
vision

Article

The Demands of Geometry on Color Vision

Dale Purves 1,2,3,* and Chidambaram Yegappan 1

1 Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore,
8 College Road, Singapore 169857, Singapore; chidam.yegappan@gmail.com

2 Department of Neurobiology, Duke University Medical Center, Durham, NC 27708, USA
3 Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
* Correspondence: purves@neuro.duke.edu; Tel.: +1-919-681-7414 or +1-919-260-4734

Academic Editor: Andrew Parker
Received: 22 August 2016; Accepted: 6 January 2017; Published: 12 January 2017

Abstract: While studies of human color vision have made enormous strides, an overarching rationale
for the circular sense of color relationships generated by two classes of color opponent neurons
and three cone types is still lacking. Here we suggest that color circularity, color opponency and
trichromacy may have arisen, at least in part, because of the geometrical requirements needed to
unambiguously distinguish all possible spectrally different regions on a plane.
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1. Introduction

Using sensory information to distinguish image regions that promote apt behavior in the physical
world is generally assumed to be the broad purpose of animal vision. Whereas achromatic vision
distinguishes regions on the basis of light intensity (luminance), color vision further distinguishes
equiluminant regions on the basis of differences in the distribution of spectral energy, giving animals
with this ability a behavioral advantage in dealing with objects and conditions in the world [1–3].

Despite a wealth of anatomical, electrophysiological and psychophysical evidence about color
vision, several general questions remain. A puzzle since Newton’s pioneering studies is why when
asked to arrange objects with a full range of spectral qualities (e.g., Munsell chips) such that their
apparent colors are minimally different, the result is a closed continuum (Figure 1) [4,5]. Equally
perplexing is why we perceive a color gamut based on four color classes—reds, greens, blues and
yellows—each defined by a unique hue that has no apparent admixture of the other three color
classes [6–9]. And while it has long been known that color vision is mediated by the spectral sensitivities
of short, medium, and long-wavelength cones whose output is processed by red-green and blue
yellow opponent neurons [7,8,10–12], why these particular properties have evolved in humans is also
incompletely understood [7,11,13].
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Figure 1. Diagram of human color perception. (A) A representation of human “color space”; (B) A 
single cross-sectional plane from the diagram in (A). When asked to arrange a large number of 
equiluminant surfaces that vary in hue such that the color differences among them are minimal, 
subjects arrange them in a closed loop that comprises four basic color categories (reds, greens, blues 
and yellows), each defined by a particular hue (black dots) that has no admixture of the neighboring 
color classes (e.g., a red surface seen as having no appreciable yellowness or blueness). Although there 
are many other named color groups (oranges, aquamarines, etc.), these are always seen as mixtures 
of the two of the four primaries. As indicated, the location of the unique hues (black dots) are not 
orthogonal in perceptual color space, nor is the closed loop determined psychophysically a literal 
circle as shown in the diagram. 

Although the retina is a curved surface, the information it captures (the retinal image near the 
fovea) is generally thought of as a two-dimensional (2D) plane. Effectively distinguishing spectral 
differences on a plane presents at least two geometrical challenges. First, to achieve high resolution, 
different perceived colors must be ascribed to all spectrally different points on the retinal image 
plane. Second, perception must entail a number of color classes sufficient to ensure that adjoining 
regions on the plane will not be conflated if they are spectrally different. This latter challenge is called 
the “four-color map problem”, referring to the empirical minimum of four colors needed to ensure 
that countries on a map are always distinguishable (the “problem” in this phrase refers to the logic 

Figure 1. Diagram of human color perception. (A) A representation of human “color space”; (B) A
single cross-sectional plane from the diagram in (A). When asked to arrange a large number of
equiluminant surfaces that vary in hue such that the color differences among them are minimal,
subjects arrange them in a closed loop that comprises four basic color categories (reds, greens, blues
and yellows), each defined by a particular hue (black dots) that has no admixture of the neighboring
color classes (e.g., a red surface seen as having no appreciable yellowness or blueness). Although there
are many other named color groups (oranges, aquamarines, etc.), these are always seen as mixtures
of the two of the four primaries. As indicated, the location of the unique hues (black dots) are not
orthogonal in perceptual color space, nor is the closed loop determined psychophysically a literal circle
as shown in the diagram.

