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Abstract: Our study examines how dengue fever incidence is associated with spatial (demographic
and socioeconomic) alongside temporal (environmental) factors at multiple scales in the city of Ibagué,
located in the Andean region of Colombia. We used the dengue incidence in Ibagué from 2013 to 2018
to examine the associations with climate, socioeconomic, and demographic factors from the national
census and satellite imagery at four levels of local spatial aggregation. We used geographically
weighted regression (GWR) to identify the relevant socioeconomic and demographic predictors, and
we then integrated them with environmental variables into hierarchical models using integrated
nested Laplace approximation (INLA) to analyze the spatio-temporal interactions. Our findings show
a significant effect of spatial variables across the different levels of aggregation, including human
population density, gas and sewage connection, percentage of woman and children, and percentage of
population with a higher education degree. Lagged temporal variables displayed consistent patterns
across all levels of spatial aggregation, with higher temperatures and lower precipitation at short lags
showing an increase in the relative risk (RR). A comparative evaluation of the models at different levels
of aggregation revealed that, while higher aggregation levels often yield a better overall model fit,
finer levels offer more detailed insights into the localized impacts of socioeconomic and demographic
variables on dengue incidence. Our results underscore the importance of considering macro and
micro-level factors in epidemiological modeling, and they highlight the potential for targeted public
health interventions based on localized risk factor analyses. Notably, the intermediate levels emerged
as the most informative, thereby balancing spatial heterogeneity and case distribution density, as well
as providing a robust framework for understanding the spatial determinants of dengue.

Keywords: dengue; spatio-temporal analysis; geographically weighted regression; integrated nested
Laplace approximation; spatial aggregation levels

1. Introduction

Dengue fever, a mosquito-borne viral disease [1], has become a critical public health
issue globally, particularly in tropical and subtropical regions [2,3]. The country of Colom-
bia, located in the tropical region of Latin America, has reported the highest dengue case
fatality rate in the continent, and it has experienced four major outbreaks in the last two
decades, occurring in 2010, 2013, 2019, and 2023 [4,5]. Ibagué, is a city in the department of
Tolima, Colombia, and it exemplifies an urban area significantly affected by dengue, with
its incidence rising notably over the past years [6]. Ibague’s rapid urbanization over the
past two decades has led to densely populated, low-income neighborhoods that often lack
regular access to water and adequate infrastructure. These socioeconomic conditions have
been linked to higher dengue incidence and mosquito populations [7–9]. Additionally, the
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city’s specific environmental characteristics, including its elevation (1225 m above sea level)
and mean annual temperature (24 ◦C), create a conducive environment for mosquitoes of
the Aedes genus, including Aedes aegypti and Aedes albopictus, thus, further exacerbating the
situation [10–12].

Dengue virus transmission follows the mosquitoes’ reproductive and gonotrophic
cycles. Female mosquitoes become infected after biting a viremic individual, thereby
spreading the disease among humans after each blood meal. Many factors, including
urbanization, demographic changes, and environmental conditions, influence this complex
dynamic [13,14]. Prior research has demonstrated the critical role of socioeconomic and
demographic variables in the spread of dengue [15,16]. However, a significant gap still
needs to be addressed in understanding the interaction of these variables at different urban
scales, namely levels of aggregation, particularly in rapidly urbanizing cities in developing
countries [17].

Understanding the effect of spatial proximity on disease transmission in urban settings
is essential to identify vulnerable areas and populations [18–22]. Considering neighborhood
structures for internal interactions has proven to be beneficial in the analysis of demograph-
ics, socioeconomics, and climate while evaluating their influence over dengue transmission
and incidence [23–25]. This approach has allowed authors to find correlation with fac-
tors such as human population density, access to tap water, and hydrometeorological
phenomena [26,27].

