moderate acid stabil-
ity is necessary to support airborne transmission (the primary mode of human-to-human
transmission) of the virus among ferrets [8].

The stability of HA is largely influenced by electrostatic interactions and van der Waals
interactions at domains (RBS, HA1, HA2, and fusion peptide pocket) and subunit interfaces
(HA1-HA1 interfaces, HA1-HA2 interfaces) [93–96]. By regulating these interactions,
adaptive mutations affect structural reorganization under viral membrane fusion, thereby
changing HA stability [97,98]. Amino acid substitutions, including T642H (HA2 numbering
position 64, H1 numbering position HA407), V662H (HA2 numbering position 66, H1
numbering position HA409), T642H, and V662H double mutations, were introduced in the
HA1/HA2 interaction region of the A/WSN/33 (H1N1) virus. These substitutions alter
the pH of the virus-activated HA by affecting molecular interactions at the HA1 and HA2
interface by a pH of 5.4–5.6, like the wild-type strain, while the V662H and double mutant
strains have a lower pH of approximately 5.1–5.3 [99]. Similarly, the HA2-E47K mutation
diminishes the membrane fusion pH of the 2009 H1N1 pandemic (pdmH1N1) virus from
5.4 to 5.0. This is due to the formation of a salt bridge between the HA1–E21 residue
and the HA2-K47 residue, which stabilizes the HA trimer structure [94]. Several reviews
have summarized adaptive mutations that affect the stability of HA acid in influenza A
viruses of the H1, H3, H5, and H7 subtypes [96,100]. Key amino acid residues and charged
residues located in and around RBS, the HA1-HA1 interface, the HA1–HA2 interface,
and the fusion peptide region may play a key role in virus adaptation to a new host and
interspecific transmission.

Numerous investigations have confirmed the strong relationship between HA acid sta-
bility and the transmission capacity of viruses. For example, in mice and ferrets, the swine
influenza virus (pH1N1) A/Tennessee/1–560/2009 was generated via reverse genetics to
contain the HA1-Y17H mutation (pH 6.0), which reduces pathogenicity and eliminates
airborne transmission capacity. After adaptive culture in ferrets, the loss-of-function virus
acquires the HA1-H17Y and HA2-R106K restoration mutations. These two mutations
decline the activation pH to 5.3 and restore the virus’s airborne capacity [101]. In another
study, the A/Perth/16/2009 (H3N2) after cell culture exhibits mutations at positions 78
and 212 of the HA head (G78D and T212I). The virus’s membrane fusion pH increases from
5.5 (wild type) to 5.8 (mutant). The higher replication titers of mutant viruses in cell culture
but lower airborne efficiency in a ferret model suggest that the membrane fusion pH of
H3N2 viruses is related to the airborne efficiency of viruses [102]. Hu et al. (2020) compared
the transmission capacity of two groups of swine H1N1 influenza viruses (gamma-clade)
based on their HA acid stability. The study revealed that strains A/swine/Illinois/2A-
1213-G15/2013 (G15) and A/swine/Illinois/2B-0314-P4/2014 (P4), which have moderate
stability of HA, gain the ability to be airborne among ferrets. In contrast, viruses with a



Viruses 2024, 16, 883 7 of 20

metastable HA protein (A/swine/Illinois/2E-0113-P19/2013 (P19) pH 5.9) outcompeted
and lost the airborne phenotype [103] (Table 3). In conclusion, HA acid stability is an impor-
tant factor in the airborne transmission of viruses. In addition, the virus-host pH feedback
pathway indicates that the virus induces alterations in respiratory tract pH during host
infection, and viruses with metastable HA are inactivated extracellularly. Subsequently,
the virus increases its infectious dose, and the extracellular pH further decreases, leading
to continued virus deactivation. The negative feedback pathway suggests that hosts may
select virus strains containing HA proteins with optimal pH stability [104]. It is noteworthy
that when an HA mutation associated with increased human receptor binding preference
affects HA stability, the virus may require additional compensatory mutations to counteract
the decreased stability caused by the mutation [105,106]. This proposes that a precise
balance of mutations associated with various functions in HA may be necessary for efficient
virus transmission in mammals.

Table 3. The HA mutation sites that affect HA acid stability and transmission of the influenza A virus.

