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Abstract: For two centuries, visual illusions have attracted the attention of neurobiologists and com-
parative psychologists, given the possibility of investigating the complexity of perceptual mechanisms
by using relatively simple patterns. Animal models, such as primates, birds, and fish, have played a
crucial role in understanding the physiological circuits involved in the susceptibility of visual illusions.
However, the comprehension of such mechanisms is still a matter of debate. Despite their different
neural architectures, recent studies have shown that some arthropods, primarily Hymenoptera and
Diptera, experience illusions similar to those humans do, suggesting that perceptual mechanisms are
evolutionarily conserved among species. Here, we review the current state of illusory perception in
bees. First, we introduce bees’ visual system and speculate which areas might make them susceptible
to illusory scenes. Second, we review the current state of knowledge on misperception in bees
(Apidae), focusing on the visual stimuli used in the literature. Finally, we discuss important aspects to
be considered before claiming that a species shows higher cognitive ability while equally supporting
alternative hypotheses. This growing evidence provides insights into the evolutionary origin of
visual mechanisms across species.

Keywords: bees; invertebrates; visual illusion; visual perception

1. Introduction

“I’m havin’ illusions, all this confusion’s drivin’ me mad inside”—Cypress Hill.
What we define as “reality” arises from the integration of multiple sensory stimuli

that individuals experience in their lives. The perceptual system, therefore, provides
us with a limited representation of reality, which comprises only what we can perceive.
Indeed, our sensory system does not allow us to perceive some aspects that define the
environment, such as radio waves, non-aromatic chemical compounds, and microelements
such as chromatin and bacteria [1].

However, the human mind can create a representation of the external world, albeit
limited to what we can perceive and to which we are able to respond. This system seems
efficient in a static situation, in which conditions are limited and allow an individual to
predict their outcome easily. However, realistic environments are dynamic, and individuals
must quickly adapt to unpredictable situations. Natural selection should favor those
individuals that respond flexibly to changing environments based on their experiences.
Therefore, our perceptual system allows us to characterize a situation by searching for
common principles. For example, in the visual system, visual sensory input is acquired from
the retina and transmitted by the brain to generate a perceptual image. It is interesting to
note that some phenomena generate conflicts between what we perceive and the conception

Vision 2022, 6, 28. https://doi.org/10.3390/vision6020028 https://www.mdpi.com/journal/vision

https://doi.org/10.3390/vision6020028
https://doi.org/10.3390/vision6020028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vision
https://www.mdpi.com
https://orcid.org/0000-0002-9094-2004
https://orcid.org/0000-0002-7391-8934
https://doi.org/10.3390/vision6020028
https://www.mdpi.com/journal/vision
https://www.mdpi.com/article/10.3390/vision6020028?type=check_update&version=1


Vision 2022, 6, 28 2 of 11

of what we consider reality, which we have created by our experience. These phenomena
are defined as illusions [1].

Among the illusory phenomena, visual illusions have been widely investigated to help
us understand how sensory information is processed. These classes of illusions are often
caused by the spatial conformation of the elements present in the scene, which generates a
conflict between what our mind processes and what the physical object really is. The main
information that triggers these illusions is visual, but the works of Shams and collaborators
on the induction of visual illusions when we perceive sound stimuli are intriguing [2].
According to Gregory [3], we can classify illusions into two categories according to their
source. “Physical illusions” refer to phenomena generated by the malfunction between
a physical phenomenon and the information the retina acquires, such as the refraction of
light underwater or images seen in a mirror. The second category, of the greatest interest,
concerns “cognitive illusions”, which are generated by the conflict between visual informa-
tion our perceptual system acquires and the brain’s consequent processing. Phenomena
such as the Ebbinghaus, Müller-Lyer, and Ponzo illusions and the Kanizsa triangle are
cognitive illusions [3]. These illusions are created by the false perception that an image
generates in our mind. These phenomena are caused by our perceptual visual system.
Indeed, the system converts the two-dimensional visual information the retina acquires
into a three-dimensional representation with an image with which we have experience.
Our system, therefore, has adapted a set of transformation rules to provide fast answers to
what we perceive. Consequently, the interpolation of these rules can be misleading when
the information generates a conflict with what we expect.