Specifically in Colombia, certain authors have implemented a spatial methodology for
dengue in the city of Cali using a space–time conditional autoregressive model [28], which
was conducted on a neighborhood level. The results showed that lagged weather variables
could help to identify when the peaks in the risk of transmission occur. Additionally, they
proved that dengue infections are not exclusive to poor areas, and the risk of infection is
related to spatial and temporal distribution. The proposed aggregation level of neighbor-
hoods offered sparse data observations with clear socioeconomic and demographic trends.

While the importance of spatial and temporal variables in dengue transmission is
recognized [29], limited research has been conducted on integrating these factors at dif-
ferent levels of urban spatial aggregation. This study aims to bridge this gap by leverag-
ing detailed demographic and socioeconomic data from the census, which are provided
by the National Administrative Department of Statistics (Departamento Administrativo
Nacional de Estadística—DANE), as well as the environmental variables derived from
satellite imagery and previous studies. We seek to unravel the spatial and temporal dy-
namics influencing dengue incidence in Ibagué between 2013 and 2018, thereby examining
these factors across four levels of spatial aggregation—Manzanas, Secciones, Sectores, and
Comunas [30]. We introduce a novel approach by employing geographically weighted
regression (GWR) to isolate key socio-economic and demographic predictors at varying
spatial scales [31]. Additionally, the use of INLA models allows for an in-depth examination
of spatio-temporal correlations and their posterior distributions [32], thus offering new
insights into the localized dynamics of dengue transmission.

The methodological innovation of this study lies in its tripartite modeling strategy,
encompassing spatial, temporal, and combined spatio-temporal models at each level of
spatial aggregation. This approach allows for a comprehensive analysis of the varying
impacts of different factors on dengue incidence, thus providing a nuanced understanding
of the disease’s transmission dynamics in an urban setting. Our findings will contribute
significantly to public health, particularly in developing targeted dengue control strate-
gies [33]. This study’s framework also offers a valuable model for similar epidemiological
investigations in other urban settings, thus enhancing our understanding of vector-borne
diseases in global urbanization trends.
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2. Materials and Methods
2.1. Study Site and Data

Ibagué is the most populated city in the department of Tolima, with an estimated
population of 541,101 people in 2020 [34]. According to DANE, the city’s urban area is
divided into Comunas (communes), Sectores (sectors), Secciones (sections), and Manzanas
(blocks), which will be used as the levels of spatial aggregation in this study. Further details
about the city’s location are presented in Supplementary Figure S1, and information of the
spatial levels of aggregation is contained in Table S1.

The minimum aggregation level is at the level of Manzanas, which contains one block
each, and the most aggregated level is the level of Comunas, each containing between
169 and 862 blocks. Groups of Manzanas create the rest of the levels, as can be observed
in Supplementary Figure S2. The demographic and socioeconomic details were obtained
at all four levels from the National Geostatistical Framework (Marco Geoestadístico Na-
cional) and the National Population and Dwelling Census (Censo Nacional de Población
y Vivienda), which were compiled in 2018 [35]. All of the available socioeconomic and
demographic predictors from the census were included in the preliminary analysis.

Socioeconomic predictors included variables related to strata, water access and dis-
posal, access to gas, garbage pick-up services, and internet connection, which allows one
to identify lower income and utility access areas inside the city. Demographic variables
divide the population according to age, gender, and educational level. Finally, environ-
mental variables were obtained from satellite images via the Google Earth Engine using
MODIS11A1 for mean temperature [36], MODIS13Q1 for Normalized Difference Vege-
tation Index (NDVI) [37], CHIRPS PENTAD for total precipitation [38], as well as from
previous studies on the city for wet days and hot days (over 32 ◦C) [39]. The variables, their
description, and the spatial resolution are shown in Supplementary Table S2.