Host Viral
Subtypes Mutations in HA Changes in

Membrane Fusion pH
Impact on Viral
Transmissibility Reference

Chicken

H7N9 D167N (H7
numbering) Reduced HA stability Cannot be transmitted between

chickens by air [107]

H9N2 K363R (H9
numbering) Reduced HA stability

Decreased seroconversion rate,
Decreased airborne

transmission between chickens
[108]

Pig H1N1 HA1-Y17H
HA2-R106K 5.5→6.0

Efficiently transmitted between
pigs by contact (Transmission

rates: 100%)
[109]

Pig→Ferret
(interspecies
transmission)

H1N1 HA1-Y17H
HA2-R106K 5.5→5.3

Effective airborne transmission
between pigs and ferrets

(Transmission rates: 100%)
[109]

Mouse and Ferret H1N1 HA1-H17Y
HA2-R106K 6.0→5.3 Virus regains airborne capacity [101]

Ferret

H3N2 G78D 5.5→5.8 Reduced airborne efficiency [102]

H1N1 HA1-N210S
HA2-T117N

5.8→5.5
5.9→5.6

Improved airborne transmission
between ferrets [103]

H3N2 HA1-L194P <5.5→>5.5

The ability of airborne
transmission between ferrets is

lost (Transmission rates:
100%→0%)

[110]

H5N1 H103Y (H5
numbering) ≤5.6→≤5.5

Simultaneous introduction of
five mutation sites raises

airborne efficiency
[73]

H10N7 T244I HA2-E74D 5.7→5.2 Transmission between ferrets by
aerosols or respiratory droplets [111]

H9N2 HA1-Y17H 5.8→5.4
Loss of airborne transmission,

only through contact (Less
efficient dissemination)

[112]

Note: HA1 and HA2 numbering are the N termini of the HA2 glycoprotein after HA0 cleavage.

3.3. Functional Balance between the Activities of HA Binding and NA Cleavage

HA and NA of influenza viruses recognize the same host molecule SA and exhibit
complementary roles during replication [113]. HA has binding activity and is responsible
for binding to the sialic acid to allow virus internalization. NA is a sialidase that medi-
ates the hydrolysis of the link between the SA bound to HA and the adjacent sugar. The
cleavage activity of NA prevents the aggregation of nascent virus particles at the surface of
the infected cell and allows for viral release [114,115]. In addition to the traditional virion
release activity, NA has also been proposed to carry a second SIA-binding site (2SBS) and
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be involved in the viral entry phase [116]. The 2SBS consists of 370 loops (residues 366–373),
400 loops (residues 399–404), and 430 loops (residues 430–433), which contain residues
that interact with SIA (S367, S370, S372, N400, W403, and K432 (N2 numbering)) [117].
It was found that the 2SBS enhances the activity of catalytic sites and affects the HA-NA
balance [118]. In addition, HA-NA functional balance affects virus attachment. HA binds to
abundant sialylated mucins in the mucus layer, and without NA activity, the viruses may be
trapped before they reach the site on the epithelial cell membrane [119–121]. NA cleavage
activity, which is associated with viral motility in the mucus layer, allows the virion to pene-
trate the sialylated mucus layer and attach to host cells [122,123]. The sialoglycan repertoire
of a host, which varies between species, has a complex composition and distribution of
decoy and functional receptors [124]. Influenza A virus’s NA receptor-destroying activity
and HA receptor-binding affinity need to be balanced with the host receptor repertoire.
When influenza A viruses cross the species barrier, the HA-NA functional balance needs to
be restored for optimal viral adaptation [125]. Therefore, the balance between HA binding
and NA cleavage activity plays an important role in overcoming host barriers and adapting
to new hosts [113]. The optimal functional balance allows viruses to penetrate the sialylated
mucus layer and attach to cells, and they can be released from cells after assembly [126].