Although the retina is a curved surface, the information it captures (the retinal image near the
fovea) is generally thought of as a two-dimensional (2D) plane. Effectively distinguishing spectral
differences on a plane presents at least two geometrical challenges. First, to achieve high resolution,
different perceived colors must be ascribed to all spectrally different points on the retinal image
plane. Second, perception must entail a number of color classes sufficient to ensure that adjoining
regions on the plane will not be conflated if they are spectrally different. This latter challenge is called
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the “four-color map problem”, referring to the empirical minimum of four colors needed to ensure
that countries on a map are always distinguishable (the “problem” in this phrase refers to the logic
underlying this requirement, which took more than a century to verify) [14–16]. The relevance of this
geometrical requirement to color vision is that at least four perceived color classes would be needed to
resolve the same cartographic concern in the retinal images [17].

The purpose of the present article is to examine whether perceptual color circularity, color
opponency and physiological trichromacy could be related consequences of a need to meet these
geometrical demands.

2. Results

2.1. Geometrical Demands for Making Regional Distinctions in One Dimension

To appreciate the geometrical requirements that must be met in order to distinguish all possible
regions of planar images by color percepts, consider the simpler challenge of distinguishing all possible
regions in a hypothetical one-dimensional image.

From a geometrical perspective, two different qualities are all that is needed to distinguish any
number of regions from their neighbors in a linear image (Figure 2A). Thus, in this hypothetical
one-dimensional (1D) scenario, color vision could distinguish equiluminant regions by assigning two
different color percepts to different spectra. Ultimately, however, a continuum would be needed, as
shown in Figure 2B. Since the number of different spectra at any given level of luminance is limited only
by the ability of the visual system to distinguish spectral variations, color vision would presumably
evolve as many equiluminant perceptions as this constraint allowed (see Figure 1B). If points (i.e., the
smallest regions resolved by human visual acuity) were arranged according to minimal differences
among spectra, the result would require a continuum of two equiluminant color qualities, as indicated.
The perceived difference between the extremes of such a 1D color space would be maximal, with a
colorless intermediate sensation (gray) that was equally different from the sensations elicited by the
two extremes. The continuum in the figure thus represents gradual spectral deviation in two opposite
directions from a colorless balance point, with the maximum deviation eliciting the perceptions of
a unique hue, e.g., a blue with no yellow or vice versa in this example. In sum, given the rules of
geometry, two color classes defined by two unique hues are sufficient to distinguish all the points in a
1D image.
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Figure 2. Distinguishing neighboring regions in one dimension. (A) Two different qualities (blue and 
yellow in this example) suffice to distinguish any number of neighboring regions from one another 
along a line; (B) However, a continuum is needed when points must be distinguished according to 
relative spectral differences at equiluminance. Notice that the balance point in a color continuum 
would be perceived is neither one color nor the other (i.e., neither blue nor yellow but a shade of 
gray).  

2.2. Quantification 

Quantification of these spectral differences as vectors in 1D space is straightforward. Just as a 
line that extends from a null point in two directions can be specified by a pair of opposing direction 
vectors, such the x and −x vectors of a graphical axis, the spectral continuum in Figure 2B can be 
described by vectors (see Methods). The direction of each position vector from the null vector 
indicates the dominant color class at that location, and the distance from null vector indicates the 
relative contributions of the two unique hues. As the extremes of opposing direction vectors, the 
unique hues are necessarily opponent colors. The corresponding direction vectors indicate spectral 

Figure 2. Distinguishing neighboring regions in one dimension. (A) Two different qualities (blue and
yellow in this example) suffice to distinguish any number of neighboring regions from one another
along a line; (B) However, a continuum is needed when points must be distinguished according to
relative spectral differences at equiluminance. Notice that the balance point in a color continuum
would be perceived is neither one color nor the other (i.e., neither blue nor yellow but a shade of gray).

2.2. Quantification

Quantification of these spectral differences as vectors in 1D space is straightforward. Just as a line
that extends from a null point in two directions can be specified by a pair of opposing direction vectors,
such the x and −x vectors of a graphical axis, the spectral continuum in Figure 2B can be described by
vectors (see Methods). The direction of each position vector from the null vector indicates the dominant
color class at that location, and the distance from null vector indicates the relative contributions of
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the two unique hues. As the extremes of opposing direction vectors, the unique hues are necessarily
opponent colors. The corresponding direction vectors indicate spectral deviation from the uniform
distribution of energy at the color neutral null vector, and the distance between any two position
vectors indicates the perceived spectral difference between them.