Animals live in a dynamic environment that comprises an enormous amount of
sensory information, and their nervous systems need to acquire, process, and integrate the
most relevant information to make adaptive decisions. From an evolutionary point of view,
different species might evolve similar rule-based strategies which are generally applied
when perceiving similar visual inputs [4]. Therefore, we should not be surprised that other
species are susceptible to optical illusions similar to those humans experience.

Previous reviews have thoroughly discussed the current knowledge of several illusory
phenomena among vertebrates [5–8]. However, limited knowledge is available for inver-
tebrate species. Vertebrates and invertebrates have divergently evolved from a common
predecessor for at least 600 million years; the latter are characterized by a relatively simple
sensory system adapted for faster reaction [9]. However, similarities in physiological and
morphological systems have been found to be highly conserved among species, raising
the question of the evolutionary origin of these systems [10–12]. An assessment of animal
illusion susceptibility can reveal whether and how environmental and evolutionary factors
have affected our perceptual systems.

This review focuses on the visual perception of invertebrates, in particular bees.
The impressive cognitive capacities of bees, including the formation of abstract concepts
such as sameness and difference [13], numerosity [14], and holistic processing of the human
face [15], have aroused interest in understanding the visual pathways in a relatively small
brain. First, we describe the visual system of bees and speculate which areas might be
involved in susceptibility to illusory figures. Second, we review the current literature on
misperception in bees (Apidae) by focusing on the established methodologies and illusory
visual stimuli used in the literature. Finally, we discuss important aspects that authors
should take into consideration before claiming that a species shows cognitive similarities
with “higher species”, such as humans, when alternative “low-level” explanations are
equally possible.

2. Bee Perspective

Freely moving organisms are in constant interaction with the environment. The nature
of stimuli that an animal perceives influences its behavior. It is worth noting that animals,
on the one hand, can acquire visual information through single-aperture or compound
eyes [16]. The former is characterized by a retina-like structure, that is, a non-uniform
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distribution of photoreceptor cells, which improves sensitivity and resolution. Invertebrates,
on the other hand, have a variety of eye structures, from simple photoreceptors to complex
structures such as a compound eye. Unlike single-aperture eyes, compound eyes consist
of thousands of single image systems (ommatidia) arranged spherically on the surface of
the eye. Each unit can collect partial images of the target object, and then the entire image
is recreated from the separately acquired information. As a result of this organization,
the compound eye has poor spatial resolution but a wider field of view that permits better
detection of moving objects. To increase image resolution, invertebrates need to spend more
time scanning information before making a decision. For example, many invertebrates
actively sample the scene from a close distance, scanning the pieces that constitute the
scene one-by-one, and the scanning time is correlated with the complexity of images [17,18].
Indeed, bees often need longer scanning times to acquire the necessary information to
make a decision. Such behavior, known as “active vision”, compensates for the absence
of simultaneous processing of an entire image at a glance [19]. Honeybees (Apis mellifera)
have been shown to process visual information in a different manner and use a different
strategy than humans do in a visual discrimination task that uses stimuli commonly found
in numerical cognition studies [20]. Bees used continuous cues such as edge length and
spatial frequency rather than discrete cues (number of objects) to solve the task. In another
numerosity task, MaBouDi et al. showed that bumblebees (Bombus terrestris) did not
determine the number of items by using a rapid assessment of number (as mammals do in
“subitizing”) [21]. Instead, bees used a sequential enumeration strategy even when items
were presented simultaneously and in small quantities. For clarity, this is not the only
mechanism present in invertebrates. Recent studies have reported how flies (Drosophila
melanogaster) are able to process visual stimuli similarly to the way primates do [22].