Any alteration in HA or in NA may cause a modification of the functional HA-NA
balance (including mutations affecting HA and NA activity, the addition or removal of
glycosylation at key locations, the length of the NA stalk, virus particle morphology, and
the NA receptor binding) [118,127–130]. The HA D222G/E/N substitution increases the
binding intensity of influenza A (H1N1) pdm09 virus SAα-2,6, but does not confer the
corresponding NA activity, thus disrupting the HA-NA balance. This may be the reason
why D222G/E/N viruses are less adaptable to human hosts and cannot transmit effi-
ciently [127]. Mutations affecting the virus particle morphology have been mainly mapped
to matrix protein 1 (M1), and these mutations may be related to HA-NA balance and viral
transmission ability [128]. Kong et al. found that the M1 D156E substitution increases
the proportion of filamentous morphology while decreasing the replicative capacity of
the H7N9 A/Anhui/1/2013 (AH/1) virus in cells, thereby abolishing its transmissibility
among guinea pigs [131]. The M1 P41A mutation in A/swine/Spain/53207/04 (H1N1)
(SPN04) virus reduced the number and length of filamentous morphology and decreased
the NA activity of the virus. The enhanced transmissibility of the SPN04 virus may be
related to the adjustment of the HA-NA balance [132]. In addition, longer filaments would
be able to extend directly through the mucous layer, facilitating airborne transmission
of the virus [128]. NLG of HA has been reported to affect its receptor binding and im-
mune response, thereby contributing to the immune escape and virulence of influenza
A viruses [66,133]. The NLG of NA impacts its structure, activity, specificity, and ther-
mostability. It was discovered that H5N6 viruses lose a potential n-linked glycosylation
site at position 154 and gain an NA mutation at V202I, which affects the balance of HA-
NA function, replication, stability, and pathogenicity of the viruses [134]. In addition, it
has been found that loss of NLG attenuates viral budding and replication [135,136]. The
addition or removal of NLG from the H7 HA head disrupts the HA-NA balance in the
viruses, leading to a reduction in viral fitness. This necessitates corresponding changes
in N9 NA to restore the balance. Influenza viruses with functional balance can achieve
higher transmission efficiencies [129]. Due to the opposite effects of HA and NA in an
infection cycle, simultaneous changes in glycosylation patterns should be regarded as a
characteristic predicting future pandemic outbreaks of viruses [137]. A shortened NA stalk
mainly exists in H5 and H7 subtypes of avian influenza viruses and is also an important
factor in the adaptation of waterfowl influenza viruses to poultry [130,138]. The NA stalk
length can affect the NA activity of H9N2 G1 lineage virus (8-amino acid-deficient mutants),
thereby balancing their HA and NA functions and regulating the entry of viruses into host
cells. This effect is species-specific and influences the host range of the virus [139]. It has
been demonstrated that the highly pathogenic avian influenza (HPAI) H5N1 viruses with
a short stalk exhibit reduced respiratory droplet transmission between ferrets, possibly
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due to the diminished capacity of viruses with a short-stalk NA to penetrate mucus and
deaggregate virions [140]. The 2SBS is an important determinant of the HA-NA-receptor
balance. Its effect on HA-NA balance and viral replication depends on the receptor-binding
properties of HA [141]. The 2SBS is conserved in most avian virus subtypes but is lost
in mammalian variants [118]. Mutations in 2SBS and HA in avian influenza viruses may
become human pandemic influenza viruses by adjusting the HA-NA balance [116]. On the
one hand, mutations in HA precede and drive mutations in NA that allow optimal viral
replication and spread in humans. On the other hand, substitutions in the 2SBS of NA may
precede or drive compensatory mutations in HA, decreasing receptor binding to avian-type
receptors and increasing human receptor binding affinity [142,143]. In pandemic influenza
viruses, the rapid loss of 2SBS binding function may help the virus restore HA-NA stability
in a new host [144].

One of the most significant features of airborne influenza A viruses is the high level of
individual particle shedding. It is directly affected by the functional balance of HA-NA [22].
Although the mechanism by which the virus acquires an airborne phenotype remains
unclear, numerous studies have confirmed the significance of HA-NA functional balance
in relation to airborne transmission [69,145,146]. The HA R149K substitution enhances
the human receptor binding affinity of triple reassortant swine (TRsw) H1N1 influenza
virus A/swine/North Carolina/18161/2002 (NC/02) and its ability to bind to the nasal
turbinates of ferrets, thereby promoting contact transmission of the virus. Nevertheless, an
airborne phenotype for NC/02 was not established until the introduction of the NA and
M segments of the H1N1 pdm09 virus, which yielded NA that matched the highly active
HA [145]. Furthermore, the HA-NA balance is crucial for the effective and long-lasting
spread of viruses from person to person. The TRsw-like A/swine/Hong Kong/915/04
(sw915) (H1N2) virus exhibits comparable receptor binding specificity and affinity to
the pandemic H1N1 virus A/HK/415742/09 (HK415742), with variation only in the NA
segment of their internal genes. Introducing the NA segment from HK415742 into sw915
results in balanced HA-NA activity and a developed respiratory droplet transmission of
the virus [69]. However, although the A/Iowa/CEID23/2005 (Iowa05) (H1N1) virus has
successfully crossed the host barrier to infect humans, the mismatch in HA-NA activity has
made it difficult for the virus to spread from person to person and cause a pandemic [146].
In conclusion, the functional balance of HA-NA has been demonstrated to be closely
associated with the regulation of host range, cross-species transmission, and airborne
transmission of viruses. Further research is warranted to investigate the mechanism
by which the functional balance of HA-NA directly impacts the airborne transmission
of viruses.