Data on dengue cases was obtained from the dataset provided by the local government.
Out of the total 17,707 dengue cases recorded from 2013 to 2018, 16,183 were included
according to the spatial levels of the city. The remaining cases had no readable address or
were reported in the city’s rural area. The years 2013 and 2015 showed the most extensive
outbreaks with 5383 and 4885 cases, respectively, with another outbreak following during
the first months of 2016. Notably, the number of cases in 2017 and 2018 was significantly
lower, with each year reporting fewer than 1000 cases (Figure 1A). Finally, the spatial
distribution of dengue cases varied heavily throughout the years, only being consistently
high around the central area of the city (Figure 1B).
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Figure 1. Human dengue cases reported from 2013 to 2018 in Ibagué. (A) Time series of the aggregated
cases for the whole city. (B) Kernel density estimation for the georeferenced cases for each year of the
studied period.

2.2. Methodology
2.2.1. Variable Selection and Transformation

To demonstrate the association between the variables and dengue incidence, as well
as reduce the dimensionality of the spatial variables, we used GWR through the package
GWModel in R [40,41]. This methodology allows for the creation of different local regres-
sions using the Ordinary Least Squares (OLS) method for every spatial feature, thereby
adding a weight parameter that was obtained from the distance between the geometries
and a calculated bandwidth [42,43]. This analysis was performed for all the available
socioeconomic and demographic predictors obtained from the national census on every
level of aggregation. Only the variables that were shown to be significant at, at least,
one global regression at any level of aggregation were used as the final predictors for the
inference model.

We also used a wavelet coherence analysis to confirm the existing correlations between
dengue cases and temporal variables. This was used to analyze non-stationary time
series. The methodology implements a decomposition between time and frequency using
a windowed Fourier transform, which allows for local time-frequency properties while
adjusting for high- and low-frequency structures [44]. The wavelet coherence was computed
for the aggregated environmental variables in the whole city. The results were evaluated
graphically using the biwavelet library in R, thereby keeping the variables that showed high
correlation and significance in the wavelet coherence analysis as the final predictors [45]. All
temporal predicted values were included since they displayed high correlation with dengue
cases, as shown in Figure S3.

The temporal predictors were later lagged using a distributed lag nonlinear model
(DLNM). This methodology considers the delayed effects and nonlinear relationships
between dengue and environmental time-dependent variables [46]. The package dlnm
was used on R [47], thereby obtaining, as a result, a matrix that accounts for the nonlinear
exposure and a delayed effect.
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2.2.2. Model Fitting

The latent marginal distribution of the chosen predictors was approximated using
INLA, wherein the spatio-temporal influence of these predictors was considered. This
approach relies on Latent Gaussian Models (LGM), specifically, a Latent Gaussian Markov
Random Field with a sparse and factorizable precision matrix. Such a structure enables
numeric approximations, leading to quicker outcomes than conventional LGM techniques
like Markov Chain Monte Carlo [32].

We fitted a negative binomial model to the number of cases Yst for each spatial unit s
at a given time t, which resulted in obtaining an estimated mean of µst and a dispersion
parameter ϕ. This model allows us to account for the overdispersion in the number of cases
at each scale. Our link function considers µst from the population pst and the monthly
incidence at the same location and time (ρst). The model is depicted in Equations (1) to (3).

Yst|µst ∼ NB(µst, ϕ), (1)

log(µst) = log(pst) + log(ρst), (2)

log(ρst) = XT β + γst + ηst. (3)

We also included two random effects that were considered to account for unobserved
variability. An unstructured random effect for seasonal autocorrelation, regarding possible
relationships in time for each structure along the months, was determined to be cyclic
over a six-year analysis. We also included a second structured random effect, which
encompassed the spatial autocorrelation between the neighborhoods during the years
regarding interconnection, interventions, herd immunity, etc. [27]. The incidence was
calculated from the fixed effects XT and the following two random effects: γst for the
unstructured effect following a random walk and ηst for the structured one using a Besag–
York–Molliè model [48]. Precision priors were defined from the precision parameter
P(σ > 0.5) = 0.01.