Once acquired, visual information must be integrated by high-order brain regions.
Bees and several other arthropods possess a single dorsal-anterior neuronal ganglion
positioned above the pharynx which is organized with defined front, middle, and back
components, each specialized to process and integrate various sensory information [23].
The anterior component, called the “protocerebrum”, receives the innervation of visual
organs (Figure 1). The knowledge gathered on the processing and integration of sensory
information has focused on odors, mostly in honeybees (A. mellifera), using the proboscis
extension response conditioning protocol, where the test subject is in a tube so that only
the antennae and proboscis are free to move. In contrast, to study the processing of visual
information, it is necessary for the individual to be in motion, limiting the study of brain
activity during the task (but see [24]). Therefore, bee brains, as well as many other arthropod
brains, can be divided into separate neuropil areas (zones of dense synaptic networks
of neuronal processes) (for a detail reference system see [25,26]). Visual information is
specifically acquired by the types of photoreceptors sensitive to different wavelengths
of the spectrum [27–29]. The dorsal area of protocerebrum receives terminal extension
originating in the optic lobe, that is, a large and complex neuropil areas involved in the
analyses of visual input. Indeed, neurophysiological signals are propagated from the
projections of retina photoreceptors into the first, most peripheral area of the optic lobe,
the lamina [30]. This first region is composed of thousands of axon bundles derived
from the ommatidia as well as neural projections of different types of monopolar cells.
Axons from the lamina proceed to the inner high-order area, the medulla. Projections
from the posterior part of the medulla decussate in the chiasma before innervating the
inner area of the lobula [31]. Finally, information from the lobula is conveyed to different
brain regions. In particular, the central complex, a specific region of the insect brain
positioned in the center of the protocerebrum, comprises four unpaired neuropils [32,33].
Its primary function is to process and integrate visual information from the retina to
provide an appropriate motor response [34]. The mushroom body (corpora pedunculata)
has long been considered to be the principal neuropil area involved in olfactory learning
and memory by receiving sensory information from the antennae [35]. Recent studies have
suggested that the division between the olfactory pathways (mushroom body) and the
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visual pathways (central complex) was not distinct, but that both regions were crucial for
learning visual and odour information in a binary choice task [36]. Although the number
of neurons is smaller in bees than in vertebrates, the visual pathways in the brains of bees
are still far from being fully understood [37].
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Figure 1. A simplified diagram of the neuroarchitecture of a bee’s brain. The sensory information
captured from the compound eye is processed in the optic lobe (OL), which is comprised of the
lamina (La), medulla (Me), and lobula (Lo). Two pathways (dark line) can be outlined from the
posterior part of the Lo, which project axons to the mushroom body (MB) and to the central complex
(CC). The lateral protocerebrum (LP) is involved in the integration of information from several areas
in the bee’s brain, including visual information from the CC (purple line) and olfactory information
previously processed from the antenna lobes (LB) and MB (blue line). The scheme was created with
BioRender.com (accessed on 20 April 2022).

3. Do Bees Experience Visual Illusions?

Although the study of optical illusions has always fascinated researchers of visual
perception and the public, researchers have only recently begun to systematically study
such phenomena outside the human sphere for the purpose of increasing our knowledge on
similarities and differences in perceptual mechanisms across species [7]. Indeed, an inclu-
sive literature search of PubMed database was carried out for articles contained the terms
”visual illusion” and ”invertebrate” published up to December 2021. The search yielded
52 results, including 11 studies on arthropods, 2 reviews, 2 studies on other type of sensory
illusion, while the remaining were not related to the subject of interest. Despite the limited
quantity of information, several studies on perception in Drosophila and other inverte-
brate models have used stimuli that could be classified as illusory, although this was not
explicitly stated. For example, different conditioning procedures that operate in Drosophila
involved exposure to patterns of vertical lines in motion [38]. In 1979, Srinivasan and
Dvorak specifically studied the waterfall illusion, which consisted in the apparent motion
of a static object generated by a prolonged exposure to moving patterns [39]. The authors
found that the common green bottle fly (Lucilia sericata) exhibited a behavior similar to that
observed in humans and expected from the waterfall illusion. The behavioral response
appears to be elicited by the response of direction-selective neurons in the lobula.

We have already discussed how the visual perception system converts a two-dimensional
image acquired through the retina into a three-dimensional scene. One of the transforma-
tions that the system uses is the identification of edges among the different elements that
make up the scene. Physical characteristics of the elements such as luminance, texture,
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and chrominance define the contours. The system, however, “adds” contours even in the
absence of real discontinuity [40,41]. These contours generate a class of phenomena called
illusory contours (Table 1).

Table 1. Diagram and descriptions of illusory phenomena similarly experienced by bees and human.