2.3. Biological Significance

In terms of photoreceptors, two cone types with overlapping spectral sensitivities could generate
these distinctions (Figure 3). The result would lead to the perceptual experience of human dichromats,
and the majority of other mammals that posses only two types of cones (see Discussion) [18]. Thus
individuals who lack L cones (protanopes) see spectral distributions that would have generated red or
green for trichromats as shifts in brightness and/or saturation based on blue and yellow color classes,
with a reduced color gamut. Similar findings have been reported for deuteranopes and tritanopes [19].
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Figure 3. Color specification in 1D achieved by two opposing photoreceptor types. Top panel.
Hypothetical cone sensitivity curves. When stimulated equally, the perceptual result would be color
neutrality. Middle panels. When the response of one of the photoreceptor types is maximal and the other
minimal, the perception would be that of unique blue (left) or unique yellow (right). Bottom panel.
Stimulation that would give rise to predominantly blue (left) or yellow (right) perceptions along the
color continuum in Figure 2B.

2.4. Geometrical Demands for Making Regional Distinctions in Two Dimensions

As in a hypothetical 1D image, equiluminant color perceptions arising from a plane can be
represented by direction and position vectors. However, whereas 1D space extends in only two
directions, 2D space extends in all possible directions from a null point (Figure 4A). Accordingly,
position vectors in 2D must be expressed by two pairs of opposing direction vectors, as in the (−x, x)
and (−y, y) axes that define any Cartesian co-ordinate system.

In vector addition (see Methods), two pairs of opposing direction vectors define the position
vectors in all possible directions (Figure 4B). Of the many possible combinations, any two pairs of
opposing direction vectors can be used to define the position vectors in all directions. The vector space
defined by all possible sets of opposing direction vector pairs thus forms a closed loop that bounds
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the portion of the plane held in common (Figure 4C). Although not shown, the argument is the same
whether or not the two pairs of opposing direction vectors are orthogonal.
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Figure 4. Distinguishing different spectral regions in a two-dimensional image. (A) A two-dimensional
vector space extends in all directions from its null point; (B) Vector addition based on any two axes in
the plane defines position vectors in all directions (four of the many arrangements possible are shown
as examples); (C) The position vectors held in common by the full set of direction vectors would be
necessarily be bounded by a closed loop, as indicated by the area in green. Notice that the loop would
form a circle only if the vectors were all the same length, which the argument here does not require.

2.5. Geometrical Rationale for Color Opponency

Given that the space held in common by all sets of opposing direction vector pairs in Figure 4C is
bounded by a recursive perimeter, it follows that distinguishing points on a plane according to relative
spectral differences would obey the same geometrical requirements.

In a two-dimensional (2D) space, however, the evolution of color vision would also have to
contend with the geometrical demands apparent in map making (Figure 5A). That is, a minimum of
four color classes is needed to distinguish all possible regions on a plane—i.e., all spectrally different
equiluminant points in a 2D image. This goal could be met by two pairs of direction vectors that gave
rise to four color classes defined by four unique hues that were pair-wise opponents (Figure 5B).

Vision 2017, 1, 9 5 of 11 

 

Figure 4. Distinguishing different spectral regions in a two-dimensional image. (A) A two-
dimensional vector space extends in all directions from its null point; (B) Vector addition based on 
any two axes in the plane defines position vectors in all directions (four of the many arrangements 
possible are shown as examples); (C) The position vectors held in common by the full set of direction 
vectors would be necessarily be bounded by a closed loop, as indicated by the area in green. Notice 
that the loop would form a circle only if the vectors were all the same length, which the argument 
here does not require.  

2.5. Geometrical Rationale for Color Opponency 

Given that the space held in common by all sets of opposing direction vector pairs in Figure 4C 
is bounded by a recursive perimeter, it follows that distinguishing points on a plane according to 
relative spectral differences would obey the same geometrical requirements. 

In a two-dimensional (2D) space, however, the evolution of color vision would also have to 
contend with the geometrical demands apparent in map making (Figure 5A). That is, a minimum of 
four color classes is needed to distinguish all possible regions on a plane—i.e., all spectrally different 
equiluminant points in a 2D image. This goal could be met by two pairs of direction vectors that gave 
rise to four color classes defined by four unique hues that were pair-wise opponents (Figure 5B). 