An adaptative strategy was selected as it is considered the best fit for Gaussian and
simplified Laplace approximations. Finally, the hyperparameter posterior distributions
were calculated with a central composite design as it offers the best tradeoff between
precision and computational time among the possible strategies implemented in the R
library INLA [32,49,50].

Three models were adjusted per level: one containing only spatial variables (socioeco-
nomic and demographic), a second containing only temporal variables (environmental),
and a third containing both. This enabled us to distinguish between the effects of the spa-
tial and temporal covariates, while assessing whether incorporating both yielded a more
informative model. A comparison was performed for the models at each level using the
deviance information criterion (DIC) and widely applicable information criterion (WAIC).

2.2.3. Aggregation Level Comparison

From the selected best-fitting models at each level of aggregation, fitted values were
obtained from the marginal posterior distributions of the selected models at each level of
aggregation. These values were then compared with the observed data over the studied
period to determine the best fitting model at each level by comparing the root mean squared
error (RMSE).

3. Results
3.1. Variable Selection

The GWR analysis revealed a significant association for seven critical variables at a
minimum of one spatial level over different years (Figure 2). These variables encompassed
critical aspects of the socio-economic landscape, including population density (Density),
sewage connection (Sewage), gas connection (Gas), garbage collection service (Garbage),
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the population with higher education degrees (Higher Ed.), the percentage of women
(Women), and the percentage of children (Children).
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3.2. Model Fitting and Comparison

A significant shift in both the DIC and WAIC values was evident in the temporal mod-
els as opposed to the spatial models (Table 1). Notably, the spatio-temporal models, which
integrate a comprehensive set of covariates encompassing socioeconomic, demographic,
and transformed environmental predictors, exhibited the most favorable scores in these
comparison metrics across all levels and were selected as the best models for multilevel
analysis. It is important to note that these models can be compared within the same level
but not across different levels.

Table 1. Model comparison using DIC and WAIC at each level of spatial aggregation.

Model

Level Metric Spatial Temporal Spatio-Temporal

Comunas
DIC 5345 4861 4860

WAIC 5358 4863 4863

Sectores
DIC 14,646 13,874 13,871

WAIC 14,656 13,874 13,869

Secciones
DIC 33,942 32,206 32,163

WAIC 33,871 32,185 32,139

Manzanas
DIC 89,900 84,728 84,051

WAIC 89,845 84,667 83,988

The fixed effects included in the spatio-temporal models showed variations across
different levels of spatial aggregation, as shown in Figure 3. At the level of Comunas,
the spatial variables exhibit non-significance, as indicated by the inclusion of zero within
the 95% credible intervals for all variables. This lack of significance aligned with the
comparable DIC and WAIC values observed for both the temporal and spatio-temporal
models in Table 1, thus implying that incorporating spatial variables at this aggregation
level does not substantially enhance the model’s explanatory capacity for dengue incidence.
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For the intermediate level of Sectores, certain variables such as garbage collection,
higher education, and the percentage of children demonstrate significance and displayed
inverse correlations with dengue incidence. The negative coefficients suggest that improved
access to garbage collection, higher educational attainment, and a larger proportion of
children are associated with reduced dengue spread, thus potentially highlighting the
impact of enhanced public services and education on disease mitigation.

At the Secciones level, most spatial variables exhibited significance, with garbage
collection and the percentage of women showing negative correlations with dengue cases.
This inverse relationship suggests that areas with more efficient waste management and
a higher proportion of women tend to have lower dengue prevalence. Moreover, factors
such as higher population density, gas connections, education levels, and the percentage
of children consistently demonstrated negative correlations with dengue cases, thereby
echoing the trends observed at the Sectores level and underscoring the influence of these
variables on disease incidence.

Finally, at the granular level of Manzanas, sewage connection emerged with a unique
positive correlation with dengue cases. Conversely, population density, higher education,
and the percentage of children maintained inverse correlations with dengue incidence,
thereby aligning with observations made at the Secciones level. This consistency across
different levels of spatial analysis suggests that certain factors consistently relate to lower
disease incidence despite the finer granularity of data.