Class of Illusion Description Illusory Stimulus

Illusory contours

For humans, a white rectangle is generated from
the identification of an edge between the different

”Pac-Man” elements that create the scene. Bees
showed similar susceptibility of those expressed

by humans when presented with stimuli with
high-contrast borders [42,43].
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In the last 30 years, contour illusions have proven to be fundamental for the develop-
ment of models that explain how sensory information is processed and integrated within
the visual system. In two preliminary studies, Van Hateren et al. and Horridge et al.
extended the studies on the perception of illusory contours in honeybees [42,43]. In both
studies, the researchers trained individual bees to discriminate patterns of vertical and
horizontal lines and, subsequently, stimuli of subjective illusory contours. Bees were also
presented with Kanizsa-type rectangles, a class of illusory contours generated by the spa-
tial arrangement between elements with high-contrast borders [48]. When trained with
regular line patterns, bees showed no preference for boundary illusion stimuli. Conversely,
when bees were trained with non-regular line patterns and which simulate boundary illu-
sions, they showed a preference for illusory solids (i.e., solids generated by the boundary
illusion) with the same orientation as the patterns they were trained to.

Another interesting class of illusory phenomena is color illusions (Table 1). ”Color” is a
property of an object defined by the mind. Indeed, color is an electromagnetic phenomenon
generated from the reflection of light on the object. The reflected light stimulates the retina
and the brain processes the visual information, enabling color perception. As a result,
color is an illusion per se. One classical color illusion is Mach bands, defined after the
phenomenon was discovered by the physicist Ernst Mach [49]. It results from the contrast
between the edges of grey gradients of relatively close intensity in a square-wave grating.
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The alternating color pattern increases sensory perception of the luminance channel in the
retina by inhibiting the spreading of action potentials, a motor neural response known
as lateral inhibition. Several color illusions stem from alternating patches of color with
different luminance/brightness. The Fechner color effect is induced by a rapidly alternating
moving pattern of black and white stimuli. Although bees possess trichromatic color
vision similar to that of the human visual system, their visible spectrum is shifted toward
shorter wavelengths, encompassing the range from UV to green [50]. When presented
with the Benham pattern, a certain black-and-white concentric circle pattern, honeybees
showed similar behaviors to those expressed by humans in the presence of the illusory
stimulus [44]. The Craik–O’Brien–Cornsweet illusion, or simply the Cornsweet illusion,
is another optical color illusion, but it differs from the described Mach bands or Fechner
phenomena. In the Cornsweet illusion, regions close to the lighter part of the edges
are perceived as lighter, while regions close to the darker area are perceived as darker.
Davey et al. investigated whether honeybees experienced the Cornsweet illusion [45].
Bees were trained to discriminate between square-wave gratings differing in the luminance
contrasts between close elements. Again, bees showed behavioral similarities to humans
when faced with the illusory pattern. A possible explanation proposed by Davey et al. relied
on the antagonism interaction between the center and surround regions of the receptive
field of photoreceptor cells.

The described studies concern phenomena that affect the visual pathways of image
acquisition. An interesting phenomenon first proposed by Navon concerns the differing
amount of attentional resources deployed for some aspects of an image [51]. In a seminal
study, Navon pointed out that subjects responded faster when discriminating between
global versus local features of a scene. In his work, precisely described as “Forest before
trees”, Navon emphasizes how humans paid more attention to the global information of
the scene than to the individual elements that made it up. In particular, the global possesses
unique characteristics not presented at the level of individual elements. For example,
density is not visible at the level of the single element, but it emerges when we consider the
various elements as a group (Table 1). Humans and other vertebrates generally use global
processing for perceiving the world, that is, the tendency to process the overall images of a
scene rather than a collection of the separate features which form it [52–54]; (but see [55,56]).
In a few studies, Avarguès-Weber et al. investigated whether honeybees prioritize global or
local information by setting a scene with these two levels in competition [15,46]. Even when
local information was accessible, honeybees first relied on the global information, that is,
the spatial arrangement of an entire scene, to perform visual discrimination, suggesting
that prioritizing of global processing could be a spontaneous mechanism for analyzing a
complex visual scene in bees in the same way as in humans. Indeed, global processing
might be more resilient to an inconsistent visual scene for moving animals, which acquire
information from different viewpoints [57,58]. Another well-known example of global
information effect comes from the Ebbinghaus or Titchener circle illusion, i.e., two identical
targets are perceived differently when surrounded by small/large or close/distant external
inducers. Howard et al. asked the question of whether honeybees are affected by contextual
size illusions [47]. Honeybees were trained to discriminate between stimuli differing in
size, and then tested with a contextual size illusion. Honeybees showed a preference
similar to those experienced by humans. However, size perception was influenced by the
conditioning procedure: in a restricted viewing condition, honeybees showed no preference
for either one of the two illusory stimuli.