 

Figure 5. The four-color demand for regional distinctions on a map and the color opponency that 
would be needed. (A) The demand in 2D geometry refers to the fact that abutting regions on a plane 
cannot be distinguished using fewer than four colors. The diagram shows a simple example which 
makes clear that these regions could not be distinguished from one another using fewer than four 
colors. If this pattern were an equiluminant retinal image, the four regions would need to elicit color 
sensations that could distinguish any possible hue within these four color classes (reds, greens, blues 
and yellows); (B) Two opposing color quality pairs (direction vectors) extending from a null point 
(white dot) would be sufficient to address this issue, at the same time as differentiating all points 
(position vectors) on a plane by a gamut of color sensations. Note that the opponent axes would not 
have to be orthogonal.  

  

Figure 5. The four-color demand for regional distinctions on a map and the color opponency that
would be needed. (A) The demand in 2D geometry refers to the fact that abutting regions on a plane
cannot be distinguished using fewer than four colors. The diagram shows a simple example which
makes clear that these regions could not be distinguished from one another using fewer than four
colors. If this pattern were an equiluminant retinal image, the four regions would need to elicit color
sensations that could distinguish any possible hue within these four color classes (reds, greens, blues
and yellows); (B) Two opposing color quality pairs (direction vectors) extending from a null point
(white dot) would be sufficient to address this issue, at the same time as differentiating all points
(position vectors) on a plane by a gamut of color sensations. Note that the opponent axes would not
have to be orthogonal.
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2.6. Geometrical Rationale for Color Perception as a Closed Loop

The demands of 2D geometry could also explain how the ability to order all equiluminant but
spectrally different points on a plane according to minimal apparent differences leads to the closed
continuum of hue sensations illustrated in Figure 1. Since the perimeter of a 2D space that extends
equally in all directions is recursive (see Figure 4), the equiluminant sensations associated with the
position vectors that lie between the opposing direction vectors in Figure 4B will also define a closed
loop, with spectrally distinct points defined by vector addition based on the four representative spectral
directions. Thus only four color classes are needed, although the number of perceived and named
hues within each class can be large.

2.7. Geometrical Rationale for Retinal Trichromacy

This geometrical argument does not, however, indicate whether trichromacy could also be related
to meeting the demands of plane geometry. On the contrary, from the constraints described so far
one would expect that a least four cone types representing the two opponent axes would be needed
to generate the four color classes illustrated in Figures 1 and 5B. How, then, could the three cone
types in humans and Old World monkeys generate the four color classes needed to distinguish all the
equiluminant but spectrally different points on a plane?

As shown in Figure 6A, the addition of any two non-opposing direction vectors can define all
position vectors for all the directions that lie between them (see Methods). Accordingly, three direction
vectors could, in principle, define all the position vectors on a plane. To do so, however, two of the
three direction vectors would have to be non-orthogonal. As shown in Figure 6B, to satisfy these
further geometrical demands, a third vector would have to lie within the area between the dashed
blue lines.
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Moreover, unless the third direction vector (vector R in Figure 6B) had a specific direction with 
respect to the two other vectors, only three color classes would arise, an arrangement that would be 
unable to contend with the four-color map concern illustrated in Figure 5A. Thus the third direction 
vector R would have to oppose the combined influence of the other two direction vectors (direction 
vector P + Q). An exception would be when vectors P and Q are equal. In this case, they would 
generate a null vector when vector R equals the combined influence of P and Q, as with the opposing 
direction vectors in Figure 5B. Thus P and Q are opponents only when direction vector R opposes the 

Figure 6. How three direction vectors can specify all possible locations (position vectors) on a plane.
(A) Two non-opposing direction vectors (P and Q) could, by vector addition, specify all the position
vectors that lie between them (the gray parallelogram); (B) A third direction vector, if appropriately
positioned, would allow the resulting triad of vectors (P, Q and R) to specify locations in all directions.
To deal with the four-color map demand, however, the third direction vector would have to oppose the
combined influence of other two direction vectors, i.e., vector P + Q indicated by the dashed black line.