Integrating this insight into the preceding analysis highlighted a consistent negative
correlation between spatial variables such as higher education, population density, and
the percentage of children with dengue incidence across various levels, while the associa-
tion between garbage collection services and dengue cases appeared less definitive, thus
suggesting disparities in waste management service.

Complementing the spatial analysis, Figure 4 introduces lagged temporal predictors
through contour plots, which offer insight into the temporal dynamics of the disease.
The results underline the cyclical influence of weather patterns on the relative risk (RR)
associated with dengue. For instance, the temperature-related metrics, such as mean
temperature and the number of days exceeding 32 ◦C, revealed a lower RR at cooler
temperatures and greater lags, where a higher RR transitioned as the temperatures climbed
and lag decreased. Conversely, precipitation indicators, such as total precipitation and
number of wet days, demonstrated an inverse relationship, with higher precipitation levels
correlating with a decreased RR in subsequent periods. Additionally, the NDVI exhibited
variability and lacked consistency across different levels of aggregation, thus suggesting
complex interactions between vegetation density and disease transmission that warrant
further investigation.
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Figure 4. Contour plots for the results of the temporal variables showing the relative risk of human
dengue cases from exposure and different time lags. The relative risk was calculated from the baseline
observations for each covariate as follows: mean temperature risk was calculated relative to 22 ◦C;
total precipitation was determined relative to 0 mm/month; and the NDVI, wet days, and days over
32 ◦C were calculated relative to 0.

3.3. Level Comparison

The model’s performance varied across the different levels of spatial aggregation
(Figure 5). At the Comunas level, the model achieved a high degree of correlation with
the actual dengue case data, although it tended to underestimate case numbers during
outbreak peaks—a trend that was particularly pronounced toward the end of 2015. In
times of lower disease incidence, such as December 2017 and June 2018, the model also
fell short of accurately capturing the case numbers. Despite these limitations, it performed
commendably in periods of low case counts, notably throughout most of 2017 and the early
months of 2018.

Moving to the Sectores level, the model had a propensity to overestimate the number
of dengue cases, with this trend being especially evident in January 2015 and January 2016.
This tendency for overestimation continued through the endemic years of 2017 and 2018.
Moreover, there was a noticeable misalignment in the timing of the expected outbreaks
compared to the actual data, thus highlighting a phase discrepancy between the model
fitting and observed case trends.

Similarly, at Secciones level, there was a need for phase alignment. Still, the model
demonstrated an accurate fit during the epidemic periods, both in terms of case count
and pattern, as seen between September 2015 and January 2016. This level also accurately
captured smaller peaks during the endemic periods, such as December 2016 and June
2018. However, during periods characterized by low dengue incidence, such as the late
2017 to early 2018 timeframe, the model tended to overestimate the number of cases, thus
indicating a challenge in accurately modelling low incidence rates.
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Figure 5. The aggregated fitted values from the marginal posterior distributions compared to the
observed dengue cases in the city for the studied period. Fitted values are plotted with a 95% credible
interval at each level.

At the most granular level of spatial aggregation, i.e., Manzanas, the model’s fit
showed the greatest fluctuation among all the levels. While it aligned more closely with
the observed data during the epidemic periods, similar to Secciones, its performance was
significantly less accurate during the endemic years, thus indicating a disparity in the
model fit across different periods.

The differences in model performance underscored the challenges in capturing the
complex dynamics of dengue transmission, which varied temporally during the epidemic
and endemic cycles and spatially at different levels of urban granularity. These insights em-
phasize the need for models that can adjust to both the scale of analysis and the fluctuating
nature of disease transmission, thereby highlighting the intricate balance between spatial
resolution and accuracy in epidemiological modeling.

A lower RMSE was found for the Comunas level since it provided the best overall fit
(Table 2); however, the level of Secciones provided a lower RMSE than the Manzanas and
Sectores levels, which might be due to the better fit exhibited during epidemic seasons.