3.4. Variations in the Activity of RNA-Dependent RNA Polymerase

RNA-dependent RNA polymerase (RdRp) is a heterotrimeric complex consisting
of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase
acidic protein (PA) [147]. PB1 is the core subunit of RNA synthesis. It facilitates the
assembly and synthesis of RdRp and catalyzes RNA polymerization. PB2 binds to PB1
and NP, assisting in the assembly of the viral ribonucleoprotein (vRNP) and capturing
the 5′ cap of the nascent host-capped RNA during transcription. It adopts a different
conformation to maintain the replication and transcription steps. PA binds to PB1 and plays
an important role in endonuclease activity during transcription. All subunits contribute
to the formation of entry and exit channels for template RNA, nucleoside triphosphates
(NTPs), and products [148,149]. Avian influenza viruses require adaptive mutations or
reassortment to enlarge polymerase activity to adapt to human or other mammalian hosts.
The PB2 subunit contains well-known mammalian adaptation sites, such as the E627K and
D701N mutations, which strengthen viral polymerase activity, replication, pathogenicity,
and transmissibility [150,151]. The temperature-dependent growth of the influenza A virus
is related to the virus host range [152]. Avian influenza A virus is known to replicate in the
intestinal tract of infected birds at a temperature close to 42 ◦C. The PB2 E627K mutation
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allows the virus to adapt to the human host and replicate at higher levels in the human
respiratory tract (33 ◦C) [153]. The host factor acidic leucine-rich nuclear phosphoprotein
32 kDa (ANP32) protein displays differential capacity to support viral polymerase activity
across different species [154]. Mammals only express the shorter ANP32 protein, which
does not efficiently support avian polymerase. However, the presence of PB2 E627K can
compensate for the impaired interactions between different host polymerases [155,156]. In
addition, it has been demonstrated that the adaptation of the viral polymerase to importin-
α plays an important role in interspecies transmission of influenza virus [157]. Although
PB2 E627K and D701N mutations caused the same shift to importin-α7 specificity, the
adaptation mechanisms are different. The D701N mutation promoted binding of PB2
to importin-α1 and exposure of a nuclear localization signal of PB2, thereby enhancing
importin-α mediated nuclear transport in mammalian cells. However, the E627K mutation
only enhances the binding of importin-α without affecting the nuclear entry of PB2 [157,158].
Furthermore, changes to the residues in the PA and PB1 subunits have a comparable impact
on the virulence, reproduction, and transmission of viruses. For example, by boosting viral
polymerase activity, the PA A343S/D347E mutation markedly boosted the virulence of
the H5N1 virus in mice and thus elevated the risk of infection in people [159]. Similarly,
the PA K356R alteration increases the H9N2 virus’s polymerase activity, which raises viral
transcription and export levels in human A549 cells and results in a serious infection
in mice [160] (Table 4). Additionally, the PB1 K577E mutation enhances the polymerase
activity of the H9N2 virus in human cells and boosts its pathogenicity in mice [161].