Moreover, unless the third direction vector (vector R in Figure 6B) had a specific direction with
respect to the two other vectors, only three color classes would arise, an arrangement that would be
unable to contend with the four-color map concern illustrated in Figure 5A. Thus the third direction
vector R would have to oppose the combined influence of the other two direction vectors (direction
vector P + Q). An exception would be when vectors P and Q are equal. In this case, they would
generate a null vector when vector R equals the combined influence of P and Q, as with the opposing
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direction vectors in Figure 5B. Thus P and Q are opponents only when direction vector R opposes the
vector sum P + Q. In this way the second opponent pair needed to resolve the four-color map issue
would be provided.

Each of the four unique hues would correspond to the greatest deviation of spectral energy
from the null vector of these directional extremes, i.e., the extremes of P, Q, R and P + Q in Figure 6.
Intermediate color percepts would arise from the graded distribution of spectral energy between
the extremes, as indicated by the gradients in Figure 5B. As shown in Figure 7, position vectors that
lie between the three direction vectors in Figure 6B define a closed loop (cf. Figures 1 and 4C). The
interaction of the two pairs of opposing direction vectors in Figure 6 (P vs. Q, and R vs. P + Q) would
be analogous to interaction of L vs. M cones, and S vs. L + M cones.
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Figure 7. A closed 2D space defined by three direction vectors. (A) Vector addition based on three
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in common by the full set of such direction vectors form a circular space (green area) in this example.

In short, the three cone types in humans and Old World monkeys may represent the minimum
number of color receptors needed to generate the four color classes capable of distinguishing all
resolvable equiluminant regions on a plane, at the same time resolving the need for four color classes
to make unambiguous planar maps. The same argument would also explain why the four unique hues
in human color space are not located at orthogonal extremes (see Figure 1B).

3. Discussion

The argument we have presented suggests that color circularity, color opponency, and trichromacy
are related consequences of efficiently meeting the geometrical demands needed to distinguish all
spectrally different points on the retinal image plane.

While this reasoning offers a unifying rationale for perceptual and physiological phenomena
whose purposes are otherwise unclear, it also raises a number of questions. These issues and some
speculative answers are as follows.

3.1. Why Are Red, Green, Blue and Yellow Perceptual Primaries?

The argument so far does not explain why the four primary color directions are red, green, yellow
and blue, i.e., why visible spectra elicit these particular color classes.

Although a geometrical framework does not address this question, it nonetheless suggests
an explanation. Just as the bias of magnetic north fixes the cardinal axes in geography, there are
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presumably biases in human spectral experience that would have determined the three direction
vectors P, Q and R in Figure 6. The most obvious candidate for such biases is the distribution
of light reflected from natural surfaces. Empirically, the reflectance efficiency functions of natural
surfaces give rise to three spectral groups: foliage in the yellow-green region (~557–574 nm); “earths”
in the yellow-orange region (~576–589 nm); and water, sky and distant objects in the blue region
(~459–486 nm) [20]. These biases accord with the peak sensitivities of the three cone types, which in
turn accord with the argument in Figure 6.

This agreement, however, does not explain why the combined influence of P and Q opposes R
rather than the other options (i.e., Q and R opposing P, or P and R opposing Q). One possibility is a
bias arising from the greater overlap of the spectral ranges of foliage and earth than from the overlap
of either of these ranges with the blue range.

Finally, whereas that some primitive cultures lack names for these four color categories [21],
the argument we outline implies that this deficiency in vocabulary is unlikely to arise from any
differences in human visual physiology.

3.2. Why Can the Black-White Axis Not Serve as an Opponent Color Axis?

Since the perception of grays ranging from unique black to unique white forms an opponent
axis, another question that arises is why this gray scale axis could not interact with a single color
axis to distinguish all possible spectral points on a plane, at the same time resolving the four-color
map problem.

The reason is that the color and gray scale axes concern different categories of information—light
intensity versus the distribution of spectral energy—which are independent and lead to different
sensory qualities (lightness versus hue). Although these domains can influence each other [7,22],
like sensory qualities in other systems (e.g., pitch and loudness in audition) they are not combined
in perception.

3.3. What about Other Rationales for these Phenomena?

Several plausible rationales for color opponency and trichromacy have been proposed.
Opponency, which has been validated both psychophysically [12] and electrophysiologically [23,24] at
several levels of the primary visual pathway in experimental animals, has been suggested to enhance
the encoding of natural scene spectra [25], and/or to optimize the transfer of trichromatic color
information [26,27]. By analogy with spatial sinusoids, trichromacy has also been interpreted in terms
of comb-filtered spectra [28].