Table 2. The root mean square error (RMSE) for each level’s posterior marginals.

Comunas Sectores Secciones Manzanas

RMSE 32.69 45.80 42.34 66.63
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4. Discussion

The GWR analysis showed variation in the spatial covariates among the levels of
aggregation. Socioeconomic predictors were mostly significant at the lowest level, i.e.,
Manzanas, while demographic predictors were also significant at intermediate levels like
Secciones or Sectores. Only two spatial predictors were significant at the Comunas level.
The GWR analysis solely identified significant spatial variables and overlooked non-linear
interaction, which is crucial for understanding the endemic–epidemic patterns of dengue.
This limitation may result in models that only partially capture the disease’s dynamics.

Our study shows that the spatio-temporal models, which integrate spatial and tempo-
ral variability, generally offered a better fit, and they were selected for further analysis at all
levels of aggregation. However, the improvement in the spatio-temporal models at levels
like Comunas and Sectores was minimal, thus indicating that the added complexity of
spatio-temporal models may only sometimes lead to a significantly improved fit. This un-
derscores the importance of careful consideration when increasing model complexity and
highlights the need to balance detailed spatio-temporal dynamics with model simplicity.

The significance of the spatial predictors on dengue incidence varied markedly across
the different levels of spatial aggregation. At the most aggregated levels, namely Comunas
and Sectores, many of the variables were found to be non-significant, possibly due to the
homogeneity within these broader spatial categories. The lack of variability within the spatial
covariates at these levels leads to a limited ability to discern the significant impacts on dengue
cases, as observed in the narrow covariate ranges detailed in Supplementary Table S1. In
contrast, human population density was notably significant at the more granular Secciones
and Manzanas levels, and inversely correlated with dengue incidence. However, this counter-
intuitive finding is supported by previous studies, which have suggested that higher human
population densities may not favor mosquito breeding, particularly if the densely populated
areas have sufficient sanitation and utility services [51,52].

Socioeconomic variables, such as sewage, gas connection, and garbage collection
service exhibit diverse correlations with dengue cases. Sewage connection is positively
correlated and attributed to urban infrastructure and vector ecology (adaptation to breed in
manmade environments), including improperly designed systems creating mosquito breed-
ing sites [53–56]. Conversely, areas with higher gas connection rates tend to have lower
dengue incidence, thus reflecting socioeconomic status. The relationship with garbage
collection services varies; a positive correlation at the Secciones level and an inverse re-
lationship at the Sectores level suggests that complex dynamics are influenced by local
practices and infrastructure [57,58].

The observed variability among socioeconomic variables underscores the intricate
interplay of individual and collective dynamics, which sometimes result in counterintuitive
outcomes. Nevertheless, these variables offer valuable insights into the internal dynamics
of spatial distribution, thereby exhibiting distinct characteristics across different levels of
spatial aggregation.

Demographic predictors, including higher education, the percentage of children, and
the percentage of women, demonstrated a consistent pattern across the spatial levels.
Higher educational attainment in populations may lead to increased implementation of
disease prevention measures, potentially reducing breeding sites and subsequent dengue
cases [59,60]. The inverse correlation with the percentage of children may reflect the
demographic profile of dengue cases during specific outbreaks, with adults and young
adults being more frequently affected. Lastly, the percentage of women may reflect the
broader demographic composition of the city and the roles women play in household
management and potential exposure to mosquito breeding sites.

Variations in the correlation between spatial variables and dengue incidence across dif-
ferent spatial aggregation levels indicate diverse roles of socioeconomic and demographic
factors in disease transmission dynamics. While broader scales may obscure these factors
amidst other influences, finer scales highlight their heterogeneity, thereby allowing for a
more precise understanding of their impact on dengue transmission. This underscores the
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complexity of disease incidence modeling and emphasizes the importance of considering
scale when interpreting variable influences.