4. The Neural Root of Illusory Misperception

An interesting question that has long fascinated neuroscientists and behavioral psy-
chologists is whether and how nonhuman species perceive visual illusions. The possibility
of comparing the behavioral responses of different species when faced with illusory stimuli
allows us to understand how different perceptual systems have evolved to overcome simi-
lar ecological pressures. Among the most studied nonhuman species, primates have played
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a central role in understanding the mechanisms underlying visual perception. The primary
visual cortex (V1) is a specific region of the cerebral cortex that receives sensory input from
the lateral geniculate nucleus. This area is highly specialized for pattern recognition by
transforming visual inputs into neural firing rates. Then, neurophysiological information
is transmitted through two primary pathways known as the ventral and dorsal streams.
The first stream is critical for visual perception, while the dorsal stream mediates visual
control of moving actions and the location of objects in the environment. Due to its in-
volvement in visual processing, the ventral stream might be the target area in which the
sensory mechanism is affected by the illusory scene. For example, the brightness illusion
concerns the misperception of equal objects due to the apparent contrast of the object to the
background on which it is placed. The misperception event might manifest during the early
pathways of sensory input processing in luminance-responsive cells in color-activated re-
gions of V1 and in the secondary visual cortex in macaque monkeys (Macaca fuscata) [59,60].
These regions encode the response to the physical modulation of luminance due to the
presence of neurons with restricted receptive fields. Thus, the misperception of the bright-
ness illusion and other illusory phenomena, for example, illusory contours [61], might be
ascribed to a limited and easy feedforward mechanism of processing of sensory inputs [62].

This scenario becomes even more complicated when we consider bees. Although bees
exhibit behavior similar to that of humans in response to the perception of illusory stimuli,
they do not possess a cortex. Consequently, the cortex present in mammalian brains is
not a necessary condition for triggering the misperception. It is possible that mispercep-
tion occurs at an early level of the visual pathways. Regarding the visual pathways in
insects, the photoreceptors transform visual inputs from the eye to neurophysiological
signals to the optic lobe. The spatial arrangements of such neural ganglia, especially in
the inner region of the lamina, remain constant throughout the different layers of the
optic lobe, thus, providing a retinotopic organization of those neurons involved within the
visual pathways. The chiasma, which connects the posterior region of the medulla and
innervates the lobula, might potentially play a role in processing complex visual informa-
tion [63]. A recent work by Agrochao et al. showed how the perception of an illusion of
movement in Drosophila was generated by unbalanced contributions of distant-selective
neurons’ responses in stationary edge sampling [64]. Flies whose T4 and T5 motion neu-
rons (detection-selective neurons that respond exclusively to dark edges or moving light
presented in the second chiasma) had been ablated did not experience the illusion of move-
ment. It is interesting to note that the same mechanism has also identified in humans [63].
Indeed, the pathway for visual information in vertebrates is through the retina and lateral
geniculate nucleus to the primary visual cortex. The transition from sensory stimulation of
photoreceptors to electrochemical signals leading to a behavioral response is subject to the
different properties of the areas passed along the way [65–67].

5. Discussion

The information collected in this review suggests that bees show a human-bias judge-
ment when presented with stimuli made for humans. Can we, therefore, claim that bees
perceive illusions? According to the current literature, bees do perceive illusions, but not
necessarily in the same way as humans.