Numerous investigations have shown that increased polymerase activity is associated
with the acquisition of an airborne phenotype of the virus [162,163]. Effective replication of
upper respiratory viruses mediated by polymerase is essential for the airborne transmission
of avian influenza viruses among mammals [164]. Experimental data support a strong
correlation between the number of influenza viral RNA-containing particles released into
the air and airborne transmissibility among ferrets [165]. We speculate that high-titer
viral particles are expelled as droplets or aerosols when the donor coughs, sneezes, or
even breathes. Once viruses enter the respiratory tract of the recipient host, they replicate
efficiently and multiply rapidly, affecting transmissibility and increasing the potential
for airborne transmission. Researchers also investigated the impact and corresponding
mechanism of polymerase mutation sites on mammalian transmission models [160,162,166].
When replicating within ferrets, recombinant H7N9 viruses with the PB2 E627K and E701N
mutations exhibit increased viral polymerase activity and are effectively spread through
respiratory droplets [167]. Meng et al. (2022) discovered that four mutations (V100I, N321K,
I330V, and A639T) in PA have a synergistic effect on the pathogenicity and airborne trans-
mission of influenza viruses A/swine/Liaoning/265/2017 (LN265) (H1N1). The proposed
molecular mechanism suggests that the V100I mutation in PA augments the cleavage
activity of the nucleic acid endonuclease. Furthermore, the N321K and I330V mutations
develop the binding capacity of vRNA, resulting in the development of the transcriptional
efficiency and replication capacity of the virus [168] (Table 4). Similar to Meng et al.’s
study, H9N2 avian influenza viruses with the PA K356R mutation demonstrated increased
accumulation of PA nuclei, improved viral polymerase activity, and boosted transcriptional
replication. The possible molecular mechanisms are as follows: the mutation at site 356,
which is in loops 350–355 of the PA-C structural domain, may affect nucleic acid endonu-
clease activity, protease activity, or interaction with other PA proteins, thereby affecting
viral replication and transmission [160]. Less research has been performed recently on
the molecular mechanisms of mutation sites in PB1. However, being a fundamental com-
ponent of RNA synthesis, PB1 is required for viral replication. The wild avian influenza
virus A/Mallard/Inner Mongolia/T222/2018 (H3N8) and the virus containing PB1 S524G
(rT222-S524G) were saved by reverse genetics. The virus with the PB1 S524G mutation
exhibits heightened replication efficiency, increased polymerase activity, and enhanced
airborne transmission among ferrets [163]. Moreover, researchers found that the histone
protein H1, H2, encoded by HIST1H1C, regulates the ability of influenza viruses to replicate.



Viruses 2024, 16, 883 11 of 20

And specific substitutions on PB2 regulate viral replication by affecting the expression and
modification of HIST1H1C [169].

In summary, the improvement of viral polymerase activity facilitates the adaptation
of avian influenza viruses to mammalian hosts and enhances their transmission potential,
potentially contributing to the acquisition of airborne transmission capability.

Table 4. Sites of polymerase mutation that affect the replication and transmission of influenza A viruses.

Host Viral
Subtypes

Subunit
(PA/PB1/PB2)

Polymerase
Mutation Site

Impact on Viral Replication and
Transmissibility Reference

Mouse H9N2 PA K356R Enhanced viral replication in mice [160]

Guinea pig

H1N1 PB2 D309N
Virus can be transmitted between guinea

pigs by direct contact and has an increased
replication capacity

[166]

H7N9 PB2 V292I K627E The ability of airborne transmission
between guinea pigs is lost [131]

H9N2 PB2 R340K A588V

Individual mutations enable guinea pigs to
acquire contact transmissibility, and

combined mutations facilitate the virus in
acquiring airborne transmissibility

[170]

Ferret

H1N1 PA V100I N321K
I330V A639T

The virus is transmitted efficiently between
ferrets through respiratory droplets and

replicates with higher efficiency
[168]

H7N1 PB2 T81I
The virus can be transmitted through the
air between ferrets when combined with

other mutations
[170]

H3N8 PB1 S524G
The virus is transmitted efficiently between

ferrets through respiratory droplets and
replicates with higher efficiency

[163]