Despite the consistent trends in the temporal variables across all spatial aggregation
levels, subtle variations in RR suggest differing degrees of correlation with dengue cases.
Temperature and precipitation influence were relatively consistent across the city’s spatial
structures, thereby resulting in similar impacts on RR regardless of aggregation level.
Our results show an association between the mean temperature and increased RR during
high-temperature periods (with a zero-month lag), and elevated disease risk due to total
precipitation at a three-to-six-month lag across the Comunas, Sectores, and Secciones levels,
which underscores the influence of weather patterns on dengue transmission in urban areas.
This relationship is consistent with regional climate patterns, where cooler seasons precede
warmer periods by approximately four to six months [61]. This pattern is further intensified
by ENSO phenomena, such as the El Niño events of 2015 and 2016. These extreme weather
events, characterized by higher temperatures and drought, impact mosquito breeding and
human access to utilities in vulnerable areas, thus leading to community adjustments in
water management practices and influencing dengue transmission dynamics [27,62].

The days over 32 ◦C exhibited a comparable trend with the mean temperature, where
a higher frequency of hot days at shorter lags was linked to an increased RR. The same rela-
tionship was displayed by the number of wet days and total precipitation, with increased
RR at two- and six-month lags, reflecting the bimodal rainy seasons. Finally, the NDVI
showed irregular patterns, with minimal variation at broader levels like Comunas and
Sectores due to its non-seasonal nature.

While the temporal patterns held consistently across the spatial aggregation levels, the
changes in RR for each covariate varied, thus suggesting differing strengths of correlation
with dengue incidence. This variance could stem from how dengue cases are distributed
across each spatial level and how spatial covariates account for the observed effects at more
granular levels.

This study highlights the importance of considering temporal and spatial variables in
understanding dengue dynamics. While temporal variables play a significant role, spatial
covariates at finer levels of aggregation are also crucial for a nuanced understanding of
dengue transmission. The analysis suggests that the Comunas level model provides the
best overall fit for the city, with the Secciones model closely following. However, the
Manzanas level model performed weaker due to extreme case dispersion. Despite these
dispersion issues, intermediate aggregation levels like Secciones reveal discernible links
with socioeconomic and demographic variables, thereby aiding in understanding local
patterns for targeted interventions. This underscores the importance of considering macro
and micro-level factors in epidemiological modeling and intervention planning to tailor
public health strategies and reduce disease prevalence effectively.

The accuracy of dengue case reporting relies on local population engagement, which
is often hampered by underreporting due to symptom recognition without seeking formal
diagnosis and the prevalence of asymptomatic cases [63]. This underreporting significantly
impacts case count accuracy, thus hindering model precision [64]. Census data limitations are
apparent, with data available only for 2018, assuming that socio-economic and demographic
variables remained unchanged over six years, and the neglect of potential variations.

Modeling efforts focusing on endemic or epidemic periods may offer immediate
insights into socio-economic and demographic influences on disease patterns but may
overlook long-term effects. In addition, detailed research at lower observational levels is
needed to address data scarcity and the influence of local entomological and virological
factors on disease dynamics, which are not currently available for the whole city.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v16060906/s1, Figure S1. Ibague’s location in the department of
Tolima, Colombia (CO), and neighboring countries including Venezuela (VE), Brazil (BR), Peru (PE),
Ecuador (EC), and Panama (PA). Table S1. Details about the aggregation levels. Table S2: List of the
independent socioeconomic, demographic, and environmental variables for Ibagué; Figure S2. Ibague’s
spatial division, from which the aggregation levels were obtained. Comunas are the biggest group, each
composed of multiple manzanas, as shown in the figure. Smaller groups of manzanas build secciones
and sectores; Figure S3. Wavelet coherence analysis for the environmental variables. Each plot shows
the coherence between the environmental variables and dengue cases. High-significance (0.05) regions
are plotted as bounded areas. A cone of influence is included to discard any significant regions outside
it. Arrows indicate the relationship of the two series included in each plot.
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