Researchers usually propose theories and subsequently conduct experiments to sup-
port them. Unfortunately, this approach has limitations when we are interested in un-
derstanding cognitive abilities in nonhuman species. Indeed, animals can learn different
strategies to solve a task, but the outcome is similar to what we expect. Let us take as an
example the color illusion presented by Davey et al. [45]. Color illusions such as Mach
bands originate from overstimulation of the sensory neurons of the human retina. Recent
work in flies seems to confirm that sensory neurons present in the early stage of visual
pathways increased their activity when exposed to square-wave patterns [68]. It might
also be possible that bees learn to discriminate stimuli based on the perceived hue gener-
ated from the spatial arrangement of elements and/or their sampling behavior. Indeed,
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Srinivasan et al. found that the perception of color by bees was affected by previous ex-
posure to a rotated square-wave pattern [44]. Even though the behavioral outcome is the
same, bees can learn alternative strategies for making their decision, depending on the
training protocol employed or on experience previous to the stimuli [69–71]. Considering
multiple features of animal behavior (e.g., decision time and the pattern of movement) and
not only their simple choice would certainly strengthen the comprehension of the strategies
that animals undertake before making a decision.

As Avarguès-Weber et al. clearly pointed out [15,46], the methodology adopted for
investigating our hypotheses plays an important role in the outcome. Many of the stimuli
adopted to verify whether nonhuman species perceive visual illusions are based on human
perception. Several procedures employ monitors to present controlled visual stimuli.
The problem is that screens have a filter that transmits human-visible light, which can affect
the perception of stimuli in other species. It is common to train an insect by presenting
stimuli with a relatively large stimulus to individual’s size ratio as compared with ones
used for humans and nonhuman primates. Generally, human subjects are presented with
relatively small stimuli (~2–10 cm) as compared with their size, while insects have to
discriminate between stimuli two or more times larger than their own size. Although
the basic neural mechanisms for the acquisition of visual information seem common
among species, we cannot affirm that different species use the same visual principles
for making decisions. For example, bees perceive ultraviolet (UV) light, but humans do
not. Many flower species have UV-absorbing areas or specific-colored areas that may
make them look bigger or otherwise more attractive to pollinators. It is advantageous
for flower species to be able to influence how pollinators perceive their attractiveness.
Indeed, the salience of flowers’ characteristics reflect natural selection based on pollinator
preferences [72]. Methodological differences between species, and even within the same
species, can influence the robustness of comparative results. As already mentioned in
the introduction of this review, species have developed various systems for perceiving
the external world, and such systems might not be following our expected hypothesis.
Further studies should be careful about the ecology of species when planning to perform
comparative experiments.

In conclusion, do bees experience visual illusion? The current literature suggests
that they do, but the mechanisms underlying such phenomena remain poorly understood.
Visual illusions provide windows into the mechanism underlying the visual system [4].
Despite this, we are still far from understanding the causes that generate the illusory phe-
nomena. Undoubtedly, further studies are needed to understand the evolutionary origin
of vision systems across species. We have reported how bees [15,73], and other social
hymenoptera (such as wasps) [74–76], are able to categorize and recognize the features of
faces. More interesting is the potential role of the environment in influencing the develop-
ment of such cognitive functions among species and even within the same species can be
influenced by social and physical environment. For example, socially isolated wasps of the
species Polistes fuscatus do not develop face recognition, especially when deprived of social
signals in the early stage of life [77]. Moreover, geographical distance has been shown to
increase phenotype variability in the capacity for face recognition in two P. fuscatus popu-
lations [78]. Species with and without face recognition capacity possess different growth
rates and complexities of neural connectivity in their anterior optic tubercle, suggesting
a possible neural area which mediates such cognitive capacity [79]. By manipulating the
individual experience of environment, we might be able to influence neural and cognitive
development and, consequently, understand which areas are involved in the misperception
of illusory stimuli [80]. The rapid generation time and short lifespan, the compact genome
size, the well-organized brain architecture, as well as other advantages, suggest inverte-
brates could be a successful model for investigating the genetic and neural components of
behaviors. Nevertheless, all the parallelisms emerging from this review might reflect the
fact that humans, nonhuman vertebrates, and certain invertebrates, despite the markedly
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different architecture of their eyes, have evolved similar processing mechanisms to deal
with similar environmental pressures [7].
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