The difference in the present argument is that a geometrical explanation of color phenomenology
is predicated on the advantages of distinguishing equiluminant image points. From this perspective,
whatever else they may accomplish, opponency, color circularity and trichromacy are manifestations
of resolving fundamental geometrical problems that would have to be addressed one way or another
for the evolution of effective color vision.

3.4. What about Reports from Human Dichromats?

Another concern is the partial conflation of the trichromatic gamut in human dichromats, who
retain some ability to perceive and identify colors that would be expected only in trichromats.
For example, protanopes and deuteranopes show adaption to long wavelength light [29] and use the
terms “red” and “green” as well as “blue“ and “yellow“ to describe what they see [30]. Montag and
Boynton [31] have shown further that rods may contribute to these abilities. These further facts about
color perception are not explained by the arguments here.

3.5. How Does the Argument Account of Color Metamers?

A final question concerns metameric stimuli—i.e., different distributions of spectral energy that
elicit the same perceived colors in psychophysical matching tests. Such stimuli arise because the
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overlapping sensitivities the three human cone types allow similar relative activation by spectrally
different stimuli. Since metameric image regions would elicit the same color percepts, metamers belie
the idea that all spectrally different regions in arbitrarily complex images can be distinguished.

Although the question remains, the metameric stimuli used in colorimetry experiments are rare
in natural images [32]. Thus the evolution of color vision may simply have ignored the legitimate
conceptual problem posed by metamers.

4. Methods

As illustrated on Figure 8, we used vectors to describe the geometry of spectral images (to avoid
any confusion, note that these diagrams are not a perceived color space). By the same token, the
arguments here depend on the logic of plane geometry and not on any partiulcar metric of color space.
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Figure 8. Using vector addition to describe spectral images. (A) PQ represents a vector directed from
point P to point Q, the initial and terminal points of the vector. The magnitude of PQ thus indicates “x”
units acting in that direction; (B) The tip-to-tail method vector addition, showing how PS is generated
from vectors PQ and RS; (C) Addition of vectors OX and OY using the parallelogram law of vector
addition; (D) A 2D vector space with point O as origin. The green, yellow, and blue dots represent the
end points (position vectors) of the direction vectors P, Q and, respectively. The red dots end points of
position vectors determined as vector sums of the position vectors corresponding dotted lines.

A plane is a 2D vector space in which any point can be specified as the position vector of that
point with respect to an origin (Figure 8A). Thus the position vector of the origin is a null vector whose
initial and terminal points are coincident, with zero magnitude and no direction. The arguments in the
Results depend on vector addition. If PQ and RS are any two non-zero vectors, their addition leads
to a third vector PS that is different from both PQ and RS (Figure 8B). The magnitude and direction
of PS depends on the magnitude and direction of vectors PQ and RS. The addition of vectors with
PQ and/or RS as null vectors is still valid, but the resultant vector PS may be equal to both or one of
the addends.

When adding vectors, the initial point of the second vector is placed at the terminal point of the
first, resulting in a vector co-initial with the first vector and co-terminus with the second vector. Since
vector addition is commutative, either of the addends can be treated as the first vector. For addition
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involving more than two vectors, stepwise addition was performed by taking two vectors at a time,
with the resultant vector of a pair being one of the addends for the subsequent addition.

Finally, when two vectors are adjacent sides of a parallelogram, their vector sum is given by
the diagonal of the parallelogram (Figure 8C). This parallelogram rule gives the same result as the
tip-to-tail method, except that it operates on co-initial addends, and was used to define position vectors
based on other position vectors (Figure 8D). When two direction vectors are represented by adjacent
sides of a parallelogram, the included position vectors defined all the position vectors within that
parallelogram (i.e., the black dotted lines connecting all the direction vectors in Figure 8D).

5. Conclusions

To be optimally successful, color vision must assign distinct percepts to all possible arrangements
of spectrally different regions on a plane, while at the same time contending with the need of four color
classes to make any planar map unambiguous. Here we suggest that the circularity of color perception,
color opponency, and trichromacy have evolved at least in part as related ways of meeting these
geometrical demands. This perspective provides a unified rationale for perceptual and physiological
phenomena that are otherwise difficult to explain.
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