3.5. Reassortment

The genome of the influenza A virus is composed of eight single-stranded, negative-
sense RNA segments. Co-infection by different strains in the same host allows for reassort-
ment, resulting in enhanced viral diversity and rapid evolution [171]. It has to be noted that
among the four influenza pandemics in the past, three were caused by reassortment [172].
The phenomenon of segment mismatch (including RNA mismatch and protein mismatch
between co-infecting viruses) results in the production of progeny viruses with fitness
defects [173]. Conversely, reassortant viruses with high levels of genetic compatibility may
enhance host adaptability, pathogenicity, and transmissibility and even acquire airborne ca-
pability. A reassortant H7N6 virus with internal genes likely derived from H7N9 and H5N6
exhibited comparable binding affinity for both avian-like and human-like receptors and
displayed efficient airborne transmission among guinea pigs [174]. The novel reassortant
H10N3 virus, whose internal genes are well matched and derived from the H9N2 virus,
is transmitted between guinea pigs through direct contact and respiratory droplets [76].
In addition, it has been found that the matching mechanism of HA, NA, and internal
gene segments (such as PB2-PB1-PA-NP) is crucial to determining whether influenza A
viruses will emerge and successfully transmit among humans [146,175]. The development
of reverse genetics techniques has facilitated the assessment of the effects of a single gene on
viral phenotypic traits such as virus replication, host range, and transmissibility [176]. The
introduction of the HA gene from non-airborne transmissible H7N9 into the genome of the
airborne transmissible H9N2 virus decreased acid and heat stability and completely elimi-
nated airborne transmission among chickens. The results demonstrated that the HA gene
influenced the airborne phenotypes of H7N9 and H9N2 avian influenza viruses among
chickens [177]. The PA gene of the influenza A virus A/swine/Shandong/07/2011 (SD07)
(H1N1) was introduced into the avian influenza virus A/Chicken/Shandong/01/2008
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(SD01) (H9N2) to obtain the reassortant virus rSD01-PA. rSD01-PA virus lost the ability of
airborne transmission among SPF chickens but was still able to infect guinea pigs through
direct contact. The findings indicate that the PA gene plays a crucial role in the replica-
tion and airborne transmission of the H9N2 avian influenza virus [178]. In conclusion,
reassortment is a significant factor in enabling novel host adaptation and cross-species
transmission (including airborne transmission, the characteristic of pandemic viruses) of
influenza A viruses.

3.6. Innate Immune Responses of the Host and Immune Evasion Mechanisms of the Virus

The innate immune system serves as a rapidly responsive first line of defense against
influenza A viruses, which helps to restrict viral replication at an early stage and prevent
further viral spread [179]. Upon viral infection, pathogen-associated molecular patterns
(PAMPs) are recognized by pattern recognition receptors (PRRs) [180]. Activation of
these PRRs triggers signaling pathways, leading to the production of interferon (IFN) and
proinflammatory cytokines, followed by the expression of interferon-stimulated genes
(ISGs) and recruitment of innate immune cells [181]. Many ISG genes have antiviral
activity, one of the most potent of these genes is the human myxovirus resistance protein A
(MXA). MXA targets the NP of MXA-sensitive viruses and inhibits the transcriptional and
replicative functions of viruses. It is an important barrier for cross-species transmission
of influenza viruses [182,183]. The tripartite-motif-containing (TRIM) protein TRIM56
has been identified as an intrinsic host restriction factor of influenza A and B viruses. It
impedes influenza virus infection by hindering viral RNA synthesis via its C-terminal-
tail portion [184]. Moreover, research has demonstrated that eosinophils can initiate a
self-preservation response during influenza A virus infection, survive the virus infection,
and participate in the antiviral response of the host. The host’s innate immune system
restricts the replication and infection of influenza A viruses [185]. Consequently, viruses
have to counteract host antiviral activities in order to replicate in host cells. Viral non-
structure proteins, nonstructural protein 1 (NS1), and PA-X (a fusion protein), play an
important role in the evasion of the host innate immune response by the virus [186]. The
NS1 protein counteracts the host antiviral response through a variety of mechanisms, such
as inhibiting interferon regulatory factor 3 (IRF3) and nuclear factor kappa-B (NF-κβ)
transcription factors, impairing IFN and ISG production [187]. During viral infection,
NS1 and PA-X mediate the shutoff of host protein expression and inhibit cellular antiviral
responses [188]. Studies have shown that multiple mutations associated with the express
ability of host genes have appeared in NS1 and PA-X, and they are most likely related to
host adaptation [189]. Therefore, it is necessary to monitor adaptive mutations in the NS1
and PA-X proteins of influenza A viruses.

4. Conclusions

Adaptive mutations and reassortment can affect a variety of characteristics of in-
fluenza viruses, altering their adaptation, and transmissibility. These characteristics include
receptor binding preference, HA stability, HA-NA functional balance, and polymerase ac-
tivity. Numerous factors influence the choice of adaptation pathways that viruses follow to
obtain the desired phenotype. These include the virus’s subtype and strain, compensatory
mutations, frequent viral exchange in mixed hosts (like pigs and ferrets), and phenotypic
selection for protein function. In summary, a variety of factors influence viral phenotypes,
and there exist several routes to phenotype acquisition that consider the features of the
virus itself, the interactions between various viruses inside the host, and the type of host